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This paper presents a unified development of a surrogate duality
theory that is applicable to problems in which Lagrangean duality
gaps limit the usefulness of standard duality approaches. A sur-
rogate dual is created by generating a single constraint to replace
the original problem constraints, rather than by absorbing these con-
straints into the objective function as in the Lagrangean. We give
necessary and sufficient conditions for optimality both with and without
the imposition of complementary slackness, and also consider a related
‘overestimating’ surrogate that may be used in a strategy to bracket
the optimal value of the primal.  The optimality conditions invite direct
comparison with those for Lagrangean duality, demonstrating not
only that the surrogate approach yields smaller duality gaps than the
Lagrangean (as first observed by Greenberg and Pierskalla), but
also giving a precise characterization of the manner and extent
to which this occurs. Concepts of parametric and relative subgradi-
ents, paralleling (and generalizing) the concept of the subgradient
of ordinary duality theory, lead to easily stated results that encom-
pass both surrogate and Lagrangean duality, as well as their com-
posite, in a single framework.

DUALITY theory in mathematical programming has customarily
been based upon the use of a generalized Lagrangean function to de-
fine the dual. Very elegant results have emerged linking optimality condi-
tions for the dual to those for the primal. Out of these results have arisen
solution strategies for the primal that exploit the properties of the primal-
dual interrelations. Some of these strategies have been remarkably suc-
cessful, particularly for problems in which the duality gap—the amount
by which optimal objective function values for the two problems differ—
is nonexistent or small.
A different type of solution strategy has been proposed for solving mathe-
matical programs in which duality gaps are likely to be large. In contrast
to the Lagrangean strategy, which absorbs a set of constraints into the
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objective function, this strategy replaces the original constraints by a new
one called a surrogate constraint.

There have been several important contributions to the literature on
surrogate constraints, but there has been no body of theory, comparable
to that for Lagrangean functions that provides necessary and sufficient
conditions for the absence of duality gaps for a surrogate dual. In fact,
most of the attempts to generate ‘best’ surrogate constraints, particularly
in the setting of integer programming, have resorted to Lagrangean analysis
(or its equivalent). This paper develops a surrogate duality theory that
provides exact conditions under which surrogate duality gaps cannot occur.
These conditions (both necessary and sufficient) are less confining than
those governing the absence of Lagrangean duality gaps. Furthermore,
they give a precise characterization of the difference between surrogate
and Lagrangean relaxation. We develop theorems that are analogous to
major results of standard duality theory, allowing direct comparisons to
these earlier results.

The foundation for surrogate duality theory, as developed here, rests on
the introduction of several new concepts that generalize the notions of per-
turbation functions, subgradients, and stability as normally employed in
Lagrangean duality theory. These include parametric perturbation func-
tions, parametric and relative subgradients, and relative stability. With the
use of these new concepts, we identify an ‘overestimating’ function whose
optimal value (together with that of the surrogate dual) brackets the opti-
mal value of the primal. We thereby deduce inequalities involving both
the parametric perturbation function and the ordinary perturbation func-
tion that constitute the fundamental building blocks of surrogate duality.

These relations do not require the complementary slackness conditions
that provide a cornerstone of ordinary duality theory. Nevertheless, be-
cause complementary slackness has led to useful solution strategies in a
variety of settings, we also show that it is possible to superimpose comple-
mentary slackness on surrogate duality to give alternative characteriza-
tions of optimality.

Our principal results do not rely on assumptions of convexity, since the
major applications of surrogate constraints occur in situations where con-
vexity is conspicuously missing (e.g., integer programming). However,
to provide further ties to standard duality theory, we also examine the
‘convex case’ by introducing the notion of relative stability.

A key feature of the development is the statement of two general duality
theorems for a dual defined relative to an arbitrary number of surrogate
constraints together with a weighted objective. These results imply as a
special case the chief consequences of Lagrangean and surrogate duality,
as well as their conjunction. The nature of these results and their con-
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nections to earlier work will be discussed more fully after we introduce some
fundamental definitions.

1. THE PRIMAL PROBLEM AND THE SURROGATE DUAL
The primal problem of mathematical programming will be written
P: min..x f(z), subjectto g(x)=0,

where f and each component g;(z) of the vector g(z) are real-valued func-
tions defined on X. No special characteristics of these functions or of X
will be assumed unless otherwise specified. We will not bother to distin-
guish between row and column vectors—all vector products are dot prod-
ucts in the usual sense and conformable dimensious are taken for granted.

A surrogate constraint for P is a linear combination of the component
constraints of g (z) <0 that associates a multiplier u; with each g,(x) to pro-
duce the inequality ug(z) =<0, where u= (u;). Clearly, this inequality is
implied by g(z)=<0 whenever u=0. Correspondingly, we define the sur-
rogate problem

SP(u): mingx f(x), subject to wug(z)=0.

The optimal objective function value for SP () will be denoted by s (%),
or more precisely,

s(u)=infrex@) f(x), where X (u)={zeX:ug(z)=0}.

