
J Math Model Algor
DOI 10.1007/s10852-008-9080-2

Multi-objective Meta-heuristics for the Traveling
Salesman Problem with Profits

Nicolas Jozefowiez · Fred Glover · Manuel Laguna

Received: 1 March 2007 / Accepted: 21 December 2007
© Springer Science + Business Media B.V. 2008

Abstract We introduce and test a new approach for the bi-objective routing problem
known as the traveling salesman problem with profits. This problem deals with the
optimization of two conflicting objectives: the minimization of the tour length and
the maximization of the collected profits. This problem has been studied in the form
of a single objective problem, where either the two objectives have been combined or
one of the objectives has been treated as a constraint. The purpose of our study is to
find solutions to this problem using the notion of Pareto optimality, i.e. by searching
for efficient solutions and constructing an efficient frontier. We have developed
an ejection chain local search and combined it with a multi-objective evolutionary
algorithm which is used to generate diversified starting solutions in the objective
space. We apply our hybrid meta-heuristic to synthetic data sets and demonstrate
its effectiveness by comparing our results with a procedure that employs one of the
best single-objective approaches.
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1 Introduction

We investigate the solution of the traveling salesman problem with profits (TSPP) [7]
by means of an ejection chain procedure combined with a multi-objective evolution-
ary algorithm. The TSPP is a generalization of the traveling salesman problem (TSP)
where a profit is realized when a customer is visited. The problem can be described
as follows. Let G = (V, E) be a graph where V = {v1, . . . , vn} is a set of n nodes and
E is a set of edges. We associate a profit pi with each node vi ∈ V (with p1 = 0)
and a distance cij with each edge (vi, vj) ∈ E. The TSPP consists in determining a
tour on a subset of V that includes v1. Performance is measured both in terms of
the collected profit and the tour length, creating two conflicting objectives: (1) to
minimize the length of the tour; (2) to maximize the total profit. From the perspective
of single-objective optimization, three associated problems have been addressed in
the literature:

1. Both objectives are combined in the objective function and the goal is to find a
solution that minimizes the tour length minus the collected profit. Dell’Amico
et al. [5] refer to this version of the TSPP as the profitable tour problem (PTP).

2. A maximum allowed tour length cmax is imposed as a bound and the goal is to find
a tour that maximizes the total collected profit subject to satisfy this bound. This
problem is called the orienteering problem (OP). The OP has also been referred
to as the selective traveling salesman problem (STSP) [18] and the maximum
collection problem [15].

3. A minimum allowed profit pmin is imposed as a bound and the goal is to find a
minimal length tour whose total collected profit is not smaller than this bound.
This problem is called the prize-collection traveling salesman problem (PCTSP)
[2] or the quota traveling salesman problem (QTSP) [1].

More information about these problems (formulations, methods, and applications)
can be found in the survey by Feillet et al. [7]. It is important to note that, while these
variants of the TSPP are multi-objective in nature, they have never been studied from
a multi-objective point of view [3]. An attempt to address the TSPP in its explicitly
multi-objective form was made by Keller [16] and Keller and Goodchild [17], who
referred to the problem as the multi-objective vending problem, but their approaches
consisted of sequentially solving single-objective versions of the problem and they
did not try to generate a set of non-dominated solutions.

In its general form, a multi-objective problem can be stated as follows:

(MOP) =
{

min F(x) = ( f1(x), f2(x), . . . , fn(x))

s.t. x ∈ D
(1)

with n ≥ 2 being the number of objective functions; x = (x1, x2, . . . , xr), the decision
variable vector; D, the feasible solution space; and F(x), the objective vector. The
set O = F(D) corresponds to the feasible solutions in the objective space, and
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y = (y1, y2, . . . , yn), where yi = fi(x), is a solution. A MOP solution is the set of the
non-dominated solutions called the Pareto set (PS). Dominance is defined as follows:

Definition 1.1 A solution y = (y1, y2, . . . , yn) dominates (denoted ≺) a solution z =
(z1, z2, . . . , zn) if and only if ∀ i ∈ {1 . . . n}, yi ≤ zi and ∃ i∈{1 . . . n}, such that yi <zi.

Definition 1.2 A solution y found by an algorithm A is said to be potentially Pareto
optimal (PPS), relative to A, if A does not find a solution z, such that z dominates y.

Evolutionary algorithms and local search methods have been proposed to ap-
proximate PS [6]. Such heuristics must be designed with two goals in mind: (2) the
algorithm must converge toward the PS, and (2) the solutions identified as efficient
must provide a good coverage of the frontier.

