

 1

Sequential and Parallel Path-Relinking
Algorithms for the Quadratic Assignment
Problem

Tabitha Jamesa,, Cesar Regob, and Fred Gloverc

a Department of Business Information Technology, Pamplin College of Business, Virginia
 Polytechnic Institute and State University, Blacksburg, VA 24061, USA. tajames@vt.edu

b School of Business Administration, University of Mississippi, University, MS 38677, USA.

crego@bus.olemiss.edu

c Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, USA.
 fred.glover@colorado.edu

Latest Revision: May 8, 2005.

Abstract – The quadratic assignment problem is a classical combinatorial optimization
problem that has garnered much attention due to both its large number of applications
and its solution complexity. Originally used to model a location problem in the 1950’s,
the QAP is computationally very difficult to solve which makes it an ideal candidate for
metaheuristic approaches. Path-Relinking (PR) is an evolutionary metaheuristic based
on maintaining and exploiting search information by drawing on principles shared in
common with tabu search. This paper proposes and implements a design for both a
sequential and a parallel path-relinking algorithm tailored for the quadratic assignment
problem. We illustrate the potential strength of this solution methodology by developing
a very simple PR approach for a classic problem with wide applicability and exploiting
the inherent parallelism of the algorithm to reduce total computational time. Results
are presented on a set of problems obtained from QAPLIB for both the sequential and
parallel versions of the algorithm in order to demonstrate the benefits of the
parallelization. Comparisons of longer runs of the parallel algorithm are also given
against popular solution approaches from the literature. In spite of the simplicity of the
underlying PR method, we obtain results that are competitive with some of the best
outcomes in the literature.

Keywords: Path-relinking, tabu search, combinatorial optimization, quadratic
assignment problem, parallel computing.

 2

1. Introduction

The quadratic assignment problem was first introduced to model a location problem by
Koopmans and Beckmann (1957). While facility-location problems remain the most
popular application area for the quadratic assignment problem, many other
applications for this problem exist including scheduling problems, statistical data
analysis, information retrieval, as well as problems in transportation. The
attractiveness of the QAP is also due to the fact that many other combinatorial
optimization problems can be formulated as a QAP, including: the traveling salesman
problem, the maximum clique problem and the graph partitioning problem. (See Cela
(1998) for a survey of both classical and practical applications.) In the context of facility
location problems, the objective is to find a minimum cost assignment of facilities to
locations considering both the flow of materials between facilities and the distance
between locations. The QAP can be formulated as follows:

(QAP)

)()(
11

min jpipij

n

j

n

ip
fd

==Π∈
∑∑

where f is the flow matrix, d is the distance matrix, and p is an assignment vector.

The principles of scatter search (SS) and its generalization, path-relinking (PR), have
their origins in surrogate constraint strategies, by replacing the goal of combining
solution constraints with the goal of combining solution vectors, while maintaining a
focus on yielding and utilizing information not contained solely in the original elements
independent of their combination. Similarly, as in the case of surrogate constraint
methods, SS/PR is organized to derive benefit from the use of associated heuristic
processes to help improve, evaluate, and generate new solutions based on information
embodied in the structure of the combined elements (Glover, 1968, 1977, 1998).
Although scatter search falls into the category of evolutionary algorithms, it
encompasses features of the adaptive memory framework of tabu search, as a result of
sharing common origins, and thus places particular emphasis on exploiting memory
and associated strategies of intensification and diversification.

Relying on the same principles, path-relinking generalizes scatter search by replacing
the Euclidian space by the Neighborhood space (as defined in local search) providing a
framework for local search algorithms to explore adaptive memory in an evolutionary
fashion. Because tabu search is typically designed to explore the neighborhood space
of individual solutions, coupling tabu search with path-relinking is a natural marriage
for creating effective adaptive memory neighborhood-based evolutionary approaches.
The RAMP approach recently proposed by Rego (2005) closes the loop between
surrogate constraints, scatter search, path-relinking, and tabu search by providing an
unified framework for the creation of dual and primal-dual algorithms that take full
advantage of adaptive memory programming, yielding highly promising results.

These characteristics allow for a guided exploration of the solution space based upon
information obtained during the search process, substantially reducing the recourse to
randomized processes that lie at the core of other evolutionary approaches. Such a
design is especially conducive to creating customized procedures to take advantage of
special problem structures evidenced by problems from specific classes.

