
An Ejection Chain Algorithm for the Quadratic
Assignment Problem

Cesar Rego
School of Business Administration, University of Mississippi, University, Mississippi 38677

Tabitha James
Department of Business Information Technology, Pamplin College of Business, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia 24061

Fred Glover
University of Colorado, Boulder, Colorado 80309-0419

In this study, we present a new tabu search algorithm
for the quadratic assignment problem (QAP) that uti-
lizes an embedded neighborhood construction called an
ejection chain. Our ejection chain approach provides
a combinatorial leverage effect, where the size of the
neighborhood grows multiplicatively while the effort of
finding a best move in the neighborhood grows only
additively. Our results illustrate that significant improve-
ment in solution quality is obtained in comparison to
the traditional swap neighborhood. We also develop
two multistart tabu search algorithms utilizing the ejec-
tion chain approach in order to demonstrate the power
of embedding this neighborhood construction within a
more sophisticated heuristic framework. Comparisons to
the best large neighborhood approaches from the litera-
ture are presented. © 2009 Wiley Periodicals, Inc. NETWORKS,
Vol. 00(00), 000–000 2010

Keywords: ejection chains; tabu search; combinatorial optimiza-
tion; quadratic assignment problem

1. INTRODUCTION

The quadratic assignment problem (QAP) is a classical
combinatorial optimization problem that has garnered much
attention due to both its large number of applications and
its solution complexity. Originally used to model a loca-
tion problem in the 1950’s [37], the QAP is computationally
very difficult to solve which makes it an ideal candidate for
testing new algorithmic approaches. While facility location

Received September 2007; accepted August 2009
Correspondence to: C. Rego; e-mail: crego@bus.olemiss.edu
DOI 10.1002/net.20360
Published online in Wiley InterScience (www.interscience.wiley.com).
© 2009 Wiley Periodicals, Inc.

problems remain the most popular application area for the
quadratic assignment problem, many other applications for
this problem exist including scheduling problems, statistical
data analysis, information retrieval, as well as problems in
transportation. The attractiveness of the QAP is also due to
the fact that many other combinatorial optimization problems
can be formulated as a QAP, including the traveling salesman
problem, the maximum clique problem and the graph parti-
tioning problem. (See [6] for a survey of both classical and
practical applications.)

In the context of facility location problems, the QAP can be
stated as follows. Let F = {f1, . . . , fn} be a set of n facilities
to be placed in exactly n locations represented by the set
L = {l1, . . . , ln}. A = (aik) is a matrix of distances between
pairs of locations li, lk ∈ L, and B = (bjl) is an associated
matrix of flows to be transmitted (or shipped) between pairs
of facilities fj, fl ∈ F. The objective is to find a minimum
cost assignment of facilities to locations considering both the
flow of materials between facilities and the distance between
locations.

In mathematical terms, each assignment can be defined as
a permutation π of the underlying index set N = {1, . . . , n},
i.e. π : N → N . Hence, if facility j is assigned to location
i and facility l is assigned to location k, the cost of the flow
between facilities j = π(i) and l = π(k) is aikbπ(i)π(k). The
objective of the QAP is to find a permutation vector π ∈ �n

that minimizes the total assignment cost, where �n is the set
of all possible permutations of N. Such a formulation can be
generically described as

Minimize
π∈ �n

n∑
i=1

n∑
j=1

aijbπ(i)π(j).

Heuristic approaches for the QAP abound in the literature
wherein local search is commonly used as a basic component

NETWORKS—2010—DOI 10.1002/net



to explore the solution space. Among these heuristics are
tabu search [22, 33], scatter search [7], genetic algorithms
[2,8,9,13,22,24], ant colony optimization [31], GRASP [20],
GRASP with path relinking [25], and path relinking [19].

Local search methods rely on the exploration of a defined
neighborhood to generate moves in the solution space of
the problem under consideration. In the case of the QAP,
this neighborhood is typically a 2-exchange neighborhood
that swaps the location of two facilities at each step of the
local search process. The exploration of larger neighborhoods
where the simultaneous movement of k nodes of the permu-
tation can be examined is attractive though computationally
very demanding.

Ahuja et al. [1] introduce a very large scale neighborhood
search (VLSN) method for the QAP, which constitutes an
important advance in the creation of more complex neighbor-
hoods for the problem. This algorithm iteratively examines
all paths (or exchanges of nodes) of increasing depth, where
the maximum depth is a specified parameter. The VLSN algo-
rithm considers all moves (or a defined subset of moves) of
a given depth before proceeding to the next depth. Because
of the computational complexity of the full path enumera-
tion scheme presented, a maximum path length of k = 4 was
settled upon in their study.

Ejection chain methods constitute a special class of very
large neighborhoods that have proved highly promising in the
solution of difficult and large scale combinatorial optimiza-
tion problems. In general, ejection chains provide the ability
to strategically extend simpler neighborhoods, such as those
consisting of exchange (swap) moves or insert (shift) moves,
to create more complex neighborhoods that can be generated
with an efficient investment of effort [16]. Some forms of
ejection chain methods make use of a reference structure as a
framework for generating moves at each level of the ejection
chain construction [17, 18].

Examples of successful applications of various types of
ejection chains include: the multinode insertion and exchange
ejection chain method for the classical vehicle routing prob-
lem [28], the long-chain shift neighborhood for the general-
ized assignment problem [36], the stem-and-cycle (S&C),
and the doubly-rooted S&C reference structures for the
traveling salesman problem [26, 29], the flower reference
structure for the vehicle routing problem [27], and the sub-
graph ejection chain method for the crew scheduling problem
[4].

The key contribution of this article is the development of
a specialized ejection chain algorithm for the QAP, drawing
on a proposal sketched in Ref. [16], which has useful features
in the QAP setting. The approach utilizes the ejection chain
structure to build successively larger exchanges based upon
the elements chosen in the proceeding chain. In this manner,
only a selected subset of all possible chains at each depth is
considered for a given permutation. This process allows the
method to quickly probe larger neighborhoods, with no con-
straints on the depths examined, by constructing these chains
of moves based upon previously promising structures. More
importantly, these ejection chain neighborhoods exhibit a

special property called combinatorial leverage, where a level
k neighborhood contains O(nk) elements, but a potentially
best member for a k-neighborhood (k > 2) is determined
with k examinations of O(n) “component” elements.

We embed our ejection chain method within a tabu search
(TS) framework to provide strategic control over the forma-
tion of the chains. The first version of our TS method is
extremely simple, using memory only in the role of “book-
keeping” operations instead of in the role of performing
advanced guidance. Our chief purpose in examining this
simple structure is to show that the ejection chain neighbor-
hood obtains better solutions than an exchange neighborhood
in the same framework. We then extend this basic frame-
work to present two multistart tabu search variants that yield
solutions of higher quality and demonstrate the advantages
of embedding ejection chains within a more sophisticated
metaheuristic. We also provide computational comparisons
to previous large neighborhood approaches.

2. THE EJECTION CHAIN METHOD

Our ejection chain method extends the classical 2-
exchange (or swap) neighborhood for the QAP to effectively
create more general k-exchange neighborhoods where k can
take any integer value between 2 and n. The method may
be conceived as providing a variable depth neighborhood
that determines the value of k dynamically according to the
current state of the search.

Underlying a general ejection chain design, exchange
moves are successively embedded in the ejection chain con-
struction, level by level, and are driven by the evaluation
of two types of interrelated moves: (1) an ejection move,
which extends the depth of the neighborhood by generating
an intermediate (reference) structure; and (2) a trial move,
which creates a feasible solution from the intermediate struc-
ture provided by the ejection move. The structure obtained
with the application of the trial move is called a trial solution.

Our QAP ejection chain method constitutes a node-based
ejection chain model where facilities are associated with
nodes in a graph which are to be assigned to locations. In this
context the method implements a type of multinode exchange
move, which can be seen as a series of swap moves for the
QAP.

2.1. The Ejection Chain Neighborhood

We represent a QAP solution as a perfect matching in a
bipartite graph. Let G = (F ∪ L, F × L) be a (complete)
bipartite graph with F = {f1, . . . , fn} representing facilities
and L = {l1, . . . , ln} representing locations. A solution for
the QAP can be defined by a partial graph S = (F ∪ L, E ⊂
F ×L) such that (fi, lj) ∈ E if and only if facility fi is assigned
to location lj and no two arcs are incident to the same node.

An ejection chain neighborhood can be defined
on a subgraph H = (W , T) of S where T =
{(f 0, l0), . . . , (f k , lk), . . . (f l, ll)} is a set of arcs represent-
ing l + 1 levels of an ejection chain, which we denote by

2 NETWORKS—2010—DOI 10.1002/net



FIG. 1. Illustration of two levels of an ejection chain for the QAP.

T = ∪l
k=0 {(f k , lk)}. An ejection results by moving a facility

fi from location lj to a new location lq occupied by another
facility fp, disconnecting fp from its location. In terms of the
aforementioned graph formulation, this move is equivalent
to deleting arcs (fi, lj), (fp, lq), and inserting an arc (fi, lq).
Let k be a level of the chain, each node f k ejects the node
f k+1 ending with the ejection of the node f l. As a result,
an ejection chain of l + 1 levels is the replacement of T by
T ′ = ∪l

k=1{(f k−1, lk)}, transforming S into a disconnected
graph. In other words, arcs (f k , lk)(k = 0, . . . , l) are succes-
sively replaced by arcs (f k−1, lk)(k = 1, . . . , l). Because f l

is not assigned to any location, this transformation does not
represent a complete transition from the current solution S to
a new feasible solution S′. However, the complete transition
can be obtained by a trial move that connects the graph by
simply inserting the arc (f l, l0). Let T ′′ be the set defined by
the arc added by the trial move, the new neighboring solution
is obtained as S′ = S ∪ T ′ ∪ T ′′ − T .

The general model is illustrated in Figure 1 for three lev-
els (0, 1, and 2) of an ejection chain. Diagram A depicts the
ejection moves performed throughout the ejection chain, and
diagrams B and C illustrate the connected graphs obtained
by the trial moves at levels 1 and 2, respectively. Dotted
lines represent the set T associated with original assignments
in the solution S that were affected by the ejection chain
process. Likewise, solid lines denote the sets T ′ and T ′′ rep-
resenting the new assignments made by the ejection moves
and the associated trial moves. Specifically, for level 1, we
have T = {(i, j), (p, q)}, T ′ = {(i, q)}, and T ′′ = {(p, j)}.
By extension, for level 2, we have T = {(i, j), (p, q), (r, s)},
T ′ = {(i, q), (p, s)}, and T ′′ = {(r, j)}.

The process continues through additional nodes of G until
a suitable termination criterion is met. The adaptation of the
ejection chain idea to this setting may be viewed as a gener-
alization of a weighted alternating path approach, as applied
in the solution of matching problems.

2.2. The Ejection Chain Construction

The evaluation of moves is a critical factor in building
an ejection chain. Handled appropriately, the evaluation of
ejection and trial moves yields an important form of combina-
torial leverage in the creation of k-exchange neighborhoods
of the type exploited in this study. In our construction, the
number of moves represented by a level k neighborhood is

multiplicatively greater than the number of moves in a level
k-1 neighborhood, but the best move from the neighborhoods
at each individual level (k > 1) can be determined by adding
only the effort required to examine the neighborhood of a sin-
gle node. In particular, the number of moves composing the
first, second, and third levels are O(n2), O(n3), and O(n4),
but the best member of level two and three neighborhoods can
be found by adding only O(n) effort to the work expended
to determine the best first level move. The method is based
on the principle of capturing relevant component moves in
successive neighborhoods as a way to generate good com-
pound moves—potentially the best in the associated k-level
neighborhood.