Our goal is to apply multi-objective optimization techniques to the TSPP. The
main contribution of this paper is the development of a hybrid meta-heuristic (HM)
that finds high-quality approximations of the efficient frontier for this class of bi-
objective problems. This approach provides a means for addressing all the single
objective problems mentioned above and avoids a priori parameterization of the
TSPP. The first step of the design of the HM was the definition of a neighborhood
search process. To do that, two difficulties in solving the TSPP must be overcome:
(1) to solve many traveling salesman problems on different sets of nodes, (2) to
select different subsets of nodes to be visited. This is solved by using two sets of
neighborhood moves in an ejection chain (EC) process. To provide starting solutions
for the EC process, a multi-objective evolutionary algorithm (MOEA) has been
developed. We have chosen a MOEA because it is one of the most studied methods
for multi-objective problems and it remains, apart from the specific operators, an
easy-to-implement solution. However, other methods or techniques could be chosen
instead of the MOEA. The coupling of the MOEA and the EC process provides a
means for both exploring and approaching the optimal Pareto set, as the EC process
is an efficient way to bring solutions toward the optimal Pareto set, while the MOEA
is able to provide solutions in the complete objective space thanks to its population,
and, therefore, to diversify the search.

The EC process is presented in Section 2. The MOEA and the HM are described
in Section 3. Experimental testing is reported in Section 4 and conclusions are
summarized in Section 5.

2 Ejection Chain Process

The EC process uses two sets of moves. The first set originates from a reference
structure initially proposed by Glover for the TSP [11]. These moves allow the
search to be efficient in the solution of the TSP aspect of the problem. The reference
structure is presented in Section 2.1 and the set of moves in Section 2.2. The second
set of moves is used to modify the set of visited nodes as it is the only way to
modify the profit generated by the solution. This set is described in Section 2.3. A
goal programming strategy is used to guide the search in the bi-objective space. The
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Fig. 1 The stem-and-cycle
reference structure
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goals are dynamically computed according to the starting solutions as explained in
Section 2.4. The improvement procedure for the TSPP, called IP-TSPP, is described
in Section 2.5.

2.1 The Stem-and-cycle Reference Structure

Our improvement procedure uses the stem-and-cycle reference structure proposed
by Glover [11] for the TSP, which is a spanning sub-graph of G consisting of a path
called a stem ST = {vt, . . . , vr} connected to a cycle CY = {vr, vs1 , . . . , vs2 , vr}. An
example of such a structure is shown in Fig. 1. Node vr is common to both the stem
and the cycle and is referred to as the root. The two nodes (vs1 and vs2 ) of the cycle
adjacent to vr are known as subroots. Node vt is the tip of the stem.

The structure obtained through the application of an ejection move does not
usually represent a feasible tour (unless vt = vr, i.e. if a unique node is at the same
time the root and the tip); thus, a trial move is required to generate a feasible TSP
solution. Trial solutions are obtained by inserting an edge (vt, vs), where vs is one of
the subroots, and removing the edge (vr, vs).

2.2 First Set of Moves

The first set is composed of moves rearranging the sequence in which the nodes are
visited. Two different ejection chain moves are possible depending on the positions
of the nodes in the stem-and-cycle structure. The first move is called a cycle-ejection
move. An edge of the cycle (vp, vq) is removed, vp is linked to vt and vq becomes the
new tip. The second move is called a stem-ejection move. The move inserts an edge
between vt and vp where vp is a node of the stem. Then, the edge (vq, vp) is deleted
where vq is the node before vp on the subpath (vt, . . . , vp). Node vq becomes the
new tip.

It should be noted that a standard TSP tour can be seen as a stem-and-cycle
structure where the stem is empty and the cycle is the tour. The root can be any
node in the tour.



J Math Model Algor

2.3 Second Set of Moves

The second set is composed of three moves which correspond to the basic operations
that can be done in order to modify the set of visited nodes and the profit. These
moves work as follows.

1. The first move removes a node visited in the solution. If the node is the tip, the
next node in the stem becomes the new tip. Otherwise, the nodes before and after
the removed node are connected together to repair the solution. In this move, v1

and vr cannot be removed.
2. The second move adds a node that is not visited in the solution. The node is

inserted so that the increase in length is minimal. In this move, it is possible to
add a node as a new tip.

3. The third move exchanges a node currently in the tour with a node outside the
tour. If the removed node is the tip, then the added node becomes the tip. In this
move, v1 or vr cannot be exchanged.

2.4 Construction of the Goal Point

A goal point is used to guide the search in the multi-objective space. The choice of the
goal point is important as it should attract the search toward the section of the Pareto
frontier that dominates the solution that is the starting point of the local search.

To construct the goal point, we start by calculating the upper bound on the total
profit associated with the m most profitable nodes that are not currently part of the
solution. In our implementation, m is fixed to � n

10	 (where n is the number of nodes).
This is done to initially favor moves that result in solutions that do not differ much (in
terms of the subset of visited nodes) from the starting solutions. The tabu restrictions
(discussed below) diversify the subset of visited nodes that are associated with the
solutions in the late stages of the search.

The difficulty with creating a goal in terms of tour length is that the impact of
removing m nodes from the starting solution is not really known, because the tour
will change. Therefore, the goal for the length objective is computed as follows. Let
gp be the goal value for the profit, sl the length of the starting solution, sp the profit
of the starting solution, ubp the maximum profit (i.e. the profit obtained when all the
nodes are visited), and ubl the length upper bound (i.e. the worst length in the archive
A containing all the non-dominated solutions found so far). Then, the goal value for
the length gl is given by gl = sl − ubl × gp−sp

ubp
. In this way, the distance between the

starting solution length and gl is the same as the one between the starting solution
profit and gp if the values are normalized.

