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Abstract. Scatter Search is an evolutionary metaheuristic that explores so-
lution spaces by evolving a set of reference points, operating on a small set of
solutions while making only limited use of randomization. We give a compre-
hensive description of the elements and methods that make up its template,
including the most recent elements incorporated in successful applications in
both global and combinatorial optimization. Path-relinking is an intensifi-
cation strategy to explore trajectories connecting elite solutions obtained by
heuristic methods such as scatter search, tabu search, and GRASP. We de-
scribe its mechanics, implementation issues, randomization, the use of pools of
high-quality solutions to hybridize path-relinking with other heuristic meth-
ods, and evolutionary path-relinking. We also describe the hybridization of
path-relinking with genetic algorithms to implement a progressive crossover
operator. Some successful applications of scatter search and of path-relinking
are also reported.

1. Introduction

Scatter search (SS) is a metaheuristic that explores solution spaces by evolving a
set of reference points. It can be viewed as an evolutionary method that operates on
a small set of solutions and makes only limited use of randomization as a proxy for
diversification when searching for a globally optimal solution. The scatter search
framework is flexible, allowing the development of alternative implementations with
varying degrees of sophistication.

The fundamental concepts and principles of the method were first proposed in
the 1970s [5], based on formulations dating back to the 1960s for combining deci-
sion rules and problem constraints. In contrast to other evolutionary methods like
genetic algorithms, scatter search is founded on the premise that systematic designs
and methods for creating new solutions afford significant benefits beyond those de-
rived from recourse to randomization. It uses strategies for search diversification
and intensification that have proved effective in a variety of settings.

Scatter search orients its explorations systematically relative to a set of reference
points that typically consist of good solutions obtained by prior problem solving
efforts. The criteria for “good” are not restricted to objective function values, and
may apply to sub-collections of solutions rather than to a single solution, as in the
case of solutions that differ from each other according to certain specifications.
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The scatter search template [7] has served as the main reference for most of
the scatter search implementations to date. The dispersion patterns created by
these designs have been found useful in several application areas. Section 2 gives
a comprehensive description of the elements and methods of this template, based
on the formulation given in Laguna and Mart́ı [13]. It includes the most recent
elements incorporated in successful applications in both global and combinatorial
optimization.

Path-relinking is an intensification strategy to explore trajectories connecting
elite solutions obtained by heuristic methods [6]. Path-relinking can be consid-
ered an extension of the combination method of scatter search. Instead of directly
producing a new solution when combining two or more original solutions, path-
relinking generates paths between and beyond the selected solutions in the neigh-
borhood space. It should be noted that the combination method in scatter search
is a problem-dependent element, which is customized depending on the problem
and the solution representation. In particular, in global optimization, where solu-
tions are represented as real vectors, most scatter search applications perform linear
combinations between pairs of solutions. Alternatively, in problems where solutions
are represented as permutations, such as ordering problems, voting methods have
been widely applied. In problems where solutions are represented as binary vectors,
such as knapsack problems, probabilistic scores have provided very good results [13].
This way, one can also view path-relinking as a unified combination method for all
types of problems and in this way it also generalizes the combination methods.
In Section 3, we focus on path-relinking, including its mechanics, implementation
issues, randomization, the use of pools of high-quality solutions to hybridize path-
relinking with other heuristic methods, and evolutionary path-relinking.

Concluding remarks are made in Section 4, where some successful applications
of scatter search and of path-relinking are listed.

2. Scatter search

From an algorithmic point of view we can consider that scatter search basically
performs iterations over a set of good solutions called the Reference Set (RefSet).
It must be noted that the meaning of good is not restricted here to the quality of
the solutions, but also considers the diversity that they add to this set of solutions.

Once the initial RefSet is created, a global iteration of the method consists of
three steps: combine, improve, and update the solutions in the RefSet. We first
describe the five elements in the template. Next, we explain how they interact.

(1) A Diversification Generation Method to generate a collection of diverse trial
solutions, using one or more arbitrary trial solutions (or seed solutions) as
an input.

(2) An Improvement Method to transform a trial solution into one or more
enhanced trial solutions: neither the input nor the output solutions are
required to be feasible, though the output solutions are typically feasible.
If the input trial solution is not improved as a result of the application of
this method, the “enhanced” solution is considered to be the same as the
input solution.

(3) A Reference Set Update Method to build and maintain a reference set con-
sisting of the b “best” solutions found (where the value of b is typically
small, e.g., no more than 20), organized to provide efficient access by other
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parts of the solution procedure. Several alternative criteria may be used to
add solutions to the reference set and delete solutions from the reference
set.

