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Polyhedral annexation is a new approach for generating all valid inequalities in mixed 
integer and combinatorial programming. These include the facets of the convex hull of 
feasible integer solutions. The approach is capable of exploiting the characteristics of 
tile feasible solution space in regions both "adjacent to" and "distant from" the linear 
programming vertex without resorting to specialized notions of group theory, convex 
analysis or projective geometry. The approach also provides new ways for exploiting the 
"branching inequalities" of branch and bound. 

1. I n t r o d u c t i o n  

This pape r  provides  a new app roach ,  called po lyhedra l  a n n e x a t i o n ,  
for generat ing valid inequali t ies  for  mixed  integer  p r o g r a m m i n g .  
Po lyhedra l  annexa t i on  provides a par t icu lar ly  ef fec t ive  tool  for  exp lo i t -  
ing p r o b l e m  s t ructure .  The  inequal i t ies  it genera tes  take advan tage  o f  
s t ruc ture  in a c o m p l e t e l y  general way,  w i thou t  requir ing any  specif ic  
fo rm for  the cons t ra in t s  defining the feasible ( con t inuous )  region.  As in 

the g roup  theore t i c  approaches ,  the inequali t ies  are capable  o f  pene t r a t -  
ing regions tha t  may  be " d i s t a n t "  f rom the uni t  h y p e r c u b e  con ta in ing  
the l inear  p r o g r a m m i n g  vertex.  At the same t ime,  as in the convex  anal- 

ysis ( " o u t e r  po l a r "  and " p o l a r o i d " )  approaches ,  the inequal i t ies  p rof i t  

f r om local i n f o r m a t i o n  abou t  the f o r m  o f  the feasible so lu t ion  space. 
The inequali t ies  also, however ,  m a k e  f rui t ful  use o f  re levant  cons t ra in t s  
tha t  do not  af fec t  the local vicini ty o f  the  l inear p r o g r a m m i n g  ver tex .  

Successively i te ra ted ,  po lyhedra l  a n n e x a t i o n  can provide  all re levant  

inequali t ies  for  mixed  integer  p r o g r a m m i n g .  These  include the  inequal-  
ities tha t  succeed in conver t ing  the  mixed  integer  p r o b l e m  in to  a l inear  
p rogram.  However ,  the precise range of  inequal i t ies  tha t  can po ten-  
tially be genera ted  is less i m p o r t a n t  than  the  abi l i ty to genera te  inequal-  
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ities with particular desired properties. Accordingly, results are given 
for improving a polyhedral cut by a process of sequential implementa- 
tion. We also show how to obtain "optimal" inequalities - i.e., supports 
and facets of the convex hull of feasible solutions - by linear program- 
ming. The linear programming problem is expressed in a "primal fea- 
sible" form that yields a valid inequality at each iteration. New informa- 
tion is generated as it is needed, proceeding through successive improve- 
ments until an optimum or a desired stopping point is reached. 

Polyhedral annexation is also a useful supplement to branch and 
bound. The approach provides new branching schemes as well as im- 
proved bounds. 

On the negative side of the ledger, polyhedral annexation shares a 
limitation in common with a number of other efforts to take fuller ad- 
vantage of problem structure - i.e., its strongest forms require ready 
access to a substantial amount of information from the updated LP 
tableau. This is extremely inconvenient for the "product form of the 
inverse" codes often used in present commercial applications. However, 
the adaptive aspect of  the approach makes it possible to respond to 
trade-offs between the cost of obtaining updated tableau information 
and the improvement in the resulting inequality. 

2. Formulation 

The mixed integer programming (MIP) problem will be written 

maximize x 0 = cx, 

subject to A x  = b, 

x i ) O ,  i ~ M =  ( 1 , . . . , m } ,  x iinteger, i ~ I .  

The index sets M and I may or may not be disjoint, and may or may 
not contain the indexes of all components of the vector x. We will re- 
present the updated linear programming (LP) tableau format for this 
problem as 

maximize x o = Xoo + / ~  Xo](-t])  , 

Xi "= Xio + / ~ N  ~ x i j ( - t / )  for all components x i of x, 
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where the ti are the current nonbasic variables and may be assumed to 
consist of  a subset of  the xi ,  i ~ M .  Some of the integer variables xi ,  i ~ I ,  
may represent integer combinations and translations of  others. Gener- 
ally, too, we will suppose that each xi ,  i c I, has a finite range of  admis- 
sible values, though this assumption is not required to obtain valid in- 
equalities. This foregoing notation is standard except that we have used 
the same symbol to denote both variables and coefficients (variables 
being single-subscripted and coefficients double-subscripted). We will 
follow this convention with respect to the updated tableau (basis) rep- 
resentation of  other variables u i and v i subsequently to be introduced; 
i.e., the current LP representation for these variables will be respec- 
tively 

ui = ui° + j ~ N  ui/( tj), I) i = OiO + ~ Oij(--t])" 
/ _ N  

3. Inequalities from convex domains 

The fundamental ideas for generating valid inequalities for the MIP 
problem by reference to convex domains have by now received a fairly 
broad exposure in the literature, and we will review them only briefly. 

The terminology for this approach (shared with linear programming) 
defines the cone corresponding to the LP basis representation to be the 
set of  points generated by allowing the nonbasic variables tj to vary 
nonnegatively. The k th edge of  the cone is correspondingly the set of  
points generated by allowing l k to vary nonnegatively, holding all other 
nonbasic variables constant at 0. 

The vertex of  the LP cone is the point obtained by setting all t/, 
j e N ,  equal to 0. No assumption is required that this point be optimal 
or feasible for the LP problem. 

The standard result for obtaining cutting planes in this framework 
can be expressed informally by saying that a valid inequality for the 
MIP problem arises in the following manner: identify a convex set that 
contains the LP vertex but  no feasible MIP solutions in its interior; ex- 
tend each edge (typically "as far as possible") so that its (extended) 
endpoint remains in the convex set; pass a hyperplane through these 
endpoints; specify the cut to be the associated half space that excludes 
the LP vertex. In particular, if the extended endpoints are given by the 
values t ~ , / ~  N, then the cut inequality is 
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(1/t 7) ty ~ 1. (1) 
]eN 

The foregoing approach has its origins in the work of Balas [l], 
Young [26] and Tui [25]. Early extensions and variations are also 
given in [10]. Building on these foundations, elegant results have been 
developed by Balas [2] and Burdet [7] using (extended) tools of con- 
vex analysis and projective geometry. An alternative line of develop- 
ment [11, 13, 14, 15], provides the antecedents to the work presented 
here. This type of approach has concentrated on the identification of 
polyhedral convex sets 1 that give improved inequalities for problems 
with "structure '', such as the "multiple choice" problems [ 11 ] and the 
"disjunctive facet" problems [14]. Contemporaneous investigations 
into this area have been conducted by Balas [3, 4] and Jeroslow [20, 
21]. Investigations into related areas have also been conducted by 
Burdet [7, 8] and Johnson [22, 23]. 

Polyhedral convex sets have several attractive characteristics. First, 
the use of a polyhedron to determine (1) enables an edge to be ex- 
tended in the negative direction, provided the edge strictly recedes 
from all hyperplanes of the polyhedron when extended in the positive 
direction 2. Negative edge extensions yield more powerful cuts, and 
therefore are desirable when available. 

Another attractive feature of polyhedral convex sets is the ease with 
which the edge extensions giving the cut (1) can be determined. In par- 
ticular, suppose the polyhedron is given by 

(P) Vp >10, p ~ P .  