2.5 Improvement Procedure for the TSPP (IP-TSPP)

The improvement procedure that we have developed is similar to the PSEC LS
proposed by Rego [19] for the TSP. A high level description of the improvement
procedure is shown in Algorithm 1. IP-TSPP takes as an input a solution S for the
TSPP. First, it computes the goal point according to S. At each iteration, itselects a
new node to become the root node of the stem-and-cyle procedure. This is necessary
as the explored neighborhood highly depends on the definition of the root node. The
process is iterated until all the nodes have been used as the root without finding a
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solution closer to the goal point. When a better solution is found, the set of possible
root nodes is reset so that every node can be chosen again as a root. A solution s1

is said to be better than another solution s2 if the Euclidean distance between F(s1)

and g is smaller than the Euclidean distance between F(s2) and g. The search also
updates an archive A which contains the non-dominated solutions found during the
search. This archive is the final result of IP-TSPP. It allows to find solutions obtained
thanks to an oscillation around the local optimum found by the procedure.

Algorithm 1 IP-TSPP(Solution S)
Compute the goal point g according to S.
S∗ ← S
C ← V (C is the set of candidates to become the root node)
A ← ∅ (A is the archive of the non-dominated solutions found)
while C 
= ∅ do

Select vr randomly from C and set vr as the root node
C ← C \ {vr}
S′ ← core_step(S∗, g, vr, A)
Apply a trial move on S′ (i.e. build a feasible tour as explained in Section 2.1)
if S′ is better (i.e, closer to g) than S∗ then

S∗ ← S′
C ← V

end if
end while
Return A

The core step of IP-TSPP is detailed in Algorithm 2. First, the stem-and-cycle
structure is completely defined by making the root node also the tip node. The
starting solution is saved as the best solution found so far and as the current solution.

Algorithm 2 core_step (Solution S, Goal g, Root vr, Archive A)
vt ← vr (Initially, the root is also the tip)
k ← 1
S∗ ← S
Sc ← S
repeat

Find the best feasible move on Sc, i.e., the moves allowing the smallest Euclidean
distance between the resulting solution and g
Perform the move on Sc

Update the tabu short term memory structure
Try to include Sc in A
if Sc is better than S∗ then

S∗ ← Sc

end if
k ← k + 1

until k > kmax

Return S∗
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Then, the process is run for kmax iterations or until no move is possible. kmax is fixed
to n. The move to perform is chosen first by considering the first set of moves and
then the second set of moves. The chosen move is the one which provides the closest
point in the objective space to the goal point when it is combined with a trial move.
In case of a tie, the move from the first set is preferred, otherwise the choice is made
randomly. During the move selection phase, the move is not performed as it is not
necessary to do so to know the values of the objectives. The selected move operates
on the current solution Sc and the tabu memory structure is updated. A short term
memory is used to record the attribute of the (θ) most recent moves. For the first set
of moves, we record the edge that was removed or inserted in order to prevent the
reversal of such a move for (θ) iterations. If the selected move belongs to the second
set, we record the node that was removed (added) in order to prevent the node from
being added (removed) in the next (θ) iterations. The tabu status are reset between
each core step as it has shown to provide better results. The current solution is also
tried for inclusion in the archive A. Sc is included in the archive if no solution from
the archive dominates it. All solutions from A dominated by Sc are removed. An
iteration ends with the updating of the best solution found if the current solution is
closer to the goal point.

3 The Multi-objective Evolutionary Algorithm and the Hybrid Meta-heuristic

To generate starting solutions for IP-TSPP, we use a multi-objective evolutionary
algorithm (MOEA). The multi-objective evolutionary algorithm we propose for the
TSPP is a steady-state variant of NSGA II [4]. The procedure operates on a finite
population of solutions (or individuals) that we initialize as described in Section 3.1.
Then, the population evolves from one generation to the next. In our MOEA, an
iteration consists of the following steps (where the numbers in parentheses indicate
the section number where the step is described in greater detail). In our MOEA, an
iteration runs as follows:

1. Evaluation (Section 3.2): The fitness (quality) of the individuals in the population
is evaluated.

2. Parent selection (Section 3.2): A pair of solutions (parents) is selected according
to their fitness.

3. Crossover (Section 3.4): The pair of parents combines to produce a new solution
(offspring). We generate only one offspring because we are implementing a
steady-state variant of NSGA II.

4. Mutation (Section 3.5): The offspring is randomly modified with a given
probability.

5. Population update (Section 3.2): The offspring may replace the worst individual
in the current population.

These steps are explained in details below. In Section 3.6, we explain how solutions
generated by the MOEA are selected for the IP-TSPP procedure and how the output
from the IP-TSPP procedure is merged with the MOEA population. This forms our
hybrid meta-heuristic.
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3.1 Initialization of the Population

We build the initial population of N individuals by means of heuristically solving
several STSPs with the Insert and Shake procedure of Gendreau et al. [9]. This
method combines the TSP tour extension heuristic described in Rosenkrantz et al.
[20] and GENIUS, a TSP heuristic developed by Gendreau et al. [8]. Insert and Shake
gradually extends a tour T until no other node can be added without violating the
length limit cmax. Then, GENIUS is applied in an attempt to obtain a shorter tour on
the nodes in T. If GENIUS fails to produce a better tour, the procedure terminates.
Otherwise, more node insertions are attempted and the process is repeated. Thus,
the steps to build an initial population of solutions are:

STEP 1 The IP-TSP local search described in Section 2 is applied to find a tour,
considering all nodes in V, and this solution is included in the population.
Let ubl be the length of the tour. Set cmax ← ubl − ubl

N−1 and i ← 1.
STEP 2 If i is equal to N + 1, terminate. Otherwise, generate a solution by means

of Insert and Shake and add this solution to the population.
STEP 3 Set cmax ← cmax−ubl

N−1 and i ← i + 1. Go to STEP 2.