(4) A Subset Generation Method to operate on the reference set, to produce
a subset of its solutions as a basis for creating combined solutions. The
most common subset generation method is to generate all pairs of reference
solutions (i.e., all subsets of size 2).

(5) A Solution Combination Method to transform a given subset of solutions
produced by the Subset Generation Method into one or more combined
solutions.

Figure 1 shows the interaction among these five methods and highlights the
central role of the reference set. This basic design starts with the creation of
an initial set of solutions P , and then extracts from it the reference set (RefSet)
of solutions. The darker circles represent improved solutions resulting from the
application of the Improvement Method.

The Diversification Generation Method is used to build a large set P of diverse
solutions. The size of P (PSize) is typically at least ten times the size of RefSet.
The initial reference set is built according to the Reference Set Update Method.
For example, the Reference Set Update Method could consist of selecting b distinct
and maximally diverse solutions from P .

Figure 1. Scatter search diagram.

A typical construction of the initial reference set starts with the selection of the
best b/2 solutions from P . These solutions are added to RefSet and deleted from
P . For each solution in P -RefSet, the minimum of the distances to the solutions
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in RefSet is computed. Then, the solution with the maximum of these minimum
distances is selected. This solution is added to RefSet and deleted from P and
the minimum distances are updated. (In applying this max-min criterion, or any
criterion based on distances, it can be important to scale the problem variables, to
avoid a situation where a particular variable or subset of variables dominates the
distance measure and distorts the appropriate contribution of the vector compo-
nents.) The process is repeated b/2 times. The resulting reference set has b/2 high
quality solutions and b/2 highly-diverse solutions. Note that with this criterion we
are considering as equally important quality and diversity in the original RefSet.
Alternative designs may include a different composition of the b solutions in this
set. For example, we could consider just a single solution selected because of its
quality (say the best one in P ) and the remaining b−1 solutions in the Refset could
be selected from P because of their diversity. Since the reference set is the heart of
a scatter search procedure, its initial composition may result in significant changes
during the search process.

The solutions in RefSet are ordered according to quality, where the best solution
is the first one in the list. The search is then initiated applying the Subset Genera-
tion Method. In its simplest (and typical) form it consists of generating all pairs of
reference solutions. That is, the method would focus on subsets of size 2 resulting
in (b2 − b)/2 new subsets. The pairs are selected one at a time in lexicographical
order and the Solution Combination Method is applied to generate one or more
trial solutions. These trial solutions are subjected to the Improvement Method, if
one is available. The Reference Set Update Method is applied once again to build
the new RefSet with the best solutions, according to the objective function value,
from the current RefSet and the set of trial solutions. A global iteration finishes
with the update of the RefSet. Note that in subsequent iterations we only combine
the pairs of solutions not combined in previous iterations. The basic procedure ter-
minates after all the generated subsets are subjected to the Combination Method
and none of the improved trial solutions are admitted to RefSet under the rules of
the Reference Set Update Method. However, in advanced scatter search designs,
the RefSet rebuilding is applied at this point and the best b/2 solutions are kept in
the RefSet and the other b/2 are selected from P , replacing the worst b/2 solutions.

It is interesting to observe similarities and contrasts between scatter search and
the original Genetic Algorithm (GA) proposals. Both are instances of what are
sometimes called population-based or evolutionary approaches. Both incorporate
the idea that a key aspect of producing new elements is to generate some form of
combination of existing elements. However, original GA approaches were predicated
on the idea of choosing parents randomly to produce offspring, and further on
introducing randomization to determine which components of the parents should
be combined. By contrast, scatter search is based on deterministic designs in which
we implement strategic rules to generate new solutions. These rules do not resort
to randomization, as usually happens in GAs. They are based on the structure and
properties of the problem being solved, as well as on the search history. Moreover,
GAs usually apply general purpose combination methods, such as the well-known
crossover operator, while scatter search customizes the combination method for each
particular problem. It should be noted, however, that GAs have been progressively
incorporating more advanced design elements from more powerful metaheuristics
and solution strategies.
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2.1. New strategies in global optimization. Egea et al. [2] proposed an evolu-
tionary method for global optimization of complex-process models, which employs
some elements of scatter search and path-relinking. Regarding scatter search, the
method uses a relatively small population size, partially chosen by a quality criterion
from an initial set of diverse solutions. It also performs systematic combinations
among the population members. Regarding path relinking, the new solutions are
generated within the areas defined by every pair of solutions in the population,
introducing a bias to generate new solutions which share more properties with the
best population members than with the rest. We mentioned this method here
because it introduces new strategies and modifies some standard scatter search
designs. Specifically, it employs:

• a small population without memory structures, in which repeated sampling
is allowed;
• a new combination method based on wide hyper-rectangles;
• an aggressive population update for a quick convergence; and
• a new search intensification strategy called the go-beyond.

