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Abstract 
 
In this paper we investigate the selection of process technologies under conditions of stochastic 
market preferences.  We assume that the market evolves over time through m states or scenarios 
defined by the preferences of the market.  In response to this evolving marketplace, a producer 
can respond by switching its facilities to one of t technological states defined by plant 
capabilities.  We model the evolution of market preferences and policies for process selection as a 
Markov Decision Process and find optimal process adoption policies.  In addition to optimal 
strategies, we define two alternative adoption strategies.  “Perfect flexibility” is defined as the 
increase in profit that can be obtained by instantly matching process technologies to changes in 
market preferences, compared to a “robust” policy of selecting and employing only a single 
process technology.   
 
With an objective of profit maximization, we show that when the cost of switching production 
processes is very high, the optimal policy is to select a single robust process and to never switch 
from it.  In contrast, when process-switching costs are zero we show that the optimal policy is 
perfect flexibility where production processes are immediately matched to market preferences. 
An optimal production policy provably exists between these two extreme policies. We define the 
expected value of perfect flexibility as the difference in expected profits between a perfectly 
flexible policy and a robust policy.  The expected value of perfect flexibility provides an upper 
bound to the benefit of process switching and product flexibility when market preferences are 
uncertain.  Several numerical examples illustrate our findings. 
 
 

  



Introduction 
A common and significant problem in business management is anticipating the changing needs 

and preferences of customers and matching internal processes to those customer preferences.  If a 

business ignores (or does not recognize) changing customer preferences, it runs the risk of 

reduced revenues due to reduced market share and of increased production costs due to a growing 

mismatch between production capabilities and market preferences. 

There are many situations where increased process flexibility is desirable.  The recent growth of 

the Internet and e-business has escalated the need to provide customers unprecedented levels of 

product personalization. The use of online consumer profiles and offline demographic factors 

presents the opportunity for enhanced “suggestive selling” and mass customization – if the 

appropriate technology and resources are in place (Hesler 1999).  Even traditionally conservative 

mass producers like GM and Ford cannot escape the increasing emphasis on greater production 

flexibility.  GM is moving from a “make-and-sell” to a “sense-and-respond” approach that was 

pioneered at its Saturn division (Sweat 1999).  Further, GM now wants to move to an “anticipate-

and-lead” model, using customer feedback to develop car designs, then build and deliver them to 

order. Indeed, the proliferation of consumer products is growing.  Since the 1970’s, the number of 

new auto models has increased from 140 to 260, the number of soft drinks from 20 to more than 

87, and the number of over-the-counter pain relievers from 17 to 141 (Cox and Alm 1999).  It is 

today’s production technology that allows such a great increase in product proliferation at low 

costs -– at least for some industries, including computer assembly (e.g., Dell Computer) and 

apparel manufacturing (e.g., InterActive Custom Clothes and Digitoe). Changing customer 

demands and the desire for increased product variety draws firms to acquire more flexible 

production capacity. 

In other situations, excessive flexibility may be a detriment.  A well-known example of the 

potential consequences of a mismatch between customer preferences and market capabilities is 

the U.S. machine tool industry in the 1970’s and early 1980’s (Dertouzos et al. 1989).  During 

this period, U.S. machine tool manufacturers believed that their customers would continue to 

prefer machine tools that were highly customized for individual users.  Acting on this belief, 

manufacturers continued to organize their production processes to produce low volumes of 

specialized machine tools.  The costs of U.S. manufacturers were necessarily high, and lead times 

were long since every machine was virtually a unique product.  During this period, Japanese 

machine tool manufacturers entered the U.S. market with more standardized and less elaborate 

machine tools.  Anticipating (and driving) customer preferences for simpler machine tools, the 
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Japanese were able to offer quality equipment at prices and with lead-times that were far superior 

to those of U.S. manufacturers.  The Japanese quickly grabbed market share and profits in the 

machine tool industry, causing U.S. manufactures to spend the next decade scrambling to regain 

lost ground in the machine tool marketplace. 

In this paper we investigate the selection of process technologies when market preferences 

change over time.  We model the resulting Market Preference and Process Selection (MAPPS) 

problem as a Markov Decision Process (MDP) that can be solved using backward recursion 

techniques from dynamic programming.  This provides an analytic business tool that managers 

can use to explore alternative policies for adapting to changing market preferences.  We introduce 

the concept of perfect flexibility and the related expected value of perfect flexibility.  We also 

define a robust policy of process selection where a single production technology is chosen for use 

with all possible market preferences.  We show that perfect flexibility provides an upper bound 

for profitability in MAPPS problems, while robust policies form a lower bound.  The results of 

several simulation studies demonstrate how these concepts can be used in practice.  We conclude 

with a summary of our results and a discussion of future research. 