3.2 Population Management

At each generation, NSGA II computes two values for each solution i: a rank ri,
which measures solution quality, and a crowding distance metric di, which estimates
search diversification. To do that, NSGA II sorts the population into different
non-domination levels. In this ranking phase, the non-dominated individuals in the
population obtain rank 1 and form the subset E1. Rank k is given to the solutions only
dominated by the individuals belonging to the subset E1 ∪ E2 ∪ · · · ∪ Ek−1. Then, a
fitness equal to its rank (1 is the best level) is assigned to each solution.

The crowding distance metric gives an estimate of the density of the solutions
surrounding a solution i in the population and is expressed by approximating the
perimeter of the cuboid formed by the nearest neighbors of i.

Two parents are selected by means of a tournament that favors the best ranked
solutions and uses the crowding distance to break ties. One offspring is generated
from the selected parents using the genetic operators described below. Solutions may
not appear more than once in the population, following an orientation introduced in
scatter search [10, 13]. This means that a recently created offspring is added to the
current population if and only if it does not already exist. A new offspring replaces
the solution in the current population that has the worst rank, with the crowding
distance serving as the tie-breaking mechanism. The population does not change if
the newly created offspring is already in the population.

3.3 Archive and Stopping Criterion

The potentially Pareto optimal solutions are stored in an archive A. In the implemen-
tation, the archive is common with IP-TSPP. At the end of the process, this archive
contains our solution to the problem. This archive is also used to implement a rule
that makes the search stop if the archive does not change for M generations in a row.
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3.4 The Combination Operator

The main difficulty associated with designing a method to combine solutions for
the TSPP (loosely referred to as crossover in GA parlance) is that two parent
solutions may not have much in common. For instance, when considering the
set of nodes visited in each parent solution, their intersection may consist of only
v1 and their cardinality may be different. The following multi-phase combination
operator was designed taking these observations into account. It works by trans-
forming the parents into parents visiting the same set of nodes such that a classic
operator for the TSP can be applied. More precisely, in the first phase, the parents
are modified by eliminating all nodes that are not common to both parents. Then the
edge recombination crossover (ERX) [21] is applied to the modified parents. Finally,
nodes that have been discarded during the first phase are tested for inclusion in the
offspring. This constitutes a simple instance of the structured combination approach
proposed in connection with scatter search and tabu search [12, 14].

3.4.1 Phase 1

Let s1 and s2 be the two parents, where s1 (respectively s2) visits the nodes V1 ⊆ V
(respectively V2 ⊆ V) following the tour σ1 (respectively σ2). Let V ′ = V1 ∩ V2,
identifying the set of nodes that are common to s1 and s2. If |V ′| = 1, the crossover is
aborted and no offspring is generated. Otherwise, we build a solution s′

1 from s1 by
keeping only the nodes in V ′ and building a tour σ ′

1 that preserves the visiting order
in σ1. For every node pair vi, vj such that vj is visited just after vi in σ ′

1, two arcs (vi, vj)

and (vj, vi) are defined. Arc (vi, vj) receives two values: (1) the length of the path from
vi to vj in σ1; (2) the sum of the profits of the nodes on the path between vi and vj in
σ1, excluding vi. (vj, vi) receives similar values by interchanging the roles of vi and vj.
It should be noted that the arcs (vi, vj) and (vj, vi) have the same length but not the
same profit as they stand for the same path but traverse in two different orders and
that the profit of the starting node is not considered in the profit associated to the arc.
A solution s′

2 is built in the same way from s2. An example of this process is provided
in Fig. 2, where, in the left-hand side graphs, the values next to the nodes are profit
and the values next to the edges are length. In the right-hand side graphs, the values
on the arcs are length/profit.

3.4.2 Phase 2

During this phase, a modified form of ERX is applied, with s′
1 and s′

2 as parents.
For each node in vi ∈ V ′, a list li of the nodes adjacent to vi in s′

1 and s′
2 is built. A

node vj can appear twice if the arcs (vi, vj) and/or (vj, vi) appear in both parents. (The
direction of the arc is also saved.)

