

Adaptive Memory Search for Boolean Optimization Problems

Lars M. Hvattum
Molde College, 6411 Molde, Norway.

 Lars.M.Hvattum@himolde.no

Arne Løkketangen
Molde College, 6411 Molde, Norway.

Arne.Lokketangen@himolde.no

Fred Glover
Leeds School of Business, UCB 419, University of Colorado, Boulder, CO 80309, USA

Fred.Glover@Colorado.edu

Abstract
We describe a simple adaptive memory search method for Boolean Optimization
Problems. The search balances the level of infeasibility against the quality of the
solution, and uses a simple dynamic tabu search mechanism. Computational
results on a portfolio of test problems taken from the literature are reported,
showing very favorable results, both in terms of search speed and solution quality.

1 Introduction
Boolean Optimization Problems (BOOP) represent a large class of binary optimization models,
including weighted versions of Set Covering, Graph Stability, Set Partitioning and Maximum
Satisfiability problems. These problems are NP-hard, and the use of heuristic search methods are
highly competitive for even moderately sized instances.

We describe a reasonably simple iterative search procedure for this class of problems, using
adaptive memory and learning principles derived from tabu search. Guidance for the search is
based on strategic oscillation around the feasibility boundary, coordinating the interplay between
changes in objective function values and changes in primal feasibility. This is then modified by
short term tabu criteria, together with the use of periodic restarting to provide a rudimentary
diversification process.

Previous heuristic work on this problem is mainly by Davoine, Hammer and Vizvári (2001).
They use a greedy heuristic based on pseudo-boolean functions, with cutting off of local optima
solutions reached. Their approach is similar to Lagrangean relaxation, using a DNF (disjunctive
normal form) representation. We base our computational testing on their test case portfolio, and
our computation results are compared with theirs, as well as with XPRESS/MP
(http://www.dash.co.uk/) and CPLEX (http://www.ilog.com/products/cplex/).

 2

This introduction is followed in Section 2 by BOOP problem formulations. Section 3 describes
our approach and preliminary testing for search parameter settings, while the computational
results are in Section 4. The conclusions are summarized in Section 5, together with some
avenues for further work.

2 Problem Formulation
The Boolean Optimization Problem (BOOP), first formulated in Davoine, Hammer and Vizvári
(2001), is based on logical expressions in prepositional, first-order logic, with an extra cost (or
profit) associated with the variables having a true (or false) value. One formulation can be
(assuming maximization)

1

(/)
N

i i
i

Max z c x true false
=

= =∑

such that

where Φ(x) is the logical expression, and N the number of variables. The solution to this problem
is then the set of truth value assignments to the xi that yields the highest objective function value
z, while satisfying the logical expression. The logical expression can in general be arbitrary, but
we restrict ourselves to formulations in conjunctive normal form, CNF (the disjunctive normal
form can be obtained by a simple transformation). To be informal, a BOOP can be regarded as a
satisfiability problem (SAT) with an extra objective function added on. (For more info on SAT,
see e.g. Cook, 1997 and Du et al., 1997.)

To be able to treat this as a more traditional optimization problem, using numbers instead of truth
values, we let the logical value true be represented by 1, and the value false be represented by 0,
giving us the following objective function.

1

N

i i
i

Max z c x
=

= ∑

The logical function Φ(x), in CNF, consists of a set of conjunctions of clauses 1 2 Mc c cΦ = ∧ ∧! ,
where each clause is a disjunction of complemented and uncomplemented variables, with M
being the number of clauses. As a simple example, let

() ()1 2 1 3x x x xΦ = ∨ ∧ ∨

Replacing true/false with 1/0, disjunction with +, representing each conjunction as a separate
constraint row, and splitting each variable into its complemented and uncomplemented
occurrences, we get the following constraint set for the example, where the variable pair yi and yi#
represents xi.

