
Journal of Combinatorial Optimization, 10, 77–92, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Clustering of Microarray data via Clique
Partitioning

GARY KOCHENBERGER Gary.Kochenberger@Cudenver.edu
School of Business, University of Colorado at Denver

FRED GLOVER Fred.Glover@Colorado.edu
Leeds School of Business, University of Colorado at Boulder

BAHRAM ALIDAEE balidaee@bus.olemiss.edu
School of Business, University of Mississippi

HAIBO WANG hwang@tamiu.edu
School of Business, Texas A&M International University

Abstract. Microarrays are repositories of gene expression data that hold tremendous potential for new under-
standing, leading to advances in functional genomics and molecular biology. Cluster analysis (CA) is an early
step in the exploration of such data that is useful for purposes of data reduction, exposing hidden patterns, and the
generation of hypotheses regarding the relationship between genes and phenotypes. In this paper we present a new
model for the clique partitioning problem and illustrate how it can be used to perform cluster analysis in this setting.

Keywords: clustering, clique partitioning, metaheuristics

1. Introduction

The development of Microarrays has created new application opportunities for data mining
methodologies. The potential to add to our understanding of the genome via such exploration
is creating new interest in existing data mining methods. Moreover, it is motivating research
into the development and testing of new models and solution approaches intended to enhance
the performance of traditional methods. This array of data mining methodologies offers great
potential for advances in functional genomics and molecular biology.

An early step in the mining of Microarray data often involves the clustering the data into
similar groups with the intention of exposing hidden patterns of gene expression as well
as suggesting possible hypotheses to be tested by other means regarding the relationship
between genes and phenotypes. Clustering also serves as an effective tool for data reduction.

Much of the application of cluster analysis on Microarray data is conducted by apply-
ing one of the standard methods adopted from the statistics literature, such as K-means,
Hierarchical methods, Self Organizing Maps, or some variation of these basic approaches.
Excellent recent surveys of the methods and application of CA for mining Microarray
data are given by Jiang et al. (2004), and Shannon et al. (2003). In recent years, however,

78 KOCHENBERGER ET AL.

developments coming from metaheuristics, along with new modeling constructs, have con-
tributed new methods with potential application to clustering problems. Models designed
for clique partitioning along with their proposed solution methodologies are illustrative of
these advances. The purpose of this paper is to present a new model for clique partitioning
and to show its potential application to clustering of Microarray data.

In the sections below we first present the classic model for clique partitioning fol-
lowed by our new model. Computational experience is given showing a comparison of
the two models. We then address the application of clique partitioning to clustering of
Microarray data followed by some computational experience with data sets from St. Jude
Children’s Research Hospital in Memphis, Tennessee. This is followed by our summary and
conclusions.

2. Clique partitioning model

Consider a graph G = (V, E) with n vertices and unrestricted edge weights. The clique
partitioning problem (CP) consists of partitioning the graph into cliques, i.e., complete
sub-graphs where every pair of nodes is connected by an edge, such that the sum of the
edges weights over all cliques formed is as large as possible. This is an NP-hard problem
with applications in such diverse areas as VLSI layout design, program design for paged
computer memory, group technology analysis, qualitative data analysis, image analysis, and
cluster analysis. Many other applications, such at the formation of alliances among countries
as well as strategic alliances among companies, can also be modeled and analyzed as clique
partitioning problems.

2.1. Standard 0/1 linear model

The standard formulation of CP (see for instance, Grotschel and Wakabayashi, 1989; Chopra
and Rao, 1993; Oosten et al., 2001) is given by:

CP(Edge) : max x0 =
∑

(i, j)∈E

wi j xi j (1)

st xi j + xir − x jr ≤ 1 ∀ distinct i, j, r ∈ V
xi j ∈ {0, 1} (2)

where the wi j are unrestricted edge weights and xi j is defined to be 1 if edge (i, j) is
in the partition, and equal to 0 otherwise. This edge-based formulation contains n(n −
1)/2 variables and 3Cn

3 constraints and the model explodes in size even for modest sized
graphs,. Despite these model limitations, the dominant methods presented in the literature
for solving CP[Edge] are exact approaches based on LP methods as illustrated by the cutting
plane approaches of Grotschel and Wakabayashi (1989) and Oosten et al. (2001), and the
column generation approach of Mehrotra and Trick (1998). These approaches have proven
to be successful on small to moderate size problems. For larger instances, however, their
application is severely limited due the challenge presented by the large size of CP[Edge].

