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Abstract:  Government agencies and commercial organizations that report data face the task of representing the 
data meaningfully while simultaneously protecting the confidentiality of critical data components. The challenge 
is to organize and disseminate data in a form that prevents these components from being unmasked by corporate 
espionage, or falling prey to efforts to penetrate the security of the information underlying the data. 
Unscrupulous data investigators could use unprotected data sources to infer sensitive, personal data about 
individuals.  Besides harming individuals, these types of disclosures can drastically affect the willingness of 
future respondents to provide valuable data.  Controlled tabular adjustment is a recently developed approach for 
protecting sensitive information by imposing a special form of statistical disclosure limitation on tabular data. 
The underlying model gives rise to a mixed integer linear programming problem involving both continuous and 
discrete (zero-one) variables. In this paper we develop new hybrid heuristics and a new meta-heuristic learning 
approach for solving this model, and compare their performance to previous heuristics and to an exact algorithm 
in the ILOG-CPLEX software. Our new approaches are based on partitioning the problem into its discrete and 
continuous components, and first creating a hybrid that reduces the number of binary variables through a 
grouping procedure that combines an exact mathematical programming model with constructive heuristics. 
Finally, we introduce a new metaheuristic learning method that significantly improves the quality of solutions 
obtained.  
 
Keywords: confidentiality, mixed integer, optimization, metaheuristics, adaptive learning, mathematical 
programming, evolutionary computation. 
 
 

1. INTRODUCTION 
 
Data confidentiality is an essential component of statistical surveys, for three reasons.  The first reason applies 
primarily to surveys conducted by government and can be described as regulatory.  In particular, laws and 
government regulations pertaining to a particular survey or to the agency collecting the data require that 
responses provided to the survey be held confidential by the agency.  
  The second reason is that confidentiality protection is regarded as ethical statistical practice and appears 
specifically in the Codes of Ethical Conduct of the International Statistical Institute, the American Statistical 
Association, and other statistical organizations.  



 

  The third reason is practical.  Respondents would not respond, or at least not as completely and truthfully 
as they might otherwise, if they did not have faith in the intent and ability of the data collector to preserve 
confidentiality.   
  The need to safeguard the confidentiality of statistical data presents a monumental task, and government 
agencies such as the U.S. Bureau of the Census and the U.S. National Center for Health Statistics that regularly 
report data must wrestle with this problem on a continuing basis. Inadvertent disclosure of sensitive corporate 
information could cost a large commercial enterprise financially and in other ways. At the same time government 
reporting agencies are duty-bound to provide figures that convey meaningful, accurate information about the 
state of our national economy and its component industries and sectors. Consequently, the confidentiality 
problem looms as a major challenge with far-reaching consequences.  
 The purpose of this paper is to propose a new method for solving controlled tabular adjustment problems 
computationally.  To understand the nature and impact of our contribution, some background terminology is 
necessary. In tabular data, a cell is considered sensitive if the publication of the true cell value is likely to 
disclose a contributor’s data to the public or a competitor.  For example, in an economic survey, if a cell contains 
data from one respondent, then publication of the cell value would disclose confidential data pertaining to a 
single respondent.  As identities of companies in individual cells are publicly available, this would breach the 
pledge of confidentiality made to the company by the statistical office collecting the data.  Similarly, if the cell 
contains data from two respondents, or if the cell total is dominated by the contributions of two respondents, then 
either respondent could subtract its own contribution from the cell value to obtain a narrow estimate of the 
other’s contribution. 
 Confidentiality protection for tabular data is based on assuring that all released tabular cells satisfy an 
appropriate disclosure rule (see JSPI (1981), Doyle, et al. (2001), Willenborg and de Waal (1996), Willenborg 
and de Waal (2001)).  Cells failing to satisfy the rule (sensitive cells) are assigned protection ranges defined by 
lower and upper bounds on the true cell value computed from the disclosure rule.  Published or derived estimates 
of the original values of sensitive cells that lie within the protection range are considered unacceptable.  
 Different procedures have been used by statistical offices to protect confidentiality of sensitive cells in 
tabular data.  The most often used method is complementary cell suppression (see Cox (1980), Kelly, et al. 
(1992), Fischetti and Salazar (1999), Fischetti and Salazar, (2000)).  The complementary cell suppression 
method suppresses both primary (sensitive) and secondary (nonsensitive) cells to protect the confidentiality of 
the sensitive cells.  Although suppression is widely used, it has serious limitations.  Complementary cell 
suppression is an NP hard problem (Kelly, et al., 1992), typically involving extremely large numbers of binary 
variables. An even more significant limitation of this commonly used approach is that it produces tables that are 
generally difficult to analyze by standard methods and even, in some cases, by advanced  methods. 
 To overcome the limitations of complementary cell suppression we propose new methods that are designed 
to exploit the model called Controlled Tabular Adjustment (CTA) which affords an opportunity to overcome 
many of the problems associated with traditional cell suppression and perturbation methods.  CTA introduces 
controlled perturbations (adjustments) into tabular data that satisfy the protection ranges and tabular constraints 
(additivity) while minimizing data loss as measured by one of several linear measures of overall data distortion, 
such as the sum of the absolute values of the individual cell value adjustments.  CTA replaces each sensitive cell 
by either of the two endpoints of its protection range.  These values are the minimally safe values.  Selected 
nonsensitive cell values are then adjusted from their true values by small amounts to restore additivity.  
Additionally, nonsensitive cell perturbations are constrained to be small or insignificant, such as limiting them to 
be within sampling variability, and cell values for which adjustment is deemed undesirable can be held fixed.  
Cox (ASA, 2000) provides a mixed integer programming formulation for CTA; Danderkar and Cox (2002) 
consider elementary heuristics. 
 The empirical evaluations of methods for CTA conducted in this paper begin by comparing heuristic 
procedures proposed by Danderkar and Cox (2002) to the commercial CPLEX solver. These analyses disclose 
both useful features and significant limitations of these approaches (including severe limitations to CPLEX as 
problem size increases to dimensions often encountered in practice). This leads to our development and analysis 
of two new alternative methods embodying strategies of grouping and evolutionary scatter search, which prove 
more powerful than the previous heuristic approaches. Scatter search offers particular advantages by running far 
more efficiently than CPLEX, and significantly extending the size of problems that can be addressed, yet still 
encounters limitations shared with its predecessors in generating solutions of high quality. Finally, we develop a 
new metaheuristic learning method that performs far more effectively than all of the other methods and provides 
a reliable and efficient approach for producing high quality solutions for problems of practical size. 
 Our development is organized as follows. Section 2 presents the mixed integer/continuous optimization 
model for CTA.  Section 3 describes numerical tests using the heuristic approaches suggested by Danderkar and 
Cox (2002), including an examination of multiple objective functions and an evaluation of their impact on the 
CTA process.  Section 4 describes a new hybrid heuristic, based on reducing the number of binary variables 
through grouping and combining the exact CPLEX solution approach with principles embodied in the heuristics.  