The value of Vp for any given value of ti on the/th edge of the LP cone 
is Vpo - Vp/ti, where the current LP basis representation of Vp is 
Vp = Vpo + £ /cSVpi ( - - t / ) .  The condition that the vertex of the LP cone 
lies in the interior of this polyhedron translates into Vpo > O, p ~ P. 
Thereupon, the requirement that the endpoint of the/th edge lies in 
(P) for t~ = t 7 may be expressed as Vp o - Vp/t7 >~ O, p ~ P. The largest 
value of t7 satisfying this requirement is given by 

We will use the terms "polyhedral  convex set" and "po lyhedron"  interchangeably - i.e., 
polyhedron may refer to an unbounded  as well as a bounded  region. (Somet imes polytope 
is given this usage.) 
The first use of  negative edge extensions is due to Owen [24].  Related ideas are developed 
in [3, 4, 12, 20]. 
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where 

t / * =  1Ylin pEP; {Op O/Opj} , 

= { p ~ P :  Vp//>0} 

(letting tp = ~ if Vp/= 0 for all p e P, giving 1/t~ = 0). 
On the other  hand, if ~ '= 0, then a negative edge extension is per- 

missible, and t~ may be given by 

t/* = m i n  {Opo/Op/}, 
pEP f 

where 

P/; = {p e P :  Vp/< 0}. 

As noted in [14], a negative edge extension goes outside the poly- 
hedron (P) whenever more than one hyperplane Vp = 0 is encountered 
in the negative direction (unless the last and first hyperplane are inter- 
sected simultaneously). Also, while negative edge extensions give deeper 
cuts, the deepest cuts are obtained for the "shallowest" negative ex- 
tensions - in exact contrast to the situation for positive extensions. 
Consequently, the precise "shape" and "composi t ion"  of  the poly- 
hedron (P) importantly affect the strength of  the inequalities derived 
from it. 

The goal of  this paper is to provide a new framework for dealing with 
such considerations, and for exploiting the ideas underlying the use of  
polyhedral convex sets generally. 

4. Fundamental results 

The polyhedral annexation approach applies to a variety of  non- 
convex mathematical programming problems in addition to the mixed 
integer programming problem. To make this connection easily acces- 
sible, some of  the results are stated in slightly more general form than 
necessary for the MIP problem. (Fortunately,  this does not  diminish 
their simplicity or require more difficult proofs.) For results that apply 
as readily to other problems, such as the disjunctive facet problem, we 
omit explicit reference to the MIP problem. 

Feasibility conditions for the class of  problems we consider can be 
expressed in terms of  "building block" polyhedra represented by the 

system 
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v h >>- O, h ~ P  1, 

v h >1 O, h E P 2 ,  

(2) 

v h >>- O, h ~ P w "  

The feasible set F is defined relative to (2) as the set of points that 
do not lie in the interior of any of  the polyhedra o f  the system. Thus, 
specifically, a point belongs to F if and only if it satisfies v h <~ 0 for at 
least one h G P 1  and for at least one h ~ P 2  ... and for at least one 
h ~ Pw"  This is logically equivalent to saying v h <~ 0 for all h G H 1 , or 
for all h ~ H 2 ... or for all h e H r ,  where each set H p ,  p = 1, ... , r,  is 
created by selecting exactly one index h from each set Pi ,  i = I ,  . . . ,  w .  

(Each set l i p  thus has w elements, except for duplicated indexes, and 
r is the total number of  distinct sets of  this form.) 

This way of  viewing feasibility conditions for combinatorial problems 
is a common thread of [11, 13, 14]. The first characterization of  F may 
be called a "conjunctive" characterization, the second a "disjunctive" 
characterization. 

In the context of  the MIP problem, the system (2) that defines fea- 
sibility is 

- x  1 /> O, 

--X 2 ~ O, 

- -X m ~ O, 

U 1 > 1 0 ,  1 - u  1 >10,  

U 2 >/ O, 1 --  U 2 >1 O, 

u s > t 0 ,  1 - u  s > ~ O ,  

where the polyhedra 0 ~< U t <~ 1, t = 1 . . . .  , S correspond to the regions 
of the form x *  <~ x i <~ x *  + 1, i e I ,  and where the constants x* range 
over admissible values of the integer variables x i ,  i E I .  

Thus, a point is feasible for the MIP problem (by definition) if and 
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only i f  it does not  lie in tile interior  o f  any of  these specified po lyhedra  
(hence satisfies x i > 0 for all i = 1, ... , m, and satisfies u t <~ 0 or 
1 - u t <~ 0 for all t = 1, ... , s). 

The polyhedral  annexat ion  principle applies to any two polyhedra  
that  conta in  no points of  F in their  interiors. Then,  by annexing one to 
the other,  a single new polyhedron  is created whose interior  also con- 
tains no point  o f  F. Thus, the principle can be successively applied to 
the building block polyhedra  to create o ther  po lyhedra  tha t  serve to 
generate inequalities o f  the form (1). 

The manner  in which a particular po lyhedron  (Q) can be annexed  to 
a po lyhedron  (P) will now be characterized. 

Theorem 4.1. Assume that the polyhedra 

(P) vp > O, p e P ,  

(Q) Vq ~ 0, q E Q  

contain no feasible solutions in their interiors. Then for any k e P, the 
new polyhedron 

Vp > 0, p • P  {k}, 
(R) 

kkqVx + kqvq ~ 0, q • Q 

contains no feasible solutions in its interior.[or all nonnegative values o f  
the parameters kXq and kq, q • Q. 

Proof. Suppose on the contrary tile po lyhedron  (R) contains a feasible 
solution in its interior. Hence, this solut ion satisfies vp > 0, p c P - (k } 
and X~qV k + XqVq > O, q • (2. From the first o f  these inequali t ies it 
follows that  the solution must also satisfy v k ~< 0, or else it would  be in 
the interior  of  (P). Consequent ly ,  f rom the second of  the inequalities,  
with all parameters nonnegative,  it follows that  Vq > 0, q • Q i.e., the 
solution lies in the interior  of  (Q). The theorem is established by contra- 
diction. 3 

It may  be noted  that  the hyperplanes ~.kqVk + )~qVq = 0 arise geo- 
metrical ly by rotat ing the hyperplanes v k = 0 and Vq = 0 th rough  their  

3 It should be noted by this proof that we are using the term "interior" in a strictly algebraic 
sense. This avoids special qualifications requiring subsets of parameters to be positive, in 
particular, if a polyhedron contains a defining half-space v h > 0 such that o h = 0, then the 
polyhedron has no interior, since no point satisfies 0 > 0. 
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intersection - thus the polyhedron (R) arises by deforming (Q) using 
the indicated rotations and then annexing (Q) to (P) (sans the half space 
used to deform (Q)).4 

To get a clearer notion of  what Theorem 4.1 is saying, let the index 
sets defining (P) and (Q) be given by 

P =  ( 1 , 2 , 3 } ,  Q = {4 ,5} .  

Then, selecting k = 3 from P, the theorem gives (R) with the index set 

R = {1, 2, 3 - 4 ,  3 - 5 }  

where by 3 - 4  and 3 - 5 ,  we mean that the associated half spaces are ob- 
tained from nonnegative linear combinations involving v 3 and v 4, and 
v 3 and v 5. Suppose we now take (R) in the role of  (P) and repeat the 
process, choosing k = 2. Then we obtain the new (R) characterized by 
the index set 

R = {1, 2 - 4 ,  2 - 5 ,  3 - 4 ,  3 - 5 } .  