Scatter search and path-relinking have been applied to a variety of problem areas,
including vehicle routing, optimizing simulation, linear ordering, and job shop
scheduling. See Laguna and Marti (2003) and Rego and Alidaee (2005), for a survey of

 3

algorithm designs and applications. An approach applying SS to the quadratic
assignment problem that differs somewhat from the approach of this paper has been
undertaken with success by Cung, et al. (1996).

This paper describes the design of both sequential and parallel path relinking
algorithms for the quadratic assignment problem. This research represents the first use
of parallelization for path relinking within the QAP setting. We make use of a very
simple form of PR in order to focus on the elements of the parallel implementations and
to determine their impact when used with a method of this type. Computational results
are reported for a selected group of QAP test problems from QAPLIB, demonstrating
highly attractive outcomes in spite of the simplicity of the PR procedure, and showing in
particular the value of a well-designed parallelization process in this context.

2. Sequential SS/PR Algorithm

2.1 Scatter Search Overview

The template for the scatter search/path-relinking algorithm given in Glover (1998)
provides a basic skeleton for the algorithm. This outline of the base algorithm delineates
four basic steps for the path-relinking algorithm:

1. Generate a set of starting solutions and initiate the reference set to contain a

predetermined number of the best quality solutions and also a predetermined set of
the most diverse solutions. The generation of the initial solutions is typically
accomplished by an intelligent procedure that uses some knowledge of the problem
type to generate good starting solutions. Often a specialized heuristic method is
applied to these initial generated solutions to improve their quality. These good
starting solutions and their addition to the reference set are not based solely on the
objective function evaluation of the solution. As mentioned above, a certain amount
of “diverse” solutions are also added which broaden the search space and help keep
the algorithm from converging to a local optima.

2. Use a structured combination method to create new solutions from the solutions
contained in the reference set. The structured combination method uses
information collected during the search and known characteristics of the problem
type to intelligently derive new solutions.

3. An improvement heuristic, typically the same procedure as applied in step one, is
performed on the newly generated solution from step two.

4. Attempt to add the solutions generated by steps two and three to the reference set.
Here, once again, solutions are added based on their contribution to the entire
search. This contribution may be to improve the solution quality or to add diversity
to the search. The search iterates from step two unless the reference set does not
change, in which case a diversification procedure the same or similar to the one
used to initiate the reference set may be called to update the reference set. The
algorithm is terminated when either a maximum number of iterations are reached
or the reference set does not change for a given amount of time.

The template can be further described by detailing a specific set of methods that are
used to implement a basic SS/PR algorithm. These methods are as follows:

A. Diversification Generation Method – This method is applied to generate a set of

solutions that give a reasonable representation of the entire search space for the

 4

problem. The method applied is typically dependent upon the problem type. Thus,
it is tailored to generate solutions based upon some knowledge of the problem type.

B. Improvement Method – This method applies a problem-specific heuristic with the

intention of creating a better solution in terms of the objective function evaluation.

C. Reference Set Update Method – This method is used to maintain the reference set. It

is also used to build the initial reference set. This method determines which of the
solutions generated by the diversification generation method and the improvement
method meet the entry requirements for the reference set based upon its
contribution to the diversity of the search or its solution quality.

D. Subset Generation Method – This method creates subsets of solutions which are

then combined to create new solutions which may possibly be added to the
reference set. Subset of two or more solutions may be created during this
procedure. This method uses information about the quality or diversity of the
solutions contained in the reference set to create these subsets.

E. Structured Combination Method – This method creates a new solution(s) from the

subsets created by the subset generation method. This procedure uses information
available about the characteristics of the problem as a basis for creating the new
solutions. Therefore, this method is also typically customized for the particular
problem type being investigated.

The algorithm developed for this study is based upon the general skeleton provided
above. Code obtained from Glover, Laguna, and Marti (2001) was converted from the C
language to Fortran 90 and the methods given above were modified for the quadratic
assignment problem. The rest of this section will describe how the methods outlined
above were implemented for the algorithm used in this study. An outline of the
algorithm is given in Figure 1. The structure of the sequential version of the algorithm
is the same as the parallel implementation with the exception of the concurrent runs of
the improvement method.