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 79

For such cases, metaheuristic methods, coupled with a new formulation, prove to be very
effective as we demonstrate in the following sections.

2.2. New formulation

The computational challenge posed by CP[Edge] for large problem instances motivates
the development of a new formulation that can be readily solved by basic metaheuristic
methodologies. We first present the new model and then describe our solution approach.

Without loss of generality we assume G is a complete graph, where artificial edges with
negative (penalty) edge weights are introduced as needed to assure an edge exists between
each pair of nodes. In addition, define

k max = maximum number of cliques allowed (an educated guess)

and

xik = 1 if node i is assigned to clique k; 0 otherwise

Then our model is:

CP[Node]: max x0 =
n−1∑

i=1

n∑

j=i+1

wi j

k max∑

k=1

xik x jk (3)

st
k max∑

k=1

xik = 1 i = 1, n (4)

The quadratic terms in the objective function imply that the weight w i j becomes part of
the partition weight only when nodes i and j are assigned to the same clique. The constraints
of (4) require that each node is assigned to one of the cliques.

The value chosen for k max for a given problem instance can be estimated from domain
knowledge. In determining k max, we bias the estimation slightly toward the high side
while trying not to make it unnecessarily large as doing so inflates the number of variables
in the model. In the event that k max is inadvertently set too low, the bound that it represents
will be achieved, denoting that k max needs to be increased and the model solved again.
While it is plausible that such an iterative procedure may be required in a given case, our
experience suggests that this happens infrequently. Over a wide variety of test problems,
setting an appropriate value for k max has not been a problem.

Several remarks about this model are in order: First of all, this node-oriented model
contains many fewer variables than CP[Edge] since n(k max) is typically much less than
n(n−1)/2. Furthermore, the number of constraints (n) is much smaller than the correspond-
ing number (3Cn

3) for the edge-oriented model of CP[Edge]. While CP[Edge] is a linear
model and CP[Node] is quadratic, the size difference enables this quadratic alternative to
be used for large instances of clique partitioning problems where the computational burden
of CP[Edge] precludes its practical use. As we demonstrate later in this paper, CP[Node]

80 KOCHENBERGER ET AL.

can be effectively solved, even for large instances, by modern metaheuristic methods such
as tabu search.

2.2.1. Solving CP[Node]. Our approach to solving CP[Node] is to first re-cast the model
into the form of either an unconstrained binary quadratic program (UBQP) or a very slight
variation of UBQP consisting of a cardinality constrained binary quadratic program (CBQP).
Our motivation is to leverage the advances we have reported elsewhere in the recent literature
for solving UBQP, a method embodying basic tabu search features that is capable of solving
our revised CP[Node] model as represented by either UBQP or CBQP. We start here with
the development for UBQP and comment later about the slight variation CBQP.

Our node formulation, CP[Node], can be represented in matrix notation as:

max xo = x Qx

suject to Ax = b, x binary (5)

Such models can be converted into equivalent unconstrained models (UBQP) by adding
a quadratic infeasibility penalty function to the objective function in place of explicitly
imposing the constraints Ax = b.

Specifically, for a positive scalar P, we have

x0 = x Qx − P(Ax − b)t (Ax − b)

= x Qx − x Dx − c (6)

= x Q̂x − c

where the matrix D and the additive constant c result directly from the matrix multiplica-
tion indicated. Dropping the additive constant, the equivalent unconstrained version of our
constrained problem becomes

UBQP : max x Q̂x, x binary (7)

From a computational standpoint, a suitable choice of the penalty scalar P can always
be chosen so that the optimal solution to UBQP is the optimal solution to the original
constrained problem. This approach has proven to be successful for a wide variety of
problem classes as reported in Kochenberger et al. (2004) and Kochenberger and Glover
(2005).

