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Multilevel Cooperative Search for the
Circuit/Hypergraph Partitioning Problem

Min Ouyang, Michel Toulouse, Krishnaiyan Thulasiraman, Fred Glover, Jitender S. Deogun

Abstract— Our objectives in this paper are twofold: de-
sign an approach for the netlist partitioning problem using
the cooperative multilevel search paradigm introduced by
Toulouse, Thulasiraman and Glover [?], and study the effec-
tiveness of this paradigm for solving combinatorial optimiza-
tion problems, in particular, those arising in the VLSI CAD
area. We present a cooperative multilevel search algorithm
CoMHP and describe a parallel implementation on the SGI
02000 system. Experiments on ISPD98 benchmark suite
of circuits show, for 4-way and 8-way partitioning, a reduc-
tion of 3% to 15% in the size of hyperedge-cuts compared to
those obtained by hMETIS. Bisections of hypergraphs based
on our algorithm also outperform hMETIS, although more
modestly. We present experimental results to demonstrate
that the cooperation scheme plays a key role in the perfor-
mance of CoMHP. In fact, the improvement in the quality
of the solutions produced by CoMHP is to a large extent
independent of the partitioners used in the implementation
of CoMHP. The experimental results also demonstrate the
effectiveness of the cooperative multilevel search paradigm
for solving the netlist partitioning problem and show that
the cooperative multilevel search strategy can be used as
a paradigm for designing effective solution techniques for
combinatorial optimization problems such as those arising
in the VLSI CAD area.

Keywords— Multilevel algorithms, cooperative search,
VLSI Physical Design, graph partitioning, combinatorial op-
timization.

I. INTRODUCTION

Netlist partitioning is an important and well-studied re-
search topic in the VLSI CAD area. Several classes of
heuristics have been proposed to address this problem [?].
Recently, multilevel algorithms have been applied to the
netlist partitioning problem [?]. This approach has since
become the standard to partition netlists.

In the multilevel paradigm, Fiduccia-Mattheyses (FM)
types of move-based heuristics execute moves in coars-
ened hypergraphs (hypergraphs are a common mathemat-
ical representation of netlists) that involve static clusters
(blocks) of modules from the original netlist instance. Since
the clusters are static, the search space of coarsened hy-
pergraphs is often a tiny fraction of the search space of the
original optimization problem. This reduction in the search
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spaces enables a speedy execution of multilevel algorithms.
Unfortunately, it also imposes serious limitations on the
ability of multilevel algorithms to provide good quality par-
titionings. These limitations of the multilevel paradigm
have been recently addressed in [?], [?] using more dy-
namic coarsening strategies. In this paper we present a
broader strategy to address this issue.

Our approach is based on a bottom-up algorithm design
technique called cooperative search. According to this ap-
proach, a set of different search algorithms is first selected.
Each algorithm is implemented as an independent program
that runs in time sharing with the other programs on a se-
quential computer or in parallel if several computing units
are available. If the difference among the programs is only
based on the stochastic properties of a generic algorithm
or on different search parameters, then we can think of
those programs as the multiple restarts of the same algo-
rithm. However, unlike restart, programs in a cooperative
search interact with each other based on a cooperation pro-
tocol that specifies how the search programs cooperate at
run time. Intuitively, as framed in Huberman’s paper [?7],
cooperation is an exchange of “hints” that may confuse
some search processes, but will also help others. Overall,
hint sharing improves the performance and has been used
with success to design search heuristics in the context of
constraint satisfaction problems [?], [?] and to parallelize
some metaheuristics [?], [?], [?], [?]-

The present paper introduces the Cooperative Multilevel
Hypergraph Partitioning algorithm (CoMHP), an asynch-
ronous variation for hypergraph partitioning of the co-
operative algorithm in [?]. Our hypergraph partitioning
method uses a new netlist coarsening strategy which is
based on partitioning rather than clustering as it is usually
done by multilevel algorithms. Next, we introduce a coop-
eration protocol which supports a dynamic “re-coarsening”
strategy addressing the convergence problems of standard
multilevel algorithms. Finally, we give an intuitive descrip-
tion of the convergence behavior for this system of cooper-
ating search algorithms.

The rest of the paper is structured as follows. Section
IT introduces a few definitions and our coarsening strat-
egy. Section IIT describes the cooperative algorithm and
its convergence behavior. Section IV reports and discusses
the results of the tests conducted on the ISPD98 bench-
mark suite of circuits. Finally, Section V concludes with
some suggestions for future work.
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II. BASIC DEFINITIONS AND PARTITION-BASED
COARSENING

Hypergraphs are commonly used as a formal representation
of netlists. Let Hy = (Vp, Eg) be a hypergraph representa-
tion of a given netlist instance. Vj is a set of n vertices and
Ej a set of m hyperedges which represent, respectively, the
modules or vertices and signal nets of the netlist. The set
Ey is a subset of the powerset 2¥° of the vertices in Hy,
i.e., e € FEy is a subset of V5. Note that the superset of a
set S is defined as the collection of all subsets of S. Given
this formalization, the problem of partitioning the modules
of a netlist into k subsets Py, P, ..., P can be stated as a
combinatorial optimization problem where one tries to find
an instance {Pi, P, ..., P} of the mapping