Considering its potential applicability to other domains, we describe the go-

beyond strategy, which consists in exploiting promising directions, extending the
combination method.

Figure 2 depicts the level curve (contour plots) of the 2-D dimensional uncon-
strained function f(x1, x2) in the range x1 ∈ [−6, 6] , x2 ∈ [−2, 7], which presents
several minima:

f(x1, x2) = 2 + 0.01(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + 7 sin(0.5x1) sin(0.7x1x2)

We illustrate in this diagram how the go-beyond strategy works. From a pair of
RefSet solutions x and y (labeled as population members in the figure and depicted
with black points) a new solution is generated in the corresponding hyper-rectangle,
z, and depicted in the figure (labeled as new solution and represented with a black
square). If z is better than x and y (f(z) < f(x) and f(z) < f(y)), then we consider
that this is a promising direction and apply the go-beyond strategy, extending the
combination method. In the present problem, this means that we consider a new
hyper-rectangle (solid line) defined by the distance between z and y (its closest
reference set solution). A new solution (depicted with a triangle) is created in this
hyper-rectangle and the process is repeated as long as good solutions are obtained.
Figure 2 shows a new solution (starred) created in an area very close to the global
minimum.

2.2. New strategies in combinatorial optimization. Mart́ı et al. [16] pro-
posed a scatter search algorithm for the well known Max-Cut problem based on the
standard design described in this section. Their method extends the basic scatter
search implementation in three different ways. First, it uses a new selection proce-
dure for constructing a reference set from a population of solutions. Traditionally,
scatter search implementations have used the criterion of maximizing the minimum
distance between the solution under consideration and the solutions already in the
reference set. In such a process, diverse solutions are selected one by one from
the population P and the distances are updated after each selection. In contrast,
Mart́ı et al. [16] propose a method that selects all the diverse solutions at once
by solving the maximum diversity problem (MDP). Given a set of elements S and
the corresponding distances between the elements of the set, the MDP consists in
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finding the most diverse subset of S of a specified size. The diversity of the chosen
subset is given by the sum of the distances between each pair of its elements. The
distance between two Max-Cut solutions is defined to be the number of different
edges in the cut.

The use of the MDP within scatter search is based on recognizing that the
original set of elements is given by P \ {the b/2 best solutions}. The MDP scheme
is also used to complete the current RefSet, which is already partially populated
with the b/2 best solutions from P .

The second extension consists of a dynamic adjustment of the depth parame-
ter k associated with the ejection chain mechanism, which is at the core of the
search-based improvement method. This local search has an associated parameter
that measures the depth of the search in the ejection chain process. The solution
representation incorporates the information related to the particular k value used
to generate it. In this way, the depth of the ejection chain produced depends on
the parameter values associated with the solutions being combined.

The third extension implements a probabilistic selection of the combination
methods. The probability of selecting one of three methods proposed in [16] for the
Max-Cut problem is proportional to the number of high quality solutions generated
by the method in previous iterations. A probability-based mechanism is introduced
to select a combination method each time the solutions are combined. The prob-
ability of selecting one of the three methods is set to 1/3 at the beginning of the
search. The probability values are then updated at the end of each SS iteration in
order to favor the combination methods that produce solutions of sufficiently high
quality to be included in the reference set.

3. Path-relinking

Path-relinking was originally proposed by Glover [6] as an intensification strategy
to explore trajectories connecting elite solutions obtained by tabu search or scatter
search [8; 9; 10]. In the remainder of this chapter, we focus on path-relinking,
including its mechanics, implementation issues, randomization, the use of pools of
high-quality solutions to hybridize path-relinking with other heuristic methods, and
evolutionary path-relinking. We conclude the chapter with some computational
results illustrating the effect of using path-relinking with other heuristics. For
completeness, we have included in this section some material that also appears in
the chapter of the handbook on GRASP.