Since SP (u) is a relaxation of P (for 4 nonnegative), s(u) cannot exceed
the optimal objective function value for P and approaches this value more
closely as ug(z)=<0 becomes a more ‘faithful’ representation of the con-
straint ¢g(z)<0. Choices of the vector  that improve the proximity of
SP (u) to P—i.e., that provide the greatest values of s(u)—yield strongest
surrogate constraints in a natural sense, and motivate the definition of the
surrogate dual
SD: maxuzos(u).

The surrogate dual may be compared with the Lagrangean dual
LD: maxuso L (u),
where L (u) is the function given by
L(u)=infoex {f(2)+ug(z)}.

It should be noted that s(u) is defined relative to the set X (u), which is
more restrictive than the set X relative to which the Lagrangean L (u) is
defined. Also, modifying the definition of L (u) by replacing X with X (u),
while possibly increasing L (u), will nevertheless result in L (u)=<s(u) be-
cause of the restriction ug(z) <0; that is, L (u) may be regarded as an ‘un-
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derestimating’ function for both the surrogate problem and the primal
problem.

Another immediate observation is that any optimal solution to the sur-
rogate problem that is feasible for the primal is automatically optimal for
the primal. (No complementary slackness conditions are required, as for
the Lagrangean.) These notions have been embodied in the applications
of surrogate constraints since they were first proposed and are entirely
conspicuous. Taken together, they provide what may be called a ‘first
duality theorem’ for surrogate mathematical programming. A formal
statement of this theorem will be given after additional groundwork has
been laid, at which time it will be possible to enlarge its content. There-
upon, the advanced surrogate duality results will be developed. We will
first summarize some of the earlier contributions to surrogate constraint
theory and provide a detailed interpretive guide to the results that lie
ahead.

2. BACKGROUND AND PRELIMINARIES

Since their introduction,™! surrogate constraints have been proposed by
a variety of authors for use in solving nonconvex problems, especially those
of integer programming. Surrogate constraints that were ‘strongest’ for
0-1 integer programming under certain relaxed assumptions were suggested
by Baras!l and Georrrion.[¥) The paper by Geoffrion also contained a
computational study that demonstrated the practical usefulness of such
proposals. Methods for generating strongest surrogate constraints ac-
cording to other definitions, in particular segregating side conditions and
introducing normalizations, were subsequently proposed.l’?! However, all
of these proposals used relaxation assumptions whose effect was to replace
the original nonconvex primal problem by a linear programming problem.
The structure of this LP problem is sufficiently simple that the distinction
between the surrogate constraint approach and the Lagrangean approach
vanishes.

The first proposal for surrogate constraints used notions that closely ac-
cord with those considered here, defining a strongest surrogate exactly as in
Section 1. A theorem of reference 11 leads to a procedure for searching for
optimal surrogate multipliers that can obtained stronger surrogate con-
straints for a variety of problems than subsequent proposals (sece Note 1).

Greenberg and Pierskalla provide the first major theoretical treatment of
surrogate constraints in the context of general mathematical programming.
These authors show that s(u) is quasiconcave, thus assuring that any local
maximum for s(u) is a global maximum (disregarding sequences of ‘pla-
teaus’). In addition, their paper was the first to demonstrate rigorously a
smaller duality gap for the surrogate approach than for the Lagrangean
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approach. It also provided sufficient conditions for the nonoccurrence of
surrogate duality gaps. Specifically, surrogate duality gaps are shown to
be eliminated if the perturbation function (of standard duality theory) is a
closed quasiconvex function. More recently, GREENBERG!4! has developed
applications of ‘surrogated Lagrangeans’ to provide strengthened penalty
functions, and GREENBERG AND PIERSKALLAM® have unified and extended
these previous developments in a nonlinear multiplier setting via a theory
of quasiconjugate functions.

The developments of this paper owe a large debt to the work of Green-
berg and Pierskalla, and to previous contributions to duality theory gener-
ally (e.g., the landmark work of CHARNES, CoOPER, AND KORTANEK,?!
CorTLE,B! Dantzig,! Evans anp Gouwp,!® Everert,!®] FENCHEL,]
GALE,8] LUENBERGER,!”] MANGASARIAN AND PONSTEIN,!8] ROCKAFEL-
LAR,[9 S1OER, 20 and WoLFE,®! among others). The format of our pres-
entation is motivated by Geoffrion’s outstanding exposition of Lagrangean
duality. 0!

Chiefly, the results of the next section are based upon relations between
optimality conditions for the surrogate problem and four central concepts:
the perturbation function (of Lagrangean duality theory), the parametric
perturbation function, the parametric subgradient, and the relative sub-
gradient. Under convexity, we also introduce a concept of relative sta-
bility that plays the same role in surrogate duality as the concept of or-
dinary stability in Lagrangean duality. In particular, under convexity,
necessary and sufficient conditions for surrogate optimality are shown to
be equivalent to the conditions of relative stability.