Prior Research 
To place this paper’s contribution into perspective, we provide a brief review of the literature 

addressing the economic justification of process selection and capacity expansion.  Our research 

focuses on the interaction of changing marketplace demand for product and the acquisition of 

advanced process technology – research on this area of interaction is recent and sparse (Li and 

Tirupati 1997).  

Two notable early studies on technological adoption are Balcer and Lippman (1984) and Gaimon 

(1985a, 1985b). Balcer and Lippman developed a comprehensive dynamic, stochastic model to 

investigate the problem where a firm must choose between upgrading to current technology and 

doing nothing.  They measured technological improvement solely by a reduction in production 

costs and showed that a firm may choose to adopt a previously available technology under certain 

circumstances.  Gaimon’s papers used deterministic control models for the acquisition of 

automated processes, and showed that it is rarely optimal to increase automation without at the 

same time modifying the level of manual output.  Her work provides a methodology to identify 

the optimal mix of automation and labor to enhance workforce productivity.  In later work, 

Gaimon and Ho (1994) used a dynamic game theoretic approach to examine factors that impact a 

firm’s decision to acquire new capacity, including the effect of technology innovation on the cost 

of capacity. 
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The optimality of a “wait and see” decision-making strategy was observed by Monahan and 

Smunt (1989), who found that delayed acquisition of new process technology can be optimal 

given uncertainty in technology forecasts and potential interest rate (cost of capital) changes.  

They explicitly modeled the potential for reduced inventory and production costs when adopting 

new technology, and also allowed for scale economies.  Monahan and Smunt did not, however, 

address capacity expansion or the potential for product-mix changes over time. Rajagopalan 

(1999) extended Monahan and Smunt with a model that examined the impact of uncertainty and 

output expansion on the adoption of a newer vintage technology.  He also found that a firm might 

adopt a wait-and-see strategy and delay introduction of a new process technology even though 

demand is increasing.  This delay especially occurs when the introduction of better technology 

imminent, but current technology is incompatible with the next generation. Li and Tirupati (1997) 

developed both static and dynamic “allocation” models to determine capacity strategies. 

Specifically, they considered two types of facilities: one where production facilities were 

dedicated to specific products and the other that was capable of producing all products.  Their 

model determined the optimal mix of these two facility types with the objective of minimizing 

total investment costs.     

Much of the literature addressing process selection can trace its roots to the related problem of 

capacity expansion.  The classic capacity expansion paper of Manne (1961) used both 

deterministic and probabilistic models to determine the optimal timing and amount of increased 

capacity. A key conclusion developed by Manne was the observation that optimal capacity 

expansion increments increase as demand variance increases.  In contrast to capacity expansion, a 

recent study by Rajagopalan, Singh, and Morton (1998) showed that variance in the evolution of 

a process technology can impede process adoption, i.e. that the acquisition of new technologies 

slows when there is increased uncertainty about the pace of technological evolution.  Finally, as 

indicated by Rajagopalan and Soteriou (1994), there are many papers in the machine replacement 

literature (e.g., Pierskalla and Voelker 1976 and Chand and Sethi 1982).  This stream of research 

does not address scale economies or growth in demand, nor does it address changes in the 

product-mix over time. 

Extant research demonstrates that there are many competing factors that determine the optimal 

timing for acquiring, expanding, and replacing new process technologies.  The implication for 

management is that the acquisition of process technologies is a complex problem that requires a 

close examination of the uncertainties, costs, and subsequent tradeoffs involved.  Largely missing 

from the literature is consideration of the interaction between technology acquisition decisions 
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and the demands of the marketplace (Li and Tirupati 1997).  In this paper, we begin to address 

process/market interaction by investigating process selection in an environment where 

marketplace product preferences evolve stochastically.  The resulting Market Preference and 

Process Selection problem provides important measures and insights into the value of process 

flexibility under conditions of market uncertainty. 

The MAPPS Model 
The Market Preference and Process Selection (MAPPS) problem is that of selecting a sequence of 

profit maximizing process technologies over time to satisfy evolving market preferences.  This is 

a ubiquitous problem faced by managers in most industries serving most markets.  As markets 

evolve and as market preferences change, managers must adopt new and alternative process 

technologies to meet market requirements.  The MAPPS problem would be difficult enough if 

market preferences could be accurately predicted for some time into the future.  But market 

preferences frequently change in unexpected, capricious, and sometime fickle ways (Fisher et al. 

1994).  The stochastic nature of market preference creates an added layer of complexity to the 

MAPPS problem.   

Our purpose in modeling the MAPPS problem is to demonstrate an effective means of responding 

to stochastic changes in market preferences and to investigate the value of process flexibility – 

the assumptions of our model reflect this goal. First, we assume that there exists a finite number 

of market preference states or scenarios that the marketplace can adopt over the planning horizon 

of interest.  Changes in market preferences are assumed to be stochastic between periods and 

follow a Markov process.  Second, we assume that there exist a finite set of available process 

technologies that can be acquired and implemented at some cost to address the changing 

preferences of the marketplace.  We model the technology choice set as static since our objective 

is to examine process selection and the value of flexibility and not to address technological 

innovation. Finally, we assume that market demand levels are fixed and unchanging. 