2.2 Initializing Diversification Method

The representation strategy used in this algorithm identifies the possible locations by
the integers 1,…, n and depicts a solution vector in the form:

x(h) = (10, 1, 3, 5, 6, 2, 12, 8, 4, 7, 9, 11) where h = 1, n.

In this example, there are 12 firms and 12 locations, each firm 1…12 is assigned to
each location represented by array locations 1…12.

To initialize the reference sets, a diversification generation method, suggested in Glover
(1998) was used. This method strategically generates an initial population of solution
vectors from which to choose the initial reference sets. Using this method, along with
the properties of the reference sets maintained, provide a guaranteed level of diversity
over the search space that cannot be obtained from a more random approach. The
method does not produce infeasible solutions, so all solutions are possible candidates
for the reference set without the need to repair the generated solution vectors.

The approach begins from a randomly generated, feasible seed solution. The candidate
solutions for the reference sets are then built from this seed solution. Once the seed
solution is obtained, the method generates a new solution from the seed solution as
follows. A step, b, is defined that is a positive integer value less than n. The starting

 5

position, s, in the seed permutation is initialized to be the step and the new vector is
built by first adding the element x(s) to the new permutation, followed by the element
x(s+b), x(s+2b), x(s+3b)…x(s+rb) where s+rb does not exceed n. Once the end of the seed
solution is reached, the starting position becomes x(s-1) and the process iterates until
all elements from the seed solution are present in the candidate solution. The process
can be illustrated as follows. Working with the solution vector shown above and a step
of 2, the start position would be initialized to x(2), therefore the first element added to
the new vector would be 1. The starting position would then be adjusted to be x(4),
therefore causing the next element added to be 5 and so on. After the first pass
through the seed solution, the new vector obtained would be:

x(h) = (1, 5, 2, 8, 7, 11, _, _, _, _, _, _)

The starting position would then be adjusted to be one less than the current starting
position, so in this example x(1). The second pass starting from x(1) would generate a
complete vector as shown below and since all elements have been added, the method
would terminate.

x(h) = (1, 5, 2, 8, 7, 11, 10, 3, 6, 12, 4, 9)

The implementation used in the current algorithm uses this method to generate an
initial population, psize, of candidate solutions based off of, m, randomly generated,
feasible seed solutions. The step is defined in this algorithm to be a randomly drawn
integer between 1 and n/2. In the current version of the algorithm, psize = 100 and m
= 10. Ten candidate solutions are then generated from each seed solution using this
diversification generation method.

The initial reference set was then built by adding the best, b1, unique solutions defined
by objective function value and the most diverse, b2, unique solutions defined by the
maximum distance from the best b1 solutions (a discussion of maximum distance is
given below) from the population to the reference set.

2.3 Improvement Method

The procedure we used as an improvement heuristic for our approach is the tabu
search method for the quadratic assignment problem developed by Taillard (1991,
1995). Taillard’s algorithm works by evaluating possible exchanges of two firms. The
algorithm is notable for its ability to evaluate many possible moves relatively quickly,
utilizing a very simple tabu list and aspiration criterion. The tabu list prohibits the
exchange of two values that have been exchanged in the past several moves, to force the
exploration of less attractive areas of the search space. The aspiration criterion allows
moves that are tabu if that move generates a solution that is better than the best-
known solution found at that point in the search. The code for this procedure was
obtained from Taillard and converted from Pascal to Fortran 90.

2.4 Reference Set Update Method

The reference set update method for the current algorithm maintains a set R1 of b1 high
quality solutions and a set R2 of b2 diverse solutions. Once the reference set has been
initialized, a candidate solution is added to the reference set only if it is better than the
worst quality solution currently in the reference set or more diverse than the least
diverse solution currently in the reference set. Duplicate solution vectors are not
allowed in the current implementation.

 6

The high quality solutions are measured in terms of their objective function evaluation.
Let C denote the set of candidate solutions. Since the objective in this case is to
minimize the objective function, a candidate solution, Cx∈ , is added to the reference
set only if its objective function value is better than the solution currently in the
reference set with the worst evaluation. Duplicate solution vectors are not allowed, so if
the candidate solution being tested for addition to the reference set is the same as a
solution vector currently contained in the reference set, R1 or R2 respectively, it is not
added even if its objective function value is less than one of the solutions currently in
the reference set.

