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ABSTRACT

We present an experimental investigation of tabu search (TS) to solve the 3-coloring problem
(3-COL). Computational results reveal that a basic TS algorithm is able to find proper 3-
colorings for random 3-colorable graphs with up to 11 000 vertices and beyond when
instances follow the uniform or equipartite well-known models, and up to 1 500 vertices for
the hardest class of flat graphs. This study also validates and reinforces some existing phase
transition thresholds for 3-COL.
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1. INTRODUCTION

Given a simple undirected graph G = (V(G), E(G)), where V(G) = {vi, v2, ..., va} 1s a set of n vertices
(n is usually called the “order” of G) and E(G) = V(G) x V(G) a set of m edges, and a set C = {ci, c2,
..., ey of k colors, a k-coloring of G is any assignment of one of the k available colors from C to every
vertex in V(G). More formally, a k-coloring of G is a mapping ¢ : V(G) — C. The k-coloring problem
(k-COL) is to find such a mapping (or prove that none exists) such that adjacent vertices receive
different colors (called “proper” k-coloring). More formally, a proper k-coloring of G verifies {v;,
vit € E(G) = c(v) # c(v;). The tightly related optimization version of &-COL is the graph coloring
problem (COL): Determine a proper k-coloring of G with k minimum, i.e. the chromatic number (G).

k-COL is known to be NP-complete when k > 3 for general graphs (Garey & Johnson, 1979; Karp,
1972). It remains NP-complete even for particular classes of graphs, including, for instance, triangle-
free graphs with maximum degree 4 (Maffray & Preissmann, 1996). Classes of graphs for which 3-
COL can be decided in polynomial time are discussed, for instance, in (Alekseev et al., 2007; Kochol
et al., 2003).

Another way to express the difficulty of a combinatorial search problem is to consider the phase
transition phenomenon which refers to the “easy-hard-easy” transition regions where a problem goes
from easy to hard, and conversely (Cheeseman et al., 1991; Dubois et al., 2001; Gent et al., 1996;
Hartmann & Weigt, 2005; Hogg et al., 1996; Monasson et al., 1999), see also (Barbosa & Ferreira,
2004; Krzakata et al., 2004; Zdeborova & Krzakata, 2007) for k-COL. Various phase transition
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thresholds (noted t hereafter) have been identified for some classes of random graphs. For 3-COL, t
seems to occur when the edge probability p is such that 2pn/3 ~ 16/3 according to Petford & Welsh
(1989) (referred as 1, in the rest of the paper), when the mean connection degree 2m/n ~ 5.4 (1. from
Cheeseman et al. (1991)), when 7/n < p < 8/n (1) from Eiben, van der Hauw, & van Hemert (1998)),
when 2m/n ~ 4.6 (1, from Culberson & Gent (2001)), or when p ~ 3/n + 3(n - 3)(1 — 1/62/")/211 (te from
Erben (2001)). Note that t. and 1, are similar to the upper bound of 1, (8/n). 1. and 1, are also similar
but 1. holds only for graphs that are first transformed (before solving) using three “particular reduction
operators” (Cheeseman et al., 1991). Additionally, 1. was characterized just for equipartite graphs and
T, only for equipartite and uniform graphs (the construction of such graphs is described in Sect. 0).
Henceforth, we use the terminology outside of t; (or . or t,, etc.) to indicate parameter values outside
of the indicated t setting.

This paper focuses on an experimental study of finding solution for 3-colorable random graphs
around and outside of phase transitions. We are particularly interested in two questions. First, are
graphs around phase transitions really difficult to color from a practical solution point of view?
Effectively, the different thresholds for phase transition have been established either theoretically or
empirically. In both cases, it would be interesting to verify these thresholds by large scale
computational experimentation. Notice that, except (Eiben et al., 1998), most experimental studies
(see e.g. (Cheeseman et al., 1991; Hogg et al., 1996)) are based only on systematic backtracking
search algorithms and small graphs (with no more than 200 vertices). Little is known about the
behavior of a (metaheuristic-based) search algorithm on solving large and very large 3-colorable
graphs.

Closely related to this first question is another interesting point: Given the phase transition
phenomenon, what are the largest sizes of the graphs that can be colored in practice? Actually, the
phase transition thresholds distinguish the relative hardness of instances around and outside of the
thresholds. They don’t tell much about whether such instances can be solved easily with a practical
solution algorithm (such as tabu search) and for which problem sizes a solution is possible.

In this study, we aim to investigate these issues by studying a large range of random graphs
generated according to three well-known distributions: Uniform, equipartite, and flat (see next section
for more details). For the solution algorithm, we employ a simple tabu search (TS) algorithm (Glover
& Laguna, 1997) which can be considered as a baseline reference for the class of metaheuristic (k-)
coloring algorithms.

We report computational results on graphs with up to 11000 vertices, leading to two main
findings. First, the variation of solution difficulty of random graphs around and outside of phase
transition thresholds are clearly confirmed throughout the experiments: Graphs around the phase
transition thresholds are actually more difficult to color than those outside of the thresholds. Second,
for the three classes of graphs (uniform, equipartie and flat), the TS algorithm is able to find solutions
for graphs with up to at least 11 000 vertices if the graphs are outside of the phase transitions. For
graphs around the phase transitions, the TS algorithm always manages to find solutions for uniform
and equipartie graphs with up to at least 11 000 vertices, but for flat graphs, the performance seems
limited to graphs of 1 500 vertices.

The next section presents the three classes of 3-colorable random graphs studied in this paper. The
TS 3-coloring algorithm is described in Sect. 3. Computational results are given in Sect. 4 before
concluding.
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2. RANDOM GRAPHS

While many classes of random graphs exist (Bollobas, 2001; Krivelevich & Sudakov, 2006), we focus
our study on three well-known classes of 3-colorable graphs: Uniform, equipartite, and flat.

There are several reasons for this choice. These random graphs have been object of a number of
theoretical (and sometimes practical) studies and analyses, see e.g. (Bollobas, 2001; Braunstein et al.,
2003; Culberson & Gent, 2001; Erben, 2001; Fleurent & Ferland, 1996a; Krzakata et al., 2004;
Zdeborova & Krzakata, 2007). There is a publicly available generator from http://web.cs.
ualberta.ca/~joe/Coloring/Generators/generate._html (newer version). The work
reported in (Eiben et al., 1998), the only paper that we are aware of on practical solution of the 3-
coloring problem, is based on random graphs generated by the same generator, making it possible to
use the results of Eiben et al. (1998) as a reference for reporting the 3-coloring results of our TS
algorithm.

Uniform. Vertices are first randomly assigned to one of the 3 colors uniformly and independently.
Then, each edge {v;, v;} verifying c(v;) # c(v;) appears with probability p. We will refer to these
graphs with the U,, notation (or U, for short). Specify 3 at “K-coloring schemes”, 3 at “partition
number”, 0 at “variability”, and 1 at “graph type” prompts when running the generator.

Equipartite. In E,,, graphs, V(G) is first split into 3 subsets Ve, . (C = {c1, ¢z, ¢3} since k = 3) such
that |V,| =|n/3] or |V, =[n/31V ¢ e C (i.e. all V,; are nearly equal in size, the smallest subset
having one less member than the largest), v;e V;; meaning c¢(v;) = ¢;. Then, edges appear as in U
graphs. Specify 2 at “K-coloring schemes”, 3 at “partition number”, and 1 at “graph type”
prompts.

Flat. Based on E graphs, the F,, graphs have an additional property related to the variation of the
expected degree of the vertices. Specify 6 at “K-coloring schemes”, 3 at “partition number”,
and 0 at “flatness” prompts.