Consequently, process capacity requirements are unchanging as well.  In follow-on research we 

apply our model to decision environments where demand levels are uncertain and where 

technological innovation can occur. 

The state of the MAPPS system is thus determined by two factors: the state of the market and the 

process technology that is currently employed.  Profitability in the current period depends on the 

interaction of these two factors.  For some combinations of technology and market preference, 

production costs may be high (low) and revenues low (high) due to a mismatch (match) between 
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the capabilities of current processes and market preferences.  In the automotive industry for 

example, if current production processes are geared for the manufacture of large luxury sport 

utility vehicles and the market evolves to a preference for smaller economy cars, automotive 

production costs are likely to become relatively large, revenues relatively small, and profits 

potentially nonexistent.   

The decision confronting a manager in a MAPPS environment is to select a sequence of process 

technologies that maximize profits by minimizing production costs and maximizing market 

revenues given uncertain future market preferences.   Of related interest to the manager will be 

the benefits and costs of flexibly adapting to changing marketing preferences.  At one extreme, 

managers may be under pressure to immediately respond to the preferences of the marketplace in 

order to meet customer demand and to maximize revenues.  At the other, the manager may 

experience pressure to minimize technology acquisition costs by selecting a single process 

technology and not changing from it regardless of market preferences.  It will be useful to the 

manager to understand the upside benefits of process flexibility and the downside costs of process 

inflexibility. 

Market and Technology Scenarios 

Modeling market structure and technological options as sets of alternative scenarios is common 

and intuitive.  For example, in everyday language we often speak of a future market state as “up,” 

“down,” or “unchanged” without precisely defining the meaning of these terms.  The 

specification of market states is also common in the academic literature.  Hayes and Wheelwright 

(1979a, 1979b) dichotomize market product preferences into four scenarios (one of a kind, low 

standardization, high standardization, and commodities) and processes into four technological 

options (job shops, batch production, assembly lines, and continuous flow lines).  While product 

preferences and process options as defined by Hayes and Wheelwright arguably exist on a 

continuum, the Hayes and Wheelwright “product-process matrix” has been extraordinarily useful 

and enduring.  Further, the human tendency to solve complex problems by aggregating extensive 

information into a small number of discrete “chunks” and schema has been repeatedly 

demonstrated in the literature of problem solving and cognitive psychology (Newell and Simon 

1972).   

Market Structure 

We posit that a finite possibility set of discrete market scenarios or states M={1,…,M} exists for 

planning horizon H={0,…,H}, where h=0 is the current period prior to the acquisition of 
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technology.  Market scenario m∈M is defined by pertinent market variables such as product type, 

product mix, and demand levels.  The number of possible market states and their defining 

variables will be highly dependent on the specific characteristics of the market under study, as our 

later example illustrates.  Since the evolution of markets is stochastic, we model market change as 

an M × M transition matrix Φ.  Element ϕij ∈ Φ represents the probability that the market will 

evolve to state j in the next period given that it is in state i in the current period.  The structure of 

this transition matrix will determine the manner in which a market evolves over time.  Markov 

transition matrices can be constructed to model a broad range of market evolution patterns 

including growing markets, declining markets, stagnant markets, and indeed can model the entire 

life-cycle of a product. 

Structure of Process Technology 

We assume that a finite possibility set of technological options T={1,…,T} exists for planning 

horizon H.  Technological option t∈T is defined by equipment descriptions, process capabilities, 

tolerances achieved, and other important technological variables.  As with market scenarios, the 

set of appropriate technology options will be highly dependent on the characteristics of the 

problem under consideration.  For the purposes of this paper, we assume that all technological 

options t∈T are immediately available, unchanging, and can be acquired and implemented at 

some cost. 

Economic Structure 

We next turn to the economic structure of the MAPPS problem and identify relevant revenues and 

costs, and from them, profit. 

Revenues. Single period operating revenues R will be a function of both the current state of the 

market m and the current state of technology t within the firm.  We thus model revenues as an    

M × T matrix R where element rmt represents expected period revenues when the market is in 

state m and technology is in state t.  There may well exist situations where rmt = -∞, representing 

market-technology combinations that are either technologically infeasible or untenable; i.e., 

situations where the firm will incur unacceptable costs if it attempts to service market m using 

technology t. 

Production Costs. Period production costs will be a function of the both the current market 

scenario m and current technology t.  Production costs are represented as an M × T  matrix K 
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where element kmt represents expected period production costs when the market is in state m and 

technology is in state t. 