To understand the operation of these moves, consider
starting with a simple 2-exchange neighborhood. If the best 2-
exchange is not improving, there may be a sequence of moves
going beyond 2-exchanges that can do better. For instance,
the compound move exemplified in the diagram C of Figure
1 corresponds to two successive 2-exchange moves, where
facility i = π(j) is first exchanged with facility p = π(q),
and then p = π(j) is exchanged with r = π(s). Since location
j is involved in both 2-exchange moves, this neighborhood
implements a 3-exchange move. Accordingly, a k − 1 level
ejection chain neighborhood of this type is shown to imple-
ment general k-exchange moves. It follows that the second
level neighborhood contains O(n3) moves (barring the use
of candidate lists) since each of the n choices for i can eject
O(n) alternatives for node p, which in turn can eject O(n)

other alternatives. However, we can identify the best move
from a closely related O(n3) neighborhood by one appli-
cation of O(n2) effort and one of O(n) effort. The O(n3)

neighborhood we treat is actually less encompassing than
the one indicated, as a result of a construction that avoids
duplications among certain nodes at different levels to insure
the legitimacy of the compound moves ultimately produced.
As long as the number of levels is small relative to n, the
combinatorial leverage is not significantly affected by this
legitimacy-preserving construction. On the other hand, there
can be advantages to extending the number of levels for the
purpose of inducing a diversification effect to overcome local
optimality.

To evaluate the change in solution cost created by a com-
pound move at a given level k of an ejection chain, it is
convenient to subdivide these changes into two fundamental
component operations: disconnecting the facility currently

NETWORKS—2010—DOI 10.1002/net 3



assigned to location j, and relocating facility i to location j.
Denote the first ejected node (which initiates the chain) by
the top node t, and the current ejected node by the bottom
node b. We let π(i) represent the facility at location i in a
solution corresponding to a trial ejection chain under con-
sideration, and π ′(i) represent the facility at location i in a
current solution.

Because the selection of the initial top and bottom nodes
requires the evaluation of the trial move that is made after
ejecting the potential bottom node, the relocation of the bot-
tom node into the position vacated by the top node must be
evaluated before relocating the top node. This particularity
makes the relocation operation at the first level of the ejection
chain different from the relocations used in the ejection and
trial moves performed at higher levels of the chain (where the
relocation of the current bottom node is evaluated after the
bottom node at the previous level already occupies its new
position).

For this reason, it is convenient to define a special reloca-
tion operation aimed at circularizing the ejection move at the
first level of the ejection chain. The cost changes associated
with these operations may be expressed as follows:

Disconnection value: D(j) = −
n∑

h=1

ahjbπ(h)π(j) h �= j, t

Relocation value: R(i, j) =
n∑

h=1

ajhbiπ(h) h �= j, t

Circularization value: C(j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
h=1

athbπ(j)π(h) h �= j, t

n∑
h=1

athbπ(t)π(h) h = j, h �= t

Hence, for the symmetric QAP, the actual solution cost
change associated with these operations is twice the value
obtained by the corresponding operation. The generalization
of these operations to the asymmetric variant of the problem
can be obtained by simply creating additional product terms
that switch the indexes of the product terms above and adding
these new terms to the preceding expressions.

Let ejection value denote the solution cost change asso-
ciated with the ejection moves, and let trial value denote
the solution cost change associated with a trial move. Then,
an ejection chain of l levels satisfying the requirements of
legitimacy may be recursively evaluated as follows:

Ejection value:

E(k) =
{
D(t) + D(bk) + R(π(t), bk) k = 1
E(k − 1) + D(bk) + R(π ′(bk−1), bk) 1 < k ≤ l

Trial value: �(k) =
{
E(k) + C(bk) k = 1
E(k) + R(π ′(bk), t) 1 < k ≤ l

Letting Z(S) be the cost of the current QAP solution S, the
value of a trial solution Sk obtained at a level k of the ejection

chain is given by Z(Sk) = Z(S) + 2�(k) for the symmetric
case. As previously mentioned, for the asymmetric case, the
last term would include the reverse products in D, R, and
C rather than being doubled. The method keeps track of the
level k∗ where the best trial solution has been found, which
corresponds to the depth of the compound move applied to
the current solution S so as to obtain the new neighboring
solution S′. Figure 2 gives an example of these calculations for
the evaluation of two levels of an ejection chain. To simplify
the illustration and keep the equations short, the example
considers the symmetric QAP and assumes that the transition
to a new neighboring solution is performed at level two.

In the illustration, the chain starts with t = 2 and b1 = 3
as the initial top and bottom nodes, respectively. The first
operations consist of disconnecting these two nodes from the
graph and relocating (facility) node 2 in the location previ-
ously occupied by node 3, keeping node 2 disconnected. The
algebraic sum of these three operations gives the value of the
ejection move E(1) for the first level of the chain. The value
of the trial move �(1) associated with the current ejection
is obtained by circularizing the chain, relocating the current
ejected node 3 to occupy the location vacated by the top node
2. At this point, the value of the corresponding trial solution
Z(S1) can be calculated by adding the circularization value
to the value of the starting solution. The second level is cre-
ated by choosing facility 1 at location 4 to be ejected by the
currently disconnected (bottom) node b1 = 3, thus setting
b2 = 4. The new ejection value is then computed by adding
the disconnection and relocation values D(4) and R(3, 4) of
the current ejection to the previously obtained ejection value
E(1). Finally, the new trial value �(2) is obtained by adding
the relocation value of facility 1 into the original position of
the top node to the current ejection value.

2.3. The Ejection Chain Procedure

The ejection chain method begins by identifying the best
local move for each facility j, which constitutes removing j
from its current location and relocating it in the position occu-
pied by a facility l, which is thereby ejected. (The method can
also start by looking at each l and finding the best j to replace
it.) The first level of the ejection chain consists of selecting
initial chains based on performing a series of best 2-exchange
moves. Notably, such a move corresponds to simultaneously
determining the best initial node to be ejected and the best
node to occupy the location of the ejected node. The chain
grows by selecting a new node to be ejected by the previously
ejected node. Under the natural restriction that prevents an
element from being moved twice, the chain can continue to
grow until all n nodes have been ejected. The pseudocode for
the ejection chain procedure is sketched in Figure 3.

3. TABU SEARCH ALGORITHMS

Rudimentary tabu search (TS) approaches of the type
considered here employ short term memory structures to for-
bid moves that lead to solutions recently visited (rendering

4 NETWORKS—2010—DOI 10.1002/net



FIG. 2. Evaluation of an ejection chain of two levels.

FIG. 3. The ejection chain procedure.

NETWORKS—2010—DOI 10.1002/net 5



FIG. 4. Simple tabu tenure ejection chain algorithm: EC1.

these moves tabu). One or more aspiration criteria are typ-
ically employed that allows the tabu status of a move to
be overridden when the move exhibits desirable character-
istics. More advanced TS implementations include the use
of long term memory to restrict or encourage moves based
on frequency and logical analysis, and incorporate intensifi-
cation and diversification strategies to encourage the search
towards promising and unexplored regions of the search
space, respectively. For a comprehensive treatment of TS,
see [14].

The first TS approach we consider, denoted EC1, is used
only to provide a comparison between different neighbor-
hoods, and minimizes the TS mechanisms employed. EC1
uses a tabu restriction that renders moves tabu for only a
short period and is used to compare the classical swap neigh-
borhood to the ejection chain neighborhood. We then develop
two additional tabu search algorithms denoted EC2 and EC3,
using a multistart design to provide a basic form of diver-
sification. While still utilizing only simple TS strategies,
these algorithms illustrate the potential of the ejection chain
approach when embedded within a slightly more advanced
framework.

3.1. The Basic Ejection Chain Algorithm: EC1

Starting from a randomly generated initial permutation,
the EC1 tabu search algorithm utilizes a tabu list to restrict
only the choice of the initial top and bottom nodes of the
ejection chain construction. Once the initial nodes of a chain
are selected, a tabu tenure is chosen for each of the two
nodes that determines the number of subsequent iterations
in which these nodes are tabu, meaning in this case that they
are prevented from starting another chain. Since these tabu
restrictions only apply to the two initial nodes, associated
checking and updating of the tabu list are implemented in
Step 1(a) of the ejection chain procedure of Figure 3. An
aspiration criterion is not used in EC1 to override the tabu
restrictions, since we give them a very small tenure. To obtain
a direct comparison of the neighborhoods, a 2-exchange (or
swap) neighborhood version of EC1 was also implemented by
restricting the chain length to two nodes, i.e., L = 1. The EC1
algorithm imposes a minimum amount of heuristic guidance
on the search and illuminates the impact of the neighborhood
definition utilized. As a basis for this we keep track of the

number of consecutive iterations with no improvement of the
global best solution (NF) and stop the algorithm when this
counter reaches a predefined maximum number of failures
(MF). The basic algorithm is shown in Figure 4.

3.2. Multistart Ejection Chain Algorithms: EC2 and EC3

Multistart algorithms seek to perturb the standard search
path by periodically re-launching the search from a new
initial configuration. A multistart tabu search for the QAP
is given by Fleurent and Glover (1999) [12] where a local
search is iteratively applied to solutions built by a construc-
tive method tailored to provide high quality starting solutions.
Another approach for diversifying the solutions generated is
to make parameter adjustments to influence the trajectory
of the search. While such an approach is not a multistart
approach in the classical sense, it likewise leads to a new
solution that may be interpreted as a new starting point for
the search, and hence for convenience we will refer to it as
a multistart procedure in the discussions of this article. The
multistart procedures introduced in the current study are of
both types.

EC2 and EC3 differ in the solution that ultimately replaces
the current working permutation when the algorithm is
restarted. Both algorithms impose a simple tabu restriction
on the initial nodes chosen as considered in EC1. However,
for these multistart variants the tabu tenure is increased and
an aspiration criterion is applied that allows a tabu move to be
made under certain conditions, as follows. First, we apply the
aspiration criterion only if the previous iteration of the local
search did not produce a globally improving solution. Next,
the move must meet two conditions: (1) the cost of the move
must be less than that of the best move found so far during
the current iteration; (2) a move meeting the first condition is
permissible if the tabu tenure of the elements of the restricted
move fall below a predefined aspiration threshold. As these
conditions restrict the choices of the two initial nodes used
to start the chain, they are tested in Step 1(a) of the ejection
chain procedure in Figure 3.

The number of non-improving iterations (or failures) since
the last perturbation is kept by the NRF counter. Both variants
are restarted when an improving solution is not found within
a predetermined number of iterations since the last pertur-
bation was applied. The maximum restart failures threshold

6 NETWORKS—2010—DOI 10.1002/net



FIG. 5. Multistart ejection chain algorithm variants: EC2 and EC3.

value MRF is drawn from a range determined by the stopping
criterion parameter. At each restart, this value is redrawn to
allow the search stagnation threshold to vary within a con-
trolled range throughout the run of the algorithm. For both
EC2 and EC3, when the maximum restart failures threshold
is reached (NRF = MRF), the tabu parameters are reset to
change the trajectory of the search.

In EC2, the current working solution is replaced by the
global best solution from the previous iterations of the search.
EC3 restarts from a diversified version of the best solution.
In this variant, a diversification method is applied to a copy
of the best permutation and the current working solution is
replaced with this diversified permutation. Figure 5 provides
the pseudocode for the general multistart algorithm.

The diversification procedure used in EC3 was suggested
by Glover [15] and its pseudocode is given in Figure 6. This
method creates a new solution from a seed solution (in this
case the current global best permutation) by defining a step
size and then reordering the permutation based upon this
step size. Starting from a step size of 2, the step size is
increased each time the algorithm is restarted, cycling back
to the original step size if necessary.