3. TC: ATABU SEARCH ALGORITHM FOR 3-COL

In this section, we describe the components and overall scheme of our tabu search 3-coloring
algorithm (called TC) used for our 3-COL experiments. TC is an application to 3-COL of the TS
metaheuristic (Glover & Laguna, 1997). Its implementation is based on the TS (k-)coloring algorithms
given in (Dorne & Hao, 1998; Fleurent & Ferland, 1996a), which themselves are improved variants of
TABUCOL, the first TS algorithm for general (k-)COL introduced in (Hertz & de Werra, 1987)1.

Starting state. The well known greedy DSATUR algorithm (Brélaz, 1979) is used to build a starting
3-coloring (proper or not) while restricting the number of available colors to 3. Vertices that
cannot be assigned any of the 3 colors without generating conflicts are (temporarily) removed
from the graph with their incident edges. After running DSATUR, these free vertices are finally
randomly assigned one of the 3 authorized colors.

Fitness function. Let C be the set of all 3-colorings (proper or not) of G and E(c) be the set of
conflicting edges (i.e. with endpoints colored the same) of ¢ € C : E(c) = {{v;, v} € E(G) :
c(vi) = ¢(v))}. Any 3-coloring c is evaluated according to the following fitness function to be
minimized: f{c) = |E(c)| (f: C — {0, 1, ..., m}). Note that c is a proper 3-coloring if f{c) = 0.

' A C++ source code implementing TABUCOL is available e.g. from www . imada . sdu.dk/~marco/gcp-
study.
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Move operator. A move m maps a 3-coloring ¢ to another 3-coloring ¢’ (i.e. m : C — C) by changing
the color of exactly one vertex v; to ¢’(v)) # c(v)), noted ¢’ = m(v;, ¢’(vj)). Let M(c) be the set of
all potential moves available from c: M(c) = {(v;, ¢’(V))) : ¢'(v})) # c(v))}.

Neighborhood. The set of 3-colorings ¢’ reachable from ¢ by applying all potential moves defines the
neighborhood N(c) of ¢. More formally, N(c) = {¢'=m.(v;, c’'(v})) : (v;, ¢’ (v}))) € M(c)}.

Tabu list. When a move m is performed from a 3-coloring ¢ to ¢’ € N(c), the reverse move
m;l (v j,c(v ; ))zc (i.e. assigning to v; its previous color) is “tabu” (forbidden) for the next

1T = min{(k - 1) 1 (c), a|l7(cj + rand (7/)} iterations’, where « is a TC parameter, rand(y) is a

random integer from {1, 2, ..., y} (the role of y is just to introduce a few stochastic noise), and
17(0) c V(G)is the set of conflicting vertices of ¢ (17(0): vi:{v, v} € E(G) > c’(v) =
c()})-

Stopping criterion. TC halts whenever f{c) = 0 (a proper 3-coloring ¢ has been found) or after a
maximum allowed number of moves.

Given the previous components of TC, the core procedure (see the subsequent algorithm) searches
for a 3-coloring c* e C (proper or not) with a minimum number of conflicting edges (with f{c*) =0
ideally, meaning that TC halts since it has found a proper 3-coloring c¢*). To do so, TC iteratively
moves from a 3-coloring c € C to a ¢’ € N(c). Let M«(c) = M(c) be the set of best moves (according
to f) available from c¢ and involving a conflicting vertex such that, ¥V m e M+«(c), m is not tabu or m
leads to a neighbor better than the best 3-coloring ¢* found so far (aspiration criterion). If M«(c) = &,
m is chosen at random from M+(c) according to some probability x. Otherwise, i.e. with probability 1 -
7 or when M+(c) = &, m is chosen at random from M(c). Note that ¢* is updated each time f{c’) <

™.

TC ALGORITHM.

Require: A 3-colorable graph G = (V(G), E(G)) and a set C = {c|, ¢,, ¢3} of three colors
Require: A starting 3-coloring ¢ € C of G // Proper or not

1. c¢*« c// Best 3-coloring found so far

TL(G, 1) « 0V (v, ¢;) € V(G) x C // Make the tabu list 7L empty

W < 0// Current number of moves

while stopping criterion not met do

peptl

Let M(c) = {(v;, c’'(v)) : ¢” € N(c)}

Let M«(c) = {(v;, c'(v})) € M(c):

viel(c)and v (v, ¢ () € M(c), fic’) <fle”) and (TL(j, ¢ (v)) < por fic) <flc*)}
8. Let rbe a random real number in [0, 1]
9. if Mi(c) =D or r>m then

NownkEwb

10. Randomly select a move (v;, ¢ ’(v;)) from M(c)
11. else
12. Randomly select a move (v;, ¢'(v})) € M«(c)

13. TL(j, c(v;)) <~ u+ TT // Forbid the reverse move m’™" at least up to iterations p + 77T
14. c(v)) « ¢’(v)) // Do the selected move

15. if flc) <flc*) then

16. c*ec

17. return c*

2 TT is called the “tabu tenure”. We used the same dynamic 77 formula than that in (Dorne & Hao, 1998) since
this approach achieved effective results.
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Note that selecting (lines 10 and 12 in the TC algorithm) or doing (line 14) a move in TC can be
achieved efficiently, i.e. within small time complexity, using a particular data structure inspired by a
technique from Fleurent & Ferland (1996b) and usually called “d table” in the wide tabu search
literature. Basically,  is a n x k matrix where d.(j, ¢ (v;)) stores the fitness variation (between ¢ € C
and ¢’ e N(c)) when the color assigned to v; e V(G) changes from c(v)) to ¢’(v)): d:(j, ¢’(v))) = flc’) -
flc). 3 is initialized once at the beginning of the search (before line 4, in time O(nk)) and updated each
time a move is performed (after line 14, in time O(nk) in the worst case but, in practice, only a subset
of § is updated). While selecting a move from the M(c) set (line 10) takes O(1) time, the evaluation of

all “best” moves from the M+«(c) set (line 12) is almost incremental: 1t can be achieved in O(] 17(0) k)
time in the worst case thanks to 8. Thus, each iteration takes O(2nk) time at most since |I7(c)| < n for

any 3-coloring c.

4. COMPUTATIONAL RESULTS

The computational experiments reported in Secs. 4.1-4.5 are based on the following general protocol.

Benchmark set. A collection consisting of 263 different instances is built according to Sect. 0. Recall
that all these graphs are 3-colorable by construction. Their order ranges from 200 to 11 000.
Note that the generator requires an integer seed for randomization initialization: We always use
5 as in (Eiben et al., 1998) to deal exactly with the same instances. Additionally, Eiben et al.
(1998) noted that this parameter seems to have no great influence on results.

Reference algorithm. For reporting computational results of TC, we use the SAW evolutionary
algorithm (Eiben et al., 1998) as a reference. Indeed, according to Eiben et al. (1998), SAW is
effective in 3-coloring random 3-colorable graphs of large order (up to 1500 vertices).
Moreover, the authors clearly describe the graph generator employed and the seed for
randomization initializations, making it possible to make direct comparisons. In all our tables
shown later in the paper, “—” signals unavailable or inapplicable entries and results reported for
SAW are approximated from figures in (Eiben et al., 1998). No information is given for SAW in
some of our tables since it cannot be retrieved from (Eiben et al., 1998).

Performance criteria. The solution performance is assessed according to the well-known “Success
Rate” measure (SR): It is the percentage of successful runs, i.e. in which a proper 3-coloring is
found, over a given number of runs. To give an idea of the TC computational effort, we also
report the mean number of moves required by TC to find a proper 3-coloring (4MS, for
“Average number of Moves to Solution”) and its standard deviation (c4us). Eiben et al. (1998)
used a slightly different measure, namely the mean number of fitness evaluations (4ES, for
“Average number of Evaluations to Solution”). Note that AMS and AES are implementation and
hardware independent measures. The mean computation time 7 and its standard deviation o7 (in
seconds) are also reported for successful runs of TC.