Technology Adoption Cost.  The elements ctt′  of matrix C represent the aggregate costs of 

switching from technological state t to state t′.  Switching costs can include disposal expenses (or 

salvage income) from the old technology, and purchase, installation, training, and downtime 

expenses related to the new technology.  In circumstances where a technology does not change 

between periods (t′ =t), costs ctt  ≥ 0 represent the period costs of maintaining the technology and 

servicing debt acquired to purchase the technology. 

Single Period Profit.  For a period in which markets are in state m, technology is currently in state 

t and will be switched to state t′ in the following period, single period operating profit π is  

.ttmtmttmt ckr ′′ −−=π

Dynamic Programming Solution   

In any period h of the planning horizon H, the state of the system under study is uniquely defined 

by the current market state m∈M and technology t∈T.  The immediate decision in period h∈H is 

to select a technology t′∈T for the following period such that expected profits will be maximized 

over the remaining planning horizon.  Optimal expected profits Πh* for remaining periods  

{h, h+1, … , H} are written as the recursive relationship 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′′Π+−−=Π ∑ +′

'

*
1''

* ,max,
m

hmmttmtmtth tmckrtm ϕ

where m′∈M, t′∈T, and t0 is the initial state of technology in period h=0.  The optimal solution to 

the MAPPS problem is an M × T × H decision matrix D*, where elements dmth*∈D* represent the 

optimal selection of technology for period h+1 when the market prefers scenario m and t 

represents the currently installed process technology in period h.  The solution to a particular 

instance of a MAPPS problem can be found using standard dynamic programming recursion 

techniques if the number of possible system states is relatively small, where the definition of 

“small” is rapidly changing as computational processing speed and availability of fast memory 

increases.  Since the dimensionality of a MAPPS problem grows exponentially with the number of 

problem inputs, finding optimal solutions may require specialized search reduction techniques for 

larger problems.  Computation times were not a factor for the problems reported in this paper. 
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Perfect Flexibility and Robust Solutions 
Given this formulation model for market preference and technology selection, we define two 

extreme solutions: perfect flexibility and perfect robustness.  These extremes are subsequently 

shown to provide bounds on the optimal technology selection policy. 

Perfect Flexibility 

Perfect flexibility is defined as the immediate acquisition and implementation of process 

technology that maximizes short-term profits π f when acquisition costs are ignored: 

mtmt
f

mt kr −=π

Perfect flexibility thus represents the ideal of instantly and costlessly changing process 

technologies to best match the changing needs of the marketplace.  A policy of perfect flexibility 

is myopic in that it does not consider subsequent periods beyond the current period.  When 

market preferences change, policy of perfect flexibility will immediately adopt the best (highest 

profit) technology available.  Since technology acquisition costs are ignored, the expected profits 

for a policy of perfect flexibility are calculated as the dynamic programming recursion: 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

Π+−=Π ∑ +
'

1''
','max,

m

f
hmmmtmtt

f
h tmkrtm ϕ

Because perfect flexibility ignores technology acquisition costs, it is apparent that 

a perfectly flexible solution will provide higher profits than does an optimal solution that 

accounts for technological acquisition costs.  It can be shown that a policy of perfect flexibility 

provides an upper bound on profitability (proof in appendix): 

Theorem 1: A policy of perfect flexibility provides an upper bound on profitability for 
the MAPPS problem.  That is: 

( ) ( )tmtm f
hh ,,* Π≤Π

Corollary 2: When technology switching costs are free (ctt′ =0, for all t,t′∈T),  then a 
policy of perfect flexibility is optimal. 

 

From a managerial perspective, perfect flexibility represents the best possible benefit to profit that 

flexibility can provide.  The difference in profit between a perfectly flexible technology and 

current technology represents the maximum benefit that a more flexible policy can provide.  This 

difference is easily compared against the cost of acquiring a more flexible technology and serves 

as a screen to determine if the cost of the alternative technology can be justified in improved 

profits. 
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Robust Strategies 

In contrast to perfect flexibility, a robust strategy is defined as the profit-maximizing selection 

and acquisition of a single technology that is subsequently retained regardless of changes in 

market preferences.  In determining a robust policy the entire planning horizon must be 

considered since once a technology is implemented, it cannot be switched regardless of changes 

in market preferences.  Expected profits for a robust policy are found using the dynamic 

programming recursion: 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′Π+−−=Π ∑

′
′′

m

r
mmttmtmtt

r tmckrtm ),(max, 21 ϕ

where 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′Π+−−=Π ∑

′
+′

m

r
hmmttmtmtt

r
h tmckrtm ),(max, 1ϕ  

for h = 2,…,H and ΠH
r (m,t) = 0 for all m, t .  Note that in this formulation technology is adopted 

exactly once, in period 1. 