To illustrate the method given in Figure 6, consider the
following example permutation:

ϕ = 〈3, 5, 8, 1, 4, 6, 2, 7〉.

Choosing a step size of 2, the first iteration of the algo-
rithm initializes the start variable to 2, which causes j to range
from 2 to the number of elements in the permutation, in this
example n = 8. After the first iteration of the outer loop, the
following partial permutation is obtained:

π = 〈5, 1, 6, 7, −, −, −, −〉.

The next pass through the outer loop then sets start = 1
and the following complete permutation is obtained:

π = 〈5, 1, 6, 7, 3, 8, 4, 2〉.
In this manner, for each step size a different permutation

is obtained.

4. COMPUTATIONAL RESULTS

All algorithms were tested on a standard set of QAP bench-
mark instances obtained from QAPLIB [5]. All algorithms
were written in the C programming language and run on a sin-
gle Intel Itanium processor (1.3 GHz) on a SGI Altix running
the Linux operating system. The parameters for each algo-
rithm variant (EC1, EC2, and EC3) developed in this study
are summarized in Table 1.

We consider runs under two stopping conditions, denoted
by SC1 and SC2. SC1 caused the algorithms to cease exe-
cution of the search after no improvement is found in 5000n
iterations (MF), where n is the number of facilities/locations,
or the problem size. SC2 stipulates a time limit of 1 h for
instances of size n ≤ 40, and 2 h for larger instances, after
which the algorithm terminates execution. SC2 is the same

FIG. 6. Diversification procedure.

NETWORKS—2010—DOI 10.1002/net 7



TABLE 1. TS Variant parameter settings.

Parameter EC1 EC2 EC3

Maximum failures (MF) (Stopping criterion SC1) 5000n 5000n 5000n
Time limit, h 1 (n ≤ 40) 1 (n ≤ 40) 1 (n ≤ 40)
(Stopping criterion SC2) 2 (n > 40) 2 (n > 40) 2 (n > 40)
Allowable failures (MRF)
Lower limit n/a 5n 5n
Upper limit n/a 500n 500n
(Restart criterion)
Tabu tenure
Lower limit (LT) 3 (static) n/10 (variable) n/10 (variable)
Upper limit (UT) 10 (static) 3n/10 (variable) 3n/10 (variable)
Aspiration threshold n/a (LT+UT)/2 (LT+UT)/2
Restart tabu tenure
Lower limit (LT) n/a n/10 n/10
Upper limit (UT) n/a n n
Restart solution n/a global best diversified global best

stopping condition applied in Ref. [1] and is used to allow for
a direct comparison with the associated VLSN algorithms.

Tables 2 and 3 present computational results for all
variants of the algorithms under SC1 and SC2 stopping con-
ditions, respectively. The parameters used in all algorithms
for both Tables 2 and 3 are the same with the exception of
the stopping condition. All algorithms ran 10 times on each
problem instance, each time starting from a randomly gener-
ated seed solution. The tabu tenure for EC1 was set to be an
integer value randomly drawn from the range 3–10. The tabu
tenure for EC2 and EC3 is initialized with a value chosen
from the range n/10 and 3n/10. At each restart for EC2 and
EC3, the tabu search parameters are adjusted. The upper and
lower limits, that are used to determine the tabu tenure for an
element are redrawn and allowed to vary in the range n/10 to
n. Similarly, the maximum restart failures (MRF) parameter
is reset every time a restart occurs for both the EC2 and EC3
variants. At each restart MRF is chosen from the range 5n to
500n. As previously mentioned no aspiration criterion is used
in EC1, while for EC2 and EC3 tabu active moves are sub-
jected to two aspiration conditions. In our implementation,
the required aspiration threshold is defined to be the aver-
age of the lower and upper limits of the current tabu tenure
range. Also, as remarked EC2 and EC3 algorithms differ in
the mechanism used to restart the search: EC2 restarting from
the current global best solution, and EC3 restarting from a
diversified version of the global best solution.

Table 2 and Table 3 follow the same format. The first two
columns provide the name of the test instance and the corre-
sponding best known solution (BKS). The next columns are
organized in four groups associated with each variant of our
ejection chain algorithm. The first two groups represent the
simple tabu search algorithm restricted to first-level ejection
chains to implement a 2-exchange neighborhood (2-exchange
EC1), and its extension to n-level ejection chains implement-
ing a variable depth k-exchange neighborhood (EC1). The
next two groups correspond to the two multistart tabu search
variants using either the current global best solution (EC2) or
a diversified version of it (EC3) as a perturbation scheme to

restart the search. For each algorithm we provide the average
percent deviation (APD) to the BKS, the best percent devi-
ation (BPD) for only the best solution obtained from the 10
runs, the average iteration the best solution was found (ABI),
and either the average running time to completion (ATTC) in
minutes using stopping criterion SC1 (Table 2) or the aver-
age running time to solution (ATTS) using stopping criterion
SC2 (Table 3).

Figure 7 graphically depicts the average solution quality
of the three EC variants and the 2-exchange neighborhood
from Table 2. Figure 8 shows a comparison of the average
times to completion for all algorithms in Table 2 on each
problem instance.

Table 2 shows that the ejection chain neighborhood
improved the average solution quality of all but 4 problems
over the 2-exchange neighborhood embedded in the same
heuristic. The impact of the ejection chain neighborhood can
be easily observed as EC1 obtained better average results than
the 2-exchange EC1 algorithm on 19 of the 22 test problems
and tied on 1. The 2-exchange EC1 and EC1 are identical
algorithms except for the neighborhood utilized. In the 2-
exchange EC1 algorithm, the maximum length of the chain
was limited to 2 nodes, which simulates a 2-exchange neigh-
borhood. The best overall solution was found by EC1 for 12
of the 22 problems, with the 2-exchange version obtaining the
best overall solution for 9 of 22, with a tie for one problem
where both variants found the BKS.

In Table 3 the results were similar. EC1 using the ejection
chain neighborhood obtained better average results on 13 of
the 22 problem instances and tied on 1. The performance
was degraded a small amount due to the time limit imposed.
It should be noted that the 2-exchange neighborhood algo-
rithm is able to perform around twice as many iterations in
the same amount of time as the ejection chain neighborhood.
While the ejection chain neighborhood is quick compared to
a full k-opt exploration, it is still slower than a swap neigh-
borhood. This leads to an interesting observation. In Table 3,
where the runtime of the algorithm was restricted, the ejec-
tion chain neighborhood still outperformed the 2-exchange

8 NETWORKS—2010—DOI 10.1002/net



TA
B

L
E

2.
C

om
pu

ta
tio

na
lr

es
ul

ts
fo

r
Sk

or
in

–K
ap

ov
pr

ob
le

m
s

an
d

sy
m

m
et

ri
c

Ta
ill

ar
d

pr
ob

le
m

s
us

in
g

st
op

pi
ng

cr
ite

ri
on

1.

2-
O

pt
E

C
1

E
C

1
E

C
2

E
C

3

Pr
ob

le
m

B
K

S
A

PD
B

PD
A

B
I

A
T

T
C

A
PD

B
PD

A
B

I
A

T
T

C
A

PD
B

PD
A

B
I

A
T

T
C

A
PD

B
PD

A
B

I
A

T
T

C

Sk
or

in
–K

ap
ov

in
st

an
ce

s
sk

o4
2

15
81

2
0.

12
0

0.
00

0
12

13
27

2.
46

0.
02

8
0.

00
0

14
10

03
4.

78
0.

29
3

0.
00

0
12

72
61

6.
16

0.
06

1
0.

00
0

18
11

44
7.

15
sk

o4
9

23
38

6
0.

19
9

0.
05

1
81

09
6

4.
51

0.
19

9
0.

00
0

56
82

1
7.

05
0.

23
5

0.
05

1
10

57
62

11
.0

0
0.

08
6

0.
05

1
16

46
92

13
.0

2
sk

o5
6

34
45

8
0.

41
8

0.
01

2
10

19
49

8.
70

0.
52

7
0.

07
5

69
94

4
12

.7
8

0.
47

5
0.

01
2

20
48

42
22

.9
6

0.
25

9
0.

02
9

14
48

41
19

.9
7

sk
o6

4
48

49
8

0.
64

4
0.

10
7

14
55

38
19

.6
6

0.
46

4
0.

00
0

86
41

1
27

.6
4

0.
24

3
0.

00
8

27
13

42
50

.4
6

0.
13

9
0.

00
0

33
05

84
55

.5
0

sk
o7

2
66

25
6

0.
93

2
0.

21
1

21
13

65
34

.3
0

0.
69

1
0.

07
2

22
41

79
54

.3
7

0.
32

2
0.

06
0

25
24

83
69

.8
6

0.
34

0
0.

21
1

31
05

67
76

.2
0

sk
o8

1
90

99
8

0.
90

1
0.

09
0

21
76

87
58

.7
9

0.
84

9
0.

25
9

76
56

7
70

.5
4

0.
33

6
0.

09
7

29
92

75
12

1.
94

0.
27

1
0.

04
4

37
85

43
13

6.
34

sk
o9

0
11

55
34

0.
69

1
0.

23
0

25
42

79
97

.5
4

0.
88

1
0.

38
9

10
43

95
11

7.
12

0.
30

5
0.

00
0

58
78

29
25

6.
00

0.
27

2
0.

01
4

44
35

39
21

9.
75

sk
o1

00
a

15
20

02
0.

73
6

0.
37

8
22

55
63

14
6.

47
0.

66
1

0.
40

4
18

21
65

21
3.

58
0.

31
4

0.
02

6
44

42
83

33
4.

82
0.

26
3

0.
13

3
45

11
70

33
7.

15
sk

o1
00

b
15

38
90

0.
86

8
0.

65
9

17
64

45
13

6.
42

0.
80

3
0.

29
8

33
80

37
26

2.
14

0.
37

9
0.

12
7

37
92

73
31

1.
93

0.
22

6
0.

08
7

37
80

51
31

1.
29

sk
o1

00
c

14
78

62
1.

10
8

0.
55

7
25

69
18

15
2.

55
0.

77
9

0.
17

0
17

66
88

21
1.

84
0.

73
1

0.
03

0
61

65
75

39
6.

26
0.

26
9

0.
10

7
47

05
22

34
4.

28
sk

o1
00

d
14

95
76

1.
00

7
0.

38
9

59
19

9
11

2.
66

0.
86

2
0.

59
4

10
64

22
18

9.
76

0.
43

7
0.

07
0

36
90

67
30

7.
84

0.
31

6
0.

06
0

66
76

56
41

4.
04

sk
o1

00
e

14
91

50
1.

17
8

0.
80

1
36

31
82

17
4.

00
1.

14
7

0.
61

5
18

82
24

21
5.

46
0.

52
2

0.
02

0
42

89
18

32
9.

18
0.

19
8

0.
02

0
58

38
62

38
4.

48
sk

o1
00

f
14

90
36

0.
98

9
0.

76
9

32
44

63
16

6.
58

0.
97

9
0.

49
8

76
79

6
18

0.
70

0.
56

7
0.

16
9

46
80

75
34

4.
04

0.
39

5
0.

20
3

41
21

34
32

3.
81

A
ve

ra
ge

0.
75

3
0.

32
7

19
53

08
85

.7
4

0.
62

8
0.

26
0

14
05

89
12

0.
60

0.
39

7
0.

05
2

35
03

83
19

7.
11

0.
23

8
0.