3.1. Mechanics of path-relinking. We consider an undirected graph G = (S, M)
associated with the solution space, where the nodes in S correspond to feasible
solutions and the edges in M correspond to moves in the neighborhood structure,
i.e. (i, j) ∈ M if and only if i ∈ S, j ∈ S, j ∈ N(i), and i ∈ N(j), where N(s)
denotes the neighborhood of a solution s ∈ S. Path-relinking is usually carried
out between two solutions: one is called the initial solution, while the other is the
guiding solution. One or more paths in the solution space graph connecting these
solutions are explored in the search for better solutions. Local search is applied
to the best solution in each of these paths, since there is no guarantee that this
solution is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding solution
g ∈ S. Not all solutions in the neighborhood N(s) are allowed to follow s on the
path from s to g. We restrict the choice to those solutions in N(s) that are more
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similar to g than s is. This is accomplished by selecting moves from s that introduce
attributes contained in the guiding solution g. Therefore, path-relinking may be
viewed as a strategy that seeks to incorporate attributes of high quality solutions
(i.e. the guiding solutions), by favoring these attributes in the selected moves. After
an analysis of each potential move, the most common strategy is to select a move
that results in the best-quality restricted neighbor of s. The restricted neighbors
of s are all solutions in the neighborhood of s that incorporate an attribute of the
guiding solution not present in s.

Several alternatives for path-relinking have been considered and combined in re-
cent implementations. These include forward, backward, back-and-forward, mixed,
truncated, greedy randomized adaptive, and evolutionary path-relinking. All these
alternatives involve trade-offs between computation time and solution quality.

Suppose that path-relinking is be applied to a minimization problem between
solutions x1 and x2 such that z(x1) ≤ z(x2), where z(·) denotes the objective func-
tion. In forward path-relinking, the initial and guiding solutions are set to g = x1

and s = x2. Conversely, in backward path-relinking, we set g = x2 and s = x1. In
back-and-forward path-relinking, backward path-relinking is applied first, followed
by forward path-relinking. Path-relinking explores the neighborhood of the initial
solution more thoroughly than the neighborhood of the guiding solution because,
as it moves along the path, the size of the restricted neighborhood decreases. Con-
sequently, backward path-relinking tends to do better than forward path-relinking.
Back-and-forward path-relinking does at least as well as either backward or forward
path-relinking but takes about twice as long to compute.

MixedPathRelinking1

∆← {j = 1, . . . , n : xs
j 6= xt

j};2

x∗ ← argmin{z(xs), z(xt)};3

z∗ ← min{z(xs), z(xt)};4

x← xs;5

while |∆| > 1 do6

ℓ∗ ← argmin{z(x⊕ ℓ) : ℓ ∈ ∆};7

∆← ∆ \ {ℓ∗};8

xℓ ← 1− xℓ;9

if z(x) < z∗ then10

x∗ ← x;11

z∗ ← z(x);12

end13

xs ← xt;14

xt ← x;15

end16

x← LocalSearch(x);17

return x ;18

Algorithm 1: Mixed path-relinking procedure for problems where so-
lutions are represented by binary vectors.
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In applying mixed path-relinking [11; 21] between feasible solutions s and t in S,
two paths are started simultaneously, one at s and the other at t. These two paths
meet at some solution r ∈ S, thus connecting s and t with a single path. Algorithm
1 describes a mixed path-relinking procedure for a 0-1 minimization problem, such
as the set covering problem, where xs and xt are binary vectors representing the
solutions to be linked.

The set ∆ = {j = 1, . . . , n : xs
j 6= xt

j} of positions in which xs and xt differ
is computed in line 2. The cardinality of this set is called the Hamming distance

between xs and xt. The best solution, x∗, among xt and xs and its cost, z∗ = z(x∗),
are determined in lines 3 and 4, respectively. The current path-relinking solution,
x, is initialized to xs is line 5. The loop in lines 6 to 16 progressively determines the
next solution in the path connecting xs and xt, until the entire path is traversed.
For every position ℓ ∈ ∆, we define x ⊕ ℓ to be the solution obtained from x by
complementing the current value of xℓ. Line 7 determines the component ℓ∗ of ∆
for which x⊕ ℓ results in the least-cost solution. This component is removed from
∆ in line 8 and the current solution is updated in line 9 by complementing the
value of its ℓ-th position. If the test in line 10 detects that the new current solution
x improves the best solution x∗ in the path, then x∗ and its cost are updated in
lines 11 and 12, respectively. The roles of the starting and target solutions are
swapped in lines 14 and 15 to implement the mixed path-relinking strategy. If
|∆| = 0, then the local search is applied to the best solution in the path in line 16
and the locally optimal solution is returned by the procedure.

Like back-and-forward path-relinking, the mixed variant explores both neighbor-
hoods N(xs) and N(xt). Unlike back-and-forward path-relinking, it is usually less
than twice as long as the backward or forward variants.

In the case of the set covering problem, there always exists a path connecting xs

and xt. We just need to observe that setting to one all components with value 0
in xs and value 1 in xt results in a series of feasible covers leading from xs to some
feasible solution x. Next, by setting to zero those components with value 1 in x
and value 0 in xt results again in a series of feasible covers leading x to xt. Figure 3
illustrates the application of mixed path-relinking to solutions xs and xt for which
the Hamming distance is equal to five.