The diversity of a candidate solution is arrived at by calculating the distance between it
and all the best quality solutions. The distance of a candidate solution, Cx∈ , and a
solution vector, 1

1 Rx ∈ , is computed by:

∑
=

−=
n

i
xxxxd

1

11 ||),(

):),((),(
1

11
1 ∑ ∈= RxxxdRxD

The solution, x, is then added to the reference set if D(x, R1) > argmin(D(x,R1): 2Rx∈),
provided that x″ does not duplicate an element of R2. R2 is initialized by choosing the b2
solutions based on x″=argmax(D(x, R1) : Cx∈) and x″ does not duplicate any element
in R2.

2.5 Subset Generation Method

Two-element subsets are generated by the subset generation method for this algorithm.
The two element subsets correspond to the Type 1 subsets from Glover (1998), which
contain all unique two-element combinations of the solutions in the reference set.

2.6 Path Relinking Method

The PR method employed in this algorithm is a simple first-level approximation of the
adaptive structured combination procedure described in Glover (1991). For every pair
of solutions, the better quality solution is designated the guiding vector. In the
following illustration, x(1) is assumed to have a better function evaluation.

 x(1) = (8, 3, 4, 2, 1, 7, 5, 6) guiding vector (better parent)
 x(2) = (5, 3, 2, 1, 8, 7, 4, 6)

The algorithm then considers the first element of x(2). In this example, the first element
of x(2) does not correspond to the first element of x(1), so the exchange to be considered
becomes (5,8) in x(2). This would move 8 into the first position of x(2), which would
correspond to the assignment in x(1). If this exchange does not degrade the quality of
the objective function, the exchange is made, otherwise x(2) remains unchanged and
the next position in the permutation is considered. Assuming that this exchange does
not degrade the evaluation, the child vector in this example becomes:

c(1) = (8, 3, 2, 1, 5, 7, 4, 6)

The next element in both permutations is the same, so in this example no exchange
would be considered. The next exchange considered thus becomes (2,4). If this
exchange does not degrade the evaluation and moving that facility has not been
previously considered, then the exchange would be made. In this illustration, assuming

 7

that (2,4) degrades the quality of the solution, c(1) would remain unchanged. The
fourth element of x(1) is a 2. However, this element has already been considered in a
previous exchange and since the algorithm does not consider backward exchanges, this
element too would remain unchanged. The algorithm then proceeds in this manner
until the end of the array is reached.

This combination method uses the guiding vector to restrict the exchanges considered
and to show preference to assignments that appear in the better quality solution. The
method is restrictive in that it does not consider backwards exchanges. That is, if an
element of the array was not moved in the consideration of a previous exchange, it
remains in the same position it was located in the original vector in the child. The
algorithm always makes the first non-degrading exchange encountered instead of
seeking the best possible exchange. The path relinking approach used allows 0 cost
moves, but does not allow degrading moves (moves that would increase the value of the
objection function). Allowing 0 cost moves to be made in this rudimentary path
relinking approach improved the solution quality obtained by the algorithm. This
suggests that path relinking may be a useful method to find a trajectory through a
space of non-improving moves to find new local optima. This finding may be relevant to
research in solving other classes of problems, particularly satisfiability problems where
there are often many local optima attended by the presence of 0 cost moves.

2.7 Diversification Method

This method is applied only if the diverse solutions in the reference set are not updated
in the previous iteration of the algorithm. The method, given in Misevicius (2001),
applies a number, j, of pairwise random exchanges to the permutation. In the current
algorithm, j = n/2. This method is applied to all solution vectors, b2, in the reference
set.

We note here that the solution vectors created by this method are not passed back
through the tabu search improvement method. By using this approach, any level of
solution quality or diversity cannot be guaranteed in the solutions added to the
reference set. The use of more strategic forms of diversification offer a useful area for
future examination, including the use of the diversification generation method applied
in the initialization phase of the algorithm.

3. Parallel Path-Relinking Algorithm

The use of parallelism is of growing interest in the field of metaheuristics.
Metaheuristics typically incorporate repetitive component algorithms and are in general
computationally intensive for many problem types, making such approaches good
candidates for the use of parallelism.