PV — 2%, (1)

that minimizes the cost function:

m

flx) = wles) (2)

i=1

where w(e;) = 1 if e; is a hyperedge that spans more than
one P;, and w(e;) = 0 otherwise. The subsets P; are subject
to the constraints:
L PP =0 (i #j);
2. % <|P| <L Clkvo‘ for some constant ¢ > 1.0;
3. UL, P ="
Constraints 1 and 3 ensure that {Py, Ps, ..., P} is a parti-
tion and constraint 2 sets bounds on the cardinalities of P;
in the partitions. The set of instances from Mapping (1)
satisfying these constraints are identified as the solution
space X of this problem. The above problem is a general-
ization of the graph partitioning problem, an NP-complete
problem [?]. Consequently, search heuristics come handy to
provide good solutions in reasonable computational time.

Multilevel algorithms initiate processing by a hierarchi-
cal clustering of the vertices of Hy, yielding hypergraphs
with fewer vertices, i.e., coarsened hypergraphs. Usually, re-
cursive matching-based clustering algorithms such as edge-
coarsening, hyperedge-coarsening, maximal matching and
modified-hypergraph-coarsening [?], [?] are used to coarsen
hypergraphs. Our clustering strategy addresses the prob-
lem of contracting the netlist as a partitioning problem.
In this paper, hierarchical clustering and coarsened hyper-
graph are defined in the following manner:

Definition 1: Let

Ci:Vo—2% i=1,...,1 (3)

be a family of | mappings where C; maps the vertices of Hy
into |Vi| clusters Cjy1, Cia, . . ., Cjjv;| such that Cy,NCiy = 0
if u # v and U‘j‘i‘lCij = Vb. The family of mappings in
(3) defines a hierarchical clustering of the vertices of Hy
whenever |V;| > |Vigq| foralli=1,2,...,1 - 1.

Definition 2: A coarsened hypergraph H; = {V;, E;} is
the set of vertices V; and hyperedges E; such that: 1) v € V;

is a cluster (subset) C;; of vertices from V as defined by
the mapping C; (Note: to simplify notation, v may also be
denoted by the corresponding cluster C;;); and 2) a subset
e of V; is a hyperedge of H; if and only if there exists an
hyperedge e’ € Ey such that e’ has nonempty intersection
with each cluster represented by the vertices in e.

Basically, the above definition formally states how coars-
ened hypergraphs H; are formed; each cluster in the par-
tition defined by the mapping C; represents a vertex of H;
and a hyperedge e of Hy becomes an appropriately modi-
fied hyperedge of H; if the vertices in e are not all in the
same cluster of the partitioning defined by C;. For instance,
if each hyperedge of Hy is a pair of vertices in Vp, then for
u#v, e={Ciy,Ci} € E; iff Ja,b € Vj such that a € C;,
and b € C}, and {a, b} is a hyperedge in Ej.

In our hierarchical clustering approach, each mapping
C; is obtained by solving a hypergraph partitioning prob-
lem for Hy. The family of mappings as defined in (3) is
derived from the solution of the Jr-way partitioning prob-
lems for Hy, for 0 < i < [. The solution of the F-way
partitioning, i.e. the Jr subsets, become the set of vertices
Vi ={Ci,Cia,..., C’% }. Next the coarsened hypergraphs
H; are generated from the mappings C; as described in Def-
inition 2. We identify this hierarchical coarsening strategy
as partition-based coarsening. This algorithm can be triv-
ially parallelized by running the partitioning processes and
the hypergraph generations on different processors. The
parallel time requirement is dominated by the processor
that computes the partitioning for k ~ 3.

III. CoMHP: DESCRIPTION AND CONVERGENCE
BEHAVIOR

In this section, we present in detail, the different com-
ponents of our multilevel cooperative search algorithm
CoMHP, and a model to study its convergence behavior.
There are [ + 1 processes in CoMHP, the same as the num-
ber of hypergraphs. Each process p; takes as input the
hypergraph H;. The processes run in parallel, applying
the same composition of FM-like hypergraph partitioning
heuristics to partition their hypergraph. According to Def-
inition 1, moving a vertex v in a coarsened hypergraph H;
is equivalent to moving a cluster of vertices in Hy, the clus-
ter corresponding to vertex v € H;. Consequently, while a
process p; searches for good partitionings in the coarsened
hypergraph H;, it actually explores the solution space Xj.
Though all the processes use the same local search meth-
ods, the searches in Xy do not overlap completely. This
is because, as in standard multilevel algorithms, hierarchi-
cal clustering in CoMHP creates different neighborhoods
to solutions in Xj.