That is, the theorem says there is no feasible solution in the interior of  
this latter (R) for all nonnegative linear combinations involving v 2 and 
v4, v 2 and v5, etc. Repeating this process one more time and selecting 
k = 1, the final (R) consists of  all "paired" halfspaces, where each one 
is a nonnegative linear combination of  exactly one half space from (P) 
and exactly one half space from (Q). 

It is particularly interesting to trace the foregoing process from a log- 
ical standpoint.  Suppose we use the "index set" notation to summarize 
the logical relations governing the assumption that (P) and (Q) have no 
feasible solutions in their interiors. That is, we let (1, 2, 3 } represent 
the conditions v 1 ~< 0 or 0 2 ~< 0 or 0 3 ~< 0, and let {4, 5 } represent the 
conditions 0 4 ~< 0 or v 5 ~< 0. Then the "index set" (1, 2, 3 - 4 ,  3 - 5  } 
may reasonably be taken to represent v I < 0 or v 2 ~< 0 or (v 3 and 
v 4 ~< 0) or (v 3 and v 5 <~ 0). But this last collection of  disjunctions is a 
logical consequence of  the assumption v I ~< 0 or 0 2 ~< 0 or v 3 ~< 0 and 
v 4 ~< 0 or v s ~< 0. Thus, the polyhedral annexation principle may be 
viewed as a means for generating polyhedra, and hence inequalities, 
that "correspond" to logical consequences of the original feasibility 
assumptions, s As will be seen, this "correspondence" is complete, in 

4 In view of this, the annexation process may be conceived as more nearly "political" than 
"territorial", i.e., the annexed body may undergo a radical transformation in the process of 

being assimilated into the main body. 
5 I am indebted to Bob Jeroslow for pointing out this interpretation to me. 
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the sense that it gives rise to inequalities that characterize the convex 
hull of F. 

In order to consider successive applications of  Theorem 1, as in the 
preceding illustration, we will generally assume that the hyperplanes 
Vp -- 0 of  the polyhedron (P) are themselves obtained as sequences of  
nonnegative rotations of  other hyperplanes v h = 0, i.e., that (P) may be 
written 

(Px) Vp = ~ kphUh > 0 ,  p e P ,  
h~Hp 

where we assume that (Px) has no feasible points in its interior for all 
nonnegative values of the parameters Xph. 

For example, repeated application of  Theorem 1 to the polyhedra of  
(2) yields a form of (Px) in which each set lip contains exactly one in- 
dex from each set P1, -." , Pw and the col lec t ion/ /p ,  p ~P,  consists of  
all such sets. (The construction proceeds exactly as in the earlier illus- 
tration, taking each new (R) in the role of (P) and allowing (2 to change 
from Pt to Pt+l as soon as the elements of  Pt have been distributed 
across each component of the current "index set" for (R).) s The result- 
ing sets t ip,  p c P, are the same as those that provide the "disjunctive" 
characterization of the feasible set F. To distinguish these particular 
sets llp from others that can be obtained by Theorem 4.1, we denote 
these sets by lll*, p ~ P*, and denote the corresponding polyhedron (Px) 
by (P~). 

In particular, then, we have observed that the polyhedral annexation 
principle implies that (P*) contains no points of  b" in its interior, for all 
nonnegative parameter values, where the sets lli*), p e P* correspond to 
the elements of the cross product set P1 X P2 X ... X Pw, and where the 
feasible set F is the set of points satisfying v h <<- 0 for all h ~ II~ and 
some p ~ P. 

We can now state the following results. 

Theorem 4.2. I f  v o <~ 0 is any inequality satislf)ed by all points  in F, 
then the half  space v o >~ 0 can be obtained by successive application of. 
Theorem 4.1 to the polyhedra o f  (2). 

Proof. Given any p E P*, if v h ~< 0 for all h E tI~, then by the disjunctive 
characterization of F it follows that v 0 ~< 0. Consequently, there exist 
nonnegative numbers Xl* h such that 

6 This construction treats tile elements of each set Pt as different from those of all other sets, 
and therefore may contain "redundancy" if the index sets of (2) are not pairwise disjoint. 
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ph Oh =00,  p e P * .  
heH~ 

Assigning the parameters of  the polyhedron (P~) the values Xph = X~h 
thus reduces every half space defining this polyhedron to the form 
v 0 /> 0. This completes the proof. 

The principal consequence of  this theorem is the following. 

Corollary 4.3. Assume v o = 0 is a support (or facet) o f  the convex hull 
F* o f  F such that the inequality v o ~ 0 is not satisfied by the current 
LP basic solution. Then v o <~ 0 can be obtained asa cut inequality (1) 
by successive application o f  polyhedral annexation. 

Proof. The proof  is immediate by virtue of  Theorem 4.2, since the LP 
vertex lies in the interior of  v 0 ~> 0, and hence by the rule for obtaining 
(1) it follows that the cut inequality yields v 0 ~< 0 from the polyhedral 
half space u 0 /> 0. 

(Note that if F is empty,  we may take the inequality v 0 ~< 0 of  
Theorem 4.2 and Corollary 4.3 to be i <~ 0. Then, Theorem 4.2 yields 
the polyhedron 1 ~> 0. The inequality (1) for this polyhedron has the 
form 0 ~> 1, corresponding to v 0 ~< 0.) 

It is of  course entirely possible (and likely) that many supports and 
facets of  F* can be obtained without  recourse to the system (P~), 
which can be excessively large. The ability to generate polyhedra (Px) 
at stages "intermediate" to (P~) is extremely important in this regard. 
Results that permit this to be done effectively constitute the main focus 
of the remainder of  this paper. 

Before proceeding to more advanced considerations, a few prelimi- 
nary observations can be made concerning the range and structure of  
the polyhedra (Px) that produce inequalities as a consequence of  the 
polyhedral annexation principle. That is, viewing Theorem 4.1 as an in- 
ductive tool, it is of  interest to know the type of  polyhedra it validates 
in the context  of  (1), and to take note of  simple rules by which these 
polyhedra arise. In fact, it is entirely sufficient from an inductive stand- 
point to restrict attention to constructions in which (Q) is one of  the 
building block polyhedra. 

As in the construction of  the earlier illustration, and in the construc- 
tion that yields (P~), we treat each new (R) in the role of  (P). There is 
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one obviously nonproductive application of  Theorem 4.1, but  other- 
wise any sequence of  steps produces an (R) at each iteration which con- 
tains "more information" than the (P) from which it was derived. The 
nonproductive application results when the half spaces defining (R) in- 
clude the half spaces defining (P). To illustrate, suppose P = { 1, 2, 3 - 4 ,  
3 - 5 }  and Q = {5, 6} ,  where P a n d  Q are expressed in terms of  the in- 
dex set notat ion introduced earlier. 

If the half space associated with " 3 - 5 "  of  P is assigned the role of  
v k > 0 in Theorem 4.1, the resulting index set for (R) is 

R = {1, 2, 3 - 4 ,  3 - 5 - 5 ,  3 " 5 - 6 } .  

But " 3 - 5 - 5 "  is the same as " 3 - 5 "  (since parameterizing v 5 > 0 twice 
accomplishes nothing beyond  parameterizing it once), and hence R "in- 
cludes" P. This means that any cut obtained from (R) can already be 
obtained t¥om (P), and hence there is no point in carrying out  the step 
to obtain (R). (The rule to avoid this type of  step when (Q) is a building 
block polyhedron is particularly simple: exclude any step for which the 
set I1 k associated with v k contains an index of  Q. Note that " 3 - 5 "  
identifies H a . in the example just cited.) 