 

Section 5 introduces the metaheuristic learning algorithm that produces additional improvement by dramatically 
enhancing the quality of solutions obtained. Section 6 summarizes our findings. 
 
 
2. MATHEMATICAL FORMULATION FOR OPTIMAL CONTROLLED TABULAR ADJUSTMENT 

 
The objective of synthetic tabular data is to closely mimic the original data, subject to obscuring sensitive cell 
values to a sufficient extent.  By setting sensitive values to minimally safe values and constraining adjustments 
both locally (individual cells) and globally (overall measure of distortion), controlled tabular adjustment is aimed 
at replacing original data by data that are comparable from a data analysis perspective. Cox and Danderkar (2004) 
provide approaches for preserving data accuracy and ease of use.  Extensions that address statistical data analytic 
issues directly are presented in Cox and Kelly (2004) and Cox, et al. (2004).  
 The underlying concept of CTA is simple:  The value of each sensitive cell is replaced by an adjusted value 
selected to be at a safe distance from the original value.  Danderkar and Cox (2002) suggest minimal adjustment, 
viz., to either the sensitive cell’s lower or upper protection limit.  Some or all nonsensitive cell values are then 
adjusted from their true values by small amounts to restore additivity to totals within the tabular system. 
 Within this framework, adjustments to nonsensitive cell values can be controlled in various ways.  Selected 
nonsensitive cells, e.g., certain zero cells or totals, can be exempt from change through imposition of capacity 
constraints.  Capacities are also used to confine nonsensitive adjustments to within meaningful limits such as 
sampling variability or total measurement error. One of several linear objective functions can be used to measure 
and assure minimum deviation.  Some approaches, not discussed here, do not strictly adhere to the use of 
minimally safe values, replacing sensitive values by “safer” values (Cox and Kelly, 2004) or by “less safe” 
values based on enhanced protective capabilities of CTA (Cox and Danderkar, 2004). 
 Tabular data systems can be represented by their system of linear equations in matrix form:  Ax = 0. 
Column vector x  represents the tabulation cells of the system; ∗x  represents the original data.  Matrix A is the 
aggregation matrix representing the tabular structure among the cells. The entries of A are –1, 0 or +1; each row 
of A corresponds to one aggregation (tabular equation) in which “+1” denotes a contributing internal cell and “–
1” a total (marginal) cell.  Hence, there is precisely one “-1” per row.  The mathematical structure of optimal 
synthetic tabular data is specified below by a mixed integer linear programming (MILP) formulation, containing 
binary and continuous variables, analogous to that introduced in ASA (2000). 
 Notation: i = 1,…, p: denotes the p sensitive cells; i = p+1,…, n: denotes the n-p nonsensitive cells; bi = a 
binary (zero/one) variable denoting selection of the lower/upper limit for sensitive cell 1,..., ;i p= il  = lower 
deviation required to protect sensitive cell i = 1,…,p; iu = upper deviation required to protect sensitive cell i = 
1,…,p; iy+  = a nonnegative continuous variable identifying a “positive adjustment” for the gap to cell value ;i  

iy−  = a nonnegative continuous variable identifying a “negative adjustment” for the gap to cell value ;i  UBi, 
LBi = upper/lower cell bounds on change to cell ;i ic  = cost per unit change in cell .i  
 
MILP for Optimal Controlled Tabular Adjustment  
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 After solving the MILP, the synthetic tabular data ( )it=t  is: i i i it x y y∗ + −= + − .  Equation 1 is the 
objective function, which minimizes the cost due to cell deviations.  Two linear cost functions are commonly 
used, usually defined over deviation variables i iy y+ −+ .  The first involves coefficients 1,ic =  corresponding to 
minimizing the distortion measure “total absolute adjustment,” and the other 1/ ,i ic x∗=  corresponding to 
minimizing total percent absolute adjustment. CTA perturbs the sensitive cells until they are safe, i.e. sensitive 
cell values are sufficiently far from their original values.  This creates inconsistency in the tabular system, as 