Parallelism has been heavily researched in the context of a variety of different
metaheuristics. Genetic algorithms have been the most popular evolutionary algorithm
for parallel implementations (Alba and Troya, 1999). The heavy reliance on
randomization rather than memory by many genetic algorithms often eases the task of
parallelizing the algorithm due to a reduced number of data dependencies.

The parallelization of tabu search has more recently attracted attention as a research
area, with noteworthy contributions by Crainic and Toulouse (2002), who observe that
strategies for parallelizing metaheuristics can be grouped loosely in three categories.
The first strategy consists of a simple master-slave type parallelization where some large
amount of work is divided among multiple processors with one node controlling the

 8

process of assigning work and collecting the results. The second consists of running
the complete algorithm on each of the available processors. Typically with this strategy
some type of cooperation or migration is employed where beneficial information on the
search is exchanged in some manner between the processes. The last category contains
implementations where the decision variables are divided in some manner between the
processors.

The domain of parallel computing also provides a set of design and implementation
decisions in addition to the design of the actual parallel algorithm, including
considerations involving platform choice and associated hardware and software issues.
Among parallel hardware platforms commercially available, the most popular fall into
the multiple-instruction stream, multiple-data stream (MIMD) category of Flynn’s
taxonomy. Two of the more prominent platforms today can be distinguished by the
location of their memory and are referred to as shared-memory platform and
distributed-memory platforms. Many architectural differences as well as
software/programming differences exist between these two platforms. In some cases,
the choice of platform may have a dramatic effect on the computational results of a
parallel algorithm.

A master-slave strategy was implemented for the parallel version of the path-relinking
algorithm for the current study. This parallel design incorporates parallelization to
speed up the execution of a sequential algorithm without changing the fundamental
nature of the algorithm.

The parallel implementation of the algorithm, follows the scatter search/path-relinking
template previously depicted in Figure 1, with the exception of the improvement method
(Taillard’s search procedure) being performed concurrently on the solutions generated
by the solution combination method. Since the improvement method is performed on
each solution generated by the solution combination method, this task is
computationally expensive and a good candidate for parallelization. In essence, this
parallelization design allows the tabu search algorithm to be run concurrently on a set
of solutions generated and maintained by the base heuristic method.

PR Algorithm
Begin
 Read Data (if applicable)
 Initialialize Reference Set
 For n=1 to the maximum iterations specified, do
 If new solutions have not been added
 Call Diversification Generation Method
 End If
 Call Subset Generation Method
 Call Solution Combination Method
 For each combined solution do (in parallel)
 Call Improvement Method (if applicable)
 End Loop
 Call Reference Set Update Method
 End Loop
End

Figure 1- Pseudocode for the Path-Relinking Algorithm

 9

The parallel algorithm was implemented on a shared-memory parallel computing
platform. A twelve processor (1.3 GHz), SGI Altix 3300, was the available platform. A
maximum of 8 processors were used for the parallel runs. The parallel programming
implementation used on was OpenMP with Intel compilers.

4. Computational Results

The following tables show the relative percentage deviation (100*(savg/sbks – 1)) from the
best known solution (BKS) over 10 runs of the path-relinking (PR) algorithm. Each run
was terminated at either 200 iterations of the algorithm (PR r1) or 1000 iterations (PR
r2). The tabu search code was run for 200 iterations on each child solution. The
average time (Avg) for each test problem is given for both the sequential and parallel
runs. For the parallel algorithms, speedups are also given. Speedup is given as:

()
p

s

t
tnS =

where ts is the sequential execution time of the algorithm and tp is the parallel execution
time of the algorithm.

A thread safe random number generator was used to maintain consistency in the
results for the sequential and parallel algorithms. The average deviation from the best
known solution reported in the tables below was the same for both the 10 runs of the
sequential algorithm and the 10 runs of the parallel algorithm as the same seeds were
used for both versions.

The speedups obtained were favorable especially in the larger QAP instances, in some
cases drastically reducing the total computational time. Figure 2 and 3 show a
graphical depiction of the time comparisons between the sequential and parallel
algorithms.