It is easy to show that every construction that iteratively replaces (P) 
by (R) and takes (Q) to be a building block polyhedron will ultimately 
yield (P~), provided only that nonproductive steps are excluded. (This 
holds no matter which polyhedron is initially taken to be (P), as long 
as it has no feasible solutions in its interior, and allowing for "re- 
dundancy" in the characterization of  (P~).) In fact, if the initial (P) 
is a building block polyhedron,  and if no Pt is a subset of  any other  (in 
which case the larger Pt could always be dropped) then this construc- 
tion yields all polyhedra (Px) whose sets lip can be "ordered"  in the 
tbllowing manner: 

(i) All "first indexes" of  the sets lip, p ~ P, constitute the elements 
of a single Pt (i.e., all elements of  this Pt are included, some possibly 
more than once). 

(ii) For any collection of  sets Hp that have a common first index, all 
second indexes (if any exist) constitute the elements of  a single Pt (dif- 
ferent from the Pt of (i)). 

(iii) For any collection of  sets lip that have common first and second 
indexes, all third indexes (if any exist) constitute the elements of  a 
single particular Pt (different from the Pt of  (i) and (ii)) and so forth 
for subsequent indexes. 

(iv) No ordered set lip is the same as any other, and if the sets Pt are 
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pairwise disjoint (as by  assigning an element a different index for each 
set in which it appears), then no Hp is the same as any other, regardless 
of  ordering. 

These conditions can be verified simply by taking "first indexes" to 
correspond to the elements of  an initial P, and taking the sets Pt of  (ii), 
(iii), etc., to correspond to sets Q. These Q may be in any sequence as 
long as a Q associated with a "second index" is introduced before a Q 
associated with a "third index 'j, etc. (A "third index" Q can be intro- 
duced before a "second index" Q provided they are not linked in the 
manner indicated in (iii).) 

Thus, all polyhedra (Px) satisfying the conditions (i) - (iv) are vali- 
dated by Theorem 4.1. Having found a good (Px) for a particular class 
of problems, either empirically or analytically, one can start with this 
(Px) to initiate the solution of  other  problems of  the same class. A (Px) 
which is too large for a particular problem (due to the number and com- 
position of  the sets Pt for that problem) can be "collapsed" to a simpler 
form simply by setting selected parameters to 0. Thus, for instance, 
given any subset P '  of  P, if there is a nonempty  subset H' o f  each Hp, 
p ~ P', then the entire collection Hp, p ~ P' can be replaced by H'  (re- 
placing the associated half spaces by a single half space). This amounts 
to setting all parameters )kph = 0 for p ~ P '  and h ~ H ' .  

While these observations help to convey the range of  strategic possi- 
bilities that are available, they do little to provide concrete guidelines 
for applying such strategies intelligently. 

To complete the foundation for such guidelines, especially in the 
context  of  the MIP problem, we state two direct consequences of  
Theorem 4.1 under the assumption that (Q) consists only of  the build- 
hag block polyhedra 0 ~< u t ~< 1 and x i <<. O. 

Corollary 4.4. Assume that (P) has the form (Px) and has no feasible 
MIP solutions in its interior for all nonnegative values o f  the parameters 
Xph. For any chosen index k ~P, let 

O' ' ~kk h l) h , k = ~tUt  + ~ ' 
h ~ H  k 

v ;  -- x','(1 - u t )  + X' 'hoh. 
h o g  k 

Then the polyhedron 
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Vp ~ O, p E P  {k}, 

! t r  
v k >~ O, v k >>- 0 

contains  no feasible  M I P  solut ions  in its interior  f o r  all nonnegat ive  val- 
t tF t t t .  

ues o f  the  parameters  Xph , Xkh , XXh, Xt and  X t 7 

We stress that the polyhedron 0 ~< u t ~< 1 need not be selected so that 
the LP vertex lies in its interior in order for the "final po lyhedron"  of  
Corollary 4.4 to have this property.  The same comment  especially ap- 
plies to the polyhedron x i <<. 0 implicit in the following corollary (which 
never contains a feasible LP vertex in its interior). 

Corollary 4.5. A s s u m e  (P) satisfies the condi t ions  o f  Corollary 4.4, and  

fo r  any  se lec ted  index  k ~ P, and  any  i EM,  let  

! t vk=Xi( xi)+ ~ ?'khvh 
h ~ - n  k 

Then the po@hedron  

vp ~ O, p E P  (k }, 

t 
vk >~O 

contains no feasible  MID solut ions  in its interior f o r  all nonnegat ive  val- 

ues o f  X~ and the parameters  Xp h, P E P. 

An important aspect of  Corollary 4.5 deserves mention. If  the con- 
straint of  the MIP problem is not x i >~ 0 but x i = 0, then the corollary 
implies that the parameter X} need not  be nonnegative but  can be un- 
restricted. Similarly, in the application of  Corollary 4.4, if one of  the 
variables u t or 1 u t corresponds to one of  the xi, i E M (as, for ex- 
ample, in the 0 - 1  problem), it follows from Corollary 4.5 that the pa- 
rameter of  this variable can likewise be unrestricted. It is easy to see 
that the assumptions of  Corollaries 4.4 and 4.5 (and of  a "parameter- 
ized" version of  Theorem 4.1) can be modified to replace nonnegativity 
requirements on parameters of  (P) and (Q) by any other  requirements, 

7 In applications of  Corollary 4.4 it is useful to consider integer variables u t and 1 - u t 
created by simple integer combinat ions  of  the "original" variables to permit  deeper edge 
extensions relative to the current  LP basis. (E.g., one might use the variables created by  
reducing the coefficients of  nonbasic integer variables to their fractional parts.) 
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provided these requirements are imposed for corresponding parameters 
in the new polyhedron. 8 

Another  useful aspect of  Corollary 4.5 is that it allows the same 
hyperplane - x  i = 0 (for an arbitrary i E M) to rotate any of  the hyper- 
planes of  the polyhedron (P) without changing the number of  hyper- 
planes defining (P). Stated in another way, all  hyperplanes - x  i = O, 

i ~ M, may be used to (nonnegatively) rotate all hyperplanes Vp - -O ,  

p E P, taking advantage of  the full set of  constraining inequalities x i >1 O, 

i ~ M. (These, it should be remembered,  consist of  all inequalities de- 
fining the LP problem, not  merely those requiring nonnegativity for 
"structural" variables.) Thus, the corollary leads to a particularly conve- 
nient exploitation of  the LP problem structure, without having to spec- 
ify in advance what that structure may be. 

We now turn to the derivation of  special relationships that can be 
used in such applications. 

5. Determining improved polyhedra 

In this section we narrow our focus to polyhedra which (with the 
exception of  the annexed polyhedron (Q)) contain the LP vertex in 
their interiors, and thereby examine the conditions under which legiti- 
mate inequalities are obtained relative to a specific LP basis. Our princi- 
pal concern in doing this will be to provide demonstrable relationships 
that can be used in the determination of  improved polyhedra by spec- 
ific annexation strategies. 

