Lecture 1: Risk and Risk Aversion
· This should mostly be review given your Microeconomics courses


· Readings:

· Ingersoll – Chapter 1

· Leroy and Werner Chapters 8 & 9
· Ross – “Stronger Measures of Risk Aversion”

The most interesting aspect of Asset Pricing, the focus of this course, considers how securities markets price risk (the time dimension alone is largely mechanical although there are interesting interactions between the two).  For this question to be interesting, it must be that there is a positive price for risk – i.e. investors require some compensation for exposing their portfolios to risk (this certainly appears to be true from the data).  Theoretically, this in turn requires that investors dislike risk or that they are risk averse.  For intuition’s sake, we will review some of the relevant concepts.
Definition: 
Let 
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be a preference relation with an expected utility representation.  
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 is said to exhibit or display risk aversion if for any simple gamble 
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, the relation weakly prefers the fixed value g to the simple gamble  → g 
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.  The weak preference allows for indifference so “weak risk aversion” includes risk neutrality.  

(Strict risk aversion, risk neutrality, and risk seeking (weak or strict) are defined analogously.)
Example:
A simple gamble:  Consider a random payoff 
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 > 0 with probability 1 ≥  p ≥  0 or 
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 with probability 1 - p.  The expected value of 
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+ (1-p)
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 = E(
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) = g.  This gamble is said to be ‘fair’ if E[
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] = g = 0.  We can alternatively define a risk averse agent as one who is unwilling or indifferent to taking any fair gamble, and strictly risk averse if unwilling to accept any fair gamble.  In the above definition, a risk averse individual (weakly) prefers to receive the amount E(
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) = g rather than face the bet 
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Definition:
A function f( ): W → 
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 (reals) is concave if f(az + (1-a)y) 
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 af(z) + (1-a)f(y) 
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 W and all a 
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 [0, 1].  (f is affine if f(z) = bz + c and b & c ≠  0 are constants.)

If a concave function f( ) is defined on an open interval of the real line then f( ) is continuous and is continuously differentiable almost everywhere on that interval.  ( ′ denotes partial derivatives)
· f ′ ( ) is non-increasing if f( ) is concave.  So, if f( ) is concave and twice differentiable then f ″( ) is non-positive.

· Generally, we will be concerned with f( ) such that f ′ ( ) 
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 0.
The definition of concavity leads naturally to Jensen’s Inequality:


f(E(
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)) ≥  E(f(
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)) if f( ) is a concave function and 
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 is a random variable.
(Intuitively, just think of a and (1 – a) as probabilities in the definition of concavity.)
Illustration:
Consider a fair gamble defined by 
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and  p = ½.  Label f( ) = U( ).
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Thus it is the concavity of U( ) that causes the agent to be unwilling to accept the fair gamble.  Intuitively, risk aversion derives from a downside loss causing a reduction in utility that is greater than the increase in utility from an equivalent upside gain (f ′ ( ) is non-increasing).

The two definitions provided above naturally lead to the following theorem.
Theorem:
An agent is strictly risk averse iff U( ) is strictly concave.
Proof:
“An agent is strictly risk averse if U( ) is strictly concave”


Assume U( ) is strictly concave.


Thus, for any x and y it’s true that U(
[image: image33.wmf]l

x + (1-
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U(x) + (1-
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(0, 1).


Now, consider any arbitrarily chosen fair gamble, (δ1, δ2, p).


Since the gamble is fair, we know that for any wo
   wo = wo + pδ1 + (1-p)δ2 = p(wo+δ1) + (1-p)(wo+δ2)


Now, use the strict concavity of U( ) and label 
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 = p, x = wo+δ1, y = wo+δ2

Then, U(wo) = U (p(wo+δ1) + (1-p)(wo+δ2)) = U(λx + (1-λ)y)

> λU(x) + (1 – λ)U(y) = pU(wo+δ1) + (1-p)U(wo+δ2) = E(U(wo+
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where the inequality follows from strict concavity.  Strict concavity of U( ) implies this agent always strictly prefers not to accept any fair gamble and so is strictly risk averse.


“An agent is strictly risk averse only if U( ) is strictly concave”

Assume the agent is strictly risk averse and so is unwilling to accept fair gambles.
Therefore, 
U(wo) > pU(wo+δ1) + (1-p)U(wo+δ2) 
(eqn ☼) 
holds for any fair gamble (δ1, δ2, p) and any wo.

Let (x, y, 
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 EMBED Equation.3  [image: image44.wmf]Â
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 (0,1) be arbitrarily chosen.  