 

sums are no longer maintained.  Equation 2 maintains tabular consistency.  Equations 3 and 4 are used to 
constrain the non-sensitive cell deviations.  Usually, the upper bounds are computed using the estimated 
measurement errors for non-sensitive cells.  Equations 5 and 6 ensure that the sensitive cells are set at their safe 
values.  This is achieved by setting these cells at either their lower or upper protection limits.  The protection 
limits for the cell include the minimum amount, which must be added or subtracted from the true value to make 
the sensitive cells “safe”. Cox  (1980) (and in Doyle, et al., 2001) discusses protection limits theory in detail.  It 
can be noted that CTA offers increased protection from disclosure attack because in CTA the sensitive cells are 
not highlighted and are replaced with a value.  More importantly, sensitive cells are set at either their lower or 
upper limits. The intruder has no idea about the direction of perturbation.  
 It is possible that the CTA gives rise to an infeasible problem if the number of sensitive cells in a particular 
row or column is large. The sensitive cell constraints in the model can be relaxed in the following manner to 
virtually eliminate these types of problems. 
        i i iy u b+ ≥    (7) 

_ (1 )i i iy l b≥ −    (8) 
 Consider the following example, which illustrates how the mathematical programming formulation can be 
used to protect the sensitive cells in a 2-dimensional table as shown in Table 1.  Cells (3, 1), (1, 2), and (3, 2) 
shown in bold have been identified as sensitive cells and the associated protection limits are shown in the 
brackets. The upper and lower bounds for the non-sensitive cells are set at 20% of the original cell value. Table 2 
shows the tabular data after solving the mathematical program. Cells with * indicate that they have been adjusted. 

 
 
 
 
 
 
 
  

The foregoing MILP formulation can only be solved to optimality for very small problems. As we show, the 
CPLEX solver for MILP problems requires an excessive amount of time to solve a problem of size no larger than 
10x10x20. 
 
 

3. EARLIER PROPOSED HEURISTICS AND PRELIMINARY NUMERICAL TESTING 
 
We first examine the simple heuristic methods proposed earlier for the CTA problem and evaluate their 
effectiveness relative to a set of 2- and 3-dimensional test tables.  The test problems include tables with varying 
attributes.  Forty-four 2-dimensional and six 3-dimensional tables are randomly generated using the following 
specifications: 
 

2-dimensional tables range in size from 4x4 to 25x25.  3-dimensional tables range in size from 5x5x2 to 
5x5x7.  Data values for internal tabular entries range from 0 to 1000 and are selected from a uniform 
distribution.  10% of the internal entries are selected randomly (uniformly distributed) and are assigned 
a value of 0.  For the 2-dimensional tables, two sets of tables are generated.  The first set has 10% of the 
internal entries defined as sensitive.  The second set has 30% of the internal entries defined as sensitive.  
The sensitive cells are distributed randomly (uniform) throughout the table.  Marginal or sum cells are 
not defined as sensitive.  For the 3-dimensional tables, 30% of the internal entries are defined as 
sensitive.  The sensitive cells are distributed randomly (uniform) throughout the table.  Marginal cells 
are not defined as sensitive.  Sensitive entries must be assigned a value 20% greater than the original 
value or 20% smaller than the original value.  All nonsensitive cells modified to values within 20% of 
their original values. 

 
 For 2-dimensional tables, the coefficient matrix is unimodular when the sensitive entries are integer and 
consequently nonsensitive entries are automatically assigned to integer values.  Solutions for 3-dimensional and 
other tables can exhibit fractional entries in nonsensitive cells.  Integer values are often preferred for cosmetic 
purposes, and a typical and simple way to deal with this is to round fractional internal entries to their nearest 
integer and recompute totals. 
 For each method tested, an objective function that minimizes the sum of the absolute changes is used.  The 
methods are summarized below: 
• The ILOG CPLEX 8.1 Optimizing (Exact) Solver 

     Table 1. Tabular Data before CTA 
 
74 17[0,37] 85 176 
71 51 30 152 
1[0,21] 9[0,29] 36 46 
146 77 151 374 

     Table 2. Tabular Data after CTA 
 
75* 0* 85 160* 
71 51 30 152 
0* 29* 36 65* 
146 80* 151 377* 



 

• Random Heuristic: Sensitive entries are set to either their low value or high value with 0.5 probability.  The 
nonsensitive entries are computed using a linear programming formulation. The simulation is run 100 times and 
the results are analyzed for worst, mean (average), and best case performance.  In practice, the Best Random case 
is selected. 
• Ordered Heuristic: Sensitive entries are ordered from smallest to largest value.  Adjusted sensitive data 
values are assigned by alternating between the low value and the high value of the sensitive cell while moving 
through the ordered list.  The one exception is when a cell value equals one or more of its corresponding totals, 
in which case both are assigned the same direction. The nonsensitive entries are computed using a linear 
programming formulation to evaluate the nonsensitive cells.  
 To evaluate the performance of the Random and Ordered heuristics, the results are compared to the optimal 
solutions found using the Branch & Bound procedure.  Percent Error equals: 100%  x (Heuristic Objective – 
Optimal Objective)/Optimal Objective 
 Figure 1 displays the results obtained for 2-dimensional tables that contain 10% sensitive entries.  The 
figure shows results for tables ranging in size from 4x4 to 25x25.  There is a single curve for the Ordered 
heuristic and three curves for the Random heuristic.  The curves for the Random heuristic provide mean, worst, 
and best solutions found during the 100 simulations. 
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Figure 1. Comparison of heuristics on 2-dimensional tables based on percent error 