1() (,...,)N

true
x x x

false


Φ = Φ =



 3

1 2

1 3#

#

1

1

1i i

y y

y y

y y

+ ≥
+ ≥

+ =

Our final model is then

1

N

i i
i

Max z c x
=

= ∑ (1.1)

s.t.

1Dy ≥ (1.2)

 # 1i iy y+ = (1.3)

where D is the 0-1 matrix obtained by substuting the y’s for the xi’s. The last constraint (1.3) is
handled implicitly in the search heuristics we describe.

3 Adaptive Memory (Tabu) Search
The search we have implemented is based on an elementary form of tabu tenure, and a simple
self-adapting move evaluation function. This move evaluation function tries to keep the search
focus around the infeasibility boundary, while at the same time maintaining a good objective
function value.

3.1 Search Implementation
Our implementation of the search process has the following basic components. The emphasis has
been to have a simple implementation, and incorporate more sophisticated mechanisms in future
work. Thus, for example, we use random starting solutions and random re-starts, both of which
can be improved in the tabu search setting along the lines indicated in Glover and Laguna (1997).

1. The starting solution (or starting point) is based on a random assignment to the variables.
As this solution might be primally infeasible, the search must be able to move in
infeasible space. (Davoine, Hammer and Vizvári, 2001, used a quite complex Lagrangean
based linear approximation constructive heuristic to obtain feasibility).

2. A move is the flip of a variable. A flip means assigning the opposite value to a variable.
(i.e. change 1 → 0 or 0 → 1).

3. The search neighborhood is the full set of possible flips, with a neighborhood size of N ,

the number of variables.

4. Move evaluation is based on both the change in objective function value, and the change
in amount of infeasibility.

5. The move selection is greedy (i.e. take the best move according to the move evaluation).

6. Simple tabu and aspiration criterion are enabled.

7. A random restart is applied after a certain number of moves, to diversify the search

 4

8. The stopping criterion is a simple time limit or a cutoff on the number of allowable flips.

3.2 Tabu and Aspiration criteria

As moves consist of flipping variables, the change in the value of the objective function, ∆z,
changes sign almost every move. This causes very many local optima to be visited by the search,
and using a tabu criterion is thus highly beneficial. There are many ways to apply tabu criteria to
a search. Our choice of tabu criterion is an elementary one of not flipping a variable that has
recently been flipped. Our key interest is to keep the tabu mechanisms simple, while obtaining
good search guidance. It is important to find an efficient range for the tabu tenure (TT), and to
change this TT dynamically, since a static TT might be too limiting. Suitable values for the tabu
tenure are identified in 3.4. For a treatment of these issues in tabu search generally, see Glover
and Laguna (1997).

Our aspiration criterion operates by permitting an otherwise tabu move leading to a new best
solution. In section 3.4 we illustrate the benefit of using this simple aspiration.

3.3 Adaptive move evaluation function
The move evaluation function for each possible move, FMi, has two components. One is the
change in objective function value. The cost coefficients, ci, are initially normalized to lie in the
range (0,1). This means that the change in objective function value per move, ∆zi, is in the range
(-1, +1).

The other component is the change in the number of violated clauses (or constraint rows), for the
flipping of each variable. This number, ∆Vi will usually be a small positive or negative integer,
and can be found from the change in a standard surrogate constraint function. (See e.g.
Løkketangen and Glover, 1996.)

These two components are combined so as to give a balanced view to maintaining primal
feasibility and a good objective function value. The emphasis between the two components is
changed dynamically to keep the search around the feasibility boundary.

This gives the following move evaluation function:

 Mj i iF V w z= ∆ + ∗∆

The value of w, the adaptive component, is initially set to 1. It is adjusted after each move as
follows:

• If the current solution is feasible: w = w + ∆winc

• If the current solution is not feasible, and w > 1: w = w - ∆wdec

Separate values are used for the increment and decrement. Suitable values for the weight
modifiers ∆winc and ∆wdec are found in 3.4. The effect of the adaptation is to induce a strategic
oscillation around the feasibility boundary. A different approach appears in Glover and
Kochenberger (1996), where the oscillation is coupled with the use of a critical event memory,
forcing the search into new areas.