We will consider two types of  strategies: sequential implementation 
and linear programming. The sequential implementation approach is 
computationally the least costly (although the amount  of  effort ex- 
pended in either approach can be regulated), and most of  our results 
bear directly on conditions affecting its use. The linear programming ap- 
proach, in contrast, offers the chance to determine "opt imal"  cuts - 

8 A version of Theorem 4.1 that embodies these observations can be stated as follows. 
Let Vp and VQ be master vectors ("ordered sets") whose components are Vp, pEP and 

Vq, q ~ Q, and let Zp and ZQ be specific sets of vectors Vp and VQ. Assume that the poly- 
hed e r a  (P) and (Q) contain no feasible solutions in their interiors for Vp EZp and VQ ~ZQ. 
Then the polyhedron (R) contains no feasible solutions in its interior for all nonnegafive 
values of kkq, kq, q E Q and Vp ~ Zp, VQ ~ ZQ. Moreover, if VQ EZQ implies Vq >1 0 for 
all feasible solutions, then the parameter Xq need not be nonnegative. Likewise, if VpEZp 
implies v k >1 0 for all feasible solutions, then the parameters kkq need not be nonnegative 
for all q c Q. 
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i.e., supports and facets of  F* - if the solution of  the linear program is 
carried to completion. This is unnecessary, however, because the calcu- 
lations can be maintained primal feasible at each stage, and the poly- 
hedron available at any desired stopping point will be currently best. 
The results for the sequential implementation approach also permit sig- 
nificant computational  savings for the linear programming approach by 
providing "screening" criteria that eliminate certain unprofitable alter- 
natives without  having to submit them to the machinery of  the simplex 
method. Of course, intermediate strategies using both  sequential imple- 
mentation and linear programming are possible. 

5.1. Sequential implementation 

To simplify the algebraic expressions and facilitate the p roof  of  the 
results that follow, we will suppose that the LP basis representations of  
the variables Vp, p c P, have been normalized so that the constant terms 
(vp o) are equal to 1. This is permissible under the assumption that the 
polyhedron (2) contains the LP vertex in its interior, since then vp 0 > 0 
for all p c P, and the normalization occurs by dividing Vp by Vpo. We 
will similarly impose such a normalization on the LP basis representa- 
tion of  XkqV k + ~.qOq (associated with the polyhedron (R) of  Theorem 
4.1) by requiring ~kkqOkO + ~.qOqO = l ,  o r  more simply, ~'kq + ~kqOqO = l 
(since k ~ P and v k 0 = 1). This is consistent clue to our intention that 
the polyhedron (R), like (P), contains the LP vertex in its interior. 
(Since we make no corresponding assumption concerning the annexed 
polyhedron (Q), we do not at tempt to normalize the variables %, 
q eQ.)  

Note that, by the normalization conventions, the polyhedron (R) 
gives rise to a valid inequality (1) provided only Xq ~> 0 a n d  ~.qOqO ~ 1, 
q ~ Q. We will call Xq legitimate if it satisfies these conditions. 

There are three concepts which, in addition to the normalization 
conventions, are particularly useful for the following development.  The 
first concerns the "restrictiveness" of  the half spaces v k >~ 0 and 
~.kq~) k + )kq~)q >/ 0 of  Theorem 4.1 relative to a given edge of  the LP 
cone. We will say that XkqV k + ~qOq ~ 0 is less restrictive than v k >~ 0 
relative to edge / if it permits an improved extension of  this edge, dis- 
regarding all other half spaces that may affect this extension. More 
formally, if the jth edge intersects the hyperplanes v k = 0 and Xkq Vk + 
~qOq = 0 for Q = t} and # = t)', respectively, t h e n  ~,kqVk + ~kql)q ~ 0 will 
be said to be less restrictive than v k ~> 0 if 1/t). > 1/t}' (where reciprocals 
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are used to accommodate negative as well as positive edge extensions). 
This notion is of  course pertinent to the question of  whether replacing 
u k >~ 0 by XkqU k + ~kqOq ~ 0 in Theorem 4.2 may yield a better cut via 
(R) than (P). 

The second concept, closely related to that of restrictiveness, is that 
of a "blocking hyperplane." Specifically, the hyperplane v k = 0 will be 
said to block the jth edge of the LP cone if this hyperplane is inter- 
sected by the edge for tj = tT, where t7 is the value of  tj for the cut (1). 
In other words, if vlc = 0 blocks t he / th  edge, then the edge extension 
cannot be improved until v k = 0 is moved (though the edge may still be 
blocked by a second hyperplane). The link to the notion of restrictive- 
ness is apparent: there is no point in removing v k = 0 and replacing it 
by XkqV k + Xq Vq = 0, if the goal is to improve the extension of the j th 
edge, unless XkqV k + ~kqOq ~ 0 is less restrictive relative to this edge 
than v k >~ O. 

The final concept, also closely related to the two preceding, is that 
of a "barrier" hyperplane. The hyperplane Vq = 0 will be called a barrier 
for edge j if the hyperplane is approached (or increasingly bypassed) as 
the edge is extended in a positive direction - or more precisely, if the 
value of Vq decreases as tj increases. (Note that algebraically this simply 
says that the coefficient Vqj is positive in the LP basis representation of  
oq.) A barrier hyperplane for a given edge may be thought of as one 
that is potentially blocking in the positive direction. A hyperplane that 
is not a barrier of  course poses no obstacle to extending an edge to a 
greater positive depth. This concept is particularly useful in the applica- 
tion of  Corollary 4.4 due to the observation that exactly one of  the two 
hyperplanes u t = 0 and 1 - u t = 0 is a barrier for any given edge (with 
the exception that neither will be a barrier if they are parallel to the 
edge). 

A useful result concerning the concept of restrictiveness is the follow- 
ing. 

Theorem 5.1. A s s u m e  Xq is' positive. Then XkqUlc + ~,qPq >/ 0 is less re- 
strictive than v k >~ 0 relative to the / th  edge o f  the LP cone i f  and only  
llf the intersection o f  the jth edge with v k = 0 lies in the interior o f  the 
hal f  space Vq >~ 0 when  the intersecting value o f  tj is positive, and lies in 
the interior o f  the hal f  space Vq <~ 0 when  the intersecting value o f  tj is 
negative. 

Proof. Denote the values of  tj at which the / th  edge intersects v k = 0 
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a n d  •kql)k + ~,qOq = 0 by t} and t)', respectively, as in the definition of  
restrictiveness. We must show that 1/t} > 1/t)' holds if and only if 
O,qo - -  Oqjt) > 0 when t) > 0, and if and only if Vqo - Oqjt~. < 0 when 
t) < 0. These conditions reduce to the condition Vqj < OqO/t ) on multi- 
plying through by 1/t).. However, v k o - vkjtj = 0 from the definition of 
t)., and by the normalization assumption this gives 1/t} = Vk/. Conse- 
quently, we must show the restrictiveness condition is equivalent to 
vqj < Vq OVk/: From the definition of  t;' and the normalization assump- 
tion Xkq + ~kqUqO = 1 we have 1 - (XkqVkj + ~kqOq])l]' = 0. Eliminating 
Xkq from th i s  equation by the identify Xkq = 1 - Xqvq0, we 
obtain 1/tT= Vkj + ~kq(Oq] - VqOVk] ). Thus 1/tj.'> 1/t)' if and only if 
Xq(Vqj- VqOVX/) < 0. For Xq > 0, this is equivalent to Vqj < VqOVkj, 
completing the proof. 

The foregoing proof identifies algebraic relationships that are useful 
both in applying a sequential implementation strategy and in simplify- 
ing the proofs of  subsequent results. These relationships may be sum- 
marized by 

1/{] = Uk] , 1/t j '  = Ukj + ~.q(Oqj OqOUk/), (3)  

1/t/ < 1It;' fOrXq > 0~* Vq/ < UqOVk/, (4) 

where t~. and t)' are as defined previously. As the proof shows, (4) is an 
algebraic equivalent to the geometric assertions of the theorem. (This 
equivalent is a good deal less tidy without the normalization conven- 
tions.) 