The results obtained are comparable and in many cases favorable to those reported in
the QAP literature. The following tables also give comparisons of the performance of
our algorithms to several of the best-known heuristic methods for the QAP. The
comparisons are made against the solution quality reported in the papers referenced by
QAPLIB. These algorithms have reported some of the best-known solutions for the test
sets used in this paper. Therefore, the following tables give an overview of the relative
comparison of the algorithm developed in this research versus some of the better known
algorithms in the literature. For these comparisons, the parallel algorithm developed in
this study was run for 1000 iterations, using the same seeds, on a restricted subset of
problems used in the relevant literature. The reported number of iterations for the
respective algorithms (max iter) is denoted below the table. The subset of algorithms
used for the comparisons include the genetic hybrids (GH) developed by Fleurent and
Ferland (1994), ant colony optimization algorithms by Stutzle and Dorigo (1999) and
Gambardella et al. (1997) denoted in the tables by MMAS-QAP(TS), MMAS-QAP(2-opt),
and HAS-QAP respectively, tabu search algorithms by Taillard (1991, 1995) denoted in
the tables by RTS and Misevicius (2002) denoted by ETS-1, ETS-2, and ETS-3, and a
scatter search algorithm by Cung et al. (1996) denoted by SS (CMMT).

 10

0

1

2

3

4

5

6

7

8

9

Tai1
2a

Tai1
2b

Tai1
5a

Tai1
5b

Tai1
7a

Els1
9

Tai2
0a

Tai2
0b

Chr2
2a

Tai2
5a

Tai2
5b

Bur2
6a

Kra3
0a

Kra3
0b

Nug
30

Tho
30

Tai3
0a

Tai3
0b

Tai3
5a

Tai3
5b

Tai4
0a

Tai4
0b

Lip
a4

0a
Sko

42
Sko

49

Problem

Ti
m

e
in

 M
in

ut
es

Sequential

Parallel

Figure 2 - Sequential and Parallel times for PR runs (n < 50)

0

10

20

30

40

50

60

70

80

Tai5
0a

Tai5
0b

Wil5
0

Sko
56

Tai6
0a

Tai6
0b

Tai6
4c

Sko
64

Sko
72

Tai8
0a

Tai8
0b

Sko
81

Lip
a9

0b
Sko

90

Sko
10

0a

Sko
10

0b

Sko
10

0c

Sko
10

0d

Sko
10

0e

Sko
10

0f

Tai1
00

a

Wil1
00

Problem

Ti
m

e
in

 M
in

ut
es

Sequential

Parallel

Figure 3 - Sequential and Parallel times for PR Runs (n >=50 to n =100)

 11

Problem BKS PR r1

PR r1
Seq.
Time

PR r1
Par.
Time

Speed
-up PR r2 RTS HGA ETS-1 ETS-2 ETS-3

Tai20a 703482 0.246 0.608 0.182 3.349 0.030 0.091 0.411 0.047 0.030 0.108
Tai25a 1167256 0.640 1.122 0.292 3.846 0.259 0.195 0.382 0.113 0.040 0.055
Tai30a 1818146 0.614 1.628 0.392 4.157 0.501 0.135 0.362 0.098 0.041 0.081
Tai35a 2422002 1.092 3.710 0.552 6.725 0.773 0.255 0.643 0.113 0.170 0.095
Tai40a 3139370 1.109 3.382 0.745 4.539 0.866 0.536 0.618 0.489 0.451 0.462
Tai50a 4941410 1.263 9.277 1.397 6.642 1.082 0.874 0.871 0.652 0.660 0.617
Tai60a 7208572 1.416 13.982 2.395 5.838 1.356 0.952 1.009 0.797 0.787 0.771
Tai80a 13557864 1.109 16.867 3.785 4.456 1.022 0.634 0.593 0.544 0.546 0.535
Tai100a 21125314 0.966 32.800 6.780 4.838 0.902 0.637 0.493 0.444 0.476 0.476

Table 1 - Comparisons with GH and Tabu Search
(PR r1: max iter=200) (PR r2: max iter=1000) (tabu search: max iter = 25n)