 
 Figure 1 shows that Best Random performed best among the heuristics, but produces solutions that are far 
from optimal.  It is interesting to note that the Ordered heuristic method produces solutions of similar quality to 
the mean Random result.  Finally, it appears that error increases slightly with table size. 
 Next, 2-dimensional tables with 30% sensitive entries were processed.  Except for the errors being larger, 
the results are analogous to those found for the tables with 10% sensitive entries.  The relative changes for the 
30% sensitive cell tables are also very similar to those found for the 10% sensitive cell tables, and thus are not 
included. 
 Figure 2 shows results for 3-dimensional tables ranging in size from 5x5x2 to 5x5x7 and containing 30% 
sensitive entries.  The results that are obtained are very similar to the results obtained for 2-dimensional tables. 
 The results of evaluating previously proposed heuristics for controlled tabular adjustment support the 
following observations: 
• The Best Random solution obtained over 100 Random executions was shown to be superior to the best 

solution from the Ordered Heuristic in most cases; 
• When objective function values were considered, the performance of all of the heuristics was poor, having 

errors in excess of 50%; 
• As would be expected, for these problems of significantly limited size, the CPLEX solver produces optimal 

solutions in reasonable amounts of time. 
 These results confirm that the exact solution approach works better than the heuristic approaches for small 
problems, but unfortunately CPLEX cannot be used to solve large problems due to consuming excessive 
amounts of computation time.  We hypothesize that the earlier heuristic methods evaluated here suffer because 
finding a feasible set of binary variables may be very hard,  particularly for problems that have large numbers of 
sensitive cells.   
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Figure 2. Comparison of heuristics on 3-dimensional tables based on average percent error 

 
4. NEW HYBRID HEURISTIC 

 
The principle that underlies the two heuristics tested in the previous section is that in a good solution to the CTA 
problem approximately half of the sensitive cells will be set to their high value values and the remainder will be 
set to their low values.  Ordering the sensitive cells and alternatively setting them to their minimally low or high 
protection value tends to produce a solution whose grand total, and hence the overall mean, remains nearly 
unchanged.  These are sound principles for generating solutions and in this section we endeavor to embed these 
principles within the mathematical model previously described in Section 2.
 Because computational requirements for our MILP roughly double with the addition of each binary variable, 
a sensible approach towards a computationally efficient, near-optimal algorithm is to group the sensitive cells 
and assign a unique binary variable to the entire group, with the result that all cells in a group are adjusted in the 
same direction. We first tried random grouping, which performed poorly.  We suggest using a modified Order 
heuristic, viz., sensitive cells ordered from largest to smallest, and creating the groups by “skipping” through the 
ordering. This ensures greater group-to group homogeneity so that large cells are less likely to be adjusted 
predominantly in the same direction, which as we expected results in improvement in the optimal value of the 
objective function.  As before, the exception is when a sensitive cell value equals one of its totals, in which case 
both are assigned to the same group. 
 More precisely, let m ≥ 2 be the number of groups.  We add the following constraints to the original 
mathematical program. 
 

For i=1 to m:  Bi = Bi+m = Bi+2m =  … Bi+km    where ( i+km) ≤ p     
 
 The addition of these constraints to the original mathematical model reduces the number of binary variables 
to m.  If m = p then the solution is optimal and if m < p then the solution may or may not be optimal but if m ≤ 
20 the mathematical program can be solved in a reasonable amount of computer time.  This set of constraints 
combines the power of the mathematical program with logical principles embodied in the heuristics.   
 Furthermore, the mathematical program can be enhanced with additional constraints (Cox and Kelly, 2004), 
(Cox, et al., 2004) to improve the statistical characteristics of the solution.  The Hybrid heuristic is run multiple 
times and the best solution selected.  In particular, we use groups of size, m, m-1, m-2, …. to  produce a range of 
results from which to choose a superior solution.  The Hybrid overcomes a weakness of the Order heuristic by 
not predefining the direction of change for each group.  Whereas the Order heuristic only evaluates one possible 
set of assignments, the Hybrid implicitly evaluates m2 possible assignments.   
 To evaluate the effectiveness of the Hybrid heuristic, sets of 2- and 3-dimensional test tables are randomly 
generated using the following specifications: 
 

2-dimensional tables ranging in size from 4x4 to 25x25;  3-dimensional tables having sizes: nxnxn for n 
= 5,6,…,11,12…20;  3-dimensional tables having sizes: 10x10xn for n = 3,4,…,19,20;  Data values for 
internal tabular entries range from 0 to 1000 and are selected from a uniform distribution; 10% of the 
internal entries are selected randomly (uniformly distributed) and are assigned a value of 0; For all 
tables, 30% of the internal entries are defined as sensitive.  The sensitive cells are distributed randomly 
(uniform) throughout the table.  Marginal cells are not defined as sensitive. Sensitive entries must be 



 

assigned a value 20% greater than the original value or 20% smaller than the original value.  All 
nonsensitive cells can be modified to values within 20% of their original values.  