It should be noted that the assumption Xq > 0 of Theorem 5.1 is 
"superfluous" if Xq is legitimate, since there are always positive values 
o f  7kq satisfying Xq ~> 0 a n d  ~kqUq 0 ~'~ l ,  and the selection of  kq to 
be 0 causes the half spaces v k > 0 and XkqV k + ~.qUq ~ 0 to coincide, 
leaving nothing to be asserted. 

In the "one at a t ime" manipulation of  parameters by the sequential 
implementation strategy, it is desirable to know whether  improved edge 
extensions may be obtained when the parameters Xkh of the hyperplane 
v x = 0 are held constant in Corollaries 4.4 and 4.5, allowing only the 
parameters of the newly introduced hyperplanes to be varied. (This is 
of course relevant to any strategy in which candidates for new hyper- 
planes are screened by requiring that they afford improvement with 
the current values of the Xkh temporarily taken as given.) In this 
setting, Theorem 5.1 has the following consequences. 
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Corollary 5.2. A s s u m e  the parameters Xkh are held constant  and edge 

j is b locked  by  the hyperplane v k = O. Then for  X', X" > O, the edge can 
become  unb locked  (i.e., a l lowed an improved  ex tens ion)  by both  v k = 0 

and v'~' = 0 in Corollary 4.4 i f  and only  i f  the intersection o f  edge j wi th  

v k = 0 occurs fo r  a posit ive value o f  t! and  lies in the interior o f  

O<~ut  ~ 1. 

Proof. The supposition that X' and X" are positive is imposed to avoid 
t t !  the degenerate situation in which v k or v k is the same as v k. Then, by 

t r t  Theorem 5.1, if the intersecting value of  tj is negative, v k and v k are both  
less restrictive than v k if and only if the point of  intersection lies in the 
interior of  u t <~ 0 and 1 - u t <~ O, which is impossible. This leaves the 
case in which the intersecting value is positive, and the corollary fol- 
lows at once. 

This corollary shows that the use of  u t >>- 0 and 1 - u t >~ 0 to modify  
(P) provides no help for negative edge extensions. For positive edge 
extensions, the fact that the point of  intersection with the blocking 
hyperplane must lie in the interior of  0 ~< u t ~< 1 to permit the edge to 
become "unblocked"  is highly useful. 

Another consequence of  Theorem 5.1 is the following. 

Corollary 5.3. Under the assumpt ions  o f  Corollary 5.2, the edge j can 
become unb locked  by  v' k = 0 o f  Corollary 4.5 i f  and only  i f  the inter- 
section o f  e d g e /  wi th  v k = 0 satisfies x i < 0 for  a positive intersection 
value o f  tj and satisfies x i > 0 for  a negative intersection value o f  tj. 

Proof. Immediate by Theorem 5.1. 

Corollary 5.3 has an interesting geometric interpretation. If the ver- 
tex of  the LP cone is feasible for the LP problem,  then it satisfies 
x i >>- O, and an edge extension (i.e., its endpoint)  can satisfy x i < 0 only 
if it "bypasses" the hyperplane x i = 0. That is, a constraint hyperplane 
affords the chance of  improving a positive edge extension only if this 
hyperplane has been encountered and left behind as the edge is ex- 
tended. 

Our next concern is to identify conditions that permit the hyperplane 
)tkqV k + XqVq = 0 to be rotated "out  of  the way"  and thereby allow 
its associated half space to be discarded. Further, barring this possibil- 
ity, we will want to know the least restrictive form of  this half space rel- 
ative to any given edge. 
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The concept of a barrier hyperplane is relevant here. In particular, 
if the hyperplane v x --- 0 is not a barrier for any edge, then it can be dis- 
carded immediately without bothering to replace it through the opera- 
tions of Corollary 4.4 or 4.5. The reason for this goes back to the as- 
sumption that the LP vertex lies in the interior of  the half space v x >~ O, 
and thus if Ok/ <~ 0 for all ] (which is equivalent to saying v k = 0 is not a 
barrier for any edge), then v x > 0 for all feasible MIP solutions (since, 
in fact, v x >~ v k 0 = 1 for t] >~ 0, ] e N) .  Thus, our interest lies in exam- 
ining situations in which v k = 0 is a barrier for some particular edge (or 
collection of  edges). The first result that pertains to such situations is 
the following. 

Theorem 5.4. Assume  v k = 0 is a barrier fo r  edge s and  Vq = 0 is' not. 
Then the hal f  space XgqVg + )kqUq ~ 0 can be discarded prov ided  the 

intersection o f  edge s wi th  v x = 0 lies in the interior o f  the hal f  

space Oq ~ 0 and vk/ <~ Xq(VqOVk/ -- Vq/) f o r  all ] c N, where X i = 

Oks/(UqOOks -- Oqs ). 

Proof. By (3), the condition vk/ <~ )kq(UqOOk/ Vq/) is equivalent to 
1/t)' <. O, where by the definition of  t)' and the normalization conven- 
tions we may write 

~kkqO k + XqUq = 1 -- ~ (1/ t) ' ) t i .  
]eN 

T h u s  XkqU k + ~.q~)q >~ 0 can be discarded provided the specified condi- 
tions can be achieved for a legitimate value of Xq - hence, in particular, 
if kq = k~ is legitimate. The fact that v k = 0 is a barrier for edge s im- 
plies that it is intersected by the edge at a positive value o f  t s (since 
°k0 = 1). Then by the proof of  Theorem 5.1, the assumption that this 
intersection lies in the interior of Vq >~ 0 is equivalent to Vqs < VqOUks, 
and hence X~ > 0 (since U~s > 0). It remains to show kq*Vq0 ~< 1. The 
definition of  X~ yields 1 - * = ~kqUqO -1)qs/(OqOOks -- Oqs ) ~ O, since 
Vqs <~ 0 under the assumption that % = 0 is not a barrier for edge s. This 
completes the proof. 

Geometrically, Theorem 5.4 specifies the conditions under which the 
hyperplane XkqU k + •qUq = 0 can be rotated parallel to edge s (for legit- 
imate parameter values) and thereby become a "nonbarr ier"  for all 
edges. 

Two principal "components"  of the theorem, that Vq = 0 is not a 
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barrier for edge s and that the intersection of  edge s with v~ = 0 lies in 
the interior of  Vq >>- O, are crucially important.  We make this explicit in 
the following observation. 

Corollary 5.5. Let B = { / ~ N :  v k = 0 is' a barrier for  edge j } .  Then there 
exists a legitimate value o f  )kq for  which ~kqVk + ~qOq = 0 is nora  bar- 
rier for  any edge (and hence can be discarded) i f  and only i f  the follow- 
ing hold. Vq = 0 is not  a barrier for  each edge / such  t h a t / e  B, the inter- 
section o f  each edge j, j ~ B, with v k = 0 lies in the interior Of Vq >~ 0; 
Vk/ <~ X~(Vq 0 Vk/ -- Vqj) for  all edges / for  which Vq = 0 is a barrier, 
where X~ is the m a x i m u m  o f  okj/(UqOOkj -- Uqj) o v e r / ~ B .  

Proof. The assertion of  the corollary follows from the proof of  Theorem 
5.4 by noting that Vk] > 0 is compatible with 1/t)' <~ O, and Xg is legit- 
imate, if and only if each of  the stated assumptions hold. Further, the 
stipulated value of  ~,~ of the corollary is the smallest value that assures 
1/t)' <~ 0 for all edges / that are blocked by v k = 0, and hence if this 
value does not assure 1/t)' <<, 0 for all remaining/ (as  the inequalities of  
the corollary do), then no other value will assure this either. 