2.2.2. Solving UBQP. The reformulated version of CP[Node] can be efficiently solved by
the tabu search method described in Glover et al. (1999). An overview of this method is as
follows.

Our TS method for UBQP is based on the use of strategic oscillation, which constitutes
one of the primary strategies of tabu search. The variant of strategic oscillation we employ
may be sketched in overview as follows.

The method alternates between constructive phases that progressively set variables to 1
(whose steps we call “add moves”) and destructive phases that progressively set variables

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 81

to 0 (whose steps we call “drops moves”). To control the underlying search process, we use
a memory structure that is updated at critical events, identified by conditions that generate
a subclass of locally optimal solutions. Solutions corresponding to critical events are called
critical solutions.

A parameter span is used to indicate the amplitude of oscillation about a critical event.
We begin with span equal to 1 and gradually increase it to some limiting value. For each
value of span, a series of alternating constructive and destructive phases is executed be-
fore progressing to the next value. At the limiting point, span is gradually decreased,
allowing again for a series of alternating constructive and destructive phases. When span
reaches a value of 1, a complete span cycle has been completed and the next cycle is
launched.

Information stored at critical events is used to influence the search process by penalizing
potentially attractive add moves (during a constructive phase) and inducing drop moves
(during a destructive phase) associated with assignments of values to variables in recent
critical solutions. Cumulative critical event information is used to introduce a subtle long
term bias into the search process by means of additional penalties and inducements similar
to those discussed above.

We illustrate our approach to clique partitioning via CP[Node] and UBQP by the following
example:

Example 1. Consider the graph

Adding artificial edges (2,4) and (3,4) with edge weights equal to –P, we get the complete
graph

82 KOCHENBERGER ET AL.

Arbitrarily taking k max to be 3 (a choice whose appropriateness can be established from
the solution to the model), CP[Node] becomes:

max xo = 10x11x21 + 4x11x31 + 6x11x41 − 2x21x31 − Px21x41 − Px31x41

+10x12x22 + 4x12x32 + 6x12x42 − 2x22x32 − Px32x42 − Px32x42

+10x13x23 + 4x13x33 + 6x13x43 − 2x23x33 − Px23x43 − Px33x43

st x11 + x12 + x13 = 1

x21 + x22 + x23 = 1 (8)

x31 + x32 + x33 = 1

x41 + x42 + x43 = 1

Choosing P = 20 and applying the quadratic infeasibility transformation of (6) yields
the equivalent unconstrained problem:

UBQP: max x̂0 = x Q̂x (9)

with an additive constant of −80 and the Q̂ matrix is given by:





20 −20 −20 5 0 0 2 0 0 3 0 0

−20 20 −20 0 5 0 0 2 0 0 3 0

−20 −20 20 0 0 5 0 0 2 0 0 3

5 0 0 20 −20 −20 −1 0 0 −10 0 0

0 5 0 −20 20 −20 0 −1 0 0 −10 0

0 0 5 −20 −20 20 0 0 −1 0 0 −10

2 0 0 −1 0 0 20 −20 −20 −10 0 0

0 2 0 0 −1 0 −20 20 −20 0 −10 0

0 0 2 0 0 −1 −20 −20 20 0 0 −10

3 0 0 −10 0 0 −10 0 0 20 −20 −20

0 3 0 0 −10 0 0 −10 0 −20 20 −20

0 0 3 0 0 −10 0 0 −10 −20 −20 20





(10)

Solving UBQP by our tabu search code gives x̂0 = 92 for the nonzero assignments
x11 = x21 = x31 = x42 = 1. This optimal solution to CP[Node] consists of two cliques
with an objective function value of x0 = 92 − 80 = 12 with nodes 1, 2 and 3 assigned
to one clique and node 4 assigned to a second clique. Note that while we allowed for
the possibility of three cliques, only two were used in our solution. This implies that our
initial choice of k max = 3 was more than sufficient. In general, whenever the initial value
selected for k max yields a solution that contains fewer than k max cliques, the chosen
value is vindicated. Otherwise, we only need to increase k max and repeat the solution
process.