Simply let wo = 
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x + (1-
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)y, δ1 = x – wo, δ2 = y – wo, and p = 
[image: image48.wmf]l


Then eqn ☼ becomes the equation for strict concavity and we are done if this gamble is in fact fair: pδ1 + (1-p)δ2 = ((x-wo) + (1-()(y-wo) = (x +(1-()y - wo = wo - wo = 0.        (
The concave functions we are concerned with are of course utility functions.  In finance, we commonly simplify things and deal with utility of wealth.    In this course we will consider, directly or indirectly, the implications of the investment problem of maximizing agents.  In the standard two-date, consumption-investment problem, agents control two types of variables: (1) at the first date they invest their after consumption wealth in the marketed securities; and (2) at the second date they sell these securities/assets to buy consumption goods.  Two components make the problem interesting: time and risk.

· Thus, the investment decision consists of forming a portfolio that transfers wealth from one date to the next, and the consumption decision allocates the resulting wealth among the various goods (in a multi-period problem, these goods include savings).

· If a complete set of state contingent claims (futures contracts) are available, then the date 2 consumption goods can be purchased at date 1 and both allocations can be made simultaneously.  If there is some incompleteness in the market, then the decision must take place in two distinct steps.

· Since it is also possible to consider the complete markets single-step problem as a two-step problem we will generally think of the problem in two pieces – investment then consumption.

· If there is a single consumption good in the economy/model, the utility of wealth function is just a standard utility function over consumption of the single good.

· If multiple goods exist, we are dealing with a derived utility of wealth function U(W) where U(W) ≡  Max V(c)   s.t. p′c = W where c is a vector of consumption goods, p is a price vector, and W the level of the budget constraint.  U(W) is just the envelope of V(c) for different levels of final wealth, W.  In this case, we think of the date 2 consumption allocations as specifying a derived utility of wealth function that the investment decision seeks to maximize.  We can then concentrate on the investment decision itself.  To illustrate in a simple two good example, consider:
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· If V(c) is increasing and p > 0 then U(W) is increasing

· If U(W) depends only on W it is called “state independent.”  We commonly assume this is true.  If it also depends on relative prices – i.e. the price vector p – it is “state dependent.”  
Arrow-Pratt Measures of Risk Aversion

We consider 3 approaches to measuring risk aversion.  All evaluate a riskless wealth level versus a simple gamble.

(1)
Arrow’s measure of risk aversion – what is the “compensation” required for a risk averse agent to accept a gamble?

This defines a probability (or an expected payoff/return) based “risk premium.”  In this sense, it is related to the finance or asset pricing view.

If 
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with probability 1-p

Then, the question can be stated as: for what value of p (> ½) is E[U(wo + 
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Or, for what p is pU(wo + 
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To solve, take a Taylor series expansion of the left-hand side of this last equation at wo
p[U(wo) + 
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We can drop the o
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 is ‘small,’ leaving:

U(wo) + (2p-1) 
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Note that for linear U( ) (so that 
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= 0) this holds at p = ½ as would be expected.
Solving for p, we find that p 
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Define the measure of absolute risk aversion, A(wo) = - 
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[image: image78.wmf]@

 ½ + ¼
[image: image79.wmf]d

A(wo)
Note that if 
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( wo) < 0 (utility is increasing and concave) then A(wo) > 0

Note:  A(wo) is a property of the preference relation 
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 and not its utility function representation U( ).  A(wo) relates to the curvature of the utility function at wo (think of the Jensen’s inequality picture).  So, clearly 
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Since utility functions are unique only up to a positive affine transformation 1/
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( ) is a standardization used to make sure A(wo) is truly a property of 
[image: image86.wmf]f

 and not merely of U( ).  Note that A(wo) is a local measure (at wo) and that the result is strictly true only for ‘small’ gambles.

Let’s interpret p:  What we see is that the agent must be compensated for bearing the risk of 
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Since A(wo) = - 
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(wo) > 0, then A(wo) > 0 iff 
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(wo) < 0 (i.e. iff U( ) is concave).
Thus, the amount by which we adjust p from ½ – the fair gamble level – is proportional to A(wo) (a positive amount for risk averse preferences) the Arrow-Pratt coefficient of ‘absolute risk aversion,’ and ( a metric for the amount of risk in (the size of) the simple gamble.
If we had instead considered a proportional (to initial wealth) lottery:
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then the above exercise would give us:

p 
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 is the coefficient of ‘relative risk aversion.’
(2)
Pratt’s measure of risk aversion – what payment would a risk averse agent make to avoid a fair gamble (insurance premium)?
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 with probability = ½    (note that in this case the gamble is fixed as “fair”)