07
4

37
82

54
20

3.
31

Sy
m

m
et

ri
c

Ta
ill

ar
d

in
st

an
ce

s
ta

i2
0a

12
24

55
31

9
0.

90
6

0.
00

0
70

96
7

0.
38

0.
71

8
0.

30
4

60
80

5
0.

31
0.

15
2

0.
00

0
66

08
5

0.
22

0.
19

9
0.

00
0

50
30

3
0.

20
ta

i2
5a

34
43

55
64

6
1.

52
3

0.
93

7
10

96
65

0.
23

0.
67

0
0.

00
0

63
24

5
0.

27
0.

29
4

0.
00

0
61

48
0

0.
71

0.
05

5
0.

00
0

76
38

8
0.

69
ta

i3
0a

63
71

17
11

3
0.

95
9

0.
39

8
14

48
11

0.
45

0.
64

5
0.

49
0

12
75

72
1.

29
0.

17
8

0.
00

0
71

86
9

1.
60

0.
13

7
0.

00
0

61
31

1
1.

29
ta

i3
5a

28
33

15
44

5
1.

12
3

0.
59

5
14

30
38

1.
08

0.
97

2
0.

69
8

98
11

7
1.

92
0.

30
2

0.
00

0
14

38
31

3.
29

0.
27

2
0.

00
0

15
11

37
3.

38
ta

i4
0a

63
72

50
94

8
1.

02
2

0.
43

9
17

28
07

2.
19

0.
82

5
0.

41
6

20
25

77
4.

50
0.

42
0

0.
30

5
13

98
42

5.
38

0.
38

7
0.

12
0

18
34

52
6.

10
ta

i5
0a

45
88

21
51

7
1.

09
0

0.
71

0
21

23
17

6.
67

1.
05

8
0.

72
1

19
82

35
11

.1
4

0.
73

2
0.

57
2

16
95

72
13

.8
1

0.
72

6
0.

56
4

18
97

09
14

.3
0

ta
i6

0a
60

82
15

05
4

1.
02

5
0.

77
5

23
04

85
16

.9
9

1.
01

7
0.

60
2

15
77

55
23

.7
8

0.
71

5
0.

49
9

30
85

15
40

.4
3

0.
86

1
0.

60
1

13
40

47
28

.6
0

ta
i8

0a
81

84
15

04
3

0.
80

4
0.

62
5

32
46

38
64

.7
8

0.
69

5
0.

45
3

31
13

13
97

.9
3

0.
64

4
0.

39
2

46
52

71
14

2.
07

0.
78

0
0.

58
1

21
17

60
10

0.
09

ta
i1

00
a

11
85

99
61

37
0.

48
1

0.
34

8
49

11
75

20
0.

14
0.

56
3

0.
31

1
30

43
80

25
2.

10
0.

60
0

0.
27

2
33

27
53

29
5.

57
0.

65
4

0.
41

9
32

13
25

29
1.

44
A

ve
ra

ge
0.

99
3

0.
53

6
21

11
00

32
.5

5
0.

79
6

0.
44

4
16

93
33

43
.6

9
0.

44
9

0.
22

7
19

54
69

55
.9

0
0.

45
2

0.
25

4
15

32
70

49
.5

6
O

ve
ra

ll
0.

85
1

0.
41

3
20

17
96

63
.9

8
0.

72
9

0.
33

5
15

23
48

89
.1

3
0.

41
8

0.
12

3
28

70
09

13
9.

34
0.

32
6

0.
14

7
28

62
15

14
0.

41

T
he

be
st

av
er

ag
e

pe
rc

en
td

ev
ia

tio
n

ov
er

al
la

lg
or

ith
m

s
is

sh
ow

n
in

bo
ld

fa
ce

.

NETWORKS—2010—DOI 10.1002/net 9



TA
B

L
E

3.
C

om
pu

ta
tio

na
lr

es
ul

ts
fo

r
Sk

or
in

–K
ap

ov
pr

ob
le

m
s

an
d

sy
m

m
et

ri
c

Ta
ill

ar
d

pr
ob

le
m

s
us

in
g

st
op

pi
ng

cr
ite

ri
on

2.

2-
O

pt
E

C
1

E
C

1
E

C
2

E
C

3

Pr
ob

le
m

B
K

S
A

PD
B

PD
A

B
I

A
T

T
S

A
PD

B
PD

A
B

I
A

T
T

S
A

PD
B

PD
A

B
I

A
T

T
S

A
PD

B
PD

A
B

I
A

T
T

S

Sk
or

in
–K

ap
ov

in
st

an
ce

s
sk

o4
2

15
81

2
0.

00
8

0.
00

0
75

39
38

6.
61

0.
00

0
0.

00
0

10
34

67
1.

62
0.

01
9

0.
00

0
11

83
88

6
27

.5
0

0.
00

0
0.

00
0

98
40

19
21

.4
3

sk
o4

9
23

38
6

0.
05

3
0.

00
0

18
88

63
3

26
.8

1
0.

06
3

0.
00

0
61

51
69

15
.0

8
0.

10
7

0.
05

1
85

74
22

28
.0

0
0.

03
9

0.
00

0
15

51
12

13
50

.9
1

sk
o5

6
34

45
8

0.
18

3
0.

00
0

16
51

17
9

37
.4

8
0.

32
4

0.
18

6
11

27
98

0
43

.4
1

0.
30

5
0.

01
2

77
12

65
38

.0
7

0.
02

7
0.

01
2

11
76

50
7

58
.0

2
sk

o6
4

48
49

8
0.

47
5

0.
09

1
11

06
45

6
51

.1
8

0.
39

7
0.

00
0

50
41

55
38

.1
4

0.
13

9
0.

00
8

46
98

25
44

.2
7

0.
07

8
0.

00
0

64
27

91
60

.9
9

sk
o7

2
66

25
6

0.
82

7
0.

21
1

47
33

06
30

.5
5

0.
70

5
0.

19
6

59
34

91
60

.9
2

0.
31

9
0.

06
0

31
69

19
39

.5
2

0.
25

0
0.

11
5

63
52

24
79

.2
2

sk
o8

1
90

99
8

0.
85

5
0.

08
6

47
32

55
50

.7
4

0.
94

3
0.

48
1

24
76

91
41

.6
9

0.
36

4
0.

09
7

32
70

19
65

.4
4

0.
27

8
0.

11
4

34
05

29
68

.0
6

sk
o9

0
11

55
34

0.
69

1
0.

23
0

25
42

79
40

.2
7

0.
78

5
0.

53
3

21
21

66
51

.8
7

0.
42

4
0.

02
9

27
25

43
77

.9
6

0.
47

3
0.

13
2

20
22

59
57

.8
4

sk
o1

00
a

15
20

02
0.

73
9

0.
37

8
14

47
80

33
.4

7
0.

61
7

0.
16

3
11

09
96

39
.9

4
0.

42
4

0.
11

2
20

85
84

86
.1

3
0.

34
0

0.
19

7
17

19
48

70
.8

6
sk

o1
00

b
15

38
90

0.
86

8
0.

65
9

17
64

45
40

.8
2

0.
52

1
0.

39
6

92
30

4
33

.1
9

0.
43

6
0.

14
9

23
88

88
98

.7
1

0.
40

8
0.

14
0

12
99

12
53

.5
4

sk
o1

00
c

14
78

62
1.

12
2

0.
55

7
16

79
28

38
.8

2
1.

44
5

0.
88

9
13

22
06

42
.4

8
0.

96
3

0.
12

7
18

23
85

75
.5

3
0.

54
3

0.
17

2
18

81
09

77
.6

3
sk

o1
00

d
14

95
76

1.
00

7
0.

38
9

59
19

9
13

.6
8

1.
01

9
0.

78
4

11
02

92
39

.5
2

0.
53

7
0.

11
9

20
25

64
83

.6
6

0.
51

7
0.

18
2

20
03

04
88

.1
4

sk
o1

00
e

14
91

50
1.

19
1

0.
80

1
20

26
36

46
.9

3
0.

79
6

0.
41

3
10

19
84

36
.6

6
0.

69
2

0.
02

0
21

68
67

89
.6

7
0.

46
0

0.
02

0
21

43
02

88
.3

3
sk

o1
00

f
14

90
36

1.
00

8
0.

78
2

23
73

91
52

.0
1

1.
06

3
0.

62
5

10
06

48
36

.2
0

0.
62

7
0.

27
9

18
72

27
77

.5
3

0.
54

2
0.

42
1

20
38

08
84

.1
9

A
ve

ra
ge

0.
69

4
0.

32
2

58
38

02
36

.1
0

0.
66

8
0.

35
9

31
17

34
36

.9
8

0.
41

2
0.

08
2

41
81

07
64

.0
0

0.
30

4
0.

11
6

51
08

40
66

.0
9

Sy
m

m
et

ri
c

Ta
ill

ar
d

in
st

an
ce

s
ta

i2
0a

12
24

55
31

9
0.

00
0

0.
00

0
18

88
52

84
7.

52
0.

00
0

0.
00

0
53

59
41

2
5.

80
0.

00
0

0.
00

0
41

03
89

0.
89

0.
00

0
0.

00
0

26
01

52
0.

56
ta

i2
5a

34
43

55
64

6
0.

10
2

0.
00

0
24

86
22

24
26

.1
9

0.
00

0
0.

00
0

39
24

53
0

9.
26

0.
00

0
0.

00
0

26
54

01
1.

10
0.

00
0

0.
00

0
13

25
37

0.
55

ta
i3

0a
63

71
17

11
3

0.
40

2
0.

01
6

10
56

74
11

22
.5

8
0.

16
1

0.
00

0
63

67
37

5
27

.7
5

0.
00

0
0.

00
0

52
04

51
3.

62
0.

00
0

0.
00

0
29

36
65

2.
04

ta
i3

5a
28

33
15

44
5

0.
47

9
0.

08
2

46
47

44
3

17
.6

8
0.

36
6

0.
06

7
39

02
29

8
28

.4
6

0.
00

0
0.

00
0

50
74

35
5.

51
0.

00
0

0.
00

0
91

53
65

9.
95

ta
i4

0a
63

72
50

94
8

0.
51

9
0.

07
4

51
01

52
4

31
.4

2
0.

55
0

0.
07

4
25

45
14

1
28

.8
8

0.
27

4
0.

07
4

17
28

56
3

27
.7

6
0.

21
9

0.
07

4
17

42
27

7
28

.0
1

ta
i5

0a
45

88
21

51
7

0.
80

2
0.

63
5

29
88

02
9

44
.2

9
0.

75
3

0.
53

4
22

09
48

6
56

.9
3

0.
55

0
0.

35
2

10
45

55
8

35
.5

7
0.

51
4

0.
36

4
10

41
69

8
35

.4
3

ta
i6

0a
60

82
15

05
4

0.
88

3
0.

76
9

15
96

27
9

54
.5

0
0.

79
1

0.
40

3
80

00
25

45
.5

2
0.

62
9

0.
49

9
68

57
10

49
.2

5
0.

65
7

0.
33

6
68

57
35

49
.2

4
ta

i8
0a

81
84

15
04

3
0.

74
5

0.
55

9
53

57
81

54
.0

1
0.

71
4

0.
53

2
41

73
35

65
.7

1
0.

68
1

0.
55

4
42

14
67

79
.4

6
0.

73
0

0.
48

6
34

59
48

65
.0

5
ta

i1
00

a
11

85
99

61
37

0.
56

7
0.

35
4

29
22

28
67

.4
6

0.
55

8
0.

31
3

16
06

11
57

.7
9

0.
71

4
0.

63
0

18
05

22
74

.6
5

0.
72

9
0.