3.4 Preliminary testing for setting of search parameters
Even though our implemented search is quite simple, there are quite a few choices to be made
regarding search parameter values. Doing a full search on the full set of test cases (5485 in all,

 5

see Section 4) for all the possible parameter values and levels of search effort is prohibitive. We
have therefore chosen a small subset of test cases to tune our search parameter values on, and
subsequently used these values for the full test set. The three test cases were chosen (rather
arbitrarily) to be small (from class 4 - rn50m200t10s0c0num0, 50 variables, 200 clauses),
medium (from class 38 - rn200m400t10s0c50num0, 200 variables, 400 clauses) and large (from
class 38 - rn500m1000t25s0c50num0, 500 variables, 1000 clauses).

It should also be noted that the effects of, and values for, the different parameters are not
independent, and hence we should ideally do a full search in the parameter space. As this also
seems quite prohibitive, we have opted for a greedy approach, selecting good values for one
search parameter at a time. The values for the other parameters are kept either at reasonable
values, or at the best values found if the parameter already has been subjected to this search. The
sequencing of testing is thus important, but we have not undertaken to account for this.

Not all results in this chapter are reported in full, but rather are summarized by describing relative
performance.

Search for tabu tenure
To find good values for the tabu tenure, and the effect of adding dynamism to the TT, we ran a
set of tests for each of the three test cases. Each test was run 20 times with different random
seeds. Aspiration was included, but initially no other mechanisms. Figure 1 shows the average
results for running with fixed TT on the selected medium test case, with TT ranging from 0 to
110. The optimum is at 21891. As can be seen, the best value is around 40. Also in the same
figure is the average result when using a dynamic tabu tenure, dynamic move evaluation weight,

21000

21200

21400

21600

21800

22000

0 20 40 60 80 100 120

TT

A
vg

. O
b

j.
V

al
u

e

Fixed TT

Dyn TT

Fixed TT + Adapt. Move Eval.

Dyn TT + Adapt. Move Eval.

Figure 1. Tabu tenure

 6

w, and both. In the case shown in figure 1, the dynamic TT is shown for ranges of the TT value
between 10 and the number on the TT axis. At each new TT assignment, a random TT in this
range is chosen. The Adaptive Move Evaluation tests used ∆winc = 0.1, and ∆wdec = 0.05.

Evidently, the effects of these mechanisms are not independent, as a much shorter TT is needed
when using the self-adapting move evaluation weight. The figure suggests that the search
becomes quite insensitive to the actual TT range, when both dynamic TT and adaptive move
evaluation weights are used. Graphs like those in figure 1 will of course be different for each
instance. The tests for the other preliminary cases showed similar results, and a dynamic TT in
the range [10-15] was used for further tests.

Search for adaptive move evaluation weights

To recap, the move evaluation function used is Mj i iF V w z= ∆ + ∗∆ , where the relative emphasis

of the objective function value vs. the primal infeasibility level is controlled by the parameter
w.This parameter changes value dynamically as explained in section 3.3. Of importance here is to
find proper choices for incrementing and decrementing w, i.e. values for ∆winc and ∆wdec. What
turned out to be relevant was not so much the sizes of these adjustments, but rather the ratio
between them, ∆winc /∆wdec. This is illustrated in Figure 2, where the average objective function
value is shown for different combinations of adjustments for the selected large test case. Very
similar pictures could be drawn for the other test cases. The best ratio is around 2.5, and for the
computational testing we used ∆winc = 0.90 and ∆wdec = 0.35.

0.
01 0.

80 1.
60 2.

40 3.
20 4.

00

-0
.0

1

-0
.8

0

-1
.6

0

143300

143330

143360

143390
A

vg
. O

b
j.

V
al

u
e

inc
dec

Figure 2. Relationship between winc and wdec.