Optimality conditions for surrogate duality are the requirements (already
discussed) that the surrogate multiplier vector u is nonnegative, x is optimal
for the surrogate problem, and z is feasible for the primal problem. ‘Strong’
optimality conditions add the requirement of complementary slackness
[ug(x)=0]. We first give theorems that show that the optimality condi-
tions are essentially equivalent to the statement that the negative of the
surrogate multiplier vector is a relative subgradient of the parametric
perturbation function with respect to the ordinary perturbation function
at the origin. This statement is less restrictive than the corresponding
statement for the Lagrangean optimality conditions and affords a direct
means of identifying the additional latitude of the surrogate problem that
yields smaller duality gaps than provided by the Lagrangean. Strong
optimality conditions for the surrogate problem are then shown to be
equivalent to the statement that the negative of the surrogate multiplier
vector is a parametric subgradient for the parametric perturbation function
at the origin. Although the strong surrogate optimality conditions are
more confining than the regular surrogate optimality conditions, they are
still less restrictive than the Lagrangean conditions—i.e., an optimal solu-
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tion can be available for the primal by means of the surrogate problem un-
der complementary slackness when the Lagrangean is unable to provide
such a solution (because of a Lagrangean duality gap).

It is useful to consider a special surrogate problem related to the para-
metric perturbation function in the same way that the surrogate problem
SP(u) is related to the ordinary perturbation function. Under certain
circumstances, it is possible for this special surrogate problem to ‘overesti-
mate’ (or even solve) the primal, while the problem SP(u) lies in a duality
gap. We give a theorem that provides a necessary and sufficient condition
for this ‘overestimation’ to occur. This result demonstrates that overesti-
mation is more frequently attained than surrogate optimality, suggesting a
strategy of using both the special surrogate and the ordinary surrogate in
an attempt to ‘bracket’ an optimal solution to the primal.

Section 4 introduces a generalized surrogate problem defined relative to
an arbitrary number of surrogate constraints and a weighted objective.
For this generalized problem we give two duality theorems that imply as
special cases the results of the preceding section and all of the corresponding
results for Lagrangean duality. In addition, these theorems give complete
necessary and sufficient conditions for optimality in a combined surrogate-
Lagrangean approach and have implications for surrogate duality and La-
grangean duality independent of each other. Among other things, it is
shown that the restriction of earlier results to ‘subgradients’ defined in
terms of optimal multiplier vectors is unnecessary. In both Lagrangean
and surrogate duality, the concept of the relative subgradient makes it
possible to extend the statement of ‘optimality equivalence’ to hold with
any nonpositive vector in the role of the relative subgradient.

Finally, in Section 5 we consider the standard convexity assumptions
usually imposed on duality theory and introduce the concept of relative
stability, which provides the desired equivalences to the previous optimality
results under convexity.

A simplified scheme is given for proving the central relations of Section 4
(which imply all the others for the nonconvex case). By means of this
scheme it is possible to justify the main results of Section 5 by a brief
commentary linking a handful of straightforward observations.

3. FUNDAMENTAL RESULTS FOR SURROGATE DUALITY

For our starting point, we define two problems P (y) and P (y, ) related
to the primal problem P and the surrogate problem SP (u):

P(y): min,.x f(x), subjectto g(x)=y.
P(y, w): mingexw) f(x)—ug(x), subject to g¢g(z)=y.

The standard perturbation function v(y) is the optimal objective function
value for P(y):
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v(y)=infsex f(2), subjectto g(z)=y.

The parametric perturbation function v (y, ) is correspondingly defined to be
the optimal objective function value for P (y, u):

v(y, u) =infrexw f(x)—ug(z), subject to g¢g(x)=y.

Since P (0) is the primal, »(0) is the optimal objective function value for P.
It should be noted that the objective function v(y, u) for P (y, u) may be
thought of as an ‘overestimating function’ in the same sense that the
Lagrangean is an ‘underestimating function.” [The condition ug(z)=<0
assures f(x)—ug(x)=f(z) for all xeX (u).] More generally, given the
assumption ©=0, we can immediately write the following inequalities and
equalities as a consequence of the preceding definitions.

Basic inequalities:
v(y, w)Zv(y) and o(y, w)=s(u).

v(y)=s(u) if some x satisfying ug (x) =<0 is optimal for P (y).
s(w)=v(y) if some z satisfying g (z) <y is optimal for SP (u).

The foregoing imply as special cases: v(y)=s(u) if uy=<0, and v(0, u)=
v(0)=s(u).

Basic equalities:

v(y, u)=v(y) if and only if some x optimal for P (y) satisfies ug (z) =0
[in which case the set of all z optimal for P (y, ) is the
set of all « optimal for P (y) that satisfy ug(z)=0].

v(y)=s(u) if some x optimal for P (y) satisfies ug (z) <0 and some «
optimal for SP (u) satisfies g(x) <y [in which case all x
of the first type are optimal for SP(u) and all z of the
second type are optimal for P (y)].