41
9

13
18

51
54

.3
6

A
ve

ra
ge

0.
50

0
0.

27
7

77
19

57
8

36
.1

8
0.

43
3

0.
21

4
28

54
02

4
36

.2
3

0.
31

6
0.

23
4

64
06

11
30

.8
7

0.
31

7
0.

18
7

61
65

81
27

.2
4

O
ve

ra
ll

0.
61

5
0.

30
3

35
02

98
3

36
.1

4
0.

57
1

0.
30

0
13

51
76

2
36

.6
7

0.
37

3
0.

14
4

50
91

31
50

.4
5

0.
30

9
0.

14
5

55
40

98
50

.2
0

T
he

be
st

av
er

ag
e

pe
rc

en
td

ev
ia

tio
n

ov
er

al
la

lg
or

ith
m

s
is

sh
ow

n
in

bo
ld

fa
ce

.

10 NETWORKS—2010—DOI 10.1002/net



FIG. 7. Average percent deviation (APD) for Skorin–Kapov and symmetric
Taillard instances. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

neighborhood in terms of solution quality. On 8 of the 14
test instances where the ejection chain neighborhood tied or
bested the 2-exchange neighborhood in Table 3, the aver-
age time to the best solution (ATTS) for EC1 was actually
less than the 2-exchange neighborhood EC1. This indicates
that the ejection chain neighborhood is able to quickly find
high quality solutions. This is reinforced by the results in
Table 2, which shows that allowed to iterate with stagna-
tion as the stopping condition, EC1 using the ejection chain
neighborhood performs even better against the 2-exchange
neighborhood EC1. These results are obtained in most cases
without doubling the computational time of the 2-exchange
neighborhood EC1.

In Table 2, as well as in Table 3, the EC3 multistart variant
produced the best overall results of all approaches, obtaining
the best average solution quality for 16 of 22 problems in
Table 2. In Table 3, EC3 obtained the best average solution
quality for 14 of 22 problems. However, EC2 and EC3 tied
on 4 of the 22 problems, so the results indicate that EC3 does
as well as or better than all other variants under SC2 on 18
of the 22 problems. EC2 had 4 of the best average percent
deviations in Table 2 (3 of 22 in Table 3). EC1 and the 2-
exchange EC1 provided one best average percent deviation
each in Table 2. In Table 3, the 2-exchange EC1 obtained
the best average percent deviation to one problem. The EC2
variant, which replaced the current working solution with the
global best solution rather than a diversified solution, was
clearly outperformed by the EC3 variant. This suggests that
the use of strategic diversification is highly beneficial and
agrees with previous findings where metaheuristics applied
to the QAP that employ some type of diversity have provided
good results [9, 22, 24].

EC2 shows a slight edge over EC3 in obtaining the best
overall solution. EC2 produced the best overall solutions
(BPD) for 8 of 22 problems in Table 2 (7 of 22 in Table 3)
while EC3 produced 5 of the best overall solutions in Table
2 (3 of 22 in Table 3). EC1 produced 1 best overall solution

in both Tables. In Table 3, 2-exchange neighborhood EC1
produced 1 best overall solution. On the other 8 instances in
Table 2 (10 in Table 3) at least 2 of the variants tied.

4.1. Comparisons with Very-Large Scale Neighborhood
Algorithms

The VLSN algorithms introduced by Ahuja et al. [1]
employ a type of variable depth k-opt neighborhood and are
therefore appropriate for comparison with our EC algorithms.
The purpose of this comparison is to investigate the relative
performance of the ejection chain algorithms in this study
and other large neighborhood algorithms. To clarify the anal-
ysis, it is convenient to discuss the fundamentals of VLSN
algorithms and contrast them to the EC algorithms.

A full path enumeration search requires that every k-
exchange be explored and can be prohibitively expensive
even for relatively small values of k. This expense has
severely limited attempts to use neighborhoods for the QAP
more complex than the swap neighborhood (which results in
k = 2). The VLSN algorithms and the ejection chain algo-
rithms contribute alternative approaches for exploring larger
neighborhoods.

The VLSN algorithms of Ahuja et al. [1] introduce an
improvement graph for the QAP together with several vari-
ants of a search algorithm utilizing a large neighborhood.
The concept of an improvement graph was first introduced by
Thompson and Orlin (1989) [34] for partitioning problems.
For the QAP, it is used to store partial costs for k-exchanges on
a permutation. The initial cost of constructing the improve-
ment graph is O(n3); however, once created for a permutation
it can be updated in O(kn2) time. The improvement graph
does not contain the full cost of the k-exchange, rather a
good approximation. It is especially useful in a path enumer-
ation scheme as it allows for relatively quick evaluation of
a large number of neighbors on a single permutation with
the construction of only one improvement graph. If a new

FIG. 8. Average time to completion (ATTC) for Skorin–Kapov and sym-
metric Taillard instances. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

NETWORKS—2010—DOI 10.1002/net 11



permutation is introduced, the improvement graph must be
reconstructed.

The ejection chain method, in contrast, exploits a selective
subset of neighbors, which provides a quick investigation of a
promising extended neighborhood rather than examining all
exchanges at a given depth. This reduces the number of cal-
culations necessary, thus speeding the neighborhood search
process without the necessity of maintaining a cost matrix.
As in the VLSN method a k-level ejection chain does not nec-
essarily produce the overall best k-exchange move, rather a
potentially good move. Ejection chain strategies are particu-
larly amenable to being exploited within an adaptive memory
TS framework, where other operators may also be applied to
the permutation.

The VLSN search algorithms in Ahuja et al. [1] explore
iteratively larger neighborhoods up to a defined k beginning
from a randomly drawn permutation. Specifically, the VLSN
algorithms explore all exchanges at depth 2, then all (or a
pruned subset) exchanges at depth 3, followed lastly by the
4-exchanges (in implementation, the algorithms are limited
to a depth of 4). In contrast, the ejection chain method discov-
ers the best exchange at depth 2, and then iteratively extends
that 2-exchange up to a depth of n. The method keeps track
of the level k∗ of the chain where the best trial solution was
found and then applies the associated k-exchange move to
the permutation and the process is repeated. An iteration
of the VLSN algorithms ends when the search on the cur-
rent permutation is exhausted (a new best solution is found
or no better solution is found after exploring all allowed
k-exchanges). Then a new random permutation is drawn, a
new improvement graph is constructed and the process is
repeated. When comparing the two methods, the VLSN algo-
rithms more nearly resemble a breadth-first search and the EC
algorithms more nearly resemble a depth-first search, though
each affords the strategic benefit of avoiding the complex-
ity of such classical searches while nevertheless uncovering
high quality solutions. Future research that combines the two
approaches would be of interest.

The difference between the VLSN algorithms concerns
how many k-exchanges are examined at a given depth. The
authors propose four VLSN variants. The first is a full path
enumeration where all paths of a given depth are examined.
As previously mentioned this process is very costly and was
ruled out by the authors as a viable algorithm. The other
three variants employed “path pruning” techniques to reduce
the number of paths examined at each depth. The second
proposed variant, keeps only paths with a negative cost at each
depth. The authors state that this variant was outperformed in
testing by the other variants, so computational results for this
variant were not provided. In both VLSN variants, for which
results are presented, a different path pruning technique is
employed to reduce the number of paths examined at each
depth. We will refer to these two variants as VLSN1 and
VLSN2. In VLSN1, the best αn2 paths with the lowest cost
at one level are carried forward to the next level to build larger
exchanges. In implementation, α is set to 1 and the maximum
path length is set to 4. By contrast, VLSN2 excludes all paths

except for the best path for each node. In other words, only the
initial path from each node that has the lowest cost is allowed
to proceed to the next depth. VLSN2 also first performed a
descent to a local optimum at depth 2 before beginning path
enumeration.

Table 4 provides comparisons between the two VLSN
algorithms (VLSN1 and VLSN2) and the EC algorithms
(EC1, EC2, and EC3) developed for this study using the
same stopping criterion (SC2). The results for SC1 are also
provided for some supplemental observations. In addition,
we provide in Figure 9 a pairwise comparison of the algo-
rithms in terms of the number of best solutions produced over
all problems. The VLSN algorithms were run using SC2 on
a Pentium IV, 2.4 GHz processor and were also written in
the C programming language. SPEC (2000) [30] shows that
the processor used in the VLSN study is equivalent to (just
slightly better than) the processor used in the current study
(Intel Itanium, 1.3 GHz). Therefore, the comparisons are as
valid as possible without having algorithms written by the
same programmer and run on the same machine.

As previously discussed, the EC1 algorithms contained
very limited adaptive memory guidance in the form of a sim-
ple tabu list with small tabu tenures. A 2-exchange version
of EC1 is provided to examine the impact of the ejection
chain neighborhood. However, since the VLSN study also
provided a 2-exchange algorithm, we can compare the impact
of the minimal short-term memory guidance in the EC1 vari-
ant. Comparing the 2-exchange versions of VLSN and EC1,
the VLSN algorithm performs better on the sko* instances
while EC1 is better on the tai∗ instances. Overall, there is
no significant difference in the performance of the two 2-
exchange algorithms, which demonstrates that the tabu list
in the EC1 version had little positive impact other than to
prevent cycling.

Another interesting observation can be made examining
the 2-exchange algorithms. The 2-exchange EC1 algorithm
did especially poorly on the sko∗ instances, losing on 11
of the 13 instances. This could indicate that the restrictive-
ness of the tabu list was especially detrimental for this set of
instances. Indeed, experimental analysis conducted during
the tuning of the algorithm parameters showed better results
(on average) when smaller tabu tenures are used for the sko∗
instances. However, those parameters were not so suitable
for tai∗ instances and we restricted our method to use the
same parameter values for all instances. In contrast, the 2-
exchange VLSN revealed significant difficulty on the larger
tai∗ instances (n ≥ 40), exceeding the best known solutions
value by more than 2%. In fact, the difference in the character-
istics of the problem instances becomes especially apparent
in the larger neighborhoods. This is also seen to be true when
examining the difference between the variable-depth versions
of VLSN and the EC algorithms.

VLSN1 performs very well on the sko∗ instances. It per-
forms better than EC1 and EC2 on all but one or two instances
and completely dominates VLSN2 on the sko∗ test set. In gen-
eral the VLSN algorithms tend to perform better on the sko∗
instances; however even in that set both EC2 and EC3 perform

12 NETWORKS—2010—DOI 10.1002/net



TABLE 4. EC comparisons with VLSN.