 7

Figure 3 shows the development of the objective function value for the selected small test case,
together with the best objective function value found so far, for a part of the search. The search
spends a large part of the time in infeasible space, finding new best solutions at points where it
enters the feasible region. In a way, the search meanders around the feasibility boundary. This is
also illustrated in Figure 4, showing the development of the adaptive component w of the move
evaluation function, and the infeasibility level. In this case, the search is only feasible for one
iteration before going back to infeasibility, and the ratio between feasible and infeasible iterations
is about the same as the ratio between the chosen values for ∆winc and ∆wdec.

The adaptive weight, w, is not reset when the search is restarted (see below). As it is self
adjusting it has no discernible effect.

The effect of aspiration
The use of aspiration criteria is deemed to be very important in tabu search, as otherwise the tabu
criteria restricts the search too much. This claim is seldom documented in the literature. The

Figure 3. Objective function value and best value found, per iteration

 8

effect of our choice of aspiration criterion (new best solution found), is shown in Table I for the
first 13 classes of test cases (see Section 4 for details about the test cases). The search was for 5
seconds per test case, with restart as outlined below. These are among the smaller test cases,
where optimality is easily reached for most instances. Even though the results without the use of
aspiration are better than than those reported by Davoine, Hammer and Vizvári (2001), still better
results, both in terms of quality and time to find the best solution, are obtained when using the
aspiration. (Other forms of aspiration criteria may of course prove superior to the one we
implemented.)

When to restart
Without the use of specially designed diversification mechanisms, the search is likely to become
less effective after a while, remaining in the same general area of the search space. Some
diversification process is therefore usually warranted. Our choice of diversification is to simply
restart from a randomly generated starting point. Tabu search normally counsels the use of more
strategic forms of diversification, but in our testing we have elected to employ this rudimentary
mechanism and focus on other issues. Thus the primary question in this instance reduces to
deciding how long to search before restarting. In reactive tabu search (see e.g. Battiti 1996), the
search keeps track of the solution space it is in, and diversification measures are instantiated
when there indicators of stagnation, or of being trapped in a particular region. We ran a series of
tests with different triggers for restarting the search in the three selected test cases, noting the

Figure 4. Development of w and infeasibility level

 9

time taken to find the best solution. Restarting was clearly better than not restarting. Again we
elected for simplicity, basing the trigger for restarting on the numbers of iterations RI since
initiating the last restart (or the first start). The best value, RI, in terms of iterations for restart
was found to be correlated with N, the number of variables, and the average number of non-zero
elements in each problem class, CLavg.

The value used in our computational tests were thus

RI = N*CLavg

4 Computational Results
To test our methods, we used the same set of 5485 test cases as Davoine, Hammer and Vizvári
(2001). These can be obtained by anonymous ftp from rutcor.rutgers.edu in directory /pub/BOP.
We report our results in the same framework they used, to make comparisons easier.

There are three general classes of test cases, all randomly generated, in the following general
classification:

�

• Random problems Class 01 to 49

• Graph Stability problems Class 50 to 54

• Set covering problems Class 55 to 63

The 49 random test cases can grouped into 3 sets, and within each set there are four sub-groups
with 0%, 25%, 50% and 75% of clauses with negated variables.

• Class 01 – Class 13, 50 variables, 30 - 200 clauses, 240 instances per class

Table I. Effect of Aspiration

 No Asp as
% of w/ Asp

No Asp
Time to best

Asp
Time to best

Class 1 99.985 0.05 0.01
Class 2 100.000 0.01 0.00
Class 3 100.000 0.02 0.00
Class 4 100.000 0.05 0.00
Class 5 99.992 0.02 0.01
Class 6 100.000 0.02 0.00
Class 7 100.000 0.04 0.00
Class 8 99.985 0.03 0.03
Class 9 100.000 0.02 0.00
Class 10 100.000 0.03 0.00
Class 11 99.955 0.11 0.08
Class 12 99.980 0.06 0.01
Class 13 99.998 0.03 0.00

 10

• Class 14 – Class 22, 100 variables, 50 – 200 clauses, 240 instances per class

• Class 23 – Class 49, 100 – 500 variables, 400 – 2500 clauses, varying clause length, 5
instances per class

The Graph Stability problems are in Class 50 – Class 54, 100 – 1000 variables, 400 – 10000
clauses, 5 instances per class.