-
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The question is then, for what value of πi is it true that E[U(wo + 
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)] = U(wo-πi) ?
Taking a Taylor’s series expansion of both sides (around wo) and solving for πi (do this) gives:

        πi 
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(A(wo) is again an approximation to measuring risk aversion for small ( and in this simple setting Var(
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) measures the “size” of the gamble or the amount of risk.)
wo – πi defines the certainty equivalent wealth for wo+
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 given U( ).
Again, R(wo) would appear if the gamble considered were a proportional one.
(3)
Also consider the question: for what πc – compensating wealth premium – is it true that:


E[U(wo + πc + 
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We can show that πc depends on A( ).  Since “we can,” do so as an exercise.  What do you find?.
Consider the relation between the three versions:
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Each is determined by the nature of the curvature of U( ) at w0, i.e. its concavity.
Comparing Risk Aversion
 Definition: 
A decision maker is decreasingly risk averse if 
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 with w′ > w

If E[U(w + 
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(Increasing risk aversion can be defined analogously.)

Practice exercise:  Assume U( ) is twice continuously differentiable.  Show this holds iff A(w) is non-increasing in w

Practice exercise:  Show that if an individual is decreasingly risk averse then U′″(w) > 0 if U( ) is thrice differentiable.
Definition:
Individual 1 is strictly more risk averse than individual 2 if 
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wo the insurance premium (πi) individual 1 would pay to avoid the gamble
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 is strictly larger than that which individual 2 would pay.  (Or, if 1 always chooses a safe investment over a simple gamble whenever 2 does.)

Theorem:
Consider two strictly increasing concave utility functions U1 and U2 – the following are equivalent:
1) A1(w) > A2(w)  ( w  “1 is more risk averse than 2”
2) 
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 G( ) with G′( ) > 0 and G″( ) < 0 such that U1(w) = G[U2(w)]  
(i.e., U1( ) is a “concavification” of U2( ))
3) 
[image: image133.wmf]p

i1 > 
[image: image134.wmf]p

i2 
[image: image135.wmf]"

w0 and 
[image: image136.wmf]"

 
[image: image137.wmf]d

~


Proof:


(3) 
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(1)
we know 
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where πij is the insurance premium agent j will pay to avoid the gamble
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Jensen’s inequality (G is strictly concave)




= E[U1(w+
[image: image153.wmf]d

~

)]
from the definition of G( )




= U1(w-
[image: image154.wmf]p

1)

from the definition of (1


So, 
[image: image155.wmf]p

1 > 
[image: image156.wmf]p

2 since U1′ > 0  (that is, U1 is an increasing function)

(1) 
[image: image157.wmf]Þ

(2)
Define G( ) = U1[U2-1(w)] then


U1(w) = G(U2(w)) by definition



Since U1 and U2 are strictly increasing U1′ = G′(U2)U2′ 
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We can write this as:
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thus (1) 
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so strict concavity of G follows from (1).
Examples of Commonly Used Utility Functions
· Constant Absolute Risk Aversion – CARA
No wealth effects: A(w) = -
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So, given this, what is U(w)?


-log(U′(w)) = Aw + I1

U′(w)
= 
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For all I1 and I2 these are positive affine transformations of the negative exponential utility function U(w) = -e-Aw ( CARA Utility

· Constant Relative Risk Aversion – CRRA
Now, 
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-log(U′(w)) = Rlog(w) + I1  as long as w > 0

U′(w)
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Case 1: R = 1

U(w) = 
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A positive affine transformation of the base utility function U(w) = log(w)


( CRRA utility implies log utility if the level of relative risk aversion, R = 1.
Case 2: R 
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U(w) = 
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So, the base utility function is U(w) = w1-R/1-R

( CRRA utility implies power utility if R ≠ 1.  Note, we could alternatively take the limit as R ( 1 to derive case 1.
· Linear Risk Tolerance (a.k.a. “Hyperbolic Absolute Risk Aversion – HARA”)

LRT or HARA encompasses all of the above


The risk tolerance measure is 
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Linear Risk tolerance implies 
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HARA is simply 
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Case 1: a = 0

If a=0, this is simply CARA utility:  A(w) = 
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Case 2: b = 0

If b=0, this is simply CRRA utility: 
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In this case, we have…
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and, 
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For simplicity’s sake, let ws =  - 
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U(w) = log(w-ws) 
if R* = 1 (a = 1) 
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Generalized log utility
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Generalized power utility

These two base utility functions are generalized log and generalized power utility functions.  They are defined only for w > ws.  ws is thought of as a subsistence level of wealth, below which utility equals negative infinity.