The second equality is of course a consequence of the second and third in-
equalities. We may also conclude: if uy <0, then »(y) =s(w) if and only if
some z optimal for SP (u) satisfies g (¢) =y (in which case the set of all z
optimal for P (y) is the set of all 2 optimal for SP (u) that satisfy g(z)=<y).
Stated in another way:™ an optimal solution z for SP («) is optimal for all
P(y) such that uy=<0 and g(z)<y.

These observations contain all the ingredients of a ‘first duality theorem,’
which we state upon formalizing the surrogate optimality conditions, as
follows.

Surrogate Optimality Conditions
(i) u=0.
(ii) zis optimal for SP (u).
(i) g(z)=0.
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TuroreM 1. The surrogate optimality conditions imply x vs optimal for the
primal, u is optimal for the surrogate dual, and their optimal objective function
values are equal. M oreover, if there is a nonnegative u such that v(0)=s(u),
then the set of all optimal solutions to P s precisely the set of x that together
with u satisfy the surrogate optimaliiy conditions.

The content of this theorem, previewed in Section 2, provides the start-
ing point for surrogate duality theory. Using the basic equalities, we can
also go a step farther. We define the strong optimality conditions to con-
sist of the surrogate optimality conditions plus the condition of comple-
mentary slackness:

(iv) ug(xz)=0.

The latter is suggested by analogy with the Lagrangean and the fact that a
sophisticated body of solution techniques has grown up for exploiting the
complementary slackness condition. In fact, the strong optimality condi-
tions are the same as the Lagrangean optimality conditions upon replacing
(ii) by the statement that z is optimal for the Lagrangean [i.e., £ minimizes
f@)+ug(z) over X]. However, strong optimality conditions accommo-
date a somewhat broader range of possibilities than the Lagrangean op-
timality conditions, as will be subsequently demonstrated. By means of
our earlier observations, however, we can immediately state the following
addendum to Theorem 1.

CoroLLARY. The strong optimalily conditions tmply x is optimal for both P
and P(0, u), and v(0, u)=v(0). Moreover, if any pair u, x satisfies the
strong optimality conditions, then these conditions characterize all x that are
optimal for P (0, w) and all u such that v (0, u)=v(0).

The principal goal of this section will be to identify necessary and suffi-
cient conditions for the two sets of optimality conditions to hold, so that the
conclusions of Theorem 1 and its corollary will be at hand. To provide a
foundation for the main results to follow, we first recall the definition of
subgradient used in Lagrangean duality theory.

A vector v* is called a subgradient of a function F (y) at the point y* if
Fy)=F (y*)+v*(y—y*) for all y. Not all functions have subgradients
by this definition, and the direction of the inequality is sometimes reversed
to enable the definition to apply—e.g., for concave functions. The sub-
gradient, like the gradient (when the latter exists), points from y* in the
direction of those y that yield ‘improved’ values of F (y) [i.e., F (y)=F )
implies that y is contained in the half space v* (y—y*) <0].

By extension, we will call v(a) a parametric subgradient of the function
F (y; a) at the point ™ if F (y; «) = F (*; a)+v (a) (y—y*) for ally. The
parametric subgradient is an improving direction for the function F (y; «)
for some given value of the parameter @. (The fact that « is constrained to
the same value throughout the foregoing inequality suggests the alternative
nomenclature of ‘constrained subgradient.”’) By means of the parametric
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subgradient it will be possible to identify necessary and sufficient conditions
for the strong optimality conditions to hold.

Extending the notion of the parametric subgradient, we define vy («) to be
a relative subgradient of a function F (y; a) with respect to a function G (y; )
at the point VI F(y; @) 2G5 a)+v (@) (y—y*) forall y.  The relative
subgradient points in a direction in which the function F (y; «) improves
relative to G (y*; a) for a given a. By means of this notion, relations equiva-
lent to the surrogate optimality conditions can be expressed. In addition,
the relative subgradient provides the basis for the ‘composite’ duality the-
orems of the next section.

We now connect the parametric and relative subgradients to the opti-
mality conditions for P and SD. In the results to follow, the functions
F (y; a) and G (y; @) of the preceding definitions correspond to the functions
v(y; u) and v (y), with the multiplier vector u taking the role of the parame-
tera. These results, asthose of Lagrangean duality, referto ‘subgradients,’
taken at the origin, i.e., for y*=0 (see Note 2).

THEOREM 2. Assume u=0. Then the surrogale optimality conditions are
met and the conclusions of Theorem 1 apply if and only if —u is a relative
subgradient of v (y, u) with respect to v(y) at the origin; 1.e.,

v(y, u)2zv(0)—uy for all y. 1)

It is instructive to compare Theorem 2 with the corresponding theorem
for Lagrangean duality, which says that the Lagrangean optimality condi-
tions are met if and only if —wu is a subgradient of v(y) at the origin; i.e.,

v(y)zv(0)—uy for all y. 2)

The additional latitude supplied by (1) over (2) is seen by reference to the
inequality v(y, u)=v(y) (for all v=0). This inequality holds for two
reasons. First, v(y, u) is defined relative to a more restrictive constraining
relation than »(y) [since it must additionally accommodate ug(z)=0].
Second, f(2)—ug(x), the objective function for »(y, u), is an ‘overestimat-
ing function’ for the objective function of v(y). Taken together, these
conditions doubly ensure that the gap region for (1) is smaller than for
(2)—sometimes dramatically so, as illustrated in reference 13.