The offspring is created by adding one node at a time beginning with v1. Let vi

be the last node added to the offspring. Then, vi is removed from every list where it
appears. If the list li associated with vi is empty, the structured combination process
stops. We point out that this operator may not add all the nodes that appear in
the parent solutions. However, in practice, it has been observed that ERX builds
a solution that includes all the parent nodes about 95 % of the time [21]. When ERX
fails to generate a solution that includes all nodes in the parents, a node that is not
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Fig. 2 An example of the phase 1 of the crossover

already in the offspring is randomly chosen and the process continues. In the context
of the TSPP, we require no repairing mechanism because a solution is feasible even
if all nodes are not included.

When li is not empty, the following rules build the set of candidates from which
the next node is randomly selected:

1. Let C1 be the subset of nodes vj in li whose associated list lj is not empty. If the lj

list associated with every node vj in li is empty, then let C1 consist of all vj in li.
2. For every node vj in C1, let aj be the arc between vj and vi, and assign node vj a

rank equal to the number of nodes vk such that the values of aj are dominated in
the Pareto sense by ak. Let C2 be the subset of nodes in C1 having rank 0.

3. Let C3 be the subset of C2 nodes whose associated lists tie for having the least
number of elements.

4. Let C4 be the subset of nodes vj in C3 such that (vi, vj) and/or (vj, vi) appears in
both parents s′

1 and s′
2. If such a node vj in C3 does not exist, let C4 = C3.

5. Choose a node randomly from C4.

The first step favors the adjacent nodes with available neighbors such that the
tour can be extended after its application. The second step is a greedy criterion such
that the current offspring at this moment is not dominated by another offspring of
the same length. Experiments have shown that this choice has a positive impact.
Step 3 is the standard criterion from ERX [21]. Step 4 is to encourage the choice
of information present in both parents. For instance, if we have the choice to include
two nodes vj and vk after vi. If the arc (vi, vj) appears in both parents while (vi, vk)

only appears in one parent, the former is selected.
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3.4.3 Phase 3

A node vj is added immediately after a node vi during the second phase when either
arc (vi, vj) or arc (vj, vi) appears in one of the parents s′

1 and s′
2. Let α be the added

arc, s′ be the modified parent where α appears and s be the original parent that was
transformed into s′ during phase 1. According to the construction process used in
phase 1, α may stand for a path composed of several nodes in s. The nodes in such a
path are added to the offspring while preserving the direction of the path between vi

and vj in s. This is done for all the edges (vi, vj) in the offspring. For instance, if we
consider the first parent in Fig. 2 and if the arc (v1, v5) has been added to the offspring
from this parent, then, in phase 3, it is extended to the path v1v6v5.

3.5 Mutation and Improvement Operators

After an offspring is generated, we allow it to be modified with probability Pm. There
are three methods to achieve this:

Add/Remove A node is randomly selected from V. If the node appears in the tour,
it is removed and its predecessor and successor are connected to
repair the tour. Otherwise, the node is added so that the length of
the resulting tour is minimal.

Exchange A node in the tour is randomly selected and replaced by another
randomly selected node that is currently not in the tour.

Local search An EC process is applied to the solution. It is the same process as
IP-TSPP except that the possible moves are limited to the first set
and the trial move. The goal point is defined as (0, p) where p is the
profit of the solution to be mutated. In that way, this operator may
improve the length of the tour without modifying the set of visited
nodes (i.e., with no change in the total profit).

These operators have been selected because they closely relate to the four main
operations that may be used to transform a tour in the context of the TSPP.

3.6 Definition of the Hybrid Meta-heuristic

IP-TSPP is applied to every generated solution s that enters the archive A during
the GA process, that is, to every solution that appears to be of good quality and
promising (i.e. solutions which are potentially Pareto optimal at a given time). Then,
if such a solution exists at the end of IP-TSPP, s is replaced in P by one of the
solutions that dominates s found during the execution of IP-TSPP.

Then, the complete method works as follows (cf. Fig. 3): first, an initial population
P is generated by a heuristic for the STSP. An archive A containing all the non-
dominated solutions found in P is created. Every generated solution s will be tested
for inclusion in A, i.e., if no solution from A dominates s, then s is included in A.
At the same time, every solution from A dominated by s is removed from A. Then,
the MOEA is run until the number of generations without a solution included in A
(nbstall) reaches a given number of generations M. A generation works as follows:
two parents are selected in the population and genetic operators are applied to obtain
an offspring o. This offspring is only considered if it is not already in the population.
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Fig. 3 Flowchart of the hybrid meta-heuristic

If o is successfully added to the archive, the EC process is executed with o as the
starting solution. In any case, the worst solution in P is replaced by o or a better
solution found by the EC process if it has been used.

4 Computational Results

4.1 An ε-constraint Method

As far as we are able to determine, there is no other method in the literature that
addresses the TSPP as a bi-objective problem. However, a number of studies have
investigated the single-objective variants [7], and we have undertaken to compare
our procedure to the Tabu search (TS) for the STSP designed by Gendreau et al. [9]
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which is reported to be one of the most efficient procedures for the STSP (see Feillet
et al. [7]).