Because a robust policy does not switch technologies regardless of opportunity costs, a robust 

solution intuitively results in lower profits than does an optimal solution that allows judicious 

switching.  In fact, a policy of perfect flexibility provides a lower bound on optimal profits (proof 

in appendix): 

Theorem 3: A perfectly robust policy provides a lower bound on profitability for the 
MAPPS problem.  That is: 

( ) ( )tmtm h
r
h ,, *Π≤Π

Corollary 4: When technology switching costs are sufficiently expensive (ctt′ → ∞ for all 
t, t′≠ t∈T), then a perfectly robust policy is optimal. 

 

The robust policy provides managerial insight into the costs of inflexibility.  The difference in 

expected profits between the current technology and the robust policy represents the opportunity 

cost of abandoning flexibility.  In situations where there exist pressures to reduce flexibility for 

cost or convenience, this difference provides an estimate of the economic consequences of 

moving toward inflexibility. 
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Expected Value of Perfect Flexibility 

Given these definitions for robust and perfectly flexible strategies, we can now consider the value 

of flexibility.  We define the expected value of perfect flexibility V (m,t) as the difference between 

the expected profits from perfect flexibility and expected profits from a robust policy when h=0: 

( ) ( )tmtmtmV ff ,,),( 00 Π−Π=

The expected value of perfect flexibility provides an upper bound on the benefits to profit that 

flexible technology can possibly provide.  In circumstances where V (m,t)  is a significant 

percentage of  absolute profits, flexibility can provide important benefits to profitability and 

prudent managers would do well to find ways to improve flexibility.  In contrast, when V (m,t)   is 

small, flexibility has little potential impact on profitability and will not be of central managerial 

concern.   The expected value of perfect flexibility is a close analog to the expected value of 

perfect information (EVPI) defined in decision theory (viz. Hillier and Lieberman 1995).  EVPI 

measures the expected value of information if uncertain future events could be known with 

certainty.  The expected value of perfect flexibility measures the expected benefit of perfect 

adaptation to uncertain future events.  Better information and improved flexibility can thus be 

seen as alternate responses to the same general problem of coping with uncertainty. 

An Illustrative Example 
To illustrate the concepts presented in this paper, we provide the following example adapted from 

the product-process model of Hayes and Wheelwright (1979a, 1979b).  Consider a manufacturer 

that is planning for the production of an unspecified product line over a planning horizon of 20 

quarters (5 years).  Discussions with marketing personnel indicate that market demand volume 

will be steady over the planning horizon, but that one or more of three market preference 

scenarios may occur: 

1. High Mix preference – customers desire a wide variety of product configurations or 
features 

2. Medium Mix preference – customers desire a moderate variety of product configurations 
or features 

3. Low Mix preference – customers do not care about or want a high variety of product 
configurations 
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In response to these market preferences, the manufacturer can select between four process 

technologies: 

1. Job Shop technology 
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 
• 

Capable of high variety 
High unit production costs 
Relatively low adoption costs 

2. Batch Shop technology 
Capable of some variety 
Moderate unit production costs 
Moderate adoption costs 

 

3. Flow Shop technology 
Standardized product variety 
Low unit production costs 
High adoption costs 

4. Flexible Shop technology 
Low, moderate, or high variety 
Moderate unit production costs 
Highest adoption costs 

 
 
This problem is similar to the product-process model of Hayes and Wheelwright with two 

exceptions.  First, we assume that product demand is constant over time and across market 

preferences – Hayes and Wheelwright assumed that product preferences correlated with the 

product life cycle and hence with demand volume.  Second, we allow for a flexible technology in 

the form of a Flexible Shop.  The Flexible Shop alternative represents the availability of “mass 

customization” technologies and processes that can produce a broader range of product 

configurations at higher production rates than previously possible. Consistent with Hayes and 

Wheelwright, we assume that production technologies are most effective when paired with 

matching market preferences:  

Job Shop technology with High Mix market preferences 
Batch Shop technology with Medium Mix market preferences 
Flow Shop technology with Low Mix market preferences 
Flexible Shop technology is less suited for any technology-preference pair above, but is 
better suited than a mismatch of process technology and market preference (e.g., Job 
Shop with Low Mix) 

 
These assumptions are illustrated graphically in Figure 1. 
 

Problem Settings 

To illustrate the relative performance of optimal, flexible, and robust policies on profitability, we 

examined three market preference cases:  

1. Random Mix market preferences 
2. Progression from Low Mix to High Mix market preferences 
3. Progression from High Mix to Low Mix market preferences 

For each of these cases, only the market transition matrix Φ was varied (Tables 3a – 5a).  For the 

Random Mix case, we assumed no prior knowledge of market preferences so that any one of the 

three market preference states could be realized in the first period with equal probability.  Once a 

market state was achieved, however, the market was assumed to be “sticky” in that the 
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probability of the market transiting to another state was relatively small in any subsequent period.  