Loosely speaking, the corollary says there must be some edge s that 
satisfies the conditions of  Theorem 5.4 or the hyperplane XkqVk + 
Xq Vq = 0 must remain a barrier for at least one edge and all legitimate 
values of  ~,q. 

It is useful to know circumstances under which the conditions of  
Theorem 5.4 may hold without having to check explicitly for these 
conditions. Specifically, the question arises as to the possibility of  dis- 
carding ~kqVk + ~qOq >/ 0 without computing ),~ and checking the 
associated inequalities. The following result deals with this situation. 

Corollary 5.6. Assume Vq = 0 is not  a barrier for  any edge, and for every 
e d g e / f o r  which v k = 0 is a barrier, the intersection o f  edge j with v k = 0 
is in the interior o f  Vq >10. Then there exists a legitimate value o f  Xq 
such that XkqVk + XqOq >/ 0 can be discarded. 

Proof. The corollary follows directly from Corollary 5.5, observing that 
the inequalities involving edges / for which vq = 0 is a barrier do not 
apply, and hence ?v~ as specified in Corollary 5.5 must automatically 
be acceptable. 

Corollary 5.6 is of  particular relevance to "positive" coordinate 
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systems, as in "bounding form" structures standardly employed to as- 
sure nonnegativity of  nonbasic variables in creating matrix "normal 
forms" for integer programming, since for these it is always true that 
one of  every pair of  hyperplanes u t = 0 and 1 - u t = 0 is not  a barrier 
for any edge. 

Since it is not generally possible to rotate hyperplanes out  of  the 
way of  all edges, it becomes of  interest to know whether they may at 
least be rotated out of  the way of  "preferred" edges -- e.g., edges that 
one would like to extend further. It is also desirable to know the best 
rotation available for a particular edge. The following corollary ad- 
dresses this case. 

Corollary 5.7. Assume v k = 0 is a barrier for the jth edge and the inter- 
section o f  this' edge with v k = 0 lies in the interior o f  tJq >10. I f  Oq = 0 
is" not a barrier for the jth edge, there is a legitimate value o f  Xq such 
that XkqV k + ~qOq =- 0 is not intersected by this edge. l f  Vq = 0 is a bar- 
rier for the jtl.z edge, then the least restrietil~e form o f  the hall space 
~.kqt)k + ~kqOq ~ 0 relatil,e to this edge is obtained for Xkq = 00' ielding 
Vq >~ 0 in normalized form). 

Proof. The first part of  the corollary follows from Corollary 5.6. The 
second part requires the demonstration that if Oqi > 0, then XkqOki + 
~qUqj [=  Ukj + ~,q(Uqj UqOOkj)] is minimized f o r  ~kkq = 0,  hence Xq = 

1/UqO. As in tile proof  of  Theorem 5.1, OkjVqO > Vqj, and from 
Ok/> 0 we have Oq0> Vqj/Uki> O. T h u s  ~.q = 1/VqO is legitimate. 
Moreover, since %o > 0, Xq is required to satisfy Xq ~< 1/VqO and ulc j + 
Xq(Vqj - VqOVkj ) is minimized by making Xq as large as possible, since 
the quanti ty in parenthesis is negative. 

The preceding results can be " compounded"  in a sequential imple- 
mentation strategy in order to permit a more effective use of  Corollaries 
4.4 and 4.5 in conjunction. Specifically, assume that Vq of  XkqO k + 
Xq Vq corresponds to u t or 1 u t in Corollary 4.4, and values of  the pa- 
rameters are sought that will achieve the best combined set of  rotations 
on the subsequent application of  Corollary 4.5. Then by Theorem 5.1 
(and Corollary 5.3), the parameters should be selected so that - x  i = 0 
is intersected by a given edge / "before"  the edge intersects XkqO k + 
Xqoq = 0. For negative edge extensions, the appropriate sequence of  
intersections is reversed. Itowever, the more nearly that the hyperplane 
~.kqVk + ~.qVq = 0 can be brought into a position so that it satisfies the 
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conditions of  Theorem 5.4 relative to --X i = 0 ,  then the better  the re- 
sulting rotation will be. This requires the manipulation of two param- 
eters. However, since a "best"  value of  the second parameter is always 
known (e.g., by Corollary 5.5) for each value of  the first, the procedure 
simplifies to a search over one parameter only. 

In general, the simplest type of  sequential implementation strategy 
(i.e., requiring the least calculation), favors a rotation as long as it al- 
lows at least one edge extension to be improved without worsening any 
other edge extension. 

The algebraic relations underlying such an approach are completely 
straightforward and may be summarized as follows. 

Remark. Let t]*, j c N,  be determined relative to (P) and suppose v k = 0 
blocks at least one of the edges of the LP cone. Upon replacing v k >1 0 
with XkqV k + XqVq >/ 0 the greatest improvement in the extensions of  
the blocked edges that does not  worsen the extensions of any other 
edges is given by assigning Xq the largest value satisfying Xq vq 0 ~< 1 and 

xq < (v~/ - 1/ tT)/(VqoVkj  - %/ )  

f o r j c N :  OqOVk] > Oq]. 9 

Proof. The inequalities other  t h a n  ~kq~)qO ~ 1 are the requirements 
1/t)' <~ 1/t~, / E N,  expressed in terms of  the LP basis representation, 
utilizing the identities developed in the proof of  Theorem 5.1. 

5.2. Linear programming 

The formulation of  an auxiliary linear programming problem to de- 
termine optimal parameter values Xph for the polyhedron (P) is easily 
derived (for (P) in the form (Px)), given a prior specification of  the 
variables vh, by means of  which (P) is parameterized. This is accom- 
plished by imposing the normalization Vp o =- 1, p ~ P (to insure the LP 
vertex is in the interior of  (P)), and stipulating 6/ >~ Vpj, p c P, j c N,  
where 6/ represents the coefficient of  tj in (1) - i.e., 6~ = 1/t~, for a 
given value 6~ of  6/. (The inequality 6j ~ Vpj is equivalent to VpO >~ 
Vp/t/ for Vpo = I and 6/ = 1/t/.) Since stronger cuts are obtained for 
smaller values of  5/, the objective for the auxiliary linear program can 
be to minimize the sum of  the 61, or more generally 

9 Of course, it may be that  no improvement  is possible by the remark once a "local o p t i m u m "  
has been obtained, in which case ~_ = 0. (Edges blocked by more than one hyperplane 
will require all blocking hyperplanes to be replaced.) 
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minimize ~ d,&, 
/ ~ N  j j 

where the coefficients d /a re  selected to be positive - for example, with 
magnitudes of  the coefficients x0 / in  the updated objective function for 
the MIP problem. From (Px) the requirements VpO = 1 and 6j > Vpi 
become 

~.phOhO = 1, p E P ,  
h ~ g p  

~ j >  ~ ~kphOh/, p e P ,  / e N ,  
beHp 

where Xph > O, h • ltp , p • P. The variables 6i are unrestricted. Some 
of the parameters kph may also be unrestricted in accordance with the 
observation following Corollary 4.5. The variables v h consist of the 
"building block" variables, hence in the MIP setting are the variables 
ut, 1 u t, and -x i ,  from Corollaries 4.4 and 4.5. The particular vari- 
ables to be used may be identified in advance through a heuristic means 
such as the sequential implementation approach. Alternatively, both 
variables and "starting solutions" may be obtained by reference to 
earlier solution attempts involving problems from a similar class. 

In any of these approaches, upon starting from a polyhedron (P) that 
contains the LP vertex in its interior, additional variables v h may be in- 
troduced using row and column generating procedures for tile primal 
simplex method as a means of implementing Corollaries 4.4 and 4.5. 