Phase transition. In some tables, the cases the closest to ., Te, Tg, Ts, and 1, are identified with the
appropriate “c”, “e”, “g”, “h”, and “w” letters in the T columns. The bold entries in Tables 1-9
(Sect. 4.1) and Tables 10-18 (Sect. 4.2) indicates which 7t is the closest to the hardest cases
(minimum SR, or maximum AMS or AES), i.e. it suggests which T seems to be best suited to

locate the phase transition.

Implementation. Our TC algorithm is coded in the C programming language (“gcc” compiler). All TC
computational results were obtained on a Sun Fire V880 server with 8 Gb RAM (UltraSPARC
1II CPU 750 MHz).
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The values of the main TC parameters were empirically determined during a few preliminary
computational experiments (not shown here): o = 0.5, y = 2, and k£ = 3 (to compute the tabu
tenure 77), and © = 0.85 (probability to select a move in M=).

4.1. Influence of the Edge Probability p on the Problem Difficulty

Almost similarly to Eiben et al. (1998), we first limit the maximum allowed number of moves of the
TC algorithm to 300 000 and vary p from 0.015 to 0.075 for n = 200 (step 0.005, 100 runs per p value
and per graph, a total of 39 graphs), 0.006 to 0.05 for n = 500 (step 0.004, 50 runs, 36 instances), and
0.002 to 0.026 for n =1 000 (step 0.002, 25 runs, 45 graphs). Note that three instances were generated
per p value since we consider three types of graphs (U, E, and F). Results are reported in Tables 1-9
where the two lines associated with t (between the two dashed lines) correspond to graphs around (i.e.
the closest to) the indicated phase transition thresholds while the other lines concern graphs outside of
(i.e. more distant from) these thresholds.

On the set of small-order instances (rn = 200, see Tables 1-3), TC always succeeds in all runs (SR
is always 1) for all the graphs within the time limit of 300 000 moves, but needs more moves to find a
solution for a graph at the phase transitions (when p = 0.035) than outside of the thresholds. Note that
the initialization procedure DSATUR alone always finds a proper 3-coloring whenever p = 0.015 and
for the Fao, 0.02 graph (AMS = 0.0 means that TC performs no move at all). DSATUR also obtains
proper 3-colorings in some runs for p e {0.02, 0.025} in each class.

At n =500 (Tables 4-6), while more computational effort (4MS) is sometimes needed by TC, the
problem is still easy for TC outside of 1, (SR is always 1). At 1,, TC is always competitive in terms of
SR, especially on the U graph where SR = 0.9 (see Table 4). However, the problem is here slightly
harder than the n = 200 cases for TC. This is particularly true on the F and E graphs where the SR
achieved by TC at 1, falls, respectively, to 0.72 and 0.56 (see Tables 6 and 5). DSATUR continues to
produce proper 3-colorings for » = 500 in each class, in all runs when p = 0.006 and sometimes for
Fs00,0.01.

On large-order graphs (n = 1 000, Tables 7-9), TC finds proper 3-colorings in all the 25 runs for
each class whenever p is outside of t;. In these cases, mean computing times are still short. At 1;, TC
succeeds in all runs, but only on U and E graphs, see Tables 7-8 respectively. Indeed, it achieves SR =
0.04 for the F instance (Table 9). Here again, the DSATUR algorithm directly identifies proper 3-
colorings in all runs whenever p = 0.002 and for E; oo, 0.004 and Fi 000, 0.004, and in some runs for
U1 000, 0.004-

Now, we turn our attention to the performance of the reference algorithm SAW. At n =200, SAW
obtained interesting SR values on U and E graphs, see Tables 1-2 where SR is always 1 except when
p = 0.035 (SR ~ 0.9 and SR = 0.85, respectively). For F graphs (Table 3), while SAW still verifies
SR =1 outside of 1, it achieves a lower SR around 1: SR ~ 0.65 for p = 0.04 and SR =~ 0.37 when p =
0.035. This confirms the well known fact that F graphs may be harder than U and E instances, even
on small-order graphs. For medium-order graphs (see Tables 4—6), the SR of SAW is always 1 outside
of 1, except on Fsoo,0.022 (SR ~ 0:94) and Fso0,0.018 (SR = 0.54). SAW starts to have (great) difficulties
in finding proper 3-colorings at t, when n = 500. Indeed, SR ~ 0.1 on the U graph and SR ~ 0.08 for
the F instance. Furthermore, it seems to fail on the E instance (SR = 0). At n = 1 000 (Tables 7-9),
SAW always finds proper 3-colorings whenever p is outside of 1, except on two E graphs (SR = 0.96
for p € {0.006, 0.01}) and two F graphs (SR ~ 0.88 for p = 0.012 and SR ~ 0.48 for p = 0.01). SAW
dramatically fails at t,: SR ~ 0.04 for the U instance and SAW seems to never solve E and F graphs
(SR = 0). Consequently, one can conclude that TC reaches always the same or higher success rate than
SAW on all the graphs.
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Table 1. Small-order U graphs (n = 200): Influence of the edge probability p (100 runs).

P . TC (300000 moves) SAW
SR AMS s T (s)  or(s) SR AES
0.015 1 0.0 0.0 <1 <1 1 0
0.02 1 0.6 2.6 <1 <1 1 0
0.025 1 124.2 264.6 <1 <1 1 0
0.03 1 33765 2982.0 <1 <1 1 10000
0.035 g.h 1 14423.6 13371.8 <1 <1 0.90 75000
0.04 c.eh,w 1 2851.6 21405 <1 <1 1 10000
0.045 1 840.9 618.1 <1 <1 1 4000
0.05 1 1 150.6 661.3 <1 <1 1 4000
0.055 1 869.2 520.2 <1 <1 1 2000
0.06 1 12421 1390.7 <1 <1 1 2000
0.065 1 731.5 611.3 <1 <1 1 1 000
0.07 1 720.6 405.2 <1 <1 1 1 000
0.075 1 519.3 300.8 <1 <1 1 500
Table 2. Small-order E graphs (n = 200): Influence of the edge probability p (100 runs).
TC (300000 moves) SAW
4 T
SR AMS Gays T (s) o (s) SR AES
0.015 1 0.0 0.0 <1 <1 I 0
0.02 1 0.5 2.8 <1 <1 I 0
0.025 1 65.3 103.9 <1 <1 I 0
0.03 1 4540.7 3984.8 <1 <1 I 13000
0.035 g,h 1 11865.1  9946.7 <1 <1 0.85 68000
0.04 c,eh,w 1 3699.8 29933 <1 <1 I 68 000
0.045 1 998.3 709.6 <1 <1 I 9000
0.05 1 766.3 398.3 <1 <1 I 9000
0.055 1 1019.4 838.6 <1 <1 I 4500
0.06 1 | 786.9 1418.6 <1 <1 I 4500
0.065 1 971.5 1440.8 <1 <1 I 2000
0.07 1 510.4 291.5 <1 <1 I 2000
0.075 1 2489 221.0 <1 <1 I 1 000
Table 3. Small-order F graphs (n = 200): Influence of the edge probability p (100 runs).
TC (300000 moves) SAW
P T
SR AMS Ouys T (s)  or(s) SR AES
0.015 1 0.0 0.0 <1 <1 1 0
0.02 1 0.0 0.0 <1 <1 1 0
0.025 1 6.7 25.0 <1 <1 1 0
0.03 1 720.5 718.2 <1 <1 1 8000
0.035 g,h 1 58636.4  47428.0 <1 <1 0.37 110 000
0.04 c.e,h,w 1 14226.4 13675.2 <1 <1 0.65 75000
0.045 1 2749.3 1779.0 <1 <1 1 13500
0.05 1 1 053.1 960.2 <1 <1 1 12500
0.055 1 1 146.8 652.6 <1 <1 1 6000
0.06 1 2785.1 2929.8 <1 <1 1 6000
0.065 1 941.1 748.7 <1 <1 1 3000
0.07 1 931.8 774.2 <1 <1 1 3000
0.075 1 398.2 280.2 <1 <1 1 3000
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Table 4. Medium-order U graphs (n = 500): Influence of the edge probability p (50 runs).