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 83

Earlier in this section we commented that the cardinality constrained binary quadratic
program, CBQP, could be employed as an alternative reformulation of CP[Node]. This
slight variation of UBQP takes the form:

CBQP: max x Q̄x

st
∑

xi j = n (11)

The differences between the models put forth in (6) and (10) are slight. CBQP does not have
the additive constant of UBQP but has a single cardinality constraint requiring that exactly
n of the variables are equal to 1. The “Q” matrices in the two formulations differ only in
their main diagonals where the diagonal elements in UBQP contain penalty terms and those
of CBQP do not. These slight variations, equally solvable by our tabu search method, are
equivalent reformulations of CP[Node]. Our computational testing suggests that they are
both effective with neither offering a computational advantage over the other.

In Section 2.3 below we present computational experience comparing CP[Edge] and
CP[Node] for some test problems of moderate to large size. Our results for CP[Edge] were
produced by CPLEX and those given for CP[Node] were produced by our tabu search
method addressing CP[Node] via CBQP.

2.3. Computational comparisons of models

To provide a basis for comparing CP[Edge] and CP[Node], test problems of size n = 25,
50, 100, and 200 (three instances in each case) were generated and solved. For each of the
12 problems, edge weights were randomly generated with an absolute magnitude between
1 and 50. Roughly 30% of the edge weights were then made negative.

Table 1 shows the results obtained by applying CPLEX to CP[Edge]. The corresponding
results for CP[Node] are given in Table 2.

All runs were carried out using a Sun Enterprise 3500 server. The results of Table 1 were
obtained from CPLEX 6.5 and those of Table 2 were obtained from our tabu search heuristic
with an arbitrary limit of 100 SPAN cycles for each problem. The first three columns of
both tables are identical denoting the problem ID along with the number of nodes and edges
in the graph. Columns 4 and 5 of Table 1 denote the number of variables and constraints in
the CP[Edge] formulation and the last two columns give the objective function values and
corresponding solution times.

The fourth column of Table 2 gives the maximum number of cliques allowed and the
fifth column gives the number of variables in the CBQP formulation. The sixth and seventh
columns give the objective function value and number of cliques actually formed in the
solution, respectively. Finally, the last column gives the time taken for the heuristic to
perform the 100 SPAN cycles.

Note that CPLEX was able to terminate naturally on the first three problems only. For
these same three problems, our tabu search method gave the same (i.e., optimal) solution
in a fraction of the time required by CPLEX. For the 50 node problems, CPLEX was
allowed to run for an arbitrary limit of 40 CPU hours. The results given in Table 1 for these
problems are the best solutions found during the 40 hour run. As shown in Table 2, our tabu

84 KOCHENBERGER ET AL.

Table 1. CPLEX results for CP[Edge].

ID # Nodes # Edges # Vars # Const Soln Time (seconds)

25.1 25 300 300 6900 2143 776

25.2 25 300 300 6900 2361 607

25.3 25 300 300 6900 1547 1191

50.1 50 1225 1225 58800 2926** T lim

50.2 50 1225 1225 58800 3103** T lim

50.3 50 1225 1225 58800 3678** T lim

100.1 100 4950 (NA)

100.2 100 4950 (NA)

100.3 100 4950 (NA)

200.1 200 19,900 (NA)

200.2 200 19,900 (NA)

200.3 200 19,900 (NA)

Table 2. CP[Node] results via tabu search.