Prob. BKS PR r1

PR r1
Seq.
Time

PR r1
Par.
Time

Speed
-up PR r2 RTS HGA ETS-1 ETS-2 ETS-3

Tai20b 122455319 0.000 0.678 0.193 3.509 0.000 0.000 0.045 0.000 0.000 0.000
Tai25b 344355646 0.000 1.758 0.325 5.410 0.000 0.000 0.000 0.000 0.000 0.000
Tai30b 637117113 0.000 2.060 0.443 4.647 0.000 0.001 0.000 0.011 0.000 0.000
Tai35b 283315445 0.037 4.338 0.620 6.997 0.000 0.006 0.094 0.019 0.028 0.000
Tai40b 637250948 0.000 5.740 0.882 6.510 0.000 0.003 0.000 0.000 0.000 0.000
Tai50b 458821517 0.062 11.395 1.665 6.844 0.000 0.221 0.033 0.001 0.003 0.042
Tai60b 608215054 0.042 21.232 2.770 7.665 0.000 0.160 0.014 0.012 0.001 0.044
Tai80b 818415043 0.284 24.597 4.882 5.039 0.175 0.235 0.353 0.360 0.113 0.337

Table 2 - Comparisons with GH and Tabu Search
(PR r1: max iter=200) (PR r2: max iter=1000) (tabu search: max iter = 5n)

Problem BKS PR r1

PR r1
Seq
Time

PR r2
Par

Time
Speed

-up

PR r2 Ro-TS GH
HAS-
QAP

MMAS-
QAP
(TS)

MMAS-
QAP

(2-opt)
Tai20a 703482 0.246 0.608 0.182 3.349 0.030 0.108 0.268 0.675 0.191 0.428
Tai25a 1167256 0.640 1.122 0.292 3.846 0.259 0.274 0.629 1.189 0.488 1.751
Tai30a 1818146 0.614 1.628 0.392 4.157 0.501 0.426 0.439 1.311 0.359 1.286
Tai35a 2422002 1.092 3.710 0.552 6.725 0.773 0.589 0.698 1.762 0.773 1.586
Tai40a 3139370 1.109 3.382 0.745 4.539 0.866 0.990 0.884 1.989 0.933 1.131
Tai50a 4941410 1.263 9.277 1.397 6.642 1.082 1.125 1.049 2.800 1.236 1.900
Tai60a 7208572 1.416 13.982 2.395 5.838 1.356 1.203 1.159 3.070 1.372 2.484
Tai80a 13557864 1.109 16.867 3.785 4.456 1.022 0.900 0.796 2.689 1.134 2.103
Sko42 15812 0.025 7.660 0.982 7.803 0.004 0.025 0.003 0.076 0.015 0.104
Sko49 23386 0.071 5.373 1.478 3.635 0.049 0.076 0.040 0.141 0.067 0.150
Sko56 34458 0.066 7.242 2.003 3.615 0.049 0.088 0.060 0.101 0.068 0.118
Sko64 48498 0.054 11.385 3.255 3.498 0.045 0.071 0.092 0.129 0.042 0.171
Sko72 66256 0.111 15.372 4.277 3.594 0.104 0.146 0.143 0.277 0.109 0.243
Sko81 90998 0.060 22.675 6.228 3.641 0.051 0.136 0.136 0.144 0.071 0.223
Sko90 115534 0.134 31.308 6.742 4.644 0.110 0.128 0.196 0.231 0.192 0.288

Table 3 - Comparisons with GH and Ant Colony
(PR r1: max iter=200) (PR r2: max iter = 1000) (Ant Colony: max iter=1000)

 12

Problem BKS PR r1

PR1
Seq.
Time

PR1
Par.
Time Speedup

SS
(CMMT)

Els19 17212548 0.000 0.583 0.223 2.612 0.000
Bur26a 5426670 0.000 1.348 0.397 3.399 0.027
Kra30a 88900 0.000 1.925 0.548 3.511 1.273
Lipa90b 12490441 0.000 25.733 5.565 4.624 8.100
Sko100a 152002 0.092 43.102 10.902 3.954 1.057
Tai100a 21125314 0.966 32.800 6.780 4.838 1.472
Tho150 8133398 0.149 147.408 37.378 3.944 1.478
Tai150b 498896643 0.413 279.787 35.928 7.787 1.415
Tai256c 44759294 0.142 2379.760 315.022 7.554 0.250

Table 4 - Comparisons with Cung et al. Scatter Search
(PR r1: max iter=200) (SS(CMMT): max iter = 50n)

5. Discussion

The simplified path-relinking algorithm developed for this study performed relatively
well even in the sequential version, in spite of its rudimentary nature. For the smaller
problems, the optimal solution to the problem was almost always found. For the larger
problem instances the performance of the method rivals that of the leading evolutionary
algorithms found in the literature.