P T TC (300000 moves) SAW

SR AMS OAMS T (s) or (8) SR AES
0.006 1 0.0 0.0 <1 <1 1 0
0.01 1 286.9 381.9 <1 <1 1 8000
0014 e,g,h,w 0.9 98 080.4 74802.3 1.6 1.1 0.1 90000
0.018 ew 1 4754.1 2405.9 <1 <1 1 25000
0.022 1 5113.1 28524 <1 <1 1 8000
0.026 1 5235.8 3378.6 <1 <1 1 8000
0.03 1 1769.5 744.1 <1 <1 1 8000
0.034 1 2504.7 1037.4 <1 <1 1 8000
0.038 1 956.8 796.2 <1 <1 1 8000
0.042 1 035.4 480.5 <1 <1 1 8000
0.046 1 1 380.1 4739.4 <1 <1 1 8000
0.05 1 874.7 556.0 <1 <1 1 8000

Table 5. Medium-order E graphs (n = 500): Influence of the edge probability p (50 runs).

P r TC (300 000 moves) SAW

SR AMS Cws T(s)  or(s) SR AES

0.006 1 0.0 0.0 <1 <1 1 0
0.01 1 263.7 252.2 <1 <1 1 8000
0.014 e¢,g,h,w 0.56 180950.9  63173.1 2.8 <1 0 -
0.018 e,w 1 6913.4 7106.6 <1 <1 1 30000
0.022 1 4678.5 2060.6 <1 <1 1 20000
0.026 1 9008.2 192184 <1 <1 1 12500
0.03 1 1 855.7 1363.8 <1 <1 1 12500
0.034 1 1205.9 1628.4 <1 <1 1 12500
0.038 1 2021.1 1149.9 <1 <1 1 8000
0.042 1 1415.1 49153 <1 <1 1 8000
0.046 1 57564 276170 <1 <1 1 8000
0.05 1 469.4 609.2 <1 <1 1 8000

Table 6. Medium-order F graphs (n = 500): Influence of the edge probability p (50 runs).
TC (300 000 moves) SAW
p T

SR AMS oams T (s)  oOr(s) SR AES

0.006 | 0.0 0.0 <1 <1 1 0
0.01 I 26.7 60.2 <1 <1 1 500
0.014 g.h,w 072 133391.3 69861.7 241 1.1 0.08 115000
0.018 c,e,w I 26981.2  28508.1 <1 <1 0.54 85000
0.022 I 7931.2 4684.5 <1 <1 0.94 55000
0.026 | 17 668.1 309154 <1 <1 1 16 500
0.03 I 1732.8 962.6 <1 <1 1 12 500
0.034 I 3757.1 1727.3 <1 <1 1 4000
0.038 I 22479 19759 <1 <1 1 4000
0.042 I 288.5 250.8 <1 <1 1 4000
0.046 | | 289.3 1001.6 <1 <1 1 4000
0.05 I 1019.7 856.1 <1 <1 1 4000
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Table 7. Large-order U graphs (n = 1 000): Influence of the edge probability p (25 runs).

» c TC (300000 moves) SAW
SR AMS OAMS T(s) orl(s) SR AES
0.002 1 0.0 0.0 <1 <1 1 0
0.004 1 82.9 203.7 <1 <1 1 4000
0.006 g 1 113985.8  78314.6 3.6 24 1 95 000
0.008 c,e h,w 1 117190.8  73166.9 5.7 3.6 0.04 135000
0.01 1 13928.6 5770.6 <1 <1 1 60000
0.012 1 35546.6 322199 1.4 1.1 | 35000
0.014 1 4972.1 2014.5 <1 <1 1 20000
0.016 1 11020.4 68744 <1 <1 1 20000
0.018 1 8920.1 41359 <1 <1 | 20000
0.02 1 3220.8 1130.9 <1 <1 1 10000
0.022 1 4874.2 3029.0 <1 <1 | 10000
0.024 1 4685.3 1895.9 <1 <1 1 10000
0.026 1 1652.3 7114 <1 < 1 | 10000
Table 8. Large-order E graphs (n = 1 000): Influence of the edge probability p (25 runs).
TC (300000 moves) SAW
4 T
SR AMS CAMsS T (s) o7 (8) SR AES
0.002 1 0.0 0.0 <1 <1 1 0
0.004 1 0.0 0.0 <1 <1 1 8000
0.006 g 1 132932.7  74624.1 4.2 23 0.96 120000
0.008 c,e,h,w 1 102510.6  73566.2 5.1 3.8 0 -
0.01 1 12648.1 6684.0 <1 <1 0.96 85000
0.012 1 817194 432274 29 1.5 1 40000
0.014 1 9683.8 4300.5 <1 <1 1 30000
0.016 1 12685.9 6086.4 <1 <1 1 20000
0.018 1 14078.4 92423 <1 <1 1 16 500
0.02 1 4762.6 1995.0 <1 <1 1 16 500
0.022 1 7353.6 3467.2 <1 <1 1 16 500
0.024 1 6206.8 3096.5 <1 <1 1 16 500
0.026 1 35231 | 168.8 <1 <1 1 16 500
Table 9. Large-order F graphs (n = 1 000): Influence of the edge probability p (25 runs).
TC (300000 moves) SAW
P T
SR AMS Cays 1T (s)  of (s) SR AES
0.002 1 0.0 0.0 <1 <1 1 0
0.004 1 0.0 0.0 <1 <1 1 0
0.006 g 1 229524 14409.0 <1 <1 1 50000
0.008 c,e,h,w 0.04 102504.0 0.0 5.7 0.0 0 -
0.01 1 383493 30597.6 3.1 2.5 0.48 132500
0.012 1 83314.1 55334.2 3.0 1.9 0.88 100000
0.014 1 19289.2 12835.6 1.2 <1 1 50000
0.016 1 10703.1 3251.3 <1 < 1 1 22500
0.018 1 9633.8 4490.6 <1 < 1 1 22500
0.02 1 5937.3 2540.5 <1 <1 1 10000
0.022 1 6327.8 2685.7 <1 < 1 1 10000
0.024 1 4107.8 23854 <1 < 1 1 10000
0.026 1 35238 1568.8 <1 < 1 1 10000
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4.2. Deeper experiments around the phase transitions

Tables 1-9 disclose that 3-COL is typically harder at 1, than at 1., 1., 1, OF T, i.e. that T, may be more
effective at identifying the hardest instances. To try to verify this observation, we report deeper
experiments with TC in Tables 10-18 for more detailed p values around t. Note that this section
include 21 new graphs not considered in Sect. 4.1 (they appear in italic typeface).