ID # Nodes # Edges k max # Vars Soln # Cliques Time (seconds)

25.1 25 300 5 125 2143 3 1.3

25.2 25 300 5 125 2361 3 1.3

25.3 25 300 5 125 1547 3 1.2

50.1 50 1225 5 250 4884 3 2.9

50.2 50 1225 5 250 5127 3 2.9

50.3 50 1225 5 250 5282 3 2.9

100.1 100 4950 5 500 19929 3 7.4

100.2 100 4950 6 600 16588 5 9.6

100.3 100 4950 6 600 22541 3 8.1

200.1 200 19,900 6 1200 56125 5 33

200.2 200 19,900 6 1200 55030 4 33

200.3 200 19,900 6 1200 59441 5 38

search required less than 3 seconds to perform 100 SPAN cycles and returned solutions
significantly better than those found by CPLEX for these n = 50 problems.

The n = 100 and n = 200 instances were simply too large for CPLEX as the LP
relaxations are either too large to be solved (at all) or too large to be solved in a reasonable
amount of time (for the n = 100 case). As a result, applying CPLEX to the edge-based
model was unable to produce solutions for these problems. In contrast to this, our tabu
search method, as shown in Table 2, readily produced solutions for even the largest of these
problems in less than 40 seconds of computational time.

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 85

3. Clique partitioning and clustering

To use the clique partitioning model as a tool for clustering, we undertake to form cliques on
a similarity or proximity graph. This approach to clustering was championed by Grotschel
and Wakabayashi (1989) and later by Dorndorf and Pesch (1994) and Mehrotra and Trick
(1998). In each case, these authors advocated the use of the edge-based model CP[Edge] and
good results were reported on some small examples. The applicability of this model to larger
clustering problems, such as those encountered in the mining of Microarray data, is greatly
restricted due to the computational difficulties mentioned in Section 2. Our node-based
model, however, overcomes this size limitation and thus enables the clique partitioning
approach to be applied even in these more challenging settings. To apply CP[Node] to the
clustering of Microarray Gene data, we proceed as follows:

We represent the problem by a proximity graph with a node for each gene. Edge weights
are computed by first computing a standardized “distance” matrix denoting the similarity
of gene expression results for each pair of genes. From this matrix a threshold distance is
computed and this threshold amount is used to produce edge weights via

wi j = 100∗(d(i, j) − threshold) (12)

where d(i, j) is the standardized distance between genes i and j and threshold is the
threshold value. Given this graph, we solve CP[Node] for the objective of minimizing the
total weight across all cliques in the partition. While it is possible to define the threshold
value in a variety of ways, we have found that taking the threshold to be the average of the
d(i, j) values yields very good results.

Example 2. This approach is illustrated by a small example taken from Shannon et al.
(2003) consisting of the following gene expression data for four genes and two chips:

Gene Chip 1 Chip 2

A −2.0 1.0

B −1.5 −0.5

C 1.0 0.25

D 2.5 2.5

For this raw data, a standardized Euclidean distance matrix is given by

A B C D

A 0.000 0.512 0.712 1.118

B 0.512 0.000 0.609 1.338

C 0.712 0.609 0.000 0.821

D 1.118 1.338 0.821 0.000

86 KOCHENBERGER ET AL.

We compute a threshold (average distance) value of 0.852 and obtain the following edge
weights:

Node Node Weight

A B −34

A C −14

A D 27

B C −24

B D 49

C D −3

Taking K max to be 2, CP[Node] becomes:

Min − 34(x11x21 + x12x22) − 14(x11x31 + x12x32) + 27(x11x14 + x12x42)

− 24(x12x31 + x22x32) + 49(x21x41 + x22x42) − 3(x31x41 + x32x42)

st x11 + x12 = 1

x21 + x22 = 1

x31 + x32 = 1

x41 + x42 = 1 (13)

This instance of CP[Node] is solved by re-casting it in the form of

CBQP: min x ′ Qx

st ∑
xi j = 4 (14)

Where the Q matrix is given by (for a scalar infeasibility penalty of 99):





0 99 −34 0 −14 0 27 0

99 0 0 −34 0 −14 0 27

−34 0 0 99 −24 0 49 0

0 −34 99 0 0 −24 0 49

−14 0 −24 0 0 99 −3 0

0 −14 0 −24 99 0 0 −3

27 0 49 0 −3 0 0 99

0 27 0 49 0 −3 99 0





Solving CBQP yields two clusters (ABC, D).