The High-to-Low Mix progression illustrates the market preference progression of many newly 

introduced technology products– initial market demand is for high variety, but as the product 

technology matures and standards are set, demand for variety declines (Hayes and Wheelwright 

1979).   We assumed that the market initially preferred a High Mix in period 1, but evolved to 

Medium and Low Mix preferences over time.   Finally, the Low-to-High Mix case represents the 

“product proliferation” phenomena observed with many mature products where the market 

demands increasing product variety and customization as competition among producers grows 

(Skinner 1974). 

Revenues R, production costs K, and switching costs C were held constant (Table 1) in all 

experiments to enable easy comparison of results across experiments.  Revenues R were greatest 

when production processes and market mix preferences were matched – revenues declined when 

there is a mismatch (e.g., trying to deliver a high product mix with flow shop technology).  

Revenues with flexible technology were smaller than when market preferences and production 

technology are matched, but greater than when there was a mismatch.  This reflects the 

observation that, in practice, flexible production technology is often less productive and more 

costly to operate than is dedicated technology (Jaikumar 1986).  Similarly, production costs K 

were set to be smallest when processes and markets were matched, and largest when most 

mismatched.  The production costs for flexible technology were larger with matched processes 

and markets, and smaller when mismatched.  Finally, technology switching costs C increased 

with the complexity of the technology – job shop technology being the least expensive to acquire 

and flexible technology the most.  Switching costs were assumed to be symmetric since there 

would be significant abandonment costs when moving from a more expensive to a less costly 

technology (e.g., from flexible to job shop technology).  

Illustrative Results 

We obtained the optimal solutions for MAPPS problems using standard backward recursion 

techniques for dynamic programming  (viz., Hillier and Lieberman, 1995), as well as values for 

expected profits.  A fragment of the optimal decision matrix D* for the Low-to-High Mix case is 

included in Table 2.  For example, if the current market preference is for Medium Mix and the 

current state of technology is Flow production, then the optimal strategy is to switch to Batch 

technology in the following period.  Expected profits for optimal and robust policies, and for 

perfect flexibility are tabulated in Tables 3 – 5 and are graphically illustrated in Figures 2 – 4.  

These figures show the stochastic progression of market preferences and the resulting sequence of 
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technology selection over the planning horizon.  In these figures, the vertical bars represent the 

current state of market preference in each of the 20 periods of the planning horizon, and the three 

line-graphs represent optimal, robust, and perfectly flexible process selection policies as labeled. 

We also undertook simulation studies of the three problem settings described above to better 

understand and illustrate the stochastic decision processes inherent in our model.  One-hundred 

replications were run for each market mix setting over the twenty periods of the planning horizon 

– cost, revenue, and profit data was collected for each process selection policy.  

Random Mix Case. Results for the Random Mix case are illustrated in Figure 2 and summarized 

in Table 3. Figure 2a shows a single simulated problem instance and 2b the average of 100 

replications.  Both illustrate that the optimal technology strategy is to sequentially adopt job shop, 

batch, flow, and eventually flexible technologies in response to changing market preferences.  

The economic structure of this case makes it optimal to adopt a sequence of technologies rather 

than moving directly to flexible technology, but the optimal policy does inevitably move toward 

flexibility.  In contrast, the robust strategy immediately adopts flexible technology despite its 

higher acquisition costs and potentially higher operating costs – the highly stochastic nature of 

market preferences requires the most flexible process if only a single technology must be 

adopted.  Finally, a policy of perfect flexibility (labeled “flexible strategy”) allows any available 

technology to be immediately selected to best match the requirements of the marketplace, so that 

market preference and technology are coincident in Figure 2. 

In an uncertain market environment such as the Random Mix setting, the opportunity cost of 

inflexibility is high.  As shown in Table 3b, the expected profit from perfect flexibility is 20,000, 

expected profits from the robust strategy are 12,000, thus providing an expected value of perfect 

flexibility of 8,000.  Expected profits from the optimal policy are 12,417, so the opportunity cost 

of inflexibility for the optimal policy is 7,583, or more than 60% of profits.  Clearly, increasing 

flexibility can have a significant impact on profitability in this setting. 

High-to-Low Mix Case.  Results for the High-to-Low Mix market preferences case are found in 

Table 4.  The transition matrix here indicates that market preferences will move quickly from 

high to low mix preferences, although the possibility of “backsliding” from low to high exists.  

Here the optimal policy more closely mirrors a policy of perfect flexibility as illustrated in Figure 

3, moving through job shop and batch technologies to flow technology.  The expected value of 

perfect flexibility is again 8,000, and the opportunity cost of inflexibility for the optimal policy is 

4,972, or 33% of expected profits.  The decreased uncertainty of market preferences means that 

the optimal strategy is sufficiently flexible to capture more of the expected value of perfect 
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flexibility than in the Random Mix.  This reduced uncertainty also changes the robust strategy 

from one of adopting flexible technology in the Random Mix case to adopting flow technology in 

the current case.  The robust strategy anticipates the inevitable movement of the market to a low 

mix preference and selects flow technology accordingly. 