The Set Covering problems are in Class 55 – Class 63, 100 – 500 variables, 400 – 2500 clauses, 5
instances per class. Our findings suggest feasibility is easily obtained for all the instances.

We compare our results to those obtained by Davoine, Hammer and Vizvári (2001), as well as
with XPRESS/MP v.12 (http://www.dash.co.uk/) and CPLEX v 6.5
(http://www.ilog.com/products/cplex/). Our code is implemented in Visual C++ 6.0, running on a
standard 1 GHz Pentium 3 PC with Microsoft Windows 2000. Our CPLEX tests were on the
same machine, while XPRESS/MP was run on a 400 MHz Sun UltraSparc. (A simple whetstone
test deemed the PC to be about 5 times faster than the Sun). Davoine, Hammer and Vizvári
(2001) ran their experiments on a 50 MHz Sun Sparcstation 5, and used CPLEX 6.0 for
comparisons. We have unfortunately not been able to run their code on our machine. Precise
comparison is therefore rather difficult, but as we report both solution time and quality,
reasonable conclusions can be made.

We ran the following series of tests on all the test cases (the time is the maximum allotted for
each instance):

10000

100000

1000000

100 1000 10000 100000 1000000

Avg. non-zero's

It
er

at
io

n
s

p
er

 s
ec

o
n

d

XPRESS opt

XPRESS not opt

Figure 5. Search speed vs. problem size

 11

• Adaptive local search, 5 seconds

• Adaptive local search, 60 seconds

• XPRESS/MP v. 12 for 4 hours

• CPLEX v. 6.5 for 4 hours

For the search we used dynamic TT (10-15), RI = N*CLavg, ∆winc = 0.90 and ∆wdec = 0.35. The 5
second tests were run 10 times, and the average is reported. CPLEX produced very similar
results.

Figure 5 shows the number of flips per second for the different test case classes. As can be seen,
even for the larger instances we manage more than 20000 flips per second. Also shown in the
graph are the test cases where XPRESS/MP finds the optimum in reasonable time (less than 4
hours). For CPLEX we got very similar results.

Overall outcomes are shown in Table II. Our method is under the heading ALS. The percentages
are expressed as a % of the CPLEX results reported by Davoine, Hammer and Vizvári (2001),
even though our XPRESS and CPLEX runs produced better results. This is done to enable easier
comparisons. The rows represent the small and large random instances, the graph stability and set
covering instances, and finally all test cases.

More detailed results are given in Tables III to IX. Explanation of the column headings is given
at the start of the appendix. For both the 5 second and 60 second searches we show the results
compared to CPLEX as reported by Davoine, Hammer and Vizvári (2001), and also show the
average time taken to find the best. For the small test cases it is evident that virtually no time is
used to find the best solution, while for the larger test cases a large fraction of the allotted time is
spent before finding such a solution. Consequently more search time might be beneficial for the
larger test cases. In 6 of the 5280 easy test cases (where XPRESS used less than 1 second), our
method did not find the globally optimal solution. Although the best solutions found by our
method in these 6 cases were obtained very quickly and were very close to global optimality,
even allotting a 60 second run time did no permit us to find the global optimum. This provides a
clear indication that a better diversification mechanism than random restart is needed. Somewhat

Table II. Overall computational results

 Davoine et al. ALS – 60 sec XPRESS

Class 1 – 22 99.161 100.001 100.002

Class 23 – 49 100.440 101.215 101.127

Class 50 – 54 102.806 106.982 85.357

Class 55 – 63 101.238 102.465 102.237

Class 1 – 63 100.295 101.450 99.641

 12

surprisingly, given our emphasis on a simple implementation, the 5 second search limit produces
very competitive results even for the larger test cases.