Risk – A general notion of risk we will study later, but for now, a quick introduction
General notion – Risk is defined as any property of a set of random outcomes that is disliked by a risk averse agent.

This is pretty general and seemingly broad enough to be almost useless.  You’d be surprised.  Commonly we are in a situation of trying to focus this idea enough to make it fit within a standard economic model and get a useful result to come out.
Rothschild & Stiglitz presented the idea this way: If uncertain outcomes
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Risk, defined in this way, clearly depends on the class of utility functions considered.  At the most general level U is taken to be the set of all risk averse (concave) utility functions.
Practice exercise:  Let U be the set of quadratic utility functions so (wlog) we can write: 
U(z) = z - 
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.  What can we use to measure risk for this class of utility functions?

Theorem: 
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X.)  The “fair game” property is not as strong as independence but stronger than a lack of correlation.  Why would that be a requirement?
Proof (sufficiency): 
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 is distributed like 
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 plus noise – the proof should depend on concavity.
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due to the equivalence of the distributions
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just conditional expectations
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Jensen’s inequality (i.e. U( ) is concave)
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Stronger measures of Risk Aversion – introduced by Ross
We might think that if 
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 is distributed as 
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 plus noise, where the conditional expectation of the noise is zero, and if U1( ) is at least as risk averse as U2( ) as measured by A-P risk aversion, then if U2( )  prefers 
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Example:
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Since 
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is actuarially fair, any risk averse agent should prefer to avoid the second gamble contained in
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.  We now show that the Arrow-Pratt measure does not properly account for this situation in comparing risk aversions.

The Arrow-Pratt measure approaches the problem by saying that U1( ) is more risk averse than U2( ) if U1( ) prefers a riskless payoff r to a gamble y whenever U2( ) does.  Ross instead directly compares the gambles
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and 
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given above.  The first approach assumes complete insurance is possible (can always evaluate a risky position against a riskless payoff); the stronger measures were developed under the assumption that this is not possible.  They highlight how the possibility of perfect insurance simplifies this and many other issues.
The Ross Theorem – the following are equivalent:
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Proof:
First, let’s find
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E[U1(w+e)] 
= p½ [U1(w1+e) + U1(w1-e)] + (1-p)U1(w2)
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Note that the effect of e is only on the second order term (and only at w1).
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As compared to the A-P measure of risk aversion, or the related insurance premium, we get a contamination of 
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Now, if for some w1 and w2,
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then, for p sufficiently small we have a contradiction.


So, 
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Note - The Ross ordering implies the A-P ordering, simply let w1 = w2 and rearrange the Ross 
definition – but we’ll see that the A-P ordering does not imply the Ross ordering.
Example:
Suppose wealth is distributed 
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Now let 
U1( ) = -e-mw
U2( ) = -e-nw with m > n

So, m =
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But, for w1-w2 sufficiently large, so that w2-w1 is very negative (i.e. far from perfect 
insurance), we end up with:
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then, for p small enough, 
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2 and U1( ) prefers some gambles that U2( ) does not 
despite U1( ) being more risk averse under the A-P measure.
Why does this example work?

Even though U1( ) is uniformly more risk averse in the A-P sense, the lottery places a low likelihood on the event w1 (p is small), the state in which insurance against e risk is meaningful.

The marginal value of insurance is determined by the second order effect -U″(w1)e².  The cost of insurance, on the other hand (for very low p), is valued at the margin by U′(w2), the marginal utility of the likely state.  The premium is thus determined by a tradeoff between the benefits of insurance at w1 and the costs at w2.  
The example forces these wealth levels far apart.  The A-P measure cannot consider the two separate wealth levels and so it fails to order properly the required premiums.  Note that the Ross measure controls for this nicely in this example.  See representation (1) in the Theorem.