 
 Figure 3 shows the performance of the heuristics compared to the optimal solution for moderately sized 2-
dimensional tables. The optimal solution curve is not displayed because its information is embodied in the report 
of the percent error of heuristic solutions with respect to optimal.   The Random-100 and Random-1000 results 
are obtained using one hundred random assignments and one thousand random assignments, respectively.  The 
Group 16 Binary results are obtained using the Hybrid approach with m=16.   m=16 was chosen to provide 
solutions in approximately the same time as required by Random-1000.  The results indicate that the Hybrid is 
superior. 
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Figure 3. Hybrid heuristic performance on 2-dimensional tables based on percent error 
 
 
 Figure 4 shows results for 3-dimensional tables.  In these cases, optimal solutions could not be obtained for 
the larger tables.  Thus, the results are compared to the best heuristic solution, which, in almost every case, is 
achieved by the Hybrid heuristic. 
 These results indicate that creating groupings of sensitive cells can significantly extend the applicability of 
the integer programming model.  By using an ordering defined by cell value, reasonable solutions are produced. 
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Figure 4.  Hybrid heuristic performance on 3-dimensional tables based on percent error 

 
 

5. META-HEURISTIC LEARNING ALGORITHM FOR FORECASTING BINARY VARIABLES 
 
5.1 Learning Algorithm  
 
The grouping heuristics proposed in the previous section significantly reduced the problem size and thereby 
quickly solved the resulting integer program. However, these methods failed to produce satisfactory solutions for 
problems beyond a relatively limited size. The best heuristic solution was at least 50% inferior to the optimal 
solution for all moderately large 2 dimensional tables. Moreover, the heuristics exhibited considerable variation 
in the solution quality produced.  These experiments however, demonstrate the importance of reducing the size 
of the integer programs for gaining computational efficiency. The inferior performance of these methods is 
attributed to their inability to predict and set appropriate values for a subset of variables. In this section we show 
that a metaheuristic learning strategy for fixing a subset of variables to appropriate values can be exceedingly 
useful for generating high quality solutions without confronting the typical drawback of consuming vast amounts 
of computer time to discover such solutions.  
 
 
5.2 Parametric Image Process 
 
Our approach creates a strategic image of part of the problem to generate information about problem 
characteristics. Such processes have been used successfully in the fixed charge context (Glover, et al., 2004), and 
are the basis for a class of metaheuristics procedures for mixed integer programming proposed in Glover (2004). 
Adapted to the present setting, the basic idea is to introduce parameters that penalize a variable’s violation of 
integer feasibility, and to drive selected subsets of variables in preferred directions, e.g., toward 0 or 1.  
 In the CTA problem, we are interested in identifying appropriate directions for selected subsets of binary 
variables, which are then tentatively fixed at their preferred values. The resulting reduced problem is then solved 
much more readily than the original problem providing an iterative process that results in high quality (optimal 
or near optimal) solutions while expending only a small fraction of the computational effort required by a more 
traditional integer programming approach. We utilize this strategy to develop a parametric objective function 
approach to generate information about behavior of binary variables in the following manner.  
 We represent the objective function in the more compact form Minimize 0x cx= , where x is a set of 
binary variables used to protect sensitive cells. We refer to “1” direction as (UP) and “0” direction as (DN) 



 

direction. These are called goal conditions (denoted as '
jx ) because we do not seek to enforce (UP) and (DN) by 

imposing them as constraints in the manner of customary branch and bound method but rather indirectly by 
incorporating them into the objective function of the linear programming relaxation. Let +N  and −N  denote 
selected subsets of N (the set of sensitive cells) whose elements contain UP and DN goal conditions, respectively  
Denote their union by 'N  . Let 'x  denote the associated goal imposed solution vector. Let M denote a very 
large positive number used to impose the goal conditions.  
 

)( 'LP Minimize ( ) ( )
)
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j j j j j j
Nj N j N j

N N

x c M x c M x c x
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+ −∈ ∈ ∈
+

= + + − +∑ ∑ ∑   (9) 

 
)( 'LP targets imposed down and up goal conditions by using an incentive mechanism driven by the  penalty M. 

Binary variables included in subset −N  are induced to go in the DN direction and binary variables in subset 
+N  are induced to go in UP direction. Remaining variables are free to select their own favorable directions. 

Thus, we are solving a continuous linear programming problem with penalty coefficients in the objective to gain 
insight about good values for the binary variables. 
 
 
5.3 Goal Infeasibility and Resistance 
 
If a variable indeed favors a particular direction, then it will achieve its targeted goal; otherwise it will show 
some resistance to its imposed goal. We say that an optimal LP solution x = "x  is goal infeasible if  
 
For some '", jj xxNj <∈ +   (V-UP) 
or  
For some '", jj xxNj >∈ − (V-DN) 

 
 We call a variable jx  associated with violation (V-UP) or (V-DN) a goal infeasible variable. We create a 
measure, called an overt resistance ( β UP, β DN), based on goal conditions to learn about variable predilection 
for a particular direction as follows.  
 
For (V-UP), "'

jjj xxUP −=β   (10) 

For (V-DN) '"
jjj xxDN −=β    (11) 

 
 No goal violation means zero overt resistance. Sometimes, it is possible that even though a variable does 
not violate its goal condition, it may resist that particular goal condition. We can compute this effect by making 
use of reduced costs in the following manner. We call this resistance a potential resistance ( DNUP δδ , ).  
 

jjj RCcMUP ++=δ    (12) 

)( jjj RCcMDN ++−−=δ     (13) 

where jRC is the reduced cost for variable jx .  
 