One can expect to see most solutions produced by path-relinking to come from
subpaths close to either the initiating or guiding solutions. Resende et al. [18]
showed that this occurs in instances of the max-min diversity problem. In that ex-
periment, a back and forward path-relinking scheme was tested. Figure 4 shows the
percentage of best solutions found by path-relinking taken over several instances
and several applications of path-relinking. The 0-10% range in the figure corre-
sponds to subpaths near the initial solutions for the forward path-relinking phase
as well as the backward phase, while the 90-100% range are subpaths near the guid-
ing solutions. As the figure indicates, exploring the subpaths near the extremities
may produce solutions about as good as those found by exploring the entire path.
There is a higher concentration of better solutions close to the initial solutions
explored by path-relinking.

As shown in Algorithm 2, it is simple to adapt path-relinking to explore only the
neighborhoods close to the extremes. Let ρ be a real parameter such that 0 < ρ ≤ 1
that defines the portion of the path to be explored. Instead of carrying out the main
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Figure 3. Mixed path-relinking between two solutions with Ham-
ming distance of five: numbers above the arrows represent the or-
der in which the moves are performed.
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loop while |∆| > 1 as in the mixed path-relinking of Algorithm 1, the main loop is
applied while |∆| > ρ · δt, where δt is the cardinality of the initial set ∆.

TruncatedMixedPathRelinking1

∆← {j = 1, . . . , n : xs
j 6= xt

j};2

δt ← |∆|;3

x∗ ← argmin{z(xs), z(xt)};4

z∗ ← min{z(xs), z(xt)};5

x← xs;6

while |∆| > ρ · δt do7

ℓ∗ ← argmin{z(x⊕ ℓ) : ℓ ∈ ∆};8

∆← ∆ \ {ℓ∗};9

xℓ ← 1− xℓ;10

if z(x) < z∗ then11

x∗ ← x;12

z∗ ← z(x);13

end14

xs ← xt;15

xt ← x;16

end17

x← LocalSearch(x);18

return x ;19

Algorithm 2: Truncated mixed path-relinking procedure for problems
where solutions are represented by binary vectors.

3.2. Minimum distance required for path-relinking. We assume that we
want to connect solutions s and t with path-relinking. If the distance |∆(s, t)|
between s and t, i.e. the number of components in which s and t differs, is equal to
one, then the path directly connects the two solutions and no solution, other than
s and t, is visited.

If we assume that s and t are both locally optimal, we know that z(s) ≤ z(r)
for all r ∈ N(s) and z(t) ≤ z(r) for all r ∈ N(t). If |∆(s, t)| = 2, then any path
is of the type s → r → t, where r ∈ N(s) ∩ N(t), and consequently r cannot be
better than either s or t. Likewise, if |∆(s, t)| = 3 then any path is of the type
s→ rs → rt → t, where rs ∈ N(s) and rt ∈ N(t), and consequently neither rs nor
rt can be better than both s and t.

Therefore, things only get interesting for |∆(s, t)| > 3. For those cases, any path
is of the type s→ rs → w1 → · · · → wp → rt → t, where w1, . . . , wp are candidates
to be better than both s and t. Therefore, we do not consider relinking a pair of
solutions s, t unless |∆(s, t)| ≥ 4.

3.3. Randomization in path-relinking. Consider again a problem whose so-
lution can be represented as a binary vector of size n, such as the set covering
problem, the satisfiability problem, or the max-cut problem. Let us denote the set



12 M.G.C. RESENDE, C.C. RIBEIRO, F. GLOVER, AND R. MARTÍ

of solutions spanned by the common elements of solutions s and t as

(1) S(s, t) := {w ∈ {0, 1}n : wi = si = ti, i /∈ ∆(s, t)} \ {s, t},

with |S(s, t)| = 2|∆(s,t)| − 2. The underlying assumption of path-relinking is that
there exist good-quality solutions in S(s, t), since this space consists of all solutions
which contain the common elements of two good solutions s and t. Taking into
consideration that the size of this space is exponentially large, we normally adopt
a greedy search where a path of solutions

s = w0, w1, . . . , w|∆(s,t)| = t,

is constructed, such that |∆(wi, wi+1)| = 1, i = 0, . . . , |∆(s, t)| − 1, and the best
solution from this path is chosen. However, by adopting the greedy strategy, we
limit ourselves to exploring a single path from a set of exponentially many paths. By
adding randomization to path-relinking, greedy randomized adaptive path-relinking
(GRAPR) [3] is not constrained to explore a single path.