To generate solutions to the TSPP with the TS method of Gendreau et al., we
use the following ε-constraint approach. In the bi-objective case, the ε-constraint
method adds a new constraint to the problem: fi(x) ≤ ε (or fi(x) ≥ ε), where fi is an
objective to be minimized (respectively maximized) and ε is a given value. The single-
objective procedure is then asked to optimize the other (unconstrained) objective.
Varying the ε parameter allows for the exploration of the bi-objective space. In the
context of the STSP, the objective to be optimized is the maximization of profit and
the constrained objective is the minimization of the length. The following procedure
is used to choose ε:

STEP 1 Compute ε < 0 such that any improvement on any tour is smaller than ε.
This can be computed by considering the smallest possible improvement in
the length. This is computed by considering the different possible moves: a
node n is added or removed or exchanged with another node while being
between any two nodes or swapped from any two nodes with another node
which would be between any two nodes. α is computed once at this step
considering all the possibilities.

STEP 2 Solve the TSP (heuristically) on V. Save the resulting solution as a poten-
tial Pareto optimal solution. Set cmax ← ubl + ε, where ubl is the length of
the solution.

STEP 3 If cmax < 0, stop. Solve the STSP by means of the TS. Let s be the resulting
solution with a length of sl . Save s as a potential Pareto optimal solution.
Set cmax ← sl + ε. Reiterate STEP 3.

If the TS method of Gendreau et al. were able to find the optimal solution at
each iteration, then the set built during the search would be the optimal Pareto
set. Furthermore, the number of executions of their TS method will not exceed the
number of solutions in the optimal Pareto set in the parametric we are using.

4.2 Benchmarks and Parameters

Experiments were conducted on a series of randomly-generated instances. To gen-
erate the node set, |V| different points were generated in a [0, 100] × [0, 100] square
with a uniform distribution. A randomly generated integer profit between 1 and 100
was assigned to each node of V \ {v1}. For each value of |V| = 75, 100, 125, 150, five
instances were generated.

The evolutionary algorithm MOEA and the hybrid meta-heuristic HM were
executed ten times on each instance. The parameters used were: θ was randomly
chosen in [5], N = 256, M = 2,500, and Pm = 0.2. Preliminary experimentation
disclosed these parameters to be effective.

We have compared the methods according to their computational times in seconds
(Time) and the number of potentially Pareto optimal solutions (NB) they were
able to find. The S metric [22] was also used to compare the methods, based on
computing the volume (area in the bi-objective case) dominated by a given Pareto-
front approximation. The S metric requires a reference point Zref consisting in a
reference value for each of both objectives. For the length value, we used the worst
length found by all methods; for the profit, we took the value 0 as it is the worst
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Table 1 Times (in seconds)
n ε-Constraint HM MOEA

method Mean SD Mean SD

75 5,114 270 33 121 40
75 5,172 388 77 120 32
75 5,610 236 19 107 21
75 4,191 305 40 147 32
75 5,603 379 22 130 25

100 20,373 1,122 132 445 128
100 20,990 1,178 156 272 67
100 17,447 1,415 127 529 185
100 15,754 1,404 350 465 80
100 17,757 1,796 745 489 112
125 39,828 4,613 542 997 237
125 36,770 2,960 434 972 182
125 39,656 4,131 761 1,206 399
125 38,313 3,496 437 876 270
125 32,800 3,687 619 1,277 464
150 55,258 7,330 1,162 2,462 635
150 59,203 8,729 1,975 2,380 494
150 53,381 5,239 670 1,998 426
150 50,395 6,637 1,467 2,999 383
150 54,780 7,224 1,409 3,220 654

possible profit. We have normalized the S metric so that the maximal theoretical
area is 1.0. The results are respectively reported in Tables 1, 2, and 3, for the TS-
based ε-constraint method, the MOEA alone, and the hybrid meta-heuristic (HM),

Table 2 Number of
potentially Pareto optimal
solutions

n ε-Constraint HM MOEA

method Mean SD Mean SD

75 305 645.7 17.3 516.0 39.2
75 435 723.9 42.2 569.5 50.9
75 326 660.2 11.2 539.0 28.4
75 308 669.7 12.8 516.2 33.3
75 380 733.9 10.0 607.2 45.1

100 580 1,142.9 40.6 869.7 37.9
100 444 867.4 13.8 657.0 28.3
100 445 1,271.9 29.0 886.4 121.1
100 481 1,012.2 31.3 891.2 50.9
100 562 1,093.1 31.6 854.7 61.9
125 561 1,752.9 25.1 1,382.1 147.5
125 510 1,531.8 33.8 1,068.9 85.3
125 601 2,005.8 35.5 1,318.6 172.0
125 505 1,381.4 17.8 1,129.6 102.6
125 478 1,692.0 45.1 1,366.3 99.5
150 464 1,864.6 39.0 1,490.9 167.1
150 527 2,344.8 149.4 1,767.6 261.2
150 435 1,671.0 72.4 1,341.8 100.5
150 439 2,028.1 75.6 1,326.5 89.6
150 719 2,283.6 46.8 1,829.0 178.7
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Table 3 S metric values

n ε-CM HM MOEA MOEAu

Max. Mean Min. Max. Mean Max. Mean

75 0.585067 0.586240 0.585888 0.585420 0.585468 0.583486 0.585561 0.583986
75 0.593236 0.594540 0.593858 0.590694 0.590843 0.588162 0.591399 0.589119
75 0.576733 0.577810 0.577765 0.577670 0.577333 0.577040 0.577494 0.577299
75 0.596526 0.597674 0.597607 0.597486 0.596054 0.595351 0.596182 0.595912
75 0.581920 0.583361 0.583007 0.582194 0.582334 0.580350 0.582417 0.581113