Small-order graphs (n = 200) are still easy, even at 1, see Tables 10—-12. Indeed, SR is always 1
except on Fago, 00375 where SR = 0.82. Furthermore, mean computing time of TC is always smaller
than a second. Medium-order graphs (n = 500, Tables 13—15) also seem to be quite easy for TC, even
at t. Indeed, SR is always 1 except on Usoo, 0.014 (09), Esoo, 0.014 (0.56), Fso(), 0.014 (0.72), and Fsoo, 0.016
(0.64). Some large-order graphs (n = 1 000, Tables 16—18) are especially difficult for TC within the
time limit of 300 000 moves. This is particularly true at 1, for all the instances (since SR < 0.08) and
outside of 1, for one F graph (SR = 0.04 when p = 0.008). Furthermore, the difficulty also holds
outside of T in one case, when p = 0.009 for the F instance (SR = 0.48).

Table 10. Small-order U graphs (n = 200): Deeper experiments with TC around t (100 runs, 300 000 moves).

P T SR AMS Oanms T (s) o7 (8)
0.03 1 3376.5 2082.0 <1 <1
0.0325 g 1 8256.4 6963.3 <1 <1
0.035 h 1 14423.6 13371.8 <1 <1
0.0375 c,h 1 5849.7 35973 <1 <1
0.04 c,e,h,w 1 2851.6 2140.5 <1 <1
0.0425 | 1916.3 1436.7 <1 <1

Table 11. Small-order E graphs (n = 200): Deeper experiments with TC around t (100 runs, 300 000 moves).

pP T SR AMS Oams T (s) or (s)
0.03 1 4540.7 30845 <1 <1
0.0325 g 1 16016.6 12633.1 <1 <1
0.035 h 1 11865.1 9946.7 <1 <1
0.0375 c,h 1 55183 5319.6 <1 <1
0.04 e h,w 1 3699.8 20933 <1 <1
0.0425 1 1 399.6 1279.6 <1 < 1

Table 12. Small-order F graphs (n = 200): Deeper experiments with TC around t (100 runs, 300 000 moves).

p T SR AMS OaAMS T (s) or (s)
0.03 1 720.5 718.2 <1 <1
0.0325 1 6018.3 5727.3 <1 <1
0.035 g.h 1 5806364 47428.0 <1 <1
0.0375 h 0.82 78 110.1 76 498.8 <1 <1
0.04 c,e,h,w 1 142264 13675.2 <1 <1
0.0425 1 14091.3 12096.2 <1 <1

Table 13. Medium-order U graphs (n = 500): Deeper experiments with TC around t (50 runs, 300 000 moves).

P T SR AMS OAMS T (s) o7 (s)
0.012 | 12126.5 9510.6 <1 <1
0.014 g,h 0.9 98 080.4 74802.4 1.6 1.1
0.016 c,eh,w | 16411.1 14708.0 <1 <1

0.018 1 47541 2405.9 <1 <1
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Table 14. Medium-order E graphs (n = 500): Deeper experiments with TC around t (50 runs, 300 000 moves).

P T SR AMS OAMS T (s) or (8)
0.012 1 78529 45245 <1 <1
0014 c,g,h 056 1809509 63173.1 2.8 <1
0.016 e hw 1 24717.1 20670.7 <1 <1
0.018 1 6913.4 7106.6 <1 <1

Table 15. Medium-order F graphs (n = 500): Deeper experiments with TC around t (50 runs, 300 000 moves).

p T SR AMS OAMS T (s) o7 (8)
0.012 1 27357 1780.9 <1 <1
0.014 ga.h 0.72 33391.3 69861.7 2.1 1.1
0.016 c,e, h,w 0.64 148 273.7 76569.5 33 1.7
0.018 1 26981.2 28508.1 <1 <1

Table 16. Large-order U graphs (n = 1 000): Deeper experiments with TC around t (25 runs, 300 000 moves).

P T SR AMS Gaums T (s) o7 (8)
0.006 1 113985.8 78314.6 3.6 24
0.007 g, h 0.04 236 891.0 0.0 8.3 0.0
0.008 c,e,hw 1 117 190.8 73166.9 5.7 3.6
0.009 1 23644.5 6916.5 1.5 <1

Table 17. Large-order E graphs (n = 1 000): Deeper experiments with TC around t (25 runs, 300 000 moves).

P T SR AMS Cams T (s) o7 (8)
0.006 1 1329327 74624.1 4.2 2.3
0.007 g,h 0.08 215655.5 31855.5 8.1 1.0
0.008 c,e;h,w 1 102510.7 73566.2 5.1 3.8
0.009 1 26270.6 14541.4 1.7 <1

Table 18. Large-order F graphs (n = 1 000): Deeper experiments with TC around t (25 runs, 300 000 moves).

)4 T SR AMS OamMms T (s) or (8)
0.006 1 229524 14 409.0 <1 < 1
0.007 g, h 0 - - - -
0.008 c,e,h,w 0.04 102 504.0 0.0 5.7 0.0
0.009 0.48 139301.5 86204.1 9.5 5.8

Table 19 recalls the most effective T measure from Tables 10—18 depending on » and the class of
graphs. The last three columns (respectively lines) also propose a ranking of 1., T, Tg, Ts, and 1, for a
particular n value (respectively for a particular graph class). For instance, 1, is classified as “Best”
when n = 200 since “h” appears more than the other thresholds on the “n = 200 line. Similarly, ., 1.,
and t,, are categorized as “Worst” for n = 200 since they are missing on the “n = 200 line.

From Table 19, one can observe that 1, is (almost) always the most effective T measure whatever
the value of n or the graph class. Indeed, if we define the overall score £ (for all n values and all
graphs) of a T measure as the number of times it appears in the inner table (intersection of lines 3—5
and columns U-F), we obtain X, > X, > X, > %, ,, (since 8 > 6 > 3 > 2). One can then establish the
following overall t ranking: 1 >z T¢ >z Tc >3 Te, w, Where “>z” means “more effective than”.
Consequently, we will mainly use T, as the phase transition threshold in the rest of the paper.
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Table 19. Which t measure is the best to identify hard 3-COL instances?

h

Graph class

U E F Best Worst
200 h g h h g c,ew
500 g.h c,g.h c.e.hw h c.g ew
1 000 g.h g.h c.e,ghow g.h c,ew
Best h g h
g c.h c.e,w
Worst c,ew ew g

4.3. Influence of the problem size n on the problem difficulty

12

The scalability of TC, i.e. how its performance changes with growing problem size, can be observed
in Tables 20-24 (27 new instances), on graphs respectively outside of 1, (within 500 000 moves for
TC) and around 1, (1 000 000 moves), for various # values in [250, 1 500] (see also Sect. 4.5, where
we use much larger graph with n up to 11 000 to test the limit of TC).

Tables 20-21 show that graphs of these sizes outside of 1, are really easy for TC since SR is always
1. Around 7, (Tables 22-24), the U and E graphs are still easy for TC (SR = 1) but the F instances
become harder when n > 1 000 (SR < 0.04).

Table 20. E graphs: Influence of the problem size outside of t, (p = 10/n, 50 runs).

" TC (500000 moves) SAW
SR AMS Ows T (s) or(s) SR AES
250 I 1487.3 862.1 <1 <1 1 12 500
500 1 35685  2091.2 <1 <1 1 37500
750 1 59329  23500.8 <1 <1 1 57000
1000 I 10239.2  5300.0 1.5 <1 1 100 000
1250 1 132548 63768 2.3 1.1 0.9 150 000
1500 1 21103.1 9217.5 4.4 1.8 0.9 185500

Table 21. U and F graphs: Influence of the problem size on TC outside of t» (p = 10/n, 50 runs, 500 000 moves).