Stopping criterion 1 (SC1) Stopping criterion 2 (SC2)

EC1 EC2 EC3 2-Opt EC1 2-Opt VLSN EC1 EC2 EC3 VLSN1 VLSN2
Problem BKS APD APD APD APD APD APD APD APD APD APD

sko42 15812 0.028 0.293 0.061 0.008 0.000 0.000 0.019 0.000 0.000 0.000
sko49 23386 0.199 0.235 0.086 0.053 0.188 0.063 0.107 0.039 0.103 0.214
sko56 34458 0.527 0.475 0.259 0.183 0.348 0.324 0.305 0.027 0.116 0.226
sko64 48498 0.464 0.243 0.139 0.475 0.334 0.397 0.139 0.078 0.177 0.433
sko72 66256 0.691 0.322 0.340 0.827 0.426 0.705 0.319 0.250 0.260 0.465
sko81 90998 0.849 0.336 0.271 0.855 0.433 0.943 0.364 0.278 0.308 0.516
sko90 115534 0.881 0.305 0.272 0.691 0.573 0.785 0.424 0.473 0.407 0.457
sko100a 152002 0.661 0.314 0.263 0.739 0.524 0.617 0.424 0.340 0.289 0.462
sko100b 153890 0.803 0.379 0.226 0.868 0.502 0.521 0.436 0.408 0.395 0.550
sko100c 147862 0.779 0.731 0.269 1.122 0.498 1.445 0.963 0.543 0.331 0.594
sko100d 149576 0.862 0.437 0.316 1.007 0.580 1.019 0.537 0.517 0439 0.619
sko100e 149150 1.147 0.522 0.198 1.191 0.654 0.796 0.692 0.460 0.257 0.654
sko100f 149036 0.979 0.567 0.395 1.008 0.621 1.063 0.627 0.542 0.326 0.652
Average 0.628 0.397 0.238 0.694 0.437 0.668 0.412 0.304 0.262 0.449
tai20a 122455319 0.718 0.152 0.199 0.000 0.000 0.000 0.000 0.000 0.000 0.000
tai25a 344355646 0.670 0.294 0.055 0.102 0.000 0.000 0.000 0.000 0.000 0.000
tai30a 637117113 0.645 0.178 0.137 0.402 0.016 0.161 0.000 0.000 0.000 0.177
tai35a 283315445 0.972 0.302 0.272 0.479 0.384 0.366 0.000 0.000 0.000 0.384
tai40a 637250948 0.825 0.420 0.387 0.519 1.160 0.550 0.274 0.219 0.687 1.099
tai50a 458821517 1.058 0.732 0.726 0.802 1.813 0.753 0.550 0.514 1.151 1.665
tai60a 608215054 1.017 0.715 0.861 0.883 2.016 0.791 0.629 0.657 1.400 1.746
tai80a 818415043 0.695 0.644 0.780 0.745 2.166 0.714 0.681 0.730 1.459 1.957
tai100a 1185996137 0.563 0.600 0.654 0.567 2.266 0.558 0.714 0.729 1.569 1.900
Average 0.796 0.449 0.452 0.500 1.091 0.433 0.316 0.317 0.696 0.992
Overall 0.729 0.418 0.326 0.615 0.705 0.571 0.373 0.309 0.440 0.671

Stopping criteria 1: no improving move found in 5000∗n iterations; Stopping criterion 2: 1 hour for n ≤ 40, 2 h for n > 40.
The best average percent deviation over all algorithms is shown in boldface.

better than VLSN2. Only EC3 is competitive with VLSN1,
obtaining better solutions on 5 of the 13 sko∗ instances and
tying on 1. VLSN1 obtains the best quality solutions on the
biggest 7 sko∗ instances under SC2.

VLSN1 introduces diversity into the search by carrying
forth the best n2 paths regardless of their cost benefit. EC3
brings diversity into the search by introducing variability in
tabu tenure ranges and allowing for multistarts. This indicates
that the interplay between intensification and diversification
of the search may be especially important for this set of
instances. On one hand, restricting the local search may pre-
vent the methods from reaching good local optimal solutions
that are relatively close in the solution space, but not necessar-
ily within the neighborhood space of the current 2-exchange
neighborhood. On the other hand, some appropriate level of
diversification should be maintained in order for the method
to explore other regions of the solution space.

The positive results of VLSN1 for the sko∗ set seem
to indicate that for these instances a strategy that simulta-
neously explores intensification and diversification may be
more appropriate than strategies that alternate between the
two search strategies. This speculation is also supported by
experiments on landscape analysis for the QAP under a 2-
exchange neighborhood (e.g., [21, 32] Merz and Freisleben,
2000; Stützle, 2006). These studies show that sko∗ instances

have a smooth landscape with a significantly high correla-
tion between neighboring solutions. However, local optima
distributions show that good solutions are spread out across
the solution space. Hence, the challenge in these instances is
not so much in escaping from local optimality but rather in
determining the regions where the best local optima actually
exist. As local optima in these landscapes share some degree
of similarity it is unlikely that good local optima exist in the
vicinity of a relatively poor local optimum. Although this may
establish a sufficient condition for an algorithm to engage
in a stronger diversification search, a region of high-quality
solutions is not necessarily close to a best local optimum. In
any case, the best local optima are likely to be encountered
in regions of relatively high-quality solutions, thus suggest-
ing a somewhat extensive exploration of the search around
these potentially good regions. We conjecture that the rel-
ative advantage of VLSN1 on these sko∗ instances stem
from its breath-first type of local search strategy. In a depth-
first search strategy as in our EC algorithms these issues
are addressed by giving the algorithm sufficient flexibility
to explore multiple search paths from local regions, thus sug-
gesting the advisability of a small tabu tenure as considered
in our EC1, perhaps just large enough to prevent cycling.
In this algorithm intensification is promoted by using small
tabu tenure ranges and diversification is achieved by the long

NETWORKS—2010—DOI 10.1002/net 13



FIG. 9. Number of instances one algorithm is better than another (algo-
rithm X , algorithm Y ):number of ties.

search paths generated by the ejection chain neighborhood.
The interplay between intensification and diversification is
obtained by the variable depth moves selected by the ejection
chain algorithm. Short moves keep the search in the vicinity
of the current region while long moves induce the search to
explore other regions. A more aggressive interaction between
intensification and diversification results from coupling the
inherent depth-first search of the EC neighborhood with the
desirable breath-first component emphasized in VLSN. This
is accomplished in EC2 and EC3 algorithms by combining
larger tabu tenures with an aspiration criterion, and in addi-
tion allowing for multistarts. On one hand, large tabu tenures
implement stronger diversification. On the other hand, the
aspiration prevents the algorithm from overlooking best solu-
tions while keeping the balance between intensification and
diversification.

The symmetric tai∗ instances appear to behave differently.
Both EC2 and EC3 beat or tie both VLSN algorithms on all 9
problems. EC1 outperforms VLSN1 on 5 of the 9 instances,
ties on 2, and outperforms or ties VLSN2 on all 9 instances.
For this set of instances, the interplay between intensification
and diversification does not prove to be as influential. This
may be justified by the fact that tai∗ instances have a highly
rugged fitness landscape structure with far more local optima
than sko∗ instances. Although in both sko∗ and tai∗ test sets
local optimal distributions show good solutions spread out all
over the solution space, the (almost) nonexistent correlation
between neighboring solutions in tai∗ instances makes them
more difficult than sko∗ instances when local searches are
limited to 2-exchange neighborhoods. As local optima in the
tai∗ instances are typically very deep and share no similar-
ities, extending the depth in k-exchange neighborhoods (to
high values of k) may be more beneficial than limiting it (to
small values of k) in order to make it possible to explore

each level (k) of the neighborhood more extensively. We
conjecture that this is what gives the edge to the EC algo-
rithms over their VLSN counterpart on the tai∗ instances.
In fact, the best overall solutions for the larger symmet-
ric tai∗ instances are split between the EC algorithms. This
trend was exhibited in computational tests where parame-
ter settings or adaptive memory guidance could be modified
to improve results on one test set to the detriment of the
other. With the simple adaptive memory guidance employed
in this study, the parameter settings used were found to
provide the best compromise in solution quality between
the two test sets. Future work could include using more
sophisticated adaptive memory techniques to overcome this
characteristic.

The results presented in Tables 2–4 demonstrate the
impact of the ejection chain neighborhood structure. The
significance of the larger embedded neighborhoods is demon-
strated by the improvement of the results obtained by EC1
over the same algorithm limited to a 2-exchange neighbor-
hood. EC1 implemented a very simple local search with short
tabu tenure and no restriction on depths (levels) explored. In
an overall analysis, the EC algorithms are very competitive
with the VLSN algorithms. EC1 performs better than VLSN2
in terms of both solution quality and number of best solutions,
but it is not as good as VLSN1. EC2 provides better average
solution quality than VLSN1, though VLSN1 manages to
find a greater number of best solutions. EC2 and EC1 pro-
vide better results on 6 of the 22 instances where VLSN1
provides better results on 12 of the 22 instances against EC2
and 13 of the 22 instances against EC1, tying on the others.
EC3 provides better results on 10 of the 22 instances against
VLSN1. EC3 and VLSN1 tie on 5 instances and VLSN1
provides better results on 7 instances.

VLSN2 does not perform as well as the EC algorithms
and is not competitive with VLSN1. Comparing VLSN2 to
the EC algorithms, the worst EC variant (EC1) obtains better
results to 10 of 22 instances. The two algorithms tie on 3
instances and VLSN2 wins on 9. EC2 obtains better quality
results than VLSN2 on 16 of the 22 instances and ties on 2.
VLSN2 obtains the best result on the remaining 4 instances
against EC2. EC3 wins on 18 of the 22 problem instances,
they tie on 3, and VLSN2 obtains the best result on one
instance.

In summary, no algorithm dominates all the others on all
problem instances, and EC and VLSN seem to be more effec-
tive on different test sets. However, EC3 is the overall winner
in terms of average solution quality and number of best solu-
tions. These results suggest there may be significant value
in combining the EC and VLSN strategies, and that addi-
tional adaptive memory guidance can be useful for further
improving the EC approaches.

The results for the EC algorithms using SC1 are also
shown in Table 4. This provides the opportunity to view
the difference in solution quality between stopping con-
ditions in the EC algorithm, disclosing that with longer
runtimes significant improvement in solution quality can be
obtained.

14 NETWORKS—2010—DOI 10.1002/net



TABLE 5. Comparisons with multistart algorithms.

EC3 VLSN1 RTS ILS1 ILS2 ILS3 ILS4 ACO1 ACO2 ACO3
Problem BKS APD APD APD APD APD APD APD APD APD APD

sko42 15812 0.000 0.000 0.000 0.269 0.010 0.010 0.161 0.076 0.015 0.104
sko49 23386 0.039 0.103 0.038 0.226 0.133 0.133 0.139 0.141 0.067 0.150
sko56 34458 0.027 0.116 0.010 0.418 0.087 0.087 0.153 0.101 0.068 0.118
sko64 48498 0.078 0.177 0.005 0.413 0.068 0.068 0.202 0.129 0.042 0.171
sko72 66256 0.250 0.260 0.043 0.383 0.134 0.134 0.294 0.277 0.109 0.243
sko81 90998 0.278 0.308 0.051 0.586 0.101 0.100 0.194 0.144 0.071 0.223
sko90 115534 0.473 0.407 0.062 0.576 0.131 0.187 0.322 0.231 0.192 0.288
sko100a 152002 0.340 0.289 0.089 0.358 0.115 0.161 0.257 — — —
sko100b 153890 0.408 0.395 0.056 — — — — — — —
sko100c 147862 0.543 0.331 0.031 — — — — — — —
sko100d 149576 0.517 0.439 0.055 — — — — — — —
sko100e 149150 0.460 0.257 0.041 — — — — — — —
sko100f 149036 0.542 0.326 0.066 — — — — — — —
Average 0.304 0.262 0.042 0.404 0.097 0.110 0.215 0.157 0.081 0.185
EC3 0.304 0.304 0.304 0.186 0.186 0.186 0.186 0.164 0.164 0.164
VLSN1 0.262 0.262 0.262 0.208 0.208 0.208 0.208 0.196 0.196 0.196
tai20a 122455319 0.000 0.000 0.000 0.723 0.503 0.542 0.467 0.675 0.191 0.428
tai25a 344355646 0.000 0.000 0.000 1.181 0.876 0.896 0.823 1.189 0.488 1.751
tai30a 637117113 0.000 0.000 0.000 1.304 0.808 0.989 1.141 1.311 0.359 1.286
tai35a 283315445 0.000 0.000 0.112 1.731 1.110 1.113 1.371 1.762 0.773 1.586
tai40a 637250948 0.219 0.687 0.462 2.036 1.319 1.490 1.491 1.989 0.933 1.131
tai50a 458821517 0.514 1.151 0.882 2.127 1.496 1.491 1.968 2.800 1.236 1.900
tai60a 608215054 0.657 1.400 0.974 2.200 1.498 1.692 2.081 3.070 1.372 2.484
tai80a 818415043 0.730 1.459 1.065 1.775 1.198 1.200 1.576 2.689 1.134 2.103
tai100a 1185996137 0.729 1.569 1.071 — — — — — — —
Average 0.317 0.696 0.507 1.635 1.101 1.177 1.365 1.936 0.811 1.584
EC3 0.317 0.317 0.317 0.265 0.265 0.265 0.265 0.265 0.265 0.265
VLSN1 0.696 0.696 0.696 0.587 0.587 0.587 0.587 0.587 0.587 0.587
Overall 0.309 0.440 0.232 1.019 0.599 0.643 0.790 1.106 0.470 0.931
EC3 0.309 0.309 0.309 0.225 0.225 0.225 0.225 0.218 0.218 0.218
VLSN1 0.440 0.440 0.440 0.397 0.397 0.397 0.397 0.405 0.405 0.405