100 0.606018 0.607229 0.606574 0.605043 0.605763 0.603865 0.606657 0.605292
100 0.591636 0.592637 0.592344 0.592243 0.591934 0.591287 0.592143 0.591838
100 0.611364 0.612885 0.611928 0.611251 0.610975 0.608407 0.611155 0.609311
100 0.595497 0.597554 0.597039 0.596057 0.594981 0.594168 0.596677 0.595223
100 0.594143 0.595550 0.594759 0.593889 0.593215 0.589779 0.592664 0.590929
125 0.587292 0.590175 0.589944 0.588946 0.587899 0.586793 0.588643 0.587425
125 0.595876 0.598160 0.597566 0.596947 0.595562 0.594876 0.596203 0.595445
125 0.630162 0.633343 0.632389 0.629455 0.631595 0.629748 0.631395 0.630464
125 0.600385 0.603044 0.602341 0.599631 0.601820 0.600550 0.602253 0.601144
125 0.614249 0.617887 0.616088 0.614819 0.614379 0.612510 0.614921 0.613707
150 0.587704 0.595406 0.594031 0.591555 0.592332 0.588543 0.591752 0.587566
150 0.611467 0.620409 0.619362 0.614182 0.617709 0.613773 0.616726 0.614095
150 0.614186 0.617686 0.616531 0.615642 0.614569 0.611352 0.613949 0.611781
150 0.609805 0.618804 0.618209 0.617180 0..616121 0.612857 0.616281 0.614079
150 0.629149 0.632400 0.631189 0.629091 0.631050 0.629373 0.631292 0.629490

i.e. IP-TSPP with the MOEA providing the starting solutions. We have also used
the C metric [22] to compare the average ratio of solutions found by a given method
dominated by solutions from the hybrid meta-heuristic. In Table 4, C(A, B) is the
average ratio of solutions from B dominated by solutions from A.

4.3 Efficiency of the MOEA

Because the genetic algorithm literature proposes that a solution recombination
method should constitute a solution procedure in itself, and not simply as an inten-
sification or diversification process for a local search, we investigated the MOEA
procedure in isolation from the local search procedure. The efficiency of the MOEA
was assessed in comparison with the TS-based ε-constraint method. According to the
S metric, the ε-constraint method was able to find better quality approximation than
the MOEA for most problem instances of size smaller or equal to 125. However, the
MOEA has a better average S value than the S value for the ε-constraint method
for 4 out of 5 instances when |V| = 150. Furthermore, for 11 instances, i.e. more than
fifty percent of the instances, there is at least one run during which the MOEA found
a better approximation than the ε-constraint method. This seems to indicate that the
MOEA is still an interesting method. Indeed, the running times of the MOEA remain
particularly low compared to the TS-based ε-constraint method, and therefore, it can
be used to obtain quickly a first approximation to the problem.

4.4 Efficiency of the Hybrid Meta-heuristic

As it can be expected, the full HM procedure which incorporates the MOEA as
a process to generate starting solutions considerably increases the computational



J Math Model Algor

T
ab

le
4

C
m

et
ri

c
va

lu
es

n
H

M
/ε

-C
M

H
M

/M
O

E
A

H
M

/M
O

E
A

u

C
(H

M
,ε

-C
M

)
C

(ε
-C

M
,H

M
)

C
(H

M
,M

O
E

A
)

C
(M

O
E

A
,H

M
)

C
(H

M
,M

O
E

A
u)

C
(M

O
E

A
u,

H
M

)

75
0.

26
0.

03
0.

42
0.

04
0.

40
0.

04
75

0.
33

0.
02

0.
59

0.
02

0.
55

0.
03

75
0.

32
0.

01
0.

38
0.

02
0.

28
0.

02
75

0.
39

0.
01

0.
50

0.
01

0.
46

0.
01

75
0.

40
0.

06
0.

56
0.

04
0.

49
0.

04
10

0
0.

39
0.

08
0.

67
0.

07
0.

50
0.

07
10

0
0.

34
0.

01
0.

41
0.

01
0.

30
0.

01
10

0
0.

48
0.

02
0.

67
0.

08
0.

56
0.

08
10

0
0.

58
0.

07
0.

67
0.

02
0.

57
0.

07
10

0
0.

34
0.

03
0.

71
0.

03
0.

61
0.

03
12

5
0.

63
0.

01
0.

71
0.

01
0.

63
0.

01
12

5
0.

60
0.

06
0.

76
0.

03
0.

70
0.

03
12

5
0.

61
0.

05
0.

72
0.

01
0.

64
0.

02
12

5
0.

67
0.

09
0.

60
0.

09
0.

48
0.

09
12

5
0.

48
0.

03
0.

73
0.

06
0.

67
0.

06
15

0
0.

70
0.

04
0.

79
0.

05
0.

79
0.

06
15

0
0.

70
0.

02
0.