GreedyRandomizedAdaptivePathRelinking1

∆← {j = 1, . . . , n : xs
j 6= xt

j};2

x∗ ← argmin{z(xs), z(xt)};3

z∗ ← min{z(xs), z(xt)};4

x← xs;5

Select α ∈ [0, 1] ⊂ R at random;6

while |∆| > 1 do7

z− ← min{z(x⊕ ℓ) : ℓ ∈ ∆};8

z+ ← max{z(x⊕ ℓ) : ℓ ∈ ∆};9

RCL← {ℓ ∈ ∆ : z(x⊕ ℓ) ≤ z− +α(z+− z−)};10

Select ℓ∗ ∈ RCL at random;11

∆← ∆ \ {ℓ∗};12

xℓ ← 1− xℓ;13

if z(x) < z∗ then14

x∗ ← x;15

z∗ ← z(x);16

end17

xs ← xt;18

xt ← x;19

end20

x← LocalSearch(x);21

return x ;22

Algorithm 3: Greedy randomized adaptive path-relinking with a mixed
variant of path-relinking.

The pseudo-code for GRAPR for a minimization problem is shown in Algo-
rithm 3. The main difference with respect to Algorithm 1 are lines 6, and 8–11.
Instead of selecting the move that results in the best solution as is the case in
standard path-relinking, a restricted candidate list (RCL) is constructed with the
moves that result in solutions with costs in an interval that depends on the value
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of the best move, the value of the worst move, and a random parameter α. From
this set, one move is selected at random to produce the next step in the path.

GRAPR is useful when path-relinking is applied more than once between the
same pair of solutions as it can occur in evolutionary path-relinking (discussed in
Subsection 3.5).

3.4. Hybridization with a pool of elite solutions. Path-relinking is a major
enhancement to metaheuristics that generate a sequence of locally optimal feasible
solutions. These metaheuristics include, but are not limited to, GRASP, variable
neighborhood search, tabu search, scatter search, and simulated annealing, To hy-
bridize path-relinking with these metaheuristics, one usually makes use of an elite

set, i.e. a diverse pool of high-quality solutions found during the search. The elite
set starts empty and is limited in size. Each locally optimal solution produced by
the metaheuristic is relinked with one or more solutions from the elite set. Each so-
lution produced by path-relinking is a candidate for inclusion in the elite set where
it can replace an elite solution of worse value.

The pool of elite solutions is initially empty. Each locally optimal solution pro-
duced by the metaheuristic and each solution resulting from path-relinking is con-
sidered as a candidate to be inserted into the pool. If the pool is not yet full, the
candidate is simply added to the pool if it differs from all pool members. If the pool
is full and the candidate is better than the incumbent, then it replaces an element
of the pool. In case the candidate is better than the worst element of the pool but
not better than the best element, then it replaces some element of the pool if it is
sufficiently different from every other solution currently in the pool. To balance the
impact on pool quality and diversity, the element selected to be replaced is the one
that is most similar to the entering solution among those elite solutions of quality
no better than the entering solution [20].

Given a local optimum s1 produced by the metaheuristic, we need to select at
random from the pool a solution s2 to be connected with s1 via path-relinking. In
principle, any solution in the pool could be selected. However, one should avoid
solutions that are too similar to s1, because relinking two solutions that are similar
limits the scope of the path-relinking search. If the solutions are represented by
binary vectors, one should favor pairs of solutions for which the Hamming distance
between them is high. A strategy introduced in [20] is to select a pool element
at random with probability proportional to the Hamming distance between the
pool element and the local optimum s1. Since the number of paths between two
solutions grows exponentially with their Hamming distance, this strategy favors
pool elements that have a large number of paths connecting them to and from s1.

Algorithm 4 illustrates the pseudo-code of a hybrid heuristic that uses path-
relinking for minimization. In line 2, the pool of elite solutions P is initially empty.
The loop in lines 3 to 12 makes up an iteration of the hybrid algorithm. In line 4, x
is a locally optimal solution generated by procedure HeuristicLocalOptimal(). If
the elite set is empty, then x is inserted into the pool in line 5. Otherwise, x becomes
the initiating solution in lines 7 and a guiding solution is selected at random from
the pool in line 8. The initiating and guiding solutions are relinked in line 9 and
the resulting solution is tested for inclusion into the elite set in line 10. The hybrid
procedure returns the set of elite solutions which includes the best solution found
during the search.
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HEUR+PR1

Initialize elite set P ← ∅;2

while stopping criterion not satisfied do3

x← HeuristicLocalOptimal();4

if P = ∅ then insert x into P ;5

else6

xs ← x;7

Choose, at random, a pool solution xt ∈ P ;8

x← PathRelinking(xs, xt);9

Update the elite set P with x ;10

end11

end12

return P ;13

Algorithm 4: Hybridization of path-relinking with a heuristic that gen-
erates local optima.