Proven optimal solutions are shown in bold (meaning that all instances in the class are solved to
optimality). Our method finds better results for all test classes where XPRESS/MP does not find
the optimum, even when limiting the search to 5 seconds. In Table VIII are shown the graph
stability instances. The larger of these (classes 52, 53, and 54) give our best comparative results.
As in the case of the smaller problems, we believe that better results on these instances can be
found with better diversification methods.

Overall our search is better than Davoine, Hammer and Vizvári (2001), both in terms of solution
quality and in terms of search speed. For the larger test cases, we are also clearly better (and
faster) than XPRESS and CPLEX. (XPRESS usually spends a significant fraction of its allotted 4
hours before finding its best results).

5 Conclusions and future work
Boolean Optimization Problems represent a large class of binary optimization problems, and
consequently it is important to be able to solve reasonably large instances quickly and efficiently.
We have described an adaptive memory (tabu search based) metaheuristic to solve these kinds of
problems, designed to incorporate a strategic oscillation around the infeasibility boundary that
coordinates tradeoffs between feasibility and the objective function value. Our method clearly
outperforms the specialized procedure previously developed for these problems, both in terms of
solution quality and solution time, and also beats the commercial solvers
XPRESS/MP and CPLEX.

Our approach does not yet incorporate some of the more advanced components of the tabu search
framework, notably lacking efficient diversification processes. In general, the computational
results suggest that better outcomes can be found with more sophisticated long term
strategies.

We anticipate that diversification methods based on learning and adaptive memory, specifically
relying on the use of surrogate constraint evaluations and frequency based mechanisms, will
provide significant performance gains. Constructive solvers founded on the same principles also
provide an interesting avenue to pursue.

References
S. A. Cook. (1971). “The complexity of theorem-proving procedures”. Proceedings of the Third
ACM Symposium on Theory of Computing, pp 151-158.

Davoine, Thomas, Peter L. Hammer and Béla Vizvári. (2001). “A Heuristic for Boolean
optimization problems”. Forthcoming in Journal of Heuristics.

Glover, Fred and Gary Kochenberger.(1996). “Critical Event tabu Search for Multidimensional
Knapsack Problems”, In I.H. Osman and J.P. Kelly, editors, Meta Heuristics: Theory and
Applications, Kluwer Academic Publishers, pp 407 – 427.

Glover, Fred and Manuel Laguna. (1997). Tabu Search. Kluwer Academic Publishers.

Løkketangen, Arne and Fred Glover. (1997). “Surrogate Constraint Analysis - New Heuristics
and Learning Schemes for Satisfiability Problems”. In: Satisfiability Problem: Theory and

 13

Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol
35.

Du, Dingzhu, Jun Gu and Panos Pardalos (Eds.). (1997). Satisfiability Problem: Theory and
Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol 35.

Battiti, Roberto.(1996). “Reactive search: Toward self-tuning heuristics”. In V. J. Rayward-
Smith, editor, Modern Heuristic Search Methods, chapter 4, pages 61--83. John Wiley and
Sons Ltd, 1996.

�

Appendix – Computational result tables
Due to lack of space in the column headers, the following is an explanation of some of the
acronyms used in the minor column names.

 Terms Number of terms in CNF form. Same as rows.

 %NL % of terms with negated literals (DNF).

 % Average results of each test case class compared to the CPLEX runs by
 Davoine et al.

 Secs Average overall time used in seconds (Davoine et al).

 Minutes Average overall time used in minutes (Davoine et al).

 Sec-B Average seconds to best value found (ALS and XPRESS/MP).

Numbers in bold signifies optimal results.