4.2. Extended Computational Analysis

We now extend our analysis to include comparisons with
traditional Iterative Local Search (ILS) and Ant Colony Opti-
mization (ACO) algorithms, which have some similarities
to our multistart TS algorithms. Comparisons to several of
the best of the more complex metaheuristic algorithms are
also given. Tables 5 and 6 provide results for the following
additional algorithms from the literature:

• Robust Tabu Search – RTS [33]
• Four Iterated Local Search Variants - ILS1, ILS2, ILS3,

ILS4 [32]
• Three Ant Colony Optimization Variants – ACO1, ACO2,

ACO3 [31]
• A Genetic Algorithm Hybrid with a modified – RTS

GA/MRT [11]
• An Ant Colony Optimization/Genetic Algorithm/Local

Search Hybrid – ACO/GA/LS [35]
• Three Tabu Search variants – ETS1, ETS2, and ETS3 [22]
• Two Population Based ILS Algorithms – ILS5 and ILS6

[32]
• An Improved Population Based ILS Algorithm – I-ILS6

[32]

These algorithms were all run on different platforms
utilizing different stopping conditions. Therefore, time

comparisons cannot be provided. The best ejection chain
algorithm (EC3) and the best VLSN algorithm (VLSN1) are
also shown in the tables both using stopping criterion SC2
for consistency.

Table 5 provides a comparison of the three EC algorithms
developed for this study with the results obtained for the clas-
sical robust tabu search (RTS) algorithm [33], four variants
of the iterative local search (ILS) algorithm [32], and three
variants an ant colony optimization (ACO) algorithm [31].
These algorithms are most comparable to EC3 and VLSN2
in terms of structure and the heuristic guidance employed.
Not all algorithms provide solutions for all test instances, so
comparisons are only shown for the overlapping instances.
Dash symbols indicate that results were not provided for that
instance by the corresponding algorithm. The average solu-
tion quality over all the instances tested by the corresponding
algorithm is provided at the bottom of each test set. Similar
averages over all problems tested are provided at the bottom
of the table.

Although limited to short-term memory components of
tabu search and 2-exchange neighborhoods, RTS has long
been one of the most successful tabu search algorithms for
the QAP. Perhaps, due to its excellent tradeoff between algo-
rithmic simplicity and solution quality, RTS is often used in

NETWORKS—2010—DOI 10.1002/net 15



TABLE 6. Comparisons with advanced metaheuristic algorithms.

EC3 VLSN1 ETS1 ETS2 ETS3 ILS5 ILS6 1-ILS6 ACO/GA/LS GA/MRT
Problem BKS APD APD APD APD APD APD APD APD APD APD

sko42 15812 0.000 0.000 — — — 0.022 0.000 0.000 0.000 —
sko49 23386 0.039 0.103 — — — 0.090 0.068 0.000 0.060 0.000
sko56 34458 0.027 0.116 — — — 0.102 0.071 0.000 0.010 0.000
sko64 48498 0.078 0.177 — — — 0.079 0.057 0.000 0.000 0.000
sko72 66256 0.250 0.260 — — — 0.139 0.085 0.000 0.020 0.000
sko81 90998 0.278 0.308 — — — 0.100 0.082 0.001 0.030 0.000
sko90 115534 0.473 0.407 — — — 0.262 0.128 0.007 0.040 0.000
sko100a 152002 0.340 0.289 — — — 0.191 0.109 0.006 0.020 0.000
sko100b 153890 0.408 0.395 — — — — — 0.012 0.010 0.000
sko100c 147862 0.543 0.331 — — — — — 0.007 0.000 0.000
sko100d 149576 0.517 0.439 — — — — — 0.002 0.030 0.000
sko100e 149150 0.460 0.257 — — — — — 0.021 0.000 0.000
sko100f 149036 0.542 0.326 — — — — — 0.037 0.030 0.000
Average 0.304 0.262 0.123 0.075 0.007 0.019 0.001
EC3 0.304 0.304 0.186 0.186 0.304 0.304 0.000
VLSN1 0.262 0.262 0.208 0.208 0.262 0.262 0.001
tai20a 122455319 0.000 0.000 0.000 0.000 0.000 0.500 0.344 — 0.110 —
tai25a 344355646 0.000 0.000 0.037 0.000 0.015 0.869 0.656 0.000 0.290 —
tai30a 637117113 0.000 0.000 0.003 0.041 0.000 0.707 0.668 0.000 0.340 —
tai35a 283315445 0.000 0.000 0.000 0.000 0.000 1.010 0.901 0.000 0.490 —
tai40a 637250948 0.219 0.687 0.167 0.130 0.173 1.305 1.082 0.280 0.590 —
tai50a 458821517 0.514 1.151 0.322 0.354 0.388 1.574 1.211 0.610 0.850 —
tai60a 608215054 0.657 1.400 0.570 0.603 0.677 1.622 1.349 0.820 0.030 —
tai80a 818415043 0.730 1.459 0.321 0.390 0.405 1.219 1.029 0.620 0.860 —
tai100a 1185996137 0.729 1.569 0.367 0.371 0.441 — — 0.690 0.800 —
Average 0.317 0.696 0.199 0.210 0.233 1.101 0.905 0.378 0.484
EC3 0.317 0.317 0.317 0.317 0.317 0.265 0.265 0.356 0.317
VLSN1 0.696 0.696 0.696 0.696 0.696 0.587 0.587 0.783 0.696
Overall 0.309 0.440 0.612 0.490 0.148 0.210
EC3 0.309 0.309 0.225 0.225 0.324 0.309
VLSN1 0.440 0.440 0.397 0.397 0.461 0.440

a large variety of more complex algorithms such as those
discussed later.

All ILS variants use 2-opt local search and perturb the
solution using random pairwise exchanges. To determine a
solution from which to restart the search, several options
were considered. In the traditional ILS variant (ILS1), the
best solution, which may or may not be the working solution
obtained by the current run of the local search, is perturbed
and then a local search is applied. In the second version
(ILS2), a random restart is employed which straightforwardly
replaces the working solution with a random permutation.
The third variant (ILS3) always perturbs the working solu-
tion obtained from the local search. The fourth variant (ILS4)
allows worse solutions based upon a probability, that are then
perturbed and the local search restarted. Several population-
based variants of ILS (ILS5, ILS6, I-ILS6) are also proposed.
These algorithms maintain a population of solutions and use
ILS to operate on the population. The third variant, I-ILS6,
uses an improved local search from all the previous ILS
algorithms discussed.

ACO uses probabilistic perturbations that build solutions
by choosing an assignment influenced by the search his-
tory (pheromone trail). A local search is then applied to the
constructed solution. The first variant (ACO1) modifies the

construction phase to use the pheromone trail to modify the
current solution rather than construct a new one. The other
two variants use a typical ACO construction phase but ACO2
applies a 2-opt local search and ACO3 uses RTS as its local
search. The type of memory used in these ACO algorithms is
obviously more complicated than that used by the previous
algorithms, including RTS.

As we can see in Table 5, EC3 is very competitive with
RTS. Both algorithms use simple short-term memory based
on tabu tenure restrictions and two levels of aspiration. RTS
beats EC3 in all sko∗ instances and ties in the only solution
where both algorithms manage to find the best known solu-
tion. The reverse situation occurs for the tai∗ instances where
EC3 ties RTS on the three instances where RTS finds the
best known solution and completely dominates RTS on the
remaining instances, yet finding one more best known solu-
tion. The fact that VLSN1 is not as good as RTS on either of
the test sets reinforces the idea that the depth of the neigh-
borhood is particularly relevant. When comparing EC3 to
the ILS and ACO algorithms in Table 5, EC3 appears very
competitive on the sko∗ instances and completely dominates
all four ILS variants and the three ACO variants on the tai∗
instances. These results strongly uphold our conjecture on
the potential advantage of the ejection chain neighborhood

16 NETWORKS—2010—DOI 10.1002/net



over the 2-exchange neighborhood for the tai∗ instances. For
algorithms using the same neighborhood structure, the start-
ing solution seems to have an effect on the quality of the
solutions produced. The best ILS variant (ILS2) using ran-
dom restart is superior to the other three variants that always
perturb some solution previously found during the search.
As a small perturbation is always applied to the local opti-
mum found in an iteration of the ILS algorithm is seems
quite natural that a stronger diversification may be needed at
a restart. This requirement does not seem so relevant when
larger neighborhoods are used. For example, ILS1 and EC3
both restart the search by perturbing the current best solution;
however, EC3 significantly outperforms ILS1 on all instances
of both test sets. Also, both EC3 and VLSN1 outperform ILS2
on average over all problems tested.

Table 6 presents results for some of the best perform-
ing tabu search algorithms from the literature as well as the
best performing hybrid genetic algorithms and population-
based iterative local search algorithms. This set of algo-
rithms, including the ETS implementations, ACO/GA/LS,
the population-based ILS algorithms, and GA/MRT, are some
of the more sophisticated and complex heuristics for the QAP.
Table 6 uses the same format as Table 5. The ETS algo-
rithms obtain some of the best results for the symmetric tai∗
instances and the hybrid GAs due to Drezner obtain some
of the best results for the sko∗ instances. Population-based
ILS and ACO/GA/LS hybrid algorithms perform very well
on sko∗ instances competing closely with several GA and
TS hybrid algorithms from the literature, but not as well
as GA/MRT. Also, they are not as competitive on the tai∗
instances. The information in Table 6 is only intended to
provide a cursory overview of the solution quality of the
extended neighborhood algorithms in contrast to some of the
best performing algorithms from the literature.

ETS1, ETS2, and ETS3 are all modified RTS algorithms
embedded in multistart tabu search approaches using a vari-
ety of diversification operators. These tabu search algorithms
modify Taillard’s RTS by removing the aspiration criteria,
decreasing the tabu tenure, and simplifying the tabu condi-
tions. Several diversifying perturbation schemes were incor-
porated into these algorithms, including a random pairwise
exchange procedure, a shift procedure, a dichotomic muta-
tion (exchanging halves of the permutation) and a neighbor
exchange mutation (exchanging two adjacent assignments).
The variants test various combinations of these operators.
The algorithms differ by the type and combinations of the
perturbation operators applied during the search. The lay-
ering in these TSs are more complicated than those in the
current study, as often several levels of restarting occur with
multiple diversification operators. The ETS algorithms are
currently the best performing algorithms for the symmetric
tai* instances but report no results for the sko∗ instances.
EC3, even though much simpler, approximates quite well the
solution quality achieved by the ETS algorithms.