3.5. Evolutionary path-relinking. Path-relinking can also be applied between
elite set solutions to search for new high-quality solutions and to improve the aver-
age quality of the elite set. This can be done in a post-optimization phase, after the
main heuristic stops, or periodically, when the main heuristic is still being applied
[1; 18; 20].

We describe two schemes called evolutionary path-relinking for this purpose.
Both schemes take as input the elite set and return either the same elite set or one
with an improved average cost.

The first scheme, described by Resende and Werneck [20], works with a popula-
tion that evolves over a number of generations. The initial population is the input
elite set. In the k-th generation the procedure builds the k-th population, which is
initially empty. Path-relinking is applied between all pairs of solutions in popula-
tion k − 1. Each solution output from the path-relinking operation is a candidate
for inclusion in population k. The usual rules for inclusion into an elite set are
adopted in evolutionary path-relinking. If population k is not yet full, the solution
is accepted if it differs from all solutions in the population. After population k is
full, the solution is accepted if either it is better than the best solution in the pop-
ulation or it is better than the worst and is sufficiently different from all solutions
in the population. Once a solution is accepted for inclusion into population k, it
replaces the solution in population k that does not have a better cost and that is
most similar to it. The procedure halts when the best solution in population k does
not have better cost than the best solution in population k − 1.

A variation of the above scheme is described by Resende et al. [18]. In that
scheme, while there exists a pair of solutions in the elite set for which path-relinking
has not yet been applied, the two solutions are combined with path-relinking and
the resulting solution is tested for membership in the elite set. If it is accepted, it
then replaces the elite solution most similar to it among all solutions having worse
cost.
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Since some elite solutions may remain in the elite set over several applications
of evolutionary path-relinking, greedy randomized adaptive path-relinking [3] can
be used in evolutionary path-relinking to avoid repeated explorations of the same
paths in the solution space in different applications of the procedure.

GRASP with evolutionary path-relinking and scatter search are evolutionary
methods based on evolving a small set of selected solutions (elite set in the former
and reference set in the latter). We can, therefore, observe similarities between
them. In some implementations of scatter search, GRASP is used to populate
the reference set. Note, however, that other constructive methods can be used as
well. Similarly, path-relinking can be used to combine solutions in scatter search,
but we can use any other combination method. From an algorithmic point of
view, we may find two main differences between these methods. The first one is
that in scatter search we do not apply path-relinking to the solutions obtained with
GRASP, but rather, we only apply path-relinking as a combination method between
solutions already in the reference set. The second difference is that in scatter search
when none of the new solutions obtained with combinations are admitted to the
reference set (elite set), it is rebuilt, removing some of its solutions, as specified in
the reference set update method. In GRASP with evolutionary path-relinking we
do not remove solutions from the elite set, but rather, we reapply GRASP and use
the same rules for inclusion in the elite set.

3.6. Progressive crossover: Hybridization with genetic algorithms. Path-
relinking was first applied in the context of a genetic algorithm by Ribeiro and
Vianna [22] in order to implement a progressive crossover operator. In this innova-
tive application, the hybridization strategy was applied to a phylogeny problem.

The original proposal was extended and improved in [23]. In this case, a bidi-
rectional (or back and forward) path-relinking strategy is used: given two parent
solutions s1 and s2, one path is computed leading from s1 to s2 and another leading
from s2 to s1. The best solution along them is returned as the offspring resulting
from crossover. This mechanism is an extension of the traditional crossover opera-
tor: instead of producing only one offspring, defined by one single combination of
two parents, it investigates many solutions that share characteristics of the selected
parents. The solution found by path-relinking corresponds to the best offspring
that could be obtained by applying the standard crossover to the parents.

The experiments reported in [23] make use of the results obtained on one ran-
domly generated instance (TST17) of the phylogeny problem to assess the evolution
of the solutions found by three different genetic algorithm in one hour (3,600 sec-
onds) of computations: the random-keys genetic algorithm RKGA [22], the proposed
genetic algorithm GA+PR using path-relinking to implement the progressive crossover
operator, and the simpler genetic algorithm GAUni using uniform crossover. Fig-
ure 5 presents the solution value at the end of each generation for each of the 100
individuals in the population. Since the original random-keys genetic algorithm
RKGA made use of elitism, the solution values are restricted to a smaller interval
ranging between 2500 and 2620. The solution values obtained by the two other
algorithms show more variability. The solutions found by algorithm GA+PR are bet-
ter than those obtained by RKGA and GAUni, illustrating the contribution of the
strategy based on path-relinking to implement the crossover operator.