80
0.

03
0.

78
0.

02
15

0
0.

52
0.

03
0.

84
0.

05
0.

81
0.

04
15

0
0.

78
0.

01
0.

83
0.

02
0.

78
0.

07
15

0
0.

39
0.

14
0.

58
0.

06
0.

53
0.

07



J Math Model Algor

time. However, as shown in Table 1, the time remains significantly smaller than
the time needed by the ε-constraint method. From a positive point of view, IP-
TSPP significantly improves the quality of the solutions. It increases the number of
potentially Pareto optimal solutions found by the HM when it is compared to the
MOEA. It should be noted that the average S value for the HM is always better than
the best value for the MOEA. Moreover, the worst S metric value for the HM is
better on 17 instances than the average S value for the MOEA and it is better on 10
instances than the best S value for the MOEA.

Another test we have done is to compare the HM with the MOEA if the latter
was allowed to run for a time equal to the average of the times of the HM on each
instance. The results for the S metric for ten runs on each instance is reported in
Table 3 and the new implementation of the MOEA is denoted MOEAu. It appears
that the average S metric value is better for the HM for all the instances and this
value is also better than the one for the best run of MOEAu on 19 instances out of
20. The worst S metric value for the HM is better on 16 instances than the average S
value for MOEAu and it is better on 9 instances than the best S value for MOEAu.
Therefore, it appears that even if we let the MOEA run longer, the HM is still a
better choice as it can provide better solutions on average and, in general, it seems it
would be able to provide better solutions.

When compared to the ε-constraint method, the HM also performs well. As
disclosed by Table 1, it is an order of magnitude faster than the Tabu-based ε-
constraint approach (on average 9.2 times faster). It is also able to find many
more potentially Pareto optimal solutions, which can offer more possibilities to the
decision maker. Even if the number of solutions found may not be able to allow to
determine which method is better, the fact that the ε-constraint method found fewer
solutions employing significantly more computer time indicates the limitations of

Table 5 Kruskal–Wallis
statistical test results n HM vs. ε-CM HM vs. MOEAu ε-CM vs. MOEAu

75 ≺ ≺ ≡
75 ≺ ≺ �
75 ≺ ≺ ≺
75 ≺ ≺ �
75 ≺ ≺ ≡

100 ≡ ≺ ≺
100 ≺ ≺ ≺
100 ≺ ≺ �
100 ≺ ≺ �
100 ≺ ≺ ≺
125 ≺ ≺ ≡
125 ≺ ≺ �
125 ≺ ≺ ≺
125 ≺ ≺ ≺
125 ≺ ≺ ≡
150 ≺ ≺ ≡
150 ≺ ≺ ≺
150 ≺ ≺ �
150 ≺ ≺ ≺
150 ≺ ≺ ≡
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applying an iterated single objective method to this kind of problems and shows the
need to develop multi-objective methods for them. Furthermore, the large number
of potentially Pareto optimal solutions found by the HM is another indicator of
the interest to solve this problem as a bi-objective one. Our approach is also able
to generate a better quality approximation than the ε-constraint method as the
average S metric values of the HM are always better than those of the other method.
Moreover, the worst S value of the HM is better than the S value for the ε-constraint
method on 13 instances out of 20.

Additionally, the results in Table 4 show that the HM is able to dominate large
parts of the approximation of the other meta-heuristics while the other methods only
dominate a marginal number of solutions identified by the HM. This fact combined
with the previous one that the HM found more non-dominated solutions reinforce
our conclusion that the HM is the most efficient meta-heuristic proposed here.

Finally, statistical tests have been conducted to see if the results related to the S
metric were relevant. To do that, we used the Kruskal–Wallis statistical test with a
p value of 5% and compared HM with ε-CM and MOEAu as well as ε-CM with
MOEAu. The results are reported in Table 5. In this table, according to the methods
under comparison (A vs. B), ≺ means that A is significantly better than B, � that B
is significantly better than A, and ≡ that there is no significant difference between
both. It appears that the HM is always significantly better than MOEAu and that
there is only one instance where it is not significantly better than the ε-CM. At the
same time, no definitive conclusion can be drawn between the ε-CM and MOEAu,
this indicates that the hybridization is able to improve the robustness of the method
and it corroborates our conclusion that the HM is the most efficient meta-heuristic
we have designed for the TSPP.

5 Conclusions

We have shown how our new approach to the traveling salesman problem with
profits, which uses a bi-objective representation and an ejection chain process with a
multi-objective evolutionary algorithm to generate starting solutions, yields an effec-
tive method for generating a high quality Pareto set. A computational comparison
with an iterated ε-constraint implementation of one of the best meta-heuristics for
the selective traveling salesman problem shows our method has advantages as the
size of the problem increases.

We observe two primary opportunities to improve the performance of our method
in future research: first, the possibility to upgrade the Insert and Shake procedure for
generating an initial population of tours in the evolutionary approach by incorpo-
rating ejection chain strategies to improve the quality of the TSP tours produced.
Second, we could employ an alternative evolutionary approach by making use of
scatter search and path relinking, which have been shown in a variety of studies to
perform more effectively than a genetic algorithm design.
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