 The trial solution vector may contain variables without penalties. We use their solution values for the 
problem (LP’) to create free resistances ( DNUP αα , ) in following manner. 
 

jj xUP −= 1α  (14) 

jj xDN =α   (15) 
 



 

 
 
5.4 Experimental Design to Exploit the Parametric Image 
 
The parametric image of objective function is generated using a goal vector. A diversified sample of goal vectors 
is generated and subsequently resistance measures are recorded to estimate directional effects. Random sampling, 
as used in network design problems (Karger, 1999), is not efficient in terms of the number of tests required to 
estimate a preferred value for each variable, and is generally considered an inferior approach.  
 Experimental design methods have been used to identify significant factors controlling a performance 
measure. e.g. what machine speed and pressure would make a product of desired quality (Montgomery, 1984). 
These methods are used to estimate main effects and interaction effects of binary variables using a smaller 
number of unbiased samples than random sampling (Lewis, 2004).  
 Our approach of selecting different performance measures for finding true main effects is motivated by the 
fact that information about the desirability of different choices is captured in different forms by different rules 
(Glover, 1977).  This information can be used more effectively by means of a strategy that combines the rules in 
aggregation rather than by using a strategy of selecting different rules at different times (Glover and Laguna, 
1997).  The learning algorithm used to fix directions for a specified subset of variables can be summarized as 
below. The details for carrying out these steps are elaborated subsequently. 
 
 
5.5 Parametric Image Learning Algorithm 
 

1. Group p binary variables into LASTK subsets of size n such that 
LASTK = |_p / n_|  

2. Construct goal vectors for parametric image process using fractional factorial design (see Montgomery 
(1984) for further details).  

3. Set an upper bound on the objective function to induce trial solutions to come from better regions. 
4. Run fractional factorial experimental design as: 

For subsets K = 1… LastK 
For test runs T = 1…LastT 

Construct the parametric image of the objective function using a partial goal vector. 
Solve the resulting linear programming relaxation. 
Compute overt, potential, free resistances and objective function value. 
Record these performance measures into pertinent performance recording vectors 
[PV]. 

  End T 
 End K 

5. Compute main effect of variable for measures except free resistance as: 
For performance attribute A = 1…LastA (except free resistance) 

For variables P=1…LastP 
Compute main effect ME [A][P] of variable ‘p’ in attribute ‘a’ as : 
   { 

    For Experiment K = 1… LastK  
For test runs T = 1…LastT 
 If  ( /

px  = DN)  then 
         ME[A][P] = ME[A][P] - PV[A[K][T] 
 If  ( /

px  = UP)  then 
         ME[A][P] = ME[A][P] + PV[A][K][T] 
End T 

    End K 
      } 
  End P 
 End A 

6. Compute main effect of variable for Free Resistance as: 
For variables P=1…LastP  

Compute main effect ME[A][P] as  
    {  

For experiment K = 1…LastK  



 

For test runs T= 1…LastT 
 If ( px  < 0.5 ) then 
  ME[A][P] = ME[A][P] + 1 
 If ( px  > 0.5 ) then 

    ME[A][P] = ME[A][P]  - 1 
  

End T 
    End K 
      } 
  End P  

7. Compute final score for each variable using persistent voting principle as: 
For variables P=1…LastP 

Final Score [P] = 0 
For A = 1…LastA (includes free resistance measure) 

If  (ME [A][P] > 0) then 
  Final Score [P] = Final Score [P] + 1 

If  (ME [a][p] < 0) then 
  Final Score [P] = Final Score [P] – 1 

    End A  
 End P 

8. Rank variables P = 1…LastP in descending order of the absolute values of final scores. 
9. Set cutoff  ‘c’ to fix direction for the variables. 
10.  Fix directions for binary variables as: 

For variables P=1…c 
 If (Final Score [P] > 0) then 
  px  = 0 
 If (Final Score [P] < 0) then 
  px  = 1 
End P 

11. Solve the resulting mixed integer programming problem.  
 

 
5.6 Discussion and Elaboration of the Method 
 
Variables are grouped into K subsets in step 1 in a random manner. The rationale for using a random assignment 
is to avoid generating an interaction effect. By contrast, a process of grouping variables from a particular row or 
column together can produce significant interaction effects because of tabular additivity. The Fractional Factorial 
design we employ confounds interaction effects with the aim of reducing the number of test runs. Selecting 
sensitive cells in a random fashion encourages them to exhibit minor interaction effects due to weak tabular 
connectivity.  
 The logic of an ordering heuristic, which assigns up and down directions for ordered cells in an alternating 
fashion, is consistent with this finding. Thus, an ordering heuristic tries to capitalize on a positive two-factor 
interaction effect.  There is one subtle possible disadvantage, which might undermine efficiency of this heuristic. 
Sometimes, this heuristic might assign either plus or minus directions to all cells in a row or a column thereby 
increasing the absolute adjustment. For example consider the 4x4 table in which cells (1,1), (2,4),(3,1), and (4,4) 
are sensitive with protection limits of 40,35,30,25 respectively. The ordering heuristic would cause very large 
adjustments to nonsensitive cells in this case. This might be the reason why an ordering heuristic did not perform 
well in our experiments.  
 A parametric image of the objective function is generated as follows. A typical test run contains target 
directions for a subset of variables and free directions for remaining variables. We can use these targeted 
directions to generate a parametric image of the objective function as: 
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 The new model has an effect of motivating variables with a DN goal condition to receive a value of 0 and 
variables with an UP goal condition to receive a value of 1 while allowing remaining variables to take their 
optimal directions according to the situation.  
 Steps 5 and 6 compute the average effect of a variable for a given measure. This basically computes the 
average change in the performance measure when a binary variable is changed from zero to one. This method is 
widely used in experimental design to compute average effects (Montgomery, 1984) because it groups 
observations into two sets and then checks on average whether there is any difference in performance between 
the two sets.  For example, if the DN direction sum is higher than the UP direction sum, this signals a negative 
effect, implying that a performance measure would decrease if a binary variable were set to 1 instead of 0.  
 Performance measures are recorded in three-dimensional vectors for each variable, where the row 
dimension refers to the performance measure, the column dimension refers to the experiment and the page 
dimension refers to the test run from the experiment. As shown in steps 5 and 6, to calculate the main effect for a 
measure, we sum over performance values computed with respect to all test runs from all experiments for that 
measure. We subsequently record the main effects of variables in a 2 dimensional vector in which the row 
dimension refers to the performance measure and the column dimension refers to a binary variable. 
 We rank binary variables in descending order according to the absolute values of their final scores and 
select a subset of these variables to fix directions. The cutoff level was decided using experimental evaluation. 
We found 45 % and 70% as cutoff levels for “small” and “big” tables respectively, in the sense that these levels 
generated high quality solutions in a reasonable amount of time. The results section shows in detail how the 
percent of fixed variables affected solution quality and time. Use of 0 as threshold in the final step is mainly 
conceptual in nature as it means that variables with positive final scores prefer the DN direction and those with 
negative final scores prefers the UP direction. The chosen cutoff level ensures that variables chosen to be fixed 
will be those that have sufficiently high absolute final scores, thereby offering adequate support for the chosen 
directions.  
 