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 87

4. Computational experience

To test our model on real data, we obtained six sets of Microarray data from St. Jude
Children’s Research Hospital in Memphis, Tennessee. These data sets contain gene expres-
sion data obtained from bone marrow samples from acute lymphoblastic leukemia patients.
In the results given below, we compare CP[Node] with the commonly used K-means method
of SAS 9.1. In each case, CP[Node] is re-cast in the form of CBQP and solved by our tabu
search method.

One of the draw-backs of K-means is that the number of clusters (K) needs to be specified
in advance and thus a series of runs, each with a different value for K, may be needed in
order to identify ideal results. Our model, in contrast, requires only an upper bound on the

Table 3. Computational experience on different St. Jude “ALL” data sets.

CP method k-means (SAS 9.1)

of # of CPU time # of # of CPU time
Dataset # of genes # of chips # of var clusters outliers (second) clusters outliers (second)

BCR 304 15 2432 7 14 30 7 11 14

E2A 304 27 2432 5 7 30 5 5 11

MLL 304 20 3648 11 12 49 11 12 15

Hyperdip50 304 64 2432 8 14 30 8 12 18

T 304 43 3648 11 14 49 11 10 21

TEL 304 79 2432 5 8 30 5 4 12

Table 4. Clustering result on St Jude ALL(BCR) data set.

Cluster #1 k-means CP Genes in common

genes in cluster 293 290 288

Cluster #2 (1, 2, 5, 6) (1, 2, 5, 7, 8, 10)

genes in cluster 4 6 3

Cluster #3 (3, 4, 14) (3, 4, 6, 14)

genes in cluster 3 4 3

Cluster #4 (9) (9)

genes in cluster 1 1 1

Cluster #5 (11) (11)

genes in cluster 1 1 1

Cluster #6 (12) (12)

genes in cluster 1 1 1

Cluster #7 (13) (13)

genes in cluster 1 1 1

88 KOCHENBERGER ET AL.

number of clusters and finds the optimal number of clusters less than or equal to this bound.
Provided that the bound is sufficiently large, only one run of our model is needed as opposed
to several for K-means. Moreover, we immediately know that the bound has been properly
selected when the number of cliques identified in our solution is less than this bound.

Table 5. Clustering result on St Jude ALL (T) data set.

Cluster #1 k-means CP # Genes in common

genes in cluster 160 152 151

Cluster #2

genes in cluster 133 138 131

Cluster #3 (1, 2) (1, 2, 10)

genes in cluster 2 3 2

Cluster #4 (3) (3, 7, 8)

genes in cluster 1 3 1

Cluster #5 (9) (9,14)

genes in cluster 1 2 1

Cluster #6 (4) (4)

genes in cluster 1 1 1

Cluster #7 (5) (5)

genes in cluster 1 1 1

Cluster #8 (11) (11)

genes in cluster 1 1 1

Cluster #9 (12) (12)

genes in cluster 1 1 1

Cluster #10 (13) (13)

genes in cluster 1 1 1

Cluster #11 (6) (6)

genes in cluster 1 1 1

Table 6. Clustering Result on St Jude ALL (E2A) Data Set.

Cluster #1 k-means CP # Genes in common

genes in cluster 258 260 255

Cluster #2

genes in cluster 41 38 36

Cluster #3 (4,9,12) (2,4,7,9,12)

genes in cluster 3 5 3

Cluster #4 (11) (11)

genes in cluster 1 1 1

Cluster #5 (13) (13)

genes in cluster 1 1 1

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 89

In order to provide a comparison that is as fair as possible and to avoid having to make
multiple runs of K-means, we first solved each of the six data sets with our method to
determine the optimal number of clusters needed. This number of clusters, then was taken
as K for the subsequent runs on the data sets via SAS’s K-means procedure. In this manner,
we are able to compare clustering results for each data set based on the same number of
clusters. The overall results from these runs are summarized in Table 3. All computations
were carried out on a Sun 420 R workstation equipped with four UltraSparcII CPUs. Since
our method employs a metaheuristic solution methodology, and thus does more work than
the K-means heuristic, our solution times, as expected, are larger than those of K-means.
Nevertheless, in all cases, the computation times are modest.