Path-relinking was also applied by Zhang and Lai [25] following the strategy
proposed in [22] in the implementation of a genetic algorithm for the multiple-level
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Figure 5. Solutions obtained by genetic algorithms for random
instance TST17 for 3,600 seconds of computations.
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warehouse layout problem. Their approach also makes use of path-relinking when
the genetic algorithm seems to be trapped in a locally optimal solution. Once
again, path-relinking was used by Vallada and Ruiz [24] as a progressive crossover
operator within a genetic algorithm for the minimum tardiness permutation flow-
shop problem. It was also applied as an intensification strategy after a number of
generations without improvement to the best solution. The selected individuals are
marked in order to not be selected again during the application of path-relinking.
Path-relinking was also hybridized with a genetic algorithm as a post-optimization
procedure [17]. In this work, the solutions in the final population produced by the
genetic algorithm are progressively combined and refined.

3.7. Hybridization of path-relinking with other heuristics. The basic im-
plementation of GRASP is memoryless because it does not make use of information
collected in previous iterations. The use of path-relinking within a GRASP pro-
cedure, as an intensification strategy applied to each locally optimal solution, was
first proposed by Laguna and Mart́ı [12]. It was followed by several extensions,
improvements, and successful applications [19]. Each local minimum produced by
the GRASP is combined with a randomly selected elite solution. The resulting
solution is a candidate for inclusion into the elite set. Evolutionary path-relinking
can be applied periodically to improve the quality of the elite set.

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figure 6 shows time-to-target plots for GRASP
and GRASP with path-relinking implementations for four different applications.
These time-to-target plots show the empirical cumulative probability distributions
of the time-to-target random variable when using pure GRASP and GRASP with
path-relinking, i.e., the time needed to find a solution at least as good as a prespeci-
fied target value. For all problems, the plots show that GRASP with path-relinking
is able to find target solutions faster than GRASP.

4. Applications and concluding remarks

There are three main sources where successful applications of scatter search and
path-relinking can be found. First, Chapter 8 of the monograph on scatter search
by Laguna and Mart́ı [13], identifies 14 applications, including neural networks,
multi and mono-objective routing problems, graph drawing, scheduling, and color-
ing problems. A second source of successful implementations of both methodologies
is a special issue of EJOR [14] in which they are classified into the following seven
categories: Foundations, Nonlinear Optimization, Optimization in Graphs, Parallel
Optimization, Prediction and Clustering, Routing and Scheduling. There is also a
third source, which is frequently updated with current applications: the web site
http://www.uv.es/rmarti/scattersearch on scatter search and path-relinking
publications, in which more than 100 implementations are collected.
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ing Tools for Modeling, Optimization and Simulation: Interfaces in Computer

Science and Operations Research, pages 1–24. Kluwer Academic Publishers,
2000.

[9] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
[10] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path

relinking. Control and Cybernetics, 39:653–684, 2000.
[11] F. Glover, M. Laguna, and R. Mart́ı. Scatter search and path relinking: Foun-

dations and advanced designs. In Godfrey C. Onwubolu and B.V. Babu, ed-
itors, New Optimization Techniques in Engineering, volume 141 of Studies in

Fuzziness and Soft Computing, pages 87–100. Springer, 2004.
[12] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line

crossing minimization. INFORMS J. on Computing, 11:44–52, 1999.
[13] M. Laguna and R. Mart́ı. Scatter search: Methodology and implementations in

C. Operations Research/Computer Science Interfaces Series. Kluwer Academic
Publishers, Boston, 2003.

[14] R. Mart́ı, (Editor). Feature cluster on scatter search methods for optimization.
European J. on Operational Research, 169(2):351–698, 2006.

[15] C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende. GRASP with path-
relinking for the quadratic assignment problem. In C.C. Ribeiro and S.L.
Martins, editors, Proceedings of III Workshop on Efficient and Experimental

Algorithms, volume 3059, pages 356–368. Springer, 2004.
[16] Mart́ı R., A. Duarte, and M. Laguna. Advanced scatter search for the max-cut

problem. INFORMS Journal on Computing, 21:26–38, 2009.
[17] M. Ranjbar, F. Kianfar, and S. Shadrokh. Solving the resource availability

cost problem in project scheduling by path relinking and genetic algorithm.
Applied Mathematics and Computation, 196:879–888, 2008.



20 M.G.C. RESENDE, C.C. RIBEIRO, F. GLOVER, AND R. MARTÍ
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