Low-to-High Mix Case.  The Low-to-High mix preference case is a mirror image of the High-to-

Low Mix case in that market moves inevitably to a high-mix preference as shown in Figure 4.  In 

this case, however, the optimal policy does not parallel so closely the result for perfect flexibility 

in that it never adopts flow technology.  Instead, the optimal result is to move immediately to 

batch technology and then eventually to job shop technology when the market migrates to a high 

mix preference.  The expected value of perfect flexibility is again 8,000, and the expected 

opportunity cost of inflexibility for the optimal solution increases to 6,973, or to 53% of expected 

profits.  The robust policy in this case is to again adopt flexible technology since it provides 

greater cost reduction opportunities with low and medium mix preferences than does job shop 

technology.   

These examples demonstrate that different market preferences patterns of evolution can result in 

very different optimal and robust policies, even when revenue and cost structures remain 

unchanged.  While the expected value of perfect information does not vary across the three 

preference scenarios studied here, the relative value of flexibility compared with optimal policies 

varies significantly.  These results also illustrate the analytical result that perfect flexibility and 

robust policies form bounds on profitability.  These bounds can be managerial useful to indicate 

the potential benefits of pursuing increased flexibility and the potential costs of reducing 

flexibility. 

Conclusions and Future Research 
In this paper we have modeled the evolution of market preferences and the selection of 

appropriate process technologies.  We have defined for the first time the concept of perfect 

flexibility and related to it, the expected value of perfect flexibility.  We also defined a robust 

policy as one where process selection is invariant over the planning horizon.  We have shown that 

perfect flexibility forms an upper bound for the profitability for MAPPS problems, while a robust 

policy forms a lower bound.   

The concepts introduced in this paper have significant utility for theory and practice.  A number 

of firms and industries are now experiencing a need to reevaluate process flexibility, especially in 

response to changing business paradigms brought about by the Internet and other communications 
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technologies.  While it is becoming easier to capture the dynamic preferences of consumers 

through use of the Internet and other “digital nervous systems” (Gates 1999), selection of optimal 

processes and levels of flexibility is conversely becoming more difficult.  The abilities to identify 

optimal process adoption strategies in light of changing marketplace preferences and to model 

and measure the value of “perfect flexibility” provide effective tools for better process selection 

and technology adoption planning. 

Future extensions of this research include incorporating stochastic technological innovation and 

stochastic market demand into the model.  Ultimately, a model that recognizes all important cost 

parameters and uncertainties, and allows simultaneous consideration of product variety and 

process selection, will provide managers with an essential tool for strategic planning.   This paper 

represents progress in that direction. 
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Proof of Theorems 
 
Proof of Theorem 1 
 
Proof.  Note that rmt – kmt – ctt′ ≤ rmt – kmt – ctt for t′  .  Therefore, rmt – kmt – min t′ ctt′ ≤ rmt – kmt – 
ctt, which can be written as 
 

{ } ttmtmtttmtmtt
ckrckr −−≤−− ′′

max  

 
Since ΠH

*(m,t) = max t′ { rmt – kmt – ctt′ } and ΠH
f (m,t) = rmt – kmt – ctt , the result is true for h=H.  

Assume the result is true for h+1.  Then 
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The first inequality follows from the fact that ctt′ ≥ 0 for all t′.  The second inequality follows 
from the induction hypothesis.                                                                                                 � 
 
Proof of Theorem 2 
 
Proof.  Since ΠH

r(m,t) = max t′  rmt – kmt – ctt = ΠH
* (m,t) = rmt – kmt for all m, t,  the result is true 

for h=H.  Assume the result is true for h+1.  Then 
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TABLES 
 

 
Table 1 

Revenue and Cost Matrices 
 
 
 

Market \ Technology Job Shop Batch Shop Flow Shop Flex Shop 
Start     

High Mix 1,500 1,250 1,000 1,400 
Med Mix 1,250 1,500 1,250 1,400 
Low Mix 1,000 1,250 1,500 1,400 

 
1a.  Revenue Matrix, R 

 
 

 
Market \ Technology Job Shop Batch Shop Flow Shop Flex Shop 

High Mix 500 750 1,000 600 
Med Mix 750 500 750 600 
Low Mix 1,000 750 500 600 

 
1b.  Production Cost Matrix, K 

 
 
 

Technology Job Shop Batch Shop Flow Shop Flex Shop 
None 1,000 2,000 3,000 4,000 

Job Shop 0 1,000 2,000 3,000 
Batch Shop 1,000 0 1,000 2,000 
Flow Shop 2,000 1,000 0 1,000 
Flex Shop 3,000 2,000 1,000 0 