It might be guessed that part of the difference in the gap regions sup-
plied by (1) and (2) is due to the complementary slackness condition that
is required for Lagrangean optimality. Indeed, by the basic equalities,
v(y,u)=v(y) if and only if ug(z)=0 for some optimal solution z to the
problem. P(y). Thus, the difference in restrictiveness between (1) and
(2) depends precisely upon complementary slackness, not simply for the
problem P, but for all problems P(y). Consequently, the imposition of
this condition for P accounts for only a portion of the difference between
(1) and (2) and suggests that the incorporation of complementary slack-
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ness via the strong optimality conditions will still provide a latitude that is
missing in the Lagrangean. This is an attractive possibility since, as already
noted, complementary slackness is highly exploitable from an algorithmic
standpoint. We now demonstrate the consequence of this condition as
imbedded in the strong optimality conditions.

TuEOREM 3. The strong optimalily conditions are met, and the conclusions of
both Theorem 1 and s corollary apply, if and only if —w s a parametric
subgradient of v(y, w) at the origin; i.e.,

v(y, u)2v (0, u)—uy for all y. 3)

It is clear that the gap region admitted by Theorem 3 is not as small as
that admitted by Theorem 2, since v (0, u) Zv(0); hence some of the latitude
supplied by (1) is not available in (3). Nevertheless, (3) still produces a
smaller gap region than (2), for the same reasons that (1) does. To see
this fact, we note that »(0, ) =v(0) under the assumption of complemen-
tary slackness (given #=0), and the imposition of this assumption in both
the Lagrangean and the strong optimality conditions demonstrates that the
latter are less confining than the former. By way of example, consider the
problem

min 10z;+ 72, subject to 10z3+22=1 and z;=0, 1, 7=1, 2,

(or —10z;—22+1=0). Since there is only one constraint, it may be taken
to be the surrogate constraint; and the optimal solution is z;=0, =1,
which satisfies complementary slackness. On the other hand, the optimal
Lagrangean for this problem is min 0x;+ 6241, 2;=0, 1, yielding solutions
of 2;=0, 2,=0, and 2;=1, 2:=0, both of which are clearly nonoptimal for
the original problem. The optimal objective function value of 41 for the
Lagrangean is also substantially removed from the true optimum, demon-
strating the existence of a sizeable Lagrangean optimality gap.

It is interesting to note further that the incorporation of complementary
slackness into the strong optimality conditions makes it possible to sup-
press the assumption =0 (which is required in Theorem 2) since it is a
direct consequence of (3). [This is likewise accomplished for the Lagran-
gean via (2).]

For the final result of this section, we turn our attention to an optimal
surrogate constraint for the ‘overestimating function’ f(z)—ug(z). Since
f(@)—ug(z) always equals or exceeds f(x) for ug(x)=0, it is useful to
know when inf,.xw) f(z)—ug (z) provides an upper bound for »(0), since
then the relation inf,exy f(2)—ug(z)=v(0) = inf.cxw) f(z) can be used to
bracket the optimal objective function value for P. The conditions under
which this relation holds are somewhat less stringent than the conditions
of Theorems 2 and 3, as we now show.

THEOREM 4. Assume u=0. Then the optimum for the overestimating surro-
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gate [Inf f () —ug (x) over X (u)] 28 greater than or equal to the optimum for
P if and only if

v(y, 2u)=v(0)—uy for all y. 4)

Comparing (4) to (1), we see that the overestimating attempt will
succeed in a somewhat wider variety of circumstances than those under
which the surrogate optimality conditions hold, since v (y, 2u)=v(y, u) for
all =0, with equality only under complementary slackness—that is, the
increased latitude of (4) over (1) is approximately comparable to the in-
creased latitude of (1) over the Lagrangean conditions.

4. MULTIPLE SURROGATE CONSTRAINTS AND COMPOSITE DUALITY

In this section we generalize the results of Section 3 to a surrogate prob-
lem defined relative to multiple surrogate constraints and a weighted
(Lagrangean) objective function. From this generalization the results of
the preceding section and of Lagrangean theory emerge as a special case.
In addition, characterizations of ‘composite’ optimality conditions unifying
the two approaches are provided.

We will show that for multiple surrogate constraints, necessary and
sufficient conditions for optimality can take precisely the form of (1) with
u replaced by the sum of the individual surrogate multiplier vectors. In-
deed, these conditions can also take a variety of other forms, all of which
are subsumed by a simple inequality involving the relative subgradient.