If one permits new variables to be introduced (either singly or in 
blocks) as long as it is profitable to do so, then the opt imum solution 
to the linear program must yield a support of the convex hull F* of  F 
as a result of Corollary 4.3. (Otherwise, it would be possible to decrease 
some 6/ and obtain a better LP solution.) Clearly, too, every support 
(and hence every fact) indicated in Corollary 4.3 must be an optimal 
LP solution for some choice of positive coefficients in the objective 
function. In fact, each optimum extreme point solution of  the LP 
problem must yield a fact of F*, since, if at = 1 were not a facet, then 6 
would have a degree of freedom to move along a line segment for finite 
distances in both directions, still yielding a support (and hence a fea- 
sible LP solution), contrary to the assumption that 6 is an extreme 
point.1 0 

(Footnote 10, see next page.) 
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To implement the approach of  generating new variables as needed, 
the introduction of  a new variable - x  i by Corollary 4.5 is accomplished 
in a straightforward fashion. Specifically, this involves the creation of  
the new parameter X', which appears in the constraints associated with 
v k in the auxiliary linear program: 

~kkhOhO + ~k'(--Xio ) = 1, 
h ~  k 

6/>>- ~ XkhVh/  + X'(--Xij) ,  ] ~ N .  
h ~ H  k 

Thus, the customary "pricing-out" procedure of  linear programming 
can be used to determine whether it is profitable to introduce - x  i 

(hence X') in the indicated constraints (and thus change the identity of  
a particular Vk, k E P).  Theorem 5.1 - and more specifically, Corollary 
5.3 - may be used to limit the range of  variables - x i ,  i c  M,  that need 
to be examined. From these results, unless the endpoint  o f  an edge 
blocked by v k = 0 (in the current solution to the auxiliary linear pro- 
gram) satisfies - x  i > O, or can be made to satisfy - x  i > 0 for other 
feasible parameter values, then - x  i (i.e., X') cannot be introduced prof- 
itably. ( - x  i > 0 is replaced by - x  i < 0 for negative edge extensions.) 
In particular, then, if edge j is blocked by v k = 0, and 6~ is the current 
value of  6], then - x  i need not be priced-out unless 6~Xio - x i j  is nega- 
tive or can be made negative for a relatively small change in 6p. 

To introduce new variables u t and 1 - u t by Corollary 4.4 requires 
more effort. Here the constraints of  the auxiliary linear program asso- 
ciated with v k become 

t t 

?,khVho +XUto = 1, 
h ~ g  k 

?,~'hVho +X"(1 Uto)-- 1; 
h ~ H  k 

lO 

~j >1 ~ X'kh vhj  + X'ut],  
h ~ I t  k 

This correspondence between extreme point  solutions and facets is related to similar 
correspondences noted by Gomory  [18] ,  Balas [4] and Johnson  [23] .  However, in the 
present setting, F *  may not  have n-dimensional  facets, or may otherwise lack facets for 
particular choices of  the coefficients d~ that  prevent the objective funct ion from being un- 
bounded.  This causes no difficulty if the 6] are bounded  from below. 
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~j>~ ~ ~,~hOh/+~."(- Utj), j ~ N .  
h ~ H  k 

Note that the original parameters X k h ,  h ~ t t k ,  can be taken to corre- 
spond to either the parameters X~h or X~h" This implies that if e i t h e r  

u t or 1 - u t (i.e., X' or X") prices-out unprofitably in the auxiliary 
linear program (regardless of  whether the other prices-out profitably, 
and without  bothering to create additional constraints or parameters) 
then there is no use attempting to introduce these variables. This fact 
can result in substantial savings of  time and effort. On the other hand, 
if both u t and 1 -.- u t price-out profitably, then row and column gener- 
ating procedures are required to introduce these variables and their 
associated constraints. Ways of  carrying out this process efficiently are 
extremely important,  and alternatives merit careful study. The results 
of Section 5.1 that give sufficient conditions for discarding newly 
created half spaces can be helpful in this regard, since they allow the 
application of Corollary 4.4 to be restricted to only one of  the two 
variables u t and 1 - u t ,  thereby effectively reducing the work of  im- 
plementing Corollary 4.4 to the level involved in implementing Cor- 
ollary 4.5. 

Theorem 5.l can also be used to screen variables u t and 1 -- u t to be 
priced-out in the first place (just as for the variables - x i ) .  Specifically, 
by Corollary 5.2, if edge j is blocked by u k = 0, the introduction of u t 
and 1 u t can be useful only if the endpoint of this edge lies in the 
interior of 0 ~< u t ~< 1, or can be made to do so for other feasible param- 
eter values. That is, 6j must be positive and the inequality 
8j(Uto -- 1) < u 0 < 8iUto must hold for 8j in the vicinity of  8). (As in the 
corresponding implementation of Corollary 4.5, the size of  this "vicin- 
i ty" depends on how stringent one desires the screening device to be.) 

It is important to bear in mind that these updating operations do not 
destroy the primal feasibility of the auxiliary linear program, thus per- 
mitting termination at any selected stage. 

6. Applications in branch and bound 

The results of Sections 2 and 3 are especially suitable for imple- 
mentation in the context of branch and bound. It has often been noted, 
for example, that cutting inequalities can be used to obtain improved 
bounds in a branch and bound approach. However, the preceding results 
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give a new way to take advantage of  "branching inequalities," since 
these inequalities may be conceived to have the form x i >1 O, just as the 
original problem constraints. Corollary 4.5 is therefore immediately 
applicable, and it is not  necessary to iterate to a new LP opt imum be- 
fore exploiting its consequences. Moreover, since the LP vertex will 
satisfy x i < 0 for a branching inequality, it follows that positive ex- 
tensions of  many of  the edges.will also satisfy x i < 0, and hence by 
Corollary 5.2, the constraint x i >> 0 can automatically be used to im- 
prove the extensions of  these edges. 

Improved applications of  branch and bound in this setting may occur 
by branching on variables u t and 1 - u t created by easily identifiable 
integer combinations of  the original integer variables that allow deeper 
edge extensions relative to the current LP basis than the original vari- 
ables themselves. However, somewhat more general procedures can be 
employed by reference to polyhedra generated by the approaches of  the 
preceding sections. Specifically, if there is a hyperplane v k = 0 of  (P) 
which by itself would provide a strong cut (v k ~< 0) in the role of  (P), 
and if the remaining polyhedron Vp /> 0, p E P - {k} also provides a 
strong cut, then it is possible to "branch on v k ' '  by imposing v k <~ 0 as 
or~e alternative, and by imposing the cut (1) from the polyhedron 
Vp ~> 0, p ~ P - {k }, together with the negation of  v k <~ O, as the other 
alternative. 

This is an instance of  the following rule. If P' and P" are subsets of  
P, with P' u P" = P, then the branching may consist of  the disjunction 

o r  

f e N  

j ~ N  

f e N  

where t~. and t)' are the values of V for the polyhedra vp >i O, p ~ P' and 
op >1 O, p ~ P " ,  respectively. The number  e can safely be O, but may be 
positive when the slack variable for the associated inequality is identi- 
fied as a scaled integer variable. Similar observations give rise to mul- 
tiple branchings. 

The potential effectiveness of  such possibilities should not be under- 
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estimated, since customary branch and bound approaches are special 
cases of them. The latitude to generate polyhedra that provide branch- 
ing inequalities with deeper edge extensions suggests the possible desir- 
ability of using branching strategies based on such considerations in 
branch and bound algorithms. 
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