Thought exercise: What happens as we move outside this example’s structure?
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Read Ep( ) as the expectation using p as the probability of the good outcome in the gamble (





� EMBED Equation.3  ���





 





 





 





 





 





 





                                      

















o





w





             





wo








 





           

















o





w





 








PAGE  
11

_1124527774.unknown

_1135078006.unknown

_1135445568.unknown

_1261379800.unknown

_1261379928.unknown

_1261482706.unknown

_1261822723.unknown

_1261822773.unknown

_1261894433.unknown

_1261482912.unknown

_1261484678.unknown

_1261484766.unknown

_1261484505.unknown

_1261482883.unknown

_1261380818.unknown

_1261398471.unknown

_1261398506.unknown

_1261396251.unknown

_1261379942.unknown

_1261379889.unknown

_1261379914.unknown

_1261379838.unknown

_1198408684.unknown

_1230123246.unknown

_1230446438.unknown

_1261379777.unknown

_1230446455.unknown

_1230123689.unknown

_1230123204.unknown

_1230123232.unknown

_1199876012.unknown

_1230123152.unknown

_1199875933.unknown

_1135491372.unknown

_1198408610.unknown

_1198408643.unknown

_1198408580.unknown

_1135450195.unknown

_1135450224.unknown

_1135450795.unknown

_1135449632.unknown

_1135081466.unknown

_1135082456.unknown

_1135084863.unknown

_1135326286.unknown

_1135087167.unknown

_1135083539.unknown

_1135082243.unknown

_1135082175.unknown

_1135078227.unknown

_1135078525.unknown

_1135078089.unknown

_1133699731.unknown

_1134933327.unknown

_1135077731.unknown

_1135077884.unknown

_1135063291.unknown

_1135077639.unknown

_1134933334.unknown

_1134933341.unknown

_1134929578.unknown

_1134929736.unknown

_1134933317.unknown

_1134929600.unknown

_1133700113.unknown

_1133700142.unknown

_1133700289.unknown

_1134892992.unknown

_1133700167.unknown

_1133700130.unknown

_1133699799.unknown

_1133699820.unknown

_1133699770.unknown

_1131967642.unknown

_1131967714.unknown

_1131968164.unknown

_1132149022.unknown

_1132149112.unknown

_1132148994.unknown

_1131968211.unknown

_1131968293.unknown

_1131968304.unknown

_1131968222.unknown

_1131968175.unknown

_1131967982.unknown

_1131968007.unknown

_1131968019.unknown

_1131967992.unknown

_1131967847.unknown

_1131967858.unknown

_1131967724.unknown

_1131967677.unknown

_1131967703.unknown

_1131967654.unknown

_1131967123.unknown

_1131967292.unknown

_1131967560.unknown

_1131967278.unknown

_1124527997.unknown

_1131967070.unknown

_1131967109.unknown

_1124528314.unknown

_1124528607.unknown

_1124528643.unknown

_1124528353.unknown

_1124528282.unknown

_1124527913.unknown

_1124527984.unknown

_1124527790.unknown

_1117633824.unknown

_1117893050.unknown

_1117893871.unknown

_1117897111.unknown

_1117900264.unknown

_1117900916.unknown

_1117901385.unknown

_1117901710.unknown

_1117901794.unknown

_1124527495.unknown

_1117901768.unknown

_1117901639.unknown

_1117901260.unknown

_1117901350.unknown

_1117900924.unknown

_1117900696.unknown

_1117900810.unknown

_1117900847.unknown

_1117900763.unknown

_1117900574.unknown

_1117900677.unknown

_1117900528.unknown

_1117899706.unknown

_1117900070.unknown

_1117900161.unknown

_1117900038.unknown

_1117897746.unknown

_1117898977.unknown

_1117897206.unknown

_1117896632.unknown

_1117897034.unknown

_1117897081.unknown

_1117897093.unknown

_1117897049.unknown

_1117897002.unknown

_1117897017.unknown

_1117896918.unknown

_1117895340.unknown

_1117895736.unknown

_1117896564.unknown

_1117896585.unknown

_1117896398.unknown

_1117895359.unknown

_1117894412.unknown

_1117894449.unknown

_1117894344.unknown

_1117893615.unknown

_1117893799.unknown

_1117893844.unknown

_1117893726.unknown

_1117893562.unknown

_1117893603.unknown

_1117893066.unknown

_1117635076.unknown

_1117636255.unknown

_1117636346.unknown

_1117893004.unknown

_1117636293.unknown

_1117636031.unknown

_1117636166.unknown

_1117635984.unknown

_1117634656.unknown

_1117634910.unknown

_1117635039.unknown

_1117634672.unknown

_1117634827.unknown

_1117633867.unknown

_1117634344.unknown

_1117633844.unknown

_1117619854.unknown

_1117633242.unknown

_1117633793.unknown

_1117631286.unknown

_1117631563.unknown

_1117630882.unknown

_1117631213.unknown

_1117620428.unknown

_1117617765.unknown

_1117617830.unknown

_1117619843.unknown

_1117615086.unknown

_1117616256.unknown

_1117617685.unknown

_1117616238.unknown

_1117614998.unknown