 14

Table III. Random instances, 50 variables, 240 instances per class

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Terms % NL % Secs % Sec-B % Sec-B % Sec-B

Class 01 30 0 99.92 29 100.001 0.01 100.002 0.08 100.002 0.00

Class 02 50 0 99.84 36 100.003 0.00 100.003 0.00 100.003 0.00

Class 03 100 0 99.66 49 100.004 0.00 100.004 0.00 100.004 0.36

Class 04 200 0 99.43 74 100.005 0.00 100.005 0.00 100.005 6.36

Class 05 50 25 99.87 36 100.000 0.01 100.002 0.20 100.002 0.00

Class 06 100 25 99.75 29 100.003 0.00 100.003 0.00 100.003 0.13

Class 07 200 25 99.43 74 100.005 0.00 100.005 0.00 100.005 2.59

Class 08 50 50 99.93 36 99.996 0.01 100.001 0.63 100.001 0.00

Class 09 100 50 99.80 52 100.004 0.00 100.004 0.00 100.004 0.00

Class 10 200 50 99.65 75 100.005 0.00 100.005 0.00 100.005 0.66
Class 11 50 75 99.96 26 99.991 0.06 99.993 0.11 100.000 0.00

Class 12 100 75 99.91 45 99.992 0.01 99.993 0.01 100.002 0.00

Class 13 200 75 99.79 67 100.004 0.00 100.004 0.00 100.004 0.02

Table IV. Random instances, 100 variables, 240 instances per class

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Terms % NL % Secs % Sec-B % Sec-B % Sec-B

Class 14 50 0 98.85 25 100.000 0.00 100.000 0.00 100.000 0.00
Class 15 100 0 97.82 36 100.001 0.00 100.001 0.00 100.001 0.10

Class 16 200 0 96.92 58 100.002 0.01 100.002 0.01 100.002 5.95
Class 17 100 25 98.43 41 100.001 0.01 100.001 0.00 100.001 0.01

Class 18 200 25 97.34 54 100.001 0.00 100.001 0.00 100.001 1.08

Class 19 100 50 98.80 30 100.001 0.01 100.001 0.01 100.001 0.00
Class 20 200 50 98.04 48 100.001 0.00 100.001 0.00 100.001 0.26

Class 21 100 75 99.42 25 100.000 0.00 100.000 0.00 100.000 0.00

Class 22 200 75 98.99 42 100.001 0.00 100.001 0.00 100.001 0.00

 15

Table V. Larger random instances, 5 instances per class,
25% Terms with negated literals (DNF)

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Vars Terms TermLn % Minutes % Sec-B % Sec-B % Sec-B

Class 23 100 400 [5,5] 100.78 1.4 101.933 0.03 101.933 0.03 101.933 225.80
Class 24 100 400 [10,30] 99.54 2.1 100.004 0.01 100.004 0.00 100.004 26.60

Class 25 200 400 [10,10] 101.07 1.9 102.610 0.27 102.610 0.13 102.610 3013.60

Class 26 200 400 [20,60] 99.33 5.0 100.034 0.20 100.034 0.25 100.034 214.40
Class 27 200 1000 [10,10] 109.71 5.7 111.189 0.26 111.196 11.85 110.938 6595.40

Class 28 200 1000 [20,60] 100.52 11.0 101.077 0.06 101.077 0.04 101.077 5379.60

Class 29 500 1000 [25,25] 100.49 17.0 101.281 2.03 101.290 6.41 101.065 3821.20
Class 30 500 1000 [50,150] 100.11 45.0 100.391 1.25 100.391 3.20 100.368 9581.79

Class 31 500 2500 [25,25] 100.32 54.0 101.437 1.73 101.459 13.01 100.974 5634.60

Table VI. Larger random instances, 5 instances per class,
50% Terms with negated literals (DNF)

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Vars Terms TermLn % Minutes % Sec-B % Sec-B % Sec-B

Class 32 100 400 [5,5] 98.35 1.5 100.359 0.02 100.359 0.02 100.359 54.40

Class 33 100 400 [10,30] 99.31 1.9 100.000 0.00 100.000 0.00 100.000 0.20
Class 34 200 400 [10,10] 98.98 2.9 100.031 0.06 100.031 0.10 100.031 60.20