Table 7. Clustering result on St Jude ALL (TEL) data set.

Cluster #1 k-means CP # Genes in common

genes in cluster 266 260 260

Cluster #2

genes in cluster 34 36 31

Cluster #3 (2, 4) (1, 2, 4, 9)

genes in cluster 2 4 2

Cluster #4 (12) (11, 12, 6)

genes in cluster 1 3 1

Cluster #5 (13) (13)

genes in cluster 1 1 1

Table 8. Clustering result on St Jude ALL(Hyperdip50) data set.

Cluster #1 k-means CP # Genes in common

genes in cluster 262 152 150

Cluster #2

genes in cluster 30 138 28

Cluster #3 (8, 10, 11, 12) (1, 2, 3, 8, 10, 11, 12)

genes in cluster 4 7 4

Cluster #4 (7, 14, 63) (7,14)

genes in cluster 3 2 2

Cluster #5 (4, 9) (4, 9)

genes in cluster 2 2 2

Cluster #6 (6) (6)

genes in cluster 1 1 1

Cluster #7 (5) (5)

genes in cluster 1 1 1

Cluster #8 (13) (13)

genes in cluster 1 1 1

90 KOCHENBERGER ET AL.

In Table 3 we report outliers as genes in clusters containing 6 or fewer members. This
definition is somewhat arbitrary. Nonetheless the point is made in the table that the compo-
sition of the clusters produced by the two models with respect to outliers differed on five of
the six data sets for this definition. As noted in subsequent tables, clusters of smaller size,
containing one or two genes, are much more uniform.

Tables 4–9 give detailed cluster results for each of the six data sets examined in this
paper. In each case we see a pattern of one or two large clusters augmented by several small
clusters. For each data set (table) we report the number of genes in each cluster, as produced
by each method, along with the number of genes in common for each cluster. For small
clusters, we report the actual genes that were put in the various clusters. For large clusters,
we simply report the aggregate number of genes.

For instance, Table 4 reports the results obtained for the BCR data where the 304 genes
were assigned to one of 7 clusters. For both K-means and CP, the results show one large
cluster and 6 small clusters. The K-means procedure produced Cluster # 1 consisting of 293
genes and our CP model produced Cluster # 1 with 290 genes, 288 of which were common
to both clusters. For K-means, cluster # 2 consists of genes 1, 2, 5, and 6 (i.e., 4 genes) and

Table 9. Clustering result on St Jude ALL(MLL) data set.

Cluster #1 k-means CP # Genes in common

genes in cluster 266 262 261

Cluster #2

genes in cluster 14 19 12

Cluster #3 (2,3,6,20,103,286,294) (6,7,20,103,286,294)

genes in cluster 7 6 5

Cluster #4 (1,48,117,132,151) (1,48,117,132,151)

genes in cluster 5 5 5

Cluster #5 (8,141,236) (8,141,236)

genes in cluster 3 3 3

Cluster #6 (9,148,235) (9,148,235)

genes in cluster 3 3 3

Cluster #7 (5,84) (5,84)

genes in cluster 2 2 2

Cluster #8 (4) (4)

genes in cluster 1 1 1

Cluster #9 (13) (13)

genes in cluster 1 1 1

Cluster #10 (11) (11)

genes in cluster 1 1 1

Cluster #11 (12) (12)

genes in cluster 1 1 1

CLUSTERING OF MICROARRAY DATA VIA CLIQUE PARTITIONING 91

the corresponding cluster for CP consists of genes 1, 2, 5, 7, 8, and 9 for a total of 6 genes,
three of which are in common with the corresponding K-means cluster.