The genetic algorithms due to Drezner are the most suc-
cessful algorithms for the sko∗ test instances. Drezner has
presented a series of hybrid GAs for the QAP. The algorithms

differ by the improvement operator used to hybridize the GA.
Drezner, 2002 [10] presents three hybrid GAs, the first uses
only a strict decent operator to improve the solutions created
by the GA. In the second hybrid GA, the strict decent operator
is replaced with a simple tabu search. In the third hybrid GA,
the incorporation of a new tabu search algorithm, concentric
tabu search (Drezner, 2002; [10]), proved very successful on
the sko∗ problems. Concentric tabu search was improved in a
subsequent study (Drezner, 2003; [10]), to allow more moves
than the original version and again embedded it within a GA.

Concentric tabu search shares some commonalities with
the path-relinking concept. In concentric tabu search, series
of swap moves are iteratively applied to a permutation until
the distance of the working solution is maximally different
from the original solution (or an improved solution is found).
In a sense, the “center” solution is serving as both the solution
initiating the search (the initiating solution in path-relinking
terminology) and the solution being modified. The “path” the
solutions are following is guided by the requirement that the
solution be different from the original solution. A move can
contribute a point (or two) to the distance (difference) score
if the exchange moves at least one (or two) facilities to loca-
tions they did not previously occupy. Since in concentric tabu
search, the reference set is open to all neighboring solutions
that increase the difference from the “center” solution rather
than restricted to a pre-selected subset of reference (or guid-
ing) solutions, a larger number of intermediate solutions are
available than in traditional path-relinking.

The algorithm works by examining all swaps on the “cen-
ter” solution thereby obtaining all permutations that are 2
elements different than the “center” solution. A pruning tech-
nique, like those applied in VLSN, is used to reduce the
number of permutations of distance 2 that are carried for-
ward. The pruning technique keeps a defined number K of
the best permutations of distance 2. Swap moves are then
performed again on the K solutions retained. Performing a
swap on the permutations of distance 2 may result in a per-
mutation with distance 3 or distance 4. As new solutions are
created, a defined number of the best solutions at a given dis-
tance are kept in lists. Once the search of all permutations at
a given distance is completed, the next distance is explored,
and so on. The algorithm continues this process until either
a new best solution is found which restarts the process, or
the maximum distance from the original “center” solution
is reached. All moves made in this algorithm are swaps and
the cost calculations described in Refs. [3, 33] are therefore
used. This approach is novel for a QAP tabu search in that
the moves made are guided by the distance from the original
permutation.

Although the concentric tabu search has proven to be a
successful addition to a hybridized GA, for the solution of
the sko* test instances, Drezner (2008) provided even better
solutions to this test set using a very slightly modified RTS
(MRT) incorporated into a GA (GA/MRT). The only change
made to the RTS in GA/MRT is to increase the tabu tenure
range. The QAP appears to be very sensitive to the parameters
and adaptive memory guidance utilized both in the algorithms

NETWORKS—2010—DOI 10.1002/net 17



developed in the current study and those from the literature.
As GA/MRT provides the best results of the series, the earlier
Drezner hybrid GAs are not included in the tables below.
GA/MRT provides superior results to all other algorithms on
the sko∗ instances. Results are not provided for the hybrid
GAs on the tai∗ instances.

When comparing the large neighborhood algorithms to the
population-based ILS and ACO/GA/LS hybrids, we can see
that these algorithms perform better than EC3 and VLSN1
on the sko∗ test set, but they all lose against EC3 on the
tai* instances. EC3 outperforms ACO/GS/LS on all 9 tai∗
instances. EC3 also outperforms ILS5 and ILS6 in all 9
tai∗ instances and wins on all but the 2 largest instances
against I-ILS6. VLSN1 wins against ILS5 and ILS6 on the
tai∗ instances, but it is not competitive with ACO/GS/LS or
I-ILS6.

These results suggest promise for the exploration of
extended neighborhoods.

5. CONCLUSIONS

This study examined the use of ejection chains for the
QAP. The results indicate the use of these embedded neigh-
borhood structures result in higher solution quality than
obtained by using the traditional 2-exchange neighborhood.
We also demonstrate the power of coupling this neighborhood
definition with more sophisticated adaptive memory guid-
ance. Our resulting ejection chain approaches are shown to
be competitive with recently proposed path enumeration tech-
niques embodied in very large search neighborhood (VLSN)
methods.

Future studies could examine integrating the ejection
chain algorithms with the VLSN methods and with higher
level adaptive memory techniques such as path relinking. Our
computational testing showed the parameters chosen for the
tabu search framework and the multistart variants produced
the best results from the several combinations examined, but
more thorough analysis of these parameters could also pro-
vide better quality results, particularly by means of dynamic
parameter manipulation. The addition of the diversification
method in the EC3 algorithm disclosed the importance of
strategic diversification to find enhanced solutions, and we
anticipate that additional attention to diversification strategies
may also yield gains for future algorithms.

REFERENCES

[1] R. Ahuja, K. Jha, J. Orlin, and D. Sharma, Very large-scale
neighborhood search for the quadratic assignment problem,
INFORMS J Comput 19 (2007), 646–657.

[2] R. Ahuja, J. Orlin, and A. Tiwari, A greedy genetic algorithm
for the quadratic assignment problem, Comput Oper Res 27
(2000), 917–934.

[3] R.E. Burkard and F. Rendl, A thermodynamically moti-
vated simulation procedure for combinatorial optimization
problems, Eur J Oper Res 17 (1984), 169–174.

[4] L. Cavique, C. Rego, and I. Themido, Subgraph ejection
chains and tabu search for the crew scheduling problem,
J Oper Res Soci 50 (1999), 608–616.

[5] R. Burkard, S. Karisch, and F. Rendl, QAPLIB—A Quadratic
assignment problem library, J Global Opt 10 (1997),
391–403.

[6] E. Cela, The quadratic assignment problem: Theory and
algorithms, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1998.

[7] V.-D. Cung, T. Mautor, P. Michelon, and A. Tavares, Scat-
ter search for the quadratic assignment problem, Proc IEEE
Int Conf Evol Comput, IEEE Press, Indianapolis, IN, 1996,
pp. 165–169.

[8] Z. Drezner, The extended concentric tabu for the quadratic
assignment problem, Eur J Oper Res 160 (2005), 416–422.

[9] Z. Drezner, A new genetic algorithm for the quadratic assign-
ment problem, INFORMS J Comput 15 (2003), 320–330.

[10] Z. Drezner, A new heuristic for the quadratic assignment
problem, J Appl Math Decis Sci 6 (2002), 143–153.

[11] Z. Drezner, Extensive experiments with hybrid genetic algo-
rithms for the solution of the quadratic assignment problem,
Comput Oper Res 35 (2008), 717–736.

[12] C. Fleurent and F. Glover, Improved constructive multi-
start strategies for the quadratic assignment problem using
adaptive memory, INFORMS J Comput 11 (1999), 198–204.

[13] C. Fleurent and J.A. Ferland, “Genetic hybrids for the
quadratic assignment problem,” in Quadratic Assignment
and Related Problems, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science P. Pardalos, and
H. Wolkowicz (Editors), Vol. 16, American Mathematical
Society, Baltimore, MD, 1994, pp. 173–187.

[14] F. Glover and M. Laguna, Tabu search, Kluwer Academic
Publishers, 1997.

[15] F. Glover, “A template for scatter search and path relinking,”
Artificial evolution, J.-K. Hao et al. (Editor), LNCS 1363,
Springer-Verlag, Berlin, 1998, pp. 13–54.

[16] F. Glover, Multilevel tabu search and embedded search neigh-
borhoods for the traveling salesman problem, Manuscript,
Leeds School of Business, University of Colorado, Boulder,
CO, 1991.

[17] F. Glover, “New ejection chain and alternating path meth-
ods for traveling salesman problems,” Computer science and
operations research: new developments in their interfaces,
O. Balci, R. Sharda, and S.A. Zenios (Editors), Pergamon
Press, Oxford, 1992, pp. 449–509.

[18] F. Glover, Ejection chains, reference structures and alternat-
ing path methods for traveling salesman problems, Discrete
Appl Math 65 (1996), 223–253.

[19] T. James, C. Rego, and F. Glover, Sequential and paral-
lel path-relinking algorithms for the quadratic assignment
problem, IEEE Intell Syst 20 (2005), 58–65.

[20] Y. Li, P.M. Pardalos, and M.G.C. Resende, “A greedy ran-
domized adaptive search procedure for the quadratic assign-
ment problem,” Quadratic assignment and related problems,
DIMACS series on discrete mathematics and theoretical
computer science, P.M. Pardalos, and H. Wolkowicz (Edi-
tors), American Mathematical Society, Baltimore, MD, 1994,
pp. 237–261.

18 NETWORKS—2010—DOI 10.1002/net



[21] P. Merz and B. Freisleben, Fitness landscape analysis and
memetic algorithms for the quadratic assignment problem,
IEEE Trans Evol Comput, American Mathematical Society,
Baltimore, MD 4 (2000), 337–352.

[22] A. Misevicius, A tabu search algorithm for the quadratic
assignment problem, Comput Opt Appl 30 (2005), 95–111.

[23] A. Misevicius, An improved hybrid genetic algorithm: New
results for the quadratic assignment problem, Knowl Base
Syst 17 (2004), 65–73.

[24] A. Misevicius, Genetic algorithm hybridized with ruin and
recreate procedure: Application to the quadratic assignment
problem, Knowl Base Syst 16 (2003), 261–268.

[25] C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende,“GRASP
with path-relinking for the quadratic assignment problem,”
Efficient and experimental algorithms, C.C. Ribeiro and
S.L. Martins (Editors), Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2004, pp. 356–368.

[26] C. Rego, Relaxed tours and path ejections for the trav-
eling salesman problem, Eur J Oper Res 106 (1998a),
522–538.

[27] C. Rego, A subpath ejection method for the vehicle routing
problem, Manage Sci 44 (1998b), 1447–1459.

[28] C. Rego, Node ejection chains for the vehicle routing prob-
lem: sequential and parallel algorithms, Parallel Comput 27
(2001), 201–222.

[29] C. Rego, F. Glover, and D. Gamboa, A doubly-rooted stem-
and-cycle ejection chain algorithm for asymmetric traveling
salesman problems, School of Businesss Administration,
University of Mississippi, University, MS, 2006.

[30] SPEC. SPEC Benchmark Results (2000, Available at:
http://www.spec.org).

[31] T. Stützle and M. Dorigo,“ACO algorithms for the quadratic
assignment problem,” New ideas for optimization, D. Corne,
M. Dorigo, and F. Glover (Editors), McGraw-Hill, Burr
Ridge, IL, 1999, pp. 33–50.

[32] T. Stützle, Iterative local search for the quadratic assignment
problem, Eur J Oper Res 174 (2006), 1519–1539.

[33] E. Taillard, Robust taboo search for the quadratic assignment
problem, Parallel Comput 17 (1991), 443–455.

[34] P.M. Thompson and J.B. Orlin, The theory of cyclic transfers.
Operations Research Center Working Paper, MIT, 1989.

[35] L. Tseng and S. Liang, A hybrid metaheuristic for the
quadratic assignment problem, Comput Opt Appl 34 (2006),
85–113.

[36] M. Yagiura, T. Ibaraki, and F. Glover, An ejection
chain approach for the generalized assignment problem,
INFORMS J Comput 16 (2004), 133–151.

[37] T. Koopmans and M. Beckmann, Assignment problems and
the location of economic activities, Econometrica 25 (1957),
53–76.

NETWORKS—2010—DOI 10.1002/net 19