U F

n
SR AMS OAMS T (s) or (8) SR AMS CAMS T (s) or (8)
250 1 1186.9 612.5 <1 <1 1 22383 1272.3 <1 <1
500 1 28855 1357.3 <1 <1 1 79155 51587 <1 <1
750 1 §110.6 4363.4 <1 <1 1 17802.9 13352.0 1.8 1.3
1000 1 9727.2 4187.5 1.4 <1 1 33667.9 25020.5 4.9 36
1250 1 9696.3 42532 1.7 <1 1 687622  65591.5 2.1 2.0
1500 1 195284 9281.9 3.9 1.9 1 70217.6 48963.0 2.6 1.8

Table 22. E graphs: Influence of the problem size around t (p = 8/n, 25 runs).

" TC (1000000 moves) SAW
SR AMS CAMS T (s) or (s) SR AES
250 1 5256.3 3524.6 <1 <1 1 28 500
500 | 20774.4 13021.1 <1 <1 (.88 200000
750 1 44542 8 34333.0 3.2 2.4 0.52 300 000
1 000 1 102510.7 73566.2 5.1 3.8 0.16 418 500
1250 | 130037.1 184316.4 15.4 21.3 0.20 400000
1500 1 172020.7 1544325 25.2 22,5 0.08 771900
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Table 23. U graphs: Influence of the problem size on TC around s (p = 8/n, 25 runs, 1 000 000 moves).
n SR AMS Cams T (s) Ot (8)

250 1 24327 1376.1 <1 <1
500 1 17637.4 17818.6 <1 <1
750 1 514673 346107 3.6 2.4
1000 1 117 190.8 73 166.9 5.7 3.6
1250 1 118455.1 88368.2 13.9 10.4
1500 1 177317.3 179939.3 3.4 3.4

Table 24. F graphs: Influence of the problem size on TC around t (p = 8/n, 25 runs, 1 000 000 moves).

n SR AMS Cams T (s) or (s)
250 1 321279.1 241163.2 6.2 4.7
500 1 306117.2 234 178.1 22 1.7
750 0.24  219788.5 171377.6 2.1 1.7
1000 0.04 102 504.0 0.0 57 0.(
1250 0 — — — —
1500 0 - - - -

SAW was checked for scalability only on E graphs in (Eiben et al., 1998). While it reached good
SR values outside of T, (see Table 20), its performance dramatically falls around 1, when n > 1 000

(Table 22).

4.4. Impact of longer runs on the solution performance

We just observed that, in some or all runs, TC fails to find a proper 3-coloring for some graphs within
300 000 moves (see Tables 12—18 in Sect. 4.2) or 1 000 000 moves (Table 24 in Sect. 4.3). We study
here the effect of giving more search time to TC, i.e. if longer runs can increase its success rates for
solving these instances. So, we first extend the maximum number of moves per run to 1 000 000 for
graphs in Sect. 4.2 and rerun TC whenever SR < 1 for TC in Tables 12—18. In Table 25, SR again lists
the SR achieved by TC in Tables 12—18 (short runs with 300 000 moves). Similarly, SR; , AMS; , and
T; are for 25 long runs (i.e. within 1 000 000 moves).

Table 25. Long TC runs on the hardest instances from Tables 12—-18 where SR < 1 (25 runs, 1 000 000 moves).

Graph T SR, SR, AMS; Cams, 11 (8) oy (8)
F200.0.0375 h 0.82 1 147017.4  171001.0 1.7 2.0
Us00.0.014 g.h 090 1 1962777 156313.5 3.0 2.3
Es00.0.014 c.g.h 0.56 096 304047.6  235099.6 4.7 3.6
F500.0.014 a.h 072 1 2939279  171530.3 4.5 2.6
F500.0.016 ce.how 064 096 3299839  270385.5 7.1 5.8
U1000.0.007 g.h 0.04 028 601305.1 130523.4 21.9 4.5
E1000.0.007 g.h 0.08 060 6191957 254241.8 22.0 9.0
F1000.0.007 g.h 0 040 470637.1  320741.1 3.7 2.4
Frooooog c.e.how 004 0.04  102504.0 0.0 5.7 0.0
F1000.0.000 048 072 4105303 254225.0 12.1 7.2

Table 25 confirms that small and medium-order graphs (rn < 500) are easily solved now by TC,
even around T, (SR; > 0.96). Significant improvements can also be observed on large-order U and E
graphs (n = 1 000). Nevertheless, the U instance is still quite challenging (SR;= 0.28). The large-order
F graphs remain difficult to color, even if some improvements are sometimes observed. Indeed, no
improvement at all was possible when p = 0.008 (SR;= SR;).
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Note that Eiben et al. (1998) reported one similar experiment using only one graph (E; oo, 0:008):
The SR of SAW increased from 0 within 300 000 evaluations to 0.44 within 1 000 000 evaluations
(AES = 407 283)’.

Since TC still fails to reach SR = 1 within 1 000 000 moves for 10 instances (4 in Table 24 and 7 in
Table 25, but Fi 000, 0.008 is considered in both tables), we remove this limit and allow TC to run until it
finds a proper 3-coloring. Results are summarized in Tables 26-27". “MAXINT” entries in Table 27
indicate values larger than the maximal integer authorized by the system (i.e. 4 294 967 295). In these
cases, T, indicates the minimum time needed to reach a proper 3-coloring.

Table 26. Achieving SR = 1 with TC on the hardest instances from Table 25 where SR;<1 (5 runs, without time
limit).

Graph T SR, SR AMS.. GAMS.. T.(s) or, (s)
Es00,0.014 c,g.h 0.96 1 693 830.4 641679.3 2.2 2.1
Fs00.0.016 ce.how 096 1 450009.4 430902.2 34 3.2
U1 000.0.007 g.h 0.28 1 2904 052.2 3138476.6 28.5 31.0
E | 000.0.007 a.h 0.60 1 1161061.6 1209402.4 11.6 11.7
F1000.0.007 g.h 0.40 1 18881954 1413201.3 11.2 8.2
Fioooooos  c.e.fiw  0.04 1 298129 024.1 165232840.6 39837 2205.2
F1000.0.000 0.72 1 633 880.2 523436.4 11.6 9.5

Table 27. Achieving SR = 1 with TC around 1, (p = 8/n) on the hardest F instances from Table 24 where SR < 1
(5 runs, without time limit).

n SR[ SR AMS . CAMS... T (8) or., (s)
750  0.24 1 11933517.1 9686691.4 114.5 92.3
1000  0.04 1 208 129024.1 165232 840.6 3983.7 2205.2
1250 0 1 MAXINT - > 3674.4 —
1500 0O 1 MAXINT — =>454662.9 —

Two main observations can be made from Tables 26-27. First, all graphs are quite easy for TC
whenever p = 8/n, see Table 26 where AMS,. < 2 904 052 in this case. Second, only the large-order F
instances constitute a real challenge for TC whenever p = 8/n, see Table 27 where AMS, >
298 129 024 for n > 1 000.

4.5. How far can we go with TC?

The scalability of TC was studied in Sect. 4.3 for graphs with up to 1 500 vertices (see also Sect. 4.4
for longer runs, with or without time limit), as in (Eiben et al., 1998) for SAW. In this section, we
report additional results for TC in Tables 28-36 for some » values in [2 000, 11 000]5around and
outside of the threshold 7, to try to determine the limits of TC (95 new graphs).

? However, note that “0.44” is contradictory with Fig. 14 in (Eiben et al., 1998). Indeed, the plot rather suggests
0.16 as already indicated in Table 22.

* For runs without time limit, we only report (mean) values based on 5 executions since no significant
differences were observed (on easy instances) with a larger number of runs.