 
5.7 Performance of the Learning Algorithm for 2-Dimensional Tables 
 
We implemented the learning algorithm using C++, ILOG- Concert Technology 1.2, and ILOG-CPLEX 8.1. 
Figure 5 shows the performance of our proposed learning method compared to other variable fixing heuristics. It 
was extremely time consuming to run larger problem instances to optimality using the default version of CPLEX. 
For example, we ran the 25x25 problem using the default CPLEX method on a 2GB RAM and 3.2GHz 
workstation for 24 hours. Unfortunately, the best solution found by CPLEX (after 19 hours and 35 minutes) still 
exhibited an optimality gap of 9.6 %.  Real world applications require the generation of hundreds to thousands of 
such solutions, and require these solutions to have better lower bounds and hence smaller optimality gaps. 
Reliance on CPLEX as a solution approach is therefore clearly unsuitable. 
 Consequently, we needed a computationally efficient alternative to compute a better lower bound, which is 
essential for measuring the optimality gap. Cox, et al. (2005) proposed a set partitioning relaxation for generating 
a tighter lower bound on the objective in the CTA context. We used the lower bound as a proxy for an optimum 
value for computing the optimality gap for larger instances. Lower bounds were reliable in the sense that they 
were consistently very close to the optimal values for those problems where an optimal solution could be verified 
(by running CPLEX for a period of time that does not exceed practical feasibility). In particular, for these 
problems involving 2-dimensional tables, restricted in size to no more than 18 rows and columns to permit them 
to be solved by CPLEX, the optimality gap was verified to be approximately 1%. For example, for the 18x18 
problem, the computed lower bound was 9736 compared to the optimum value of 9850, representing a gap of 
1.15 %.  In Figure 5, the “Learning Method (optimal)” curve identifies the optimality gap with respect to the 
known optimal value, and the “Learning Method (lower bound)” curve identifies the optimality gap for the 
heuristic with respect to the lower bound.  
 Our learning method yielded significant improvements in reducing the optimality gap across the entire 2 
dimensional test set as demonstrated by Figure 5. Optimality gap values obtained by the methods described in 
preceding sections degraded considerably for the larger problem instances. For example, using these earlier 
methods, the mean gap for the 25x25 table was 117.6% compared to the overall mean gap of 70 % for smaller 
problems. In either case, the results were disappointing in relation to what might be hoped for. By contrast, the 
learning method performed dramatically better, consistently generating high quality solutions irrespective of the 
problem size, giving an overall mean gap of 6 % and a gap of 5.72% for the 25x25 problem.   
 We define prediction accuracy to be the percentage of variables that are correctly assigned their optimal 
values, from a selected set of the “top” (highest scoring) variables identified .The prediction accuracy of our 
method for a 14x14 problem which contains 69 variables, was 85.5% for the top 10% of the problem variables (6 
correct decisions out of 7 fixed variables). In order to analyze the tradeoff between solution quality and time, we 
fixed only the top 15% of the variables for the 17x17 problem. We found a better solution (objective value = 



 

9206) than our reported solution (objective value = 9460) although, at the expense of computational speed 
efficiency. For this particular experiment, the result of fixing fewer variables caused the number of nodes 
processed to increase from 2400 to 72600 and the solution time to increase from 16.38 sec to 520 sec.  We 
believe this increase in the computation time does not warrant reducing the number of fixed variables in order to 
achieve a modest gain in solution quality.  
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Figure 5: Performance of proposed learning method on optimality gaps 

 
 

6.  CONCLUSIONS AND REMARKS 
 
This study has undertaken an extensive set of comparative computational tests and analyses to evaluate the 
relative performance of alternative methods for the controlled tabular adjustment (CTA) model. Our preliminary 
tests compared previously proposed heuristics to the exact CPLEX method.  The outcomes showed that the exact 
procedure yields solutions superior to those of earlier heuristic approaches, but is unable to solve problems of 
modest size within a reasonable amount of time.  
 To overcome these limitations of previous approaches, we introduced a hybrid heuristic that combines the 
exact mathematical programming approach with constructive heuristics suggested by Danderkar and Cox (2002).  
Numeric simulations indicate that the hybrid has the ability to produce better solutions than previous heuristics 
in reasonable time, and in addition finds reasonable solutions to highly constrained problems, but is limited to 
problems of modest dimension.  
 Finally, we demonstrate that a special metaheuristic learning method based on parametric image processes 
leads to significant additional improvements by generating solutions of greatly improved quality. In particular, 
the learning method succeeds in reducing the optimality gap for the problems tested from an overall average of 
70% to an average of 6%.  The true distance from a theoretical optimum is likely to be somewhat smaller still, 
since the gap is based on an imprecise bound. 
 