 
1c.  Technology Adoption Cost Matrix, C 
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Table 2 
Fragment of Optimal Decision Matrix D* 

 
 

Market Current Switch to Technology 
Preference Technology Period 10 Period 11 Period 12 
Low Mix Job Shop Job Shop Job Shop Job Shop 
Low Mix Batch Batch Batch Batch 
Low Mix Flow Batch Batch Batch 
Low Mix Flexible Flexible Flexible Flexible 
Med Mix Job Shop Batch Batch Batch 
Med Mix Batch Batch Batch Batch 
Med Mix Flow Batch Batch Batch 
Med Mix Flexible Flexible Flexible Flexible 
High Mix Job Shop Flow Flow Flow 
High Mix Batch Batch Batch Batch 
High Mix Flow Flow Flow Flow 
High Mix Flexible Flexible Flexible Flexible 

  
Low-to-High Mix Market Preference Case  
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Table 3 
Random Market Mix Preference Case 

 
 

 
Preference High Mix Med Mix Low Mix 

Start 0.33 0.33 0.33 
High Mix 0.80 0.10 0.10 
Med Mix 0.10 0.80 0.10 
Low Mix 0.10 0.10 0.80 

 
3a. Market Preference Transition Matrix, Φ 

 
 
 

Expected Profits Robust Policy Optimal Policy Perfect Flexibility
Total Expected Profit 12,000 12,417 20,000 

Opportunity Cost of Inflexibility 8,000 7,583 Na 
Expected Value of Perfect Flexibility na na 8,000 

 
3b. Expected Profits 

 
 
 

Simulated Costs and Profit Robust Policy Optimal Policy Perfect Flexibility
Revenues 28,000 28,450 30,000 

Operating Costs 12,000 11,500 10,000 
Switching Costs 4,000 4,000 0 

Profit 12,000 12,900 20,000 
Opportunity Cost of Inflexibility 8,000 7,100 Na 

Value of Perfect Flexibility na na 8,000 
 

3c. Simulated Costs and Profits (single trial) 
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Table 4 
High Mix to Low Mix Market Preference Case 

 
 
 

 
Preference High Mix Med Mix Low Mix 

Start 1.00 0.00 0.00 
High Mix 0.80 0.15 0.05 
Med Mix 0.05 0.80 0.15 
Low Mix 0.00 0.05 0.95 

 
4a. Market Preference Transition Matrix, Φ 

 
 
 

Expected Profits Robust Policy Optimal Policy Perfect Flexibility
Total Expected Profit 12,000 15,028 20,000 

Opportunity Cost of Inflexibility 8,000 4,972 Na 
Expected Value of Perfect Flexibility na na 8,000 

 
4b. Expected Profits 

 
 
 

Simulated Costs and Profit Robust Policy Optimal Policy Perfect Flexibility
Revenues 26,000 28,850 30,000 

Operating Costs 14,000 11,250 10,000 
Switching Costs 3,000 3,000 0 

Profit 9,000 14,600 20,000 
Opportunity Cost of Inflexibility 11,000 5,400 Na 

Value of Perfect Flexibility na na 11,000 
 

4c. Simulated Costs and Profits (single trial) 
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Table 5 
Low Mix to High Mix Market Preference Case 

 
 
 

 
Preference High Mix Med Mix Low Mix 

Start 0.00 0.00 1.00 
High Mix 0.95 0.05 0.00 
Med Mix 0.15 0.80 0.05 
Low Mix 0.05 0.10 0.80 

 
5a. Market Preference Transition Matrix, Φ 

 
 
 

Expected Profits Robust Policy Optimal Policy Perfect Flexibility
Total Expected Profit 12,000 13,027 20,000 

Opportunity Cost of Inflexibility 8,000 6,973 Na 
Expected Value of Perfect Flexibility na na 8,000 

 
5b. Expected Profits 

 
 
 

Simulated Costs and Profit Robust Policy Optimal Policy Perfect Flexibility
Revenues 28,000 28,050 30,000 

Operating Costs 12,000 12,000 10,000 
Switching Costs 4,000 3,000 0 

Profit 12,000 13,050 20,000 
Opportunity Cost of Inflexibility 8,000 6,950 Na 

Value of Perfect Flexibility na na 8,000 
 

5c. Simulated Costs and Profits (single trial) 
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FIGURES 
 
 
 

Figure 1 
Structure of Market Preferences and Process Technologies 

 

 
Shaded blocks represent preferred pairings of market preference and process technology. 
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Figure 2 
Random Mix Market Preference Case 
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Figure 2b – Average of 100 Trials



Figure 3 
High-to-Low Mix Market Preference Case 
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Figure 3a – Example of a Single Trial 
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Figure 4 
Low-to-High Mix Market Preference Case 
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Figure 4a – Example of a Single Trial 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4b – Average of 100 Trials 
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