As the tables indicate, across all six data sets, the clusters produced are fairly similar in
general composition, but some substantial differences are seen in roughly 50% of the clusters
as we compare corresponding clusters produced by the two methods. These differences are
most pronounced for the larger clusters that are formed with the most extreme cases coming
from the Hyperdip50 data set (Table 8) where clusters 1 and 2, as produced by K-means
and CP, exhibit fundamental differences in both size and composition.

The results displayed in Tables 3–9 suggest that our CP model produced clusters that
are generally similar in size to those produced by the K-means procedure for each data set
but exhibit considerable differences in the actual gene composition of many of the clusters
formed. The implication of these differences is currently under investigation.

5. Summary

In this paper we have introduced a new model for clique partitioning (CP) that extends the
usefulness of CP as a methodology for clustering data. This model is particularly appropriate
in application settings, as represented by Microarray data, where the data sets are too large
to be accommodated by the standard CP formulation. Computational experience shows
the superiority of the new model (CP[Node]) compared to the standard edge-based model
(CP[Edge]) on medium to large instances of clique partitioning. Computational experience
is also presented showing the performance of our new model for the problem of clustering
Microarray data, making reference to outcomes obtained from SAS’s K-means procedure
to provide a benchmark of comparison.

A noted feature of our approach is that the optimal number of clusters, given an appropriate
upper bound, is computed by the model. This is a significant advantage over alterative
methods where the number of clusters must be specified in advance.

The results presented show that our new model is computationally attractive for large
clique partitioning problems and exhibits considerable potential as a tool for clustering. The
metaheuristic method used to solve our new model, by its very nature, is designed to produce
a more robust search process than that coming from a simpler heuristic such as K-means.
As a result, the differences reported in the clustering results for the Microarray data are not
unexpected. The extent to which these differences may have significant implications from
a functional genomic/molecular biology perspective is currently under investigation.

Acknowledgments

The authors would like to thank the two anonymous referees for their useful comments and
suggestions.

References

S. Chopra and M.R. Rao, “The partition problem,” Mathematical Programming, vol. 59, pp. 87–115, 1993.

92 KOCHENBERGER ET AL.

U. Dorndorf and E. Pesch, “Fast clustering algorithms,” ORSA J. Comput., vol .6, pp. 141–153, 1994.
F. Glover, G. Kochenberger, B. Alidaee, and M. Amini, “Tabu search with critical event memory: An enhanced

application for binary quadratic programs,” in Meta-Heuristics, Advances and Trends in Local Search Paradigms
for Optimization, S.M.S. Voss, I. Osman, and C. Roucairol (Eds.), Kluwer Publisher, 1999, pp. 93–109.

M. Grotschel and Y. Wakabayashi, “A cutting plane algorithm for a clustering problem,” Mathematical Program-
ming, vol. 45, pp. 59–96, 1989.

M. Grotschel and Y. Wakabayashi, “Facets of the clique partitioning polytope,” Mathematical Programming,
vol. 47, pp. 367–387, 1990.

D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene expression data: A survey,” IEEE Transactions on
Knowledge & Data Engineering, vol. 16, pp. 1370–1386, 2004.

G. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “A unified modeling and solution framework for combina-
torial optimization problems,” OR Spectrum, vol. 26, pp. 237–250, 2004.

G. Kochenberger and Fred Glover, “A unified framework for modeling and solving combinatorial optimization
problems: A tutorial,” in Multiscale Optimization Methods and Applications, W. Hager and P. Pardalos (Eds.),
(to be published by Springer in 2005).

A. Mehrotra and M. Trick, “Cliques and clustering: A combinatorial approach,” Operations Research Letters,
vol. 22, pp. 1–12, 1998.

M. Oosten, J. Rutten, and F. Spieksma, “The clique partitioning problem: Facets and patching facets,” Networks,
vol. 38, pp. 209–226, 2001.

W. Shannon, R. Culverhouse, and J. Duncan, “Analyzing microarray data using cluster analysis,” Pharmacoge-
nomics, vol. 4, pp. 41–52, 2003.