 

REFERENCES 

1. ASA (2000).  “Discussion (on Session 49:  Statistical Disclosure Control for Establishment Data),” in:   
ICES II:  The Second International Conference on Establishment Surveys-Survey methods for businesses, 
farms and institutions, Invited Papers, Alexandria, VA: American Statistical Association, 904-907. 

 
2. Cox, L.H. (1980).  “Suppression Methodology and Statistical Disclosure Control,” Journal of the American 

Statistical Association 75, 377-385. 
 
3. Cox, L.H. and Danderkar, R.A.(2004). “A Disclosure Limitation Method for Tabular Data That Preserves 

Accuracy and Ease-of-Use,” in:Proceedings of the 2002 FCSM Statistical Policy Conference, Washington, 
DC:  Office of Management and Budget, 15-30. 

 
4. Cox, L.H. and Kelly, J. P. (2004).  “Balancing Data Quality and Confidentiality for Tabular Data,” 

Proceedings of the UNECE/EUROSTAT Work Session on Statistical Data Confidentiality, Luxembourg, 7-
9 April, 2003, Monographs of Official Statistics, Luxembourg:  Eurostat., 2004, 11-23. 

 
5. Cox, L.H., Kelly, J.P., and Patil, R.J. (2004).  “Preserving Quality and Confidentiality for Multivariate 

Tabular Data,” Proceedings of Privacy in Statistical Databases 2004 (PSD 2004), Barcelona, 9-11 June, 
2004, Lecture Notes in Computer Science 3050, New York:  Springer Verlag, 87-98. 

 
6. Cox, L.H., Kelly, J.P., and Patil, R.J. (2005).  “Computational Aspects of Controlled Tabular 

Adjustment:  Algorithm and Analysis,” The Next Wave in Computer, Optimization and Decision 
Technologies (B. Golden, S. Raghavan and E. Wasil, eds.), Boston:  Kluwer,  45-59. 

 
7. Danderkar, R.A. and Cox, L.H. (2002).  “Synthetic Tabular Data-An Alternative to Complementary Cell 

Suppression”, manuscript. 
 
8. Doyle, P., Lane, J.I., Theeuwes, J.J.M., and Zayatz, L.V. (eds.) (2001).  “Chapter 8:  Disclosure Risk for 

Tabular Economic Data,” Confidentiality, Disclosure and Data Access:  Theory and practical applications 
for statistical agencies,  Amsterdam:  North-Holland, 167-184. 

 
9. Fischetti, M. and Salazar, J.J. (1999).  “Models and Algorithms for the 2-Dimensional Cell Suppression 

Problem in Statistical Disclosure Control,” Mathematical Programming 84, 283-312. 
 
10.  Fischetti, M. and Salazar, J.J. (2000).  “Solving the Cell Suppression Problem on Tabular Data with Linear 

Constraints,” Management Science 47, 1008-1026. 
 
11.  Glover, F. (1977).  “Heuristics for Integer Programming Using Surrogate Constraints,” Decision Sciences 8, 

156-166. 
 
12. Glover, F. (2004). “Parametric Tabu Search Methods for Mixed Integer Programming,” Leeds School of 

Business, University of Colorado, Boulder. 
 
13. Glover, F., Amini, M., and Kochenberger, G. (2004).  “Parametric Ghost Image Processes for Fixed-Charge 

Problems: A Study of Transportation Networks,” Journal of Heuristics,  Volume 11, Number 4, pp. 307-336. 
 
14. Glover F. and Laguna M. (1997).  Tabu Search, Kluwer Academic Publishers, Boston 
 
15. JSPI (1981).  “Linear Sensitivity Measures in Statistical Disclosure Control,” Journal of Statistical Planning 

and Inference 5, 153-164. 
 
16. Karger, D.R. (1999).  “ Random Sampling in Cut, Flow, and Network Design Problems,” Mathematics of 

Operations Research 24(2), 383-413. 
 
17. Kelly, J., Golden, B., and Assad, A. (1992).  “Cell Suppression: Disclosure Protection for Sensitive Tabular 

Data, “Networks 22, 397-417. 
 



 

18. Lewis, M.W. (2004),”Solving Fixed Charge Multi-Commodity Network Design Problems using Guided 
Design Search,” University of Mississippi, Hearin Center Technical Report , HCES-01-04. 

 
19. Montgomery, D.C. (1984), Design and Analysis of Experiments, John Wiley and Sons, New York, NY.    
 
20. Willenborg, L. and de Waal, T. D. (1996), “Statistical Disclosure Control in Practice,” Lecture Notes in 

Statistics, 111, Springer, New York.  
 
21. Willenborg, L., and de Waal, T. D. (2001), “Elements of Statistical Disclosure Control,” Lecture Notes in 

Statistics, 155, Springer, New York. 
 