To express our results, we first introduce notation appropriate to the
general case. In place of the surrogate problem SP (u) of the preceding
sections we introduce the ‘multi-parameter’ surrogate problem SP (u, z),
defined by

SP (u, 2): milzex ) f(2)+29 (2),

which has the same form as SP (u) except for the addition of zg(z) to the
objective function. Here, however, « is no longer a vector but a matrix of
fixed dimensions, and the condition ug(xz)=<0 [as in the definition X (u)=
{zeX : ug () =<0}] therefore represents not just one but a collection of surro-
gate constraints. As before, g(z) =0 implies ug (2) <0 whenever u =0, and
the Lagrangean function f(z)-+2g(x) is an underestimating function for
f(z)if 220. We denote the optimal objective function value for SP (u, 2)
by s(u, 2);i.e., s(u, 2) =infx @ f(x)+29(2).

By the foregoing remarks, v(0) =s (u, z) for v and z nonnegative. In one
respect, however, we will allow f(z)+2g (z) to differ from the Lagrangean.
After the manner of Theorem 4, we will also want to consider cases in which
2 may not be nonnegative in order to specify conditions under which s (u, z)
may provide an overestimate of v(0), so that we can bracket the optimal
objective function value of P. Our main result concerning this possibility
will be given in an ‘overestimating lemma.’
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The dual of P relative to the problem SP (u,z) will be defined by D:
miny »0,:20 8 (%, 2). In a solution strategy for P based on solving D [hence
SP (u, 2)], it is reasonable to impose restrictions of the form weU and zeZ,
which, for example, limit the nonzero coefficients of u and z to different
subsets of the constraints g,(z)=<0. [This restriction is particularly ap-
propriate when the form of ¢ () <0 makes it possible for the surrogate con-
straints of ug(x)=<0 to form a decomposed system. Similarly, for the
most part it does not seem useful to select the nonzero coeflicients of z to
correspond to the same constraints as one of the rows of u—unless these
coefficients are allowed to be negative—since then the underestimating
character of f(z)+2g (x) implies that the maximum value of s (u, z) always
occurs for z=0.] More generally, ueU and zeZ may represent ‘normaliza-
tions’ of the type introduced in reference 12. In the following development
we will take such restrictions to be implicit.

To achieve the requisite generality, we also replace the problem P (y; u)
by the problem P (y;a), where « is the triple (u,z w), and P(y; @) is
given by

P(y; a): mingexw) f(x)+ (z—w)g (x) subject to g(z) =Zy.

Here w is of course of the same dimension as z. The optimal objective
function value v (y; @) for P(y; a) is defined in the same way that v (y; u)
is defined for P (y,w). It may be noted that P (y; ) is exactly the same
as P(y;u) for the case in which u is a vector, 2=0, and w=1u.

Our chief results will be in terms of parametric and relative subgradients
involving v (y; a), where v (a) (in the earlier definitions of these subgradi-
ents) is —w.

By convention, we will assume throughout that all problems encountered
have finite values. To facilitate the development, we will make two funda-
mental observations. Special instances of these observations underlie
many of the results of standard duality theory, and it is useful to isolate
and express these observations in their general form, whereupon a variety
of results may be immediately justified as subcases.

As a basis for these observations, consider the two problems

Pr:min. e r(z) and Pg: minggq (),
and let » and q respectively denote their optimal objective function values.
Define t(x)=r(z)—q(x).
Observation 1: rzgq if there is an optimal solution x for Py that satisfies
zeQ) and ¢ (z)=0.

Observation 2: Assume QCR and ¢(2)=<0 for all zeQ). Then r=¢q if and
only if there is an optimal solution z* to P such that 2*¢Q and ¢ (2*)=0.
Moreover, ¢ is optimal for Py, and the set of all optimal solutions to P is
the set of all optimal solutions to Pg satisfying ze@ and ¢(z)=0. [Obser-



446 Fred Glover

vation 2 gives Theorem 1 and the corresponding theorem for Lagrangean
duality as a special case, where {(z)=0 is the complementary slackness
condition for the Lagrangean problem.]

As a direct consequence of these observations, we have the following
relations.
I: Given u=0,2=0:v(0)=s(u,2); and v(0) =s(u, 2) if and only if there
is an optimal solution to SP (u, z) such that ¢(z)=<0 and zg(z)=0.
II: Given w=0:v(0; a)=s(u, 2); and v(0; ) =s(u, 2) if and only if there
is an optimal solution to SP (u, z) such that g(z)=<0 and wg(z)=0.
II1: Given w=z: v(0;a)=v(0); and v(0; ) =v(0) if and only if there is
an optimal solution to P such that ug(z)=<0 and (z—w)g(z)=0.
In each case, the inequality follows from observation 1 and the equality
follows from observation 2.
Upon stating two lemmas, we will be able to provide the two central
theorems of this section.
NONNEGATIVITY LEMMA. v (y; a)2v(y; a)—wy for all y implies w=0.
Proof. Take y=e; (the unit vector with a 1 in the jth position and 0’s
elsewhere). Then wy=w; and we obtain w;=v(0; a)—v(e;; @) =0 [since
v(0; @) 2v(y; ) for all y=0], proving w=0.