Class 35 200 400 [20,60] 99.49 4.8 100.000 0.03 100.000 0.04 100.000 24.80

Class 36 200 1000 [10,10] 103.84 6.5 105.074 0.38 105.074 0.48 104.904 5124.60
Class 37 200 1000 [20,60] 99.99 12.0 100.543 0.15 100.543 0.04 100.543 2456.19

Class 38 500 1000 [25,25] 100.10 17.0 100.982 0.84 100.987 3.50 100.868 7597.20

Class 39 500 1000 [50,150] 100.01 34.0 100.299 0.93 100.299 1.17 100.267 10052.60
Class 40 500 2500 [25,25] 100.48 50.0 101.613 1.46 101.621 6.67 101.056 5864.20

 16

Table VII. Larger random instances, 5 instances per class,
75% Terms with negated literals (DNF)

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Vars Terms TermLn % Minutes % Sec-B % Sec-B % Sec-B

Class 41 100 400 [5,5] 98.72 1.4 100.012 0.02 100.012 0.01 100.012 2.20
Class 42 100 400 [10,30] 99.69 1.7 100.010 0.02 100.010 0.02 100.010 0.60

Class 43 200 400 [10,10] 99.31 2.8 100.000 0.07 100.000 0.05 100.000 0.60

Class 44 200 400 [20,60] 99.65 4 100.000 0.01 100.000 0.02 100.000 2.20
Class 45 200 1000 [10,10] 100.82 5.6 101.752 0.12 101.752 0.04 101.752 1920.80

Class 46 200 1000 [20,60] 99.43 8.5 100.000 0.06 100.000 0.15 100.000 141.80

Class 47 500 1000 [25,25] 99.65 16 100.483 0.75 100.484 0.54 100.477 9128.60
Class 48 500 1000 [50,150] 99.80 28 100.115 0.56 100.115 0.23 100.115 3477.80

Class 49 500 2500 [25,25] 100.38 50 101.512 1.47 101.524 17.76 101.027 6357.60

Table VIII. Graph Stability Instances, 5 instances per class

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Vars Terms % Minutes % Sec-B % Sec-B % Sec-B

Class 50 100 400 99.52 0.75 100.000 0.00 100.000 0.00 100.000 0.20
Class 51 200 1000 98.68 2.8 101.502 0.34 101.502 0.14 101.502 708.00

Class 52 500 2500 105.72 16 108.302 3.36 109.299 27.33 79.565 5602.20

Class 53 500 5000 105.04 32 111.917 3.12 113.215 34.71 79.487 7401.20
Class 54 1000 10000 105.07 152 108.440 3.91 110.895 31.36 66.231 8333.00

 17

Table IX. Set Covering instances, 5 instances per class

 Davoine et. al. ALS – 5 sec ALS – 60 sec XPRESS-MP
Name Vars Terms TermLn % Minutes % Sec-B % Sec-B % Sec-B

Class 55 100 400 [5,5] 101.49 2.2 103.280 0.02 103.280 0.03 103.280 522.00
Class 56 100 400 [10,30] 99.21 3.2 100.000 0.00 100.000 0.00 100.000 29.60

Class 57 200 400 [10,10] 102.61 4.5 104.162 0.43 104.162 0.77 104.038 3648.60

Class 58 200 400 [20,60] 99.34 9 100.049 0.07 100.049 0.10 100.049 411.60
Class 59 200 1000 [10,10] 104.28 9 107.362 0.58 107.363 0.74 106.508 6062.60

Class 60 200 1000 [20,60] 100.62 20 101.204 0.29 101.204 0.18 101.180 5084.20

Class 61 500 1000 [25,25] 100.38 27 101.545 1.81 101.559 12.16 101.235 9884.79
Class 62 500 1000 [50,150] 100.61 75 100.976 1.86 100.982 1.84 100.949 4269.80

Class 63 500 2500 [25,25] 102.60 62 103.571 1.48 103.585 28.58 102.891 8315.60