> The graph generator employed to build the graphs is restricted to # < 5 000. So, we just modified two constants
of the generator to generate instances with n > 5 000.
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Tables 28-30 show computational results outside of the phase transition with a time limit of
500 000 moves. All U and E instances, and F graphs where n < 2 500, are really easy for TC (since

SR =1 in this cases). Note that TC also performs well for Fs oo, 10 since SR = 0.68. The problem
becomes harder only on F instances from n = 3 500 since the best SR achieved by TC when n > 3 500
falls to 0.30. So, Table 30 clearly confirms that F graphs are harder than U and E instances, even
outside of 7.

Table 28. U graphs: The limits of TC outside of t, (p = 10/n, 50 runs, 500 000 moves).

n SR AMS TAMS T (s) or (s)
2000 I 28506.6  12760.3 1.3 <1
2500 I 26098.0 93887.6 1.6 <1
3000 I 437446 134340 32 <1
3500 l 60434.0 230811 2.0 <1
4000 I 6917477 253917 2.8 1.0
4500 I 67340.3  26422.2 33 1.3
5000 1 821238  29815.0 45 1.5
5500 1 88009.3  26729.8 4.6 1.4
6000 I 104856.0 324558 6.9 2.1
6500 I 122111.1  42108.0 8.3 2.8
7000 I 123161.9  41666.6 8.4 2.8
7500 I 16721377 575187 13.1 4.5
8000 I 168917.2  56505.6  13.2 44
8500 I 170589.2  46071.5 13.9 35
9000 I 2164440 7089406 193 6.2
9500 1 2214158 713464 220 6.8

10000 I 199860.9  69193.1 19.5 6.7
10500 I 223878.2  68928.2 228 6.9
11000 I 2644337 781433 285 8.3

Table 29. E graphs: The limits of TC outside of 1, (p = 10/n, 50 runs, 500 000 moves).

n SR AMS CAMS T (s) or (8)
2000 1 315448 173274 1.5 <1
2500 1 37282.5 17 758.8 2.2 1.1
3000 1 41 050.8 16714.3 2.8 1.2
3500 l 59544 .4 19657.7 2.4 <1
4000 1 66063.5 264739 2.6 < 1
4500 1 69276.8 254034 3.2 1.1
5000 1 101027.9 34619.6 5.4 1.8
5500 1 99081.7 330514 5.5 1.8
6000 1 1094557 44 881.8 6.6 2.6
6500 1 121 805.9 369925 7.7 2.2
7000 1 123962.3  43498.6 8.6 2.9
7500 1 123982.2  45346.8 9.1 3.1
8000 1 145698.6  45759.8 11.8 3.6
8500 1 172399.4 546614 14.7 4.5
9000 1 185468.3 53877.2 16.9 4.8
9500 1 215814.2 69 888.2 20.7 6.3

10000 1 211838.6  71073.1 21.5 7.0
10500 1 218459.6 59538.2 22.1 6.1
1

11000 268026.0 95549.2 298 10.3
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Table 30. F graphs: The limits of TC outside of t, (p = 10/n, 50 runs, 500 000 moves).

n SR AMS oas T (s)  op(s)
2000 1 1442397 897567 112 6.9
2500 1 155953.6 918729 152 8.9
3000 0.68 270358.6 1299860 7.7 3.7
3500 028 2629496 1100835 9.2 3.8
4000 028 3116269 893543 113 3.2
4500 030 3123569 1067441 158 5.4
5000 022 3264513 1113250 168 5.4
5500 028 3407317 1128337 200 6.6
6000 020 3889583  83763.7  24.1 5.1
6500 0.04 3592215 908575 250 5.8
7000 004 3750405 252175 246 1.4
7500 004 4560355 249825  36.0 1.9
8000 0.06 4397473 567873 356 4.4
8500  0.04 334201.0 780820 276 6.4
9000 0 - - - -
9500 0 - _ _ _

10000 0 - - - -

10500 0 - - - -

17000 0 - - - -

Tables 31-32 shows results for “longer” runs, with a time limit of 1 000 000 moves (Table 31) or
without time limit (Table 32), to achieve SR = 1 on the hardest F instances from Table 30. One
observes that a solution is always found but, contrary to U and E instances, the computation effort
required for 3-coloring large F graphs properly can be very high (up to more than 59 million moves in
average).

Table 31. Long TC runs outside of t, (p = 10/n) on the hardest F instances from Table 30 where SR < 1 (25 runs,
1 000 000 moves).

n SR, SR AMS; Cams, Ti(s) o1 (5)
3000 0.68 1 3959503 2724232 316 21.7
3500 028 044 4254067 2413456 149 8.3
4000 028 044 5686884 2699362  23.7 11.2
4500 030 080 5189643 1746915 247 8.3
5000 022 048 5898792  266224.1  31.2 14.1
5500 028 048 6063783 2174829  34.0 12.1
6000 020 052 6232414 1944979 383 12.1
6500 0.04 0.12 6305363 139949.1  40.6 8.8
7000 0.04 024 7895360 1597752  55.1 10.8
7500 0.04 012  623690.0 1894735 453 13.7
8000 0.06 024 6124467 2146229  48.1 16.8
8500 0.04 0.16 7032823 1338158  59.1 11.0
9000 0 0.08 6841275 2168385 645 20.5
9500 0 0 - - - -

10000 0 0 - - - -

10500 0 0.04  787970.0 0.0 817 0.0

11000 0 0 - - - -
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Table 32. Achieving SR = 1 with TC on the hardest F instances from Table 31 where SR, < 1 (5 runs, without time
limit).

n SR‘J SR AMS., OAMS... 1% (8) (o) (s)
3500 044 1 1423879.8 672 368.9 521 245
4000 044 1 1161122.8 801233.9 46.0 31.8
4500 08 1 700 484.6 380628.5 35.2 19.1
5000 048 1 13154406 7666914 65.5 379
5500 048 1 1011681.4 933814.3 55.7 49.8
6000 052 1 1 468 846.8 759937.0 90.0 46.6
6500 0.12 1 4705684.0 29505834 291.6 182.9
7000 024 1 3781609.5 1832451.7 259.3 125.5
7500 012 1 7628363.0 8251 686.1 583.0 630.0
8000 024 1 1522375.0 7219379 122.0 58.1
8500 0.16 1 2118416.3 1432638.0 182.6 123.1
9000 0.08 1 3428 184.8 2060651.2 301.4 179.8
9500 0 1 12454 689.0 4959205.0 1160.5 461.9
10000 0O 1 59920576.0 502072035 5870.1 4909.1
10500 0.04 1 6780762.5 875675.5 690.2 90.5
11000 0O 1 10497 934.0 51811423 1103.2 546.2

Tables 33—-34 show computational results around the phase transition for U and E instances within
a time limit of 1 000 000 moves. Note that no result is reported here (i.e. around t;) for the F graphs
since, as already showed in Table 24 (Sect. 4.3), TC cannot solve such instances once n > 1250
within the time limit of 1 000 000 moves. Indeed, Table 27 (Sect. 4.4) indicates that TC needs more
than 4 billion moves (about 126 hours) to solve Fiso, s, This seems to indicate that, for F graphs
around 5, Fis00, 3» would be the largest graph that can be colored by TC.