OVERESTIMATION LEMMA. Let v*(a) be an arbitrary function of . Then
s(u, 2) 20" (@) if and only if v(y; a) =v™ (o) —wy for all y and all w=0.

Proof. For the if’ part, let y=g(z). Then f(z)+ (z—w)g(z) =v*(e) —
wg (z) for all zeX (u). Hence f(z)+2g(z)=v* () for all zeX (u), and tak-
ing the infimum of the left-hand side yields the desired result. For the
‘only if’ part, s(u,2)=0"(a) gives f(z)+2zg(z)=2*(a) for all zeX (u).
Hence for all w=0 and all y such that g(z)=y, f(z)+2g(x)—wg(x)=
v*(a)—wy. Taking the infimum of the left-hand side over zeX (u) and
g (z) =y yields the desired result (under the standard convention whereby
the infimum is taken to be + « for any y that yields an empty ‘defining
set’ for the argument z).

These lemmas reflect key properties of the relative subgradient and can
readily be generalized to functions other than v(y; «) and s(u, 2) whose
‘objective functions’ (over z) differ by the quantity vy (a)g(z) and whose
‘constraining conditions’ differ by the requirement g (z)=<y.

It is interesting to note that Theorem 4 of Section 3 is actually a special
case of the overestimation lemma. In particular, if we let v*(a) be the
constant function »(0) and u=w=—2=0 (when u is a vector), the in-
equality of the overestimation lemma in terms of the earlier notation be-
comes v(y; 2u)=v(0)—uy for all y, which is precisely (4).

Our main theorems may now be stated as follows.

Duavriry TuEorREM (Optimality for P and D). Assume u=0,2=0. Then
8(u, 2)=v(0) #f and only if there is an optimal solution x* to SP(u, 2) such
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that g(x*) £0 and 2g(xz*) =0 [whereupon the pair (u, 2) 1s optimal for D, x* is
optimal for P, and all optimal solutions to P are solutions to SP(u, 2) of the
form of x*]. Moreover, a necessary and sufficient condition for s(u, z) =v(0)
18 that, for all nonnegative w, the vector —w s a relative subgradient of v(y; o)
with respect to v(y) at the origin; i.e., v(y; a) Zv(0) —wy for all y and all w=0.

Proof. The first part of the theorem is just the relation I, expanded by
means of observation 2 to include a statement concerning the set of optimal
solutions to P and noting that (u, 2) must necessarily be optimal for D
under the stated conditions. The second part of the theorem is an im-
mediate consequence of the overestimation lemma with »*(a)=v(0) and
the inequality v(0)=s(u, 2) from I.

The foregoing theorem gives Theorem 2 of Section 3 for the case in which
u 18 a vector, z=0, and w=wu. The insights of Section 4 that derived from
taking w=w indicate that this choice is useful from a heuristic standpoint,
but the duality theorem demonstrates that it is not the only one. Also, the
‘natural’ generalization of Theorem 2 to the case of multiple surrogate
constraints, whose form was indicated at the beginning of this section,
occurs when v is a matrix with z=0 and w=1u, where 1 is a vector of 1’s
(i.e., w becomes a summation of the multiplier vectors for the individual
surrogate constraints). Theorem 2 is then the case in which u has a single
row and 1 is a scalar.

It may be noted that complementary slackness holds for the multipliers
that weight the objective function, just as for the ordinary Lagrangean.
However, this complementary slackness is not ‘identical’ to that for the
Lagrangean nor, insofar as it is independent of the vector w, does it apply
to the complementary slackness that appears in the strong optimality con-
ditions of Theorem 3. The theorem that directly specializes to both the
Lagrangean case and the ‘strong’ surrogate case is the following.
RESTRICTED DUALITY THEOREM [Optimality for P(0; «), and restricted
optimality for P and D]. If w=0, then s(u, 2) =v(0; ) if and only if there is
an optimal solution z* to SP (u, 2) such that g(x*) £0 and wg(xz*)=0. More-
over, a necessary and suffictent condition for w=0 and s(u, 2)=v(0; ) 1s that
—w 18 a parametric subgradient of v(y; ) at the origin, t.e., v(y; @) Zv(0; a)
—wy for all y. If u=0,2=0, and w=z, then s(u, 2) =v(0; a) =v(0) if and
only if there s an x* that satisfies the foregoing conditions together with zg(x*)
=0 [whereupon the pair (u, 2) is optimal for D, x* is optimal for both P and
P(0; a), and all solutions that are optimal for both problems have the indicated
Sform].

Proof. The first part of the theorem is the relation II. The second fol-
lows from II coupled with the nonnegativity lemma and the overestimation
lemma, by letting v* (a) =v(0; @) in the latter. The last part of the theo-
rem is a direct consequence of I, II, and III.
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The restricted duality theorem gives Theorem 3 of Section 3 for z=0, u
a vector, and w=u. When =0 and w=¢, in which case v(y; «)=v(y)
for all y, the theorem reduces to the fundamental theorem of Lagrangean
duality theory. In the ‘multiple’ surrogate constraint case, if we let w= 1u,
the theorem implies complementary slackness for every surrogate multiplier
vector composing the matrix « [via the conditions wg(z)=0 and g (2)=<0].
Nevertheless, as demonstrated in Section 3 for the case in which. u is a
vector, this type of complementary slackness is not as restrictive as that
which arises for u=0 and w=z.