The results obtained illustrate the potential of the PR approach. Our study discloses in
particular the value of a well-designed parallel implementation in this setting.
Favorable speedups were seen for all problems, although the benefit of the
parallelization can be seen the best in the larger problem instances.

6. Limitations and Directions for Further Research

The present study is a preliminary one, constituting the first study to examine the
relevance of parallel processing for applying path relinking in the QAP context. Our
findings encourage additional follow-on studies that examine more complete and
advanced forms of PR, making use of more sophisticated processes for managing the
reference set and for creating combinations of its solutions. For simplicity we have
taken short cuts relying on randomization in several steps where more strategic policies
are possible. The introduction of processes for carrying out further intensification and
diversification functions are certain to make a significant difference. We also plan to
conduct additional experimentation with other parallelization strategies.

References

Alba, E., and Troya, J. (1999) “A Survey of Parallel Distributed Genetic Algorithms,”
Complexity, 4, 31-52.

Cela, E. (1998), The Quadratic Assignment Problem: Theory and Algorithms, Kluwer
Adademic Publishers.

 13

Crainic T.G., and Toulouse, M. (2002) “Parallel Strategies for Meta-heuristics,” In State-
of-the-Art Handbook in Metaheuristics, F. Glover, G. Kochenberger (Eds.), Kluwer
Academic Publishers.

Cung, V-D., T. Mautor, P. Michelon, A. Tavares (1996) “Scatter Search for the Quadratic
Assignment Problem,” Proceedings of the IEEE International Conference on Evolutionary
Computation, 165–169.

Fleurent, C. and Ferland, J. (1994) “Genetic Hybrids for the Quadratic Assignment
Problem”. In Quadratic Assignment and Related Problems, P. Pardalos and H. Wolkowicz
(Eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 16,
173-187.

Gambardella, L., Taillard, E., and Dorigo, M. (1997) “Ant Colonies for the QAP,”
Technical Report IDSIA-4-97, IDSIA, Lugano, Switzerland.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” In Artificial
Evolution, J-K Hao, E. Lutton, E., Ronaled, M. Schoenauer and D. Snyers (Eds.),
Springer-Verlag, Lecture Notes in Computer Science, 1363, 13-54.

Glover, F. (1991) “Tabu Search for Nonlinear and Parametric Optimization (with Links
to Genetic Algorithms),” Discrete and Applied Mathematics, 49, 231-255.

Glover, F., M. Laguna, R. Martí (2003) “Scatter Search,” In Theory and Applications of
Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui (Eds.), Springer-
Verlag, New York, 519-537.

Koopmans, T. and M. Beckmann (1957) “Assignment Problems and the Location of
Economic Activities,” Econometrica, 25, 53-76.

Laguna, M., R. Martí (2003) “Scatter Search: Methodology and Implementation,”
Kluwer Academic Publishers.

Misevičius, A. (2002) “A Tabu Search Algorithm for the Quadratic Assignment
Problem”, Working Paper, Kaunas University of Technology, Kaunas, Lithuania.

Rego, C. (2005) “RAMP: A New Metaheuristic Framework for Combinatorial
Optimization,” In: "Metaheuristic Optimization via Memory and Evolution: Tabu Search
and Scatter Search", C. Rego and B. Alidaee (Eds.), Kluwer Academic Publishers, 441-
460.

Rego, C., B. Alidaee (2005) “Metaheuristic Optimization via Memory and Evolution:
Tabu Search and Scatter Search,” Kluwer Academic Publishers.

Stutzle, T., and Dorigo, M. (1999) “ACO Algorithms for the Quadratic Assignment
Problem,” In New Ideas for Optimization, D. Corne, M. Dorigo, and F. Glover (Eds.),
McGraw-Hill, 33-50.

Taillard, E. (1991) “Robust Taboo Search for the Quadratic Assignment Problem,”
Parallel Computing, 17, 443-455.