Table 33. U graphs: The limits of TC around 1, (p = 8/n, 25 runs, 1 000 000 moves).

n SR AMS oams T ()  or(s)
2000 1 3125392 1606926 8.0 3.9
2500 1 474737.1 2043515 24.0 9.9
3000 1 3282323 1375273 128 5.2

3500 072 3565149 2302364 11.2 4.7
4000 0.68 6896079 182578.8 16.3 4.2

4500 0.6 610822.6  205490.8 17.6 6.0
5000 052 680168.1 244471.0 23.6 8.5
5500 068 6049935 200738.5 18.8 6.2

6000 036 7398709 1207138 283 4.6
6500 028 8544540 104911.0 304 4.0

7000 0.12 7623567 152977.1 30.0 59
7500 0.04  947253.0 00 377 0.0
s000 008  897777.0 2250.0 443 <1
8500 032 8113444 1523951 41.5 8.0
9000 0.08 8587725 70563.5  45.1 3.1
9500 0.04 872204.0 0.0 508 0.0
10000  0.04 790561.0 0.0 44.1 0.0

10500  0.04  915827.0 0.0 543 0.0
11000 0 - - -
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Table 34. E graphs: The limits of TC around t (p = 8/n, 25 runs, 1 000 000 moves).

n SR AMS CAMS T (s) or (s)
2000 096 504763.3 2129033 12.2 5.2
2500 092  426471.0 203155.8 12.9 6.3
3000 080 493869.6 212989.6 10.1 4.4
3500 056 6261144 214233, 154 5.2
4000 0.60 5405089 1694447 15.1 5.0
4500 0.64 5695274 187684.6 18.1 5.7
5000 028 638217.7 206569.0 227 7.6
5500 0.64 584719.5 169439.6 18.8 5.5
6000 036 7554284 1797604  26.7 6.1
6500 0.16  759410.3 38527.2 27.8 1.5
7000 0.16 7644255 1709392  30.1 7.0
7500 0.16  689463.3 78321.7 273 4.0
8000 0.16  840018.0 154616.0 395 7.9
8500 0.08 884325.0 10851.0  43.2 <1
9000  0.12 7616937 1552938 452 6.9
9500 0.04 947668.0 0.0 467 0.0

10000 0.04  857340.0 0.0 490 0.0
10500 0 - - - -
11000 0 — - - -

According to Table 33, TC still always solves easily U graphs around 1, up to n = 3 000 since SR =
1 in these cases. Furthermore, TC also performs quite well on larger U instances since SR > 0.52 for n
up to 5 500. E graphs (see Table 34) start here to be a little bit harder than U instances since TC never
reached SR = 1 but it performs well up to n =5 500 (SR > 0.56 except for Es oo, 3/»). The performance
of TC falls below 0.5 only for the largest graphs (n > 6 000 and for Es oo, 8/)-

Table 35. Achieving SR =1 with TC around 1 (p = 8/n) on the hardest U instances from Table 33 (5 runs, without
time limit).

n SR!J SR AMS.., OAMS... T. ({3) o7, (S)
3500 0.72 674481.0 524 132.0 16.3 12.5
4000 0.68 7182822 577635.5 17.4 13.0
4500  0.60 735476.4 395813.7 20.3 10.9
5000 052 1299003.3 1050951.6 29.2 17.2
5500 0.68 13779804 406716.0 40.5 12.1
6000 0.36 1639610.8 554939.4 55.5 21.0
6500 0.28 1 887 605.3 929657.3 69.1 32.7
7000  0.12 1958 313.0 753376.6 73.4 27.1

7500 0.04 35411620 23091809  126.6 71.1
8000  0.08 2359020.8 19474526 1010 78.0
8500 0.32 25430235 13295795 12438 63.8
9000 0.08 2937435.0 11298247 1497 59.1
9500 0.04 2407 969.5 975149.0 1299 53.7
10000  0.04 2969634.0 14954552  180.6 91.7
10500  0.04 4426329.0 3903536.4  246.4 207.3

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11000 0O 4877196.0 2224861.0  295.1 130.7
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Table 36. Achieving SR =1 with TC around 1 (p = 8/n) on the hardest E instances from Table 34 (5 runs, without
time limit).

n SR‘J SRW AMSDQ OAMS... Too (b] Or.. (S)
2000 0.96 1 511059.2 277 824.1 13.2 6.9
2500 092 1 464 184.2 343839.3 14.8 10.8
3000 0.80 1 687 144.4 310374.7 27.1 12.0
3500 0.56 1 1032754.4 823348.6 253 19.6
4000 0.60 1 868927.4 378278.6 25.2 10.9
4500 0.64 1 844 836.2 4817487 26.3 14.5
5000  0.28 1 20975275 10475614 72.5 36.1
5500 0.64 1 2100852.5 894 367.8 57.0 227
6000 036 1 1144047.0 245704.9 40.1 9.1
6500 0.16 1 2123158.3  1409654.3 84.1 56.6
7000 0.16 1 19699994  1149751.0 81.9 46.0
7500 0.16 1 2247856.3 763401.7 91.9 30.0
8000 0.16 1 1997386.0 1203102.3 86.5 52.9
8500 0.08 1 3118057.0 16932116 1514 81.2
9000 0.12 1 3243706.3 38192144 175.5 204.6
9500 0.04 1 3269792.5 5272714 165.7 243

10000  0.04 1 3582580.8 18452398 196.5 98.6
10500 0O 1 4844833.0 13460139 2995 82.8
11000 0O 1 4904942.0 12224023  294.1 80.7

Tables 35-36 show results for runs without time limit on the graphs from Tables 33—34 where
SR < 1. One observes that a solution is always found for each run of TC, even for the largest instances
with 11 000 vertices. This indicates that TC is probably able to color U and E graphs with much
larger n, even around the phase transition.

5. CONCLUSIONS

We present an experimental investigation of a simple tabu search algorithm for coloring random 3-
colorable graphs, studying three well-known classes of graphs (Uniform, Equipartite, and Flat)
outside of or around the phase transition thresholds. The main findings of this study can be
summarized as follows.

Outside of the phase transition thresholds

The simple tabu search algorithm can color any graph (U , E , F) with 200 < » < 11 000 vertices at
each run. Moreover, as already observed in other studies, F graphs are more difficult to color than U
and E graphs. More precisely:

e For the U and E classes, any graph with up to 11 000 vertices can very easily be colored within
500 000 moves (less than 30 seconds in average). This suggests that TC is probably able to color
much larger (n >> 11000) U and E graphs within reasonable time.

e For the F class, a solution can always be found for graphs with » < 3 000 in average within
1 million moves (less than 60 seconds). Larger graphs with 3 500 < n < 11 000 can also always be
colored if more computing time is allowed. Typically this can be achieved in average with 60
millions of moves (about 1.5 hours).
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Around the phase transition thresholds

The simple tabu search algorithm can color any U and E graph with 200 < » < 11 000 vertices at each
run. E graphs are a little more difficult to color than U graphs. It is very difficult to color F graphs
with more than 1 500 vertices. More precisely:

e For the U and E classes, any graph with up to 11 000 vertices can be colored in average within
5 million moves (less than 5 minutes). This suggests that TC is probably able to color still larger
(n>>11000) U and E graphs within reasonable time.

e For the F class, with a time limit of 1 million moves (a few seconds), a proper 3-coloring can
always be found for graphs with up to 500 vertices, a solution can occasionally be found for
graphs with 500 <z < 1 000. F graphs with up to 1 500 vertices can also always be colored if no
time limit is imposed. However, this may require up to more than 4 billion moves (about 126
hours). This suggests that F graphs larger than 1500 vertices around the phase transition
thresholds constitute a real challenge for TC, but very probably for many (k-)coloring algorithms.

Phase transition thresholds

Finally, concerning the different phase transition thresholds reported in the literature, the experimental
results coincide globally well with what is predicted by these thresholds as to the relative hardness of
a given graph. Nevertheless, it is observed that the threshold 1, proposed in (Eiben, van der Hauw, &
van Hemert, 1998) is better suited to locate the phase transitions compared with other t measures. To
be more precise, the lower bound of 1, (7/n) seems more adequate for U and E instances while the
whole interval (7/n < p < 8/n) remains valid for (sufficiently large) F graphs. Moreover, a ranking
among these thresholds is proposed based on the computational observations in Sect. 4.2.
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