Thus we see that all the results of Section 3, and the corresponding re-
sults for Lagrangean duality, are special consequences of the foregoing
results. The appealing feature of this development is not just its gen-
erality but its simplicity. We now identify the equivalent notions for the
convex case.

5. SURROGATE DUALITY UNDER CONVEXITY

When X is a convex set, and f and the components of g(z) are convex
functions, then it is easy to state necessary and sufficient conditions for the
existence of relative subgradients and hence provide ‘convex equivalents’ to
the theorems of the preceding sections.

First we identify the set Y () of vectors y for which P (y; «) has a feasible
solution: Y (a)={y:g(x)<y for some zeX (u)}. Then it is immediate
that Y () is a convex set, and in addition, for a given «, v (y; ) is a convex
function on Y (a), provided either z=Zw or g (z) is linear.

By analogy to the concept of stability, which is equivalent under con-
vexity to the optimality conditions for Lagrangean duality, we introduce
the concept of relative stability in the definition:

P is relatively stable if v(0) is finite and there is a scalar M such that

[y (0)—v(y; &)]/llyl| = M for all y5£0.

Similarly, we may define P (0; @) to be relatively stable by replacing »(0)
with v(0; @) in the foregoing definition. [The definition of ordinary
stability is obtained by replacing v (y; @) with v(y).] Given the form of
the results of Section 5 and the relation of the relative and parametric
subgradients to the ordinary subgradient, these definitions have precisely
the form that one would expect to provide ‘convex equivalents’ to the
surrogate optimality conditions, that relative stability of P and P (0; &)
fills the intended role—specifically, of being equivalent to the existence of
relative and parametric subgradients for the theorems of Section 5—is
expressed in the following result.

CoNvEXITY LEMMA. Let F (y; a) be a convex function on a convex set Y ()
taking values in the extended reals. Let ||| be any norm and let G (y*; a)be
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finite. Then F(y; a) has a relative subgradient at y*eY (o) with respect to
G(y"; @) if and only if [G (y*; @) = F (y; &)}/ |ly—y*|| S M for all yeY () such
that y=y".

By making the ‘natural’ substitutions of terms, the proof of this lemma
follows exactly the proof of Gale™ that connects ordinary subgradients and
stability, and thus we wiil not repeat the proof here. (See also Geof-
frion.)

From the convexity lemma and the convexity assumptions [and w=z or
g (z) linear], it follows that relative stability of P and P (0; «), respectively,
provide equivalents to the duality theorem and restricted duality theorem
of Section 5. The relevance of this result depends ultimately on the extent
to which surrogate constraints find application in convex as well as non-
convex settings.

6. CONCLUSIONS

This paper develops a surrogate duality theory that identifies necessary
and sufficient conditions for optimality in a simple form that invites direct
comparison with corresponding conditions for Lagrangean duality theory.
These conditions are favorable to the surrogate approach whenever the
size of the duality gap is an overriding consideration or the form of the
original objective function lends itself usefully to optimization over a single
constraint (as opposed to ‘unconstrained’ optimization over a modified
objective). We provide characterizations of optimality under the imposi-
tion of complementary slackness that likewise yield smaller duality gaps
than the Lagrangean. By means of the concepts of parametric and relative
subgradients, general theorems are given for a dual containing an arbitrary
number of surrogate constraints and a weighted objective. These theorems
imply the results for single-constraint surrogate duality and the correspond-
ing results for Lagrangean duality, as well as their composite. Though we
focus principally on the nonconvex case, where surrogate constraints have
so far had the greatest application, we also give equivalent optimality con-
ditions under assumptions of convexity. Our results are established by
means of a simplified framework that facilitates their justification and gives
rise to a variety of new inferences for surrogate constraints in mathematical
programming,.

NOTES

1. As noted in reference 11, a feasible solution to any positive linear combination
of two inequalities is always feasible for at least one member of the pair, and a
‘best’ linear combination in the context of surrogate constraints can be found by
checking a sequence of breakpoints over which min f(z) continually increases to a
maximum and thereafter continually decreases. Both of these observations hold
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not only for 0-1 programming but generally. The first immediately implies quasi-
concavity (as observed by Greenberg and Pierskallal!sl), while the second gives a
constructive means for exploiting it in the case of s(u).

2. Note that in the correspondence G(y;a) =v(y), which is followed whenever
the relative subgradient is considered separately from the parametric subgradient,
G(y; ) is a function of y only. The inclusion of & in G(y; ) in the definition per-
mits the parametric subgradient and the relative subgradient to be encompassed
within a single framework—i.e., the parametric subgradient is a relative subgradi-
ent of a function with respect to itself.
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