The computational cost of executing a move in neighbor-
hoods based on coarsenings is independent of the size of the
clusters in Hy. It only depends on the number of neighbors
of the current solution; this number goes on decreasing as
the hypergraphs are more highly coarsened. This is a clear
advantage of these neighborhoods. On the other hand, if
the coarsening cannot be undone, the logical moves in Hy
only involve the clusters of vertices in Hy associated by



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

the Mapping (3). All the possible combinations of such
clusters in k subsets can only generate a small fraction of
the solutions in Xy. This is not a problem by itself since
it is usual for local searches to explore only a fraction of
the solution space. Rather, the problem is when the small
search spaces of coarsened hypergraphs have no good so-
lutions, their exploration is then hopeless, even using the
best search methods.

This limitation of the coarsening approach has in fact
been partially identified in [?], [?] by observing that an
initial partitioning can be refined in different ways depend-
ing upon how the coarsening is executed [?]. Those papers
propose a multi-phase refinement as a mechanism to re-
focus the search spaces. Such multi-phase refinement is
based on a recursive call of the multilevel algorithm from
the same coarsened hypergraph in the multilevel structure.
A randomized coarsening is used during the multi-phase re-
finement. In [?], this coarsening is initiated from the best
partitioning obtained from the refinement or from the pre-
vious iteration of the multi-phase refinement. The multi-
phase refinement iterates until the best solution cannot be
improved further. The initial refinement phase of the mul-
tilevel procedure is then resumed.

Our multilevel cooperative algorithm is similar in spirit
to multi-phase refinement. It also produces many “re-
coarsenings” of the hypergraphs which allow the search
processes to explore new regions in the solution space Xj.

A. Refinement Phase

The initial coarsening may fail to provide access to good
regions of the solution space. We now describe how the
partitionings discovered by the search heuristics during the
refinement phase can be used to develop a dynamic coars-
ening strategy. Our dynamic coarsening strategy is sup-
ported by the cooperation protocol of CoMHP. This pro-
tocol specifies the processes’ neighborhood structure, the
kind of interactions (hint exchanges) allowed among search
processes and what to do with the hints exchanged.

The neighborhood structure in the current implementa-
tion is an array of processes: process p; can only interact
with processes p;—1 and p;11. This neighborhood structure
mirrors the hierarchical clustering of Hy, where H; has for
neighbors hypergraphs H; 1 and H;;; in the sequence of
increasingly coarsened hypergraphs. The boundary condi-
tions in the array are handled in the following manner: pg
only interacts with py, p; only interacts with p;_;.

Each interaction involves exchange of “hints” or infor-
mation based on “elite partitionings” and taking appropri-
ate actions. Elite partitionings are those that we expect to
give us hints as to the nature of optimum partitionings. For
instance, a partitioning, which has the smallest hyperedge-
cut among all those partitionings generated by the search
method used, may be considered elite at that stage. Let
X be the search space of H;, whereas X/ is the set of elite
partitionings of H;. Different approaches have been tested
to create each elite set X/ of hypergraph H;. The approach
presented in Fig. 4 initializes the elite set to a good parti-
tioning generated by a search method. A newly generated

partitioning is added to X/ if its hyperedge-cut value is not
larger than 10% of the smallest of the hyperedge-cuts of the
partitionings already in the set X]. We also limit the size
of X|. If the addition of a partitioning increases this limit,
we remove from X/ the partitioning which has the highest
hyperedge-cut value among all those already in the set X/.

The operators, to be described soon, specify how to use
the elite partitionings at the level of each process. The
local partitioning operator and the local clustering operator
recoarsen or redefine the coarsening of hypergraphs. On
the other hand, the interpolation operator re-initiates the
search of some of the move based heuristics used by each
process. More specifically, in the interpolation operator,
one elite partitioning from H; is selected as the initial
solution of a move based heuristic in hypergraph H;. We
now describe, in detail, these three operators. Fig. 1is used
for illustration of the workings of these operators. Fig. 1(a)
gives Hy, H, and H, with one elite partitioning for each
indicated by dashed lines.

Fig. 1. Interaction operators: (a) coarsened hypergraphs, dashed
lines indicate partitionings; (b) local partitioning operator; (c) local
clustering operator; (d) interpolation operator.

A.1 Local partitioning operator

Local partitioning changes the coarsening of H; by splitting
some of its vertices. Vertices (clusters) in H; are split based
on the information provided by the set of elite partitionings
X|_, from hypergraph H;_;. The local partitioning opera-
tor finds clusters v € V; (line 1 in Fig. 2) such that v has at
least two vertices a,b € V that are into two different sub-
sets (line 4) of one of the elite partitionings of X;_,. When
this happens, the vertices of Hy in the intersection of the
sets v N Py form a new vertex v; of H; (line 5). Once the
local partitioning operator has completed, a special routine
is called which generates a new coarsened hypergraph H;
reflecting the changes in the mapping C; provoked by the
execution of the local partitioning operator. Note that in
the pseudo-code of Fig. 2, after the first elite partition-
ing for which we find at least one nonempty intersection
with a subset in this partitioning, we end the “for loop”
(beginning at line 1) for this vertex. In other words, we
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Local_partitioning( );
1. for each vertex v € V;

2. for each elite partitioning z € X]_;

3. for each subset Ps of elite partitioning x
4. if ((vNPs#0) & (v Ps)) then
5. create new vertex v; = v N Ps;
6. if v not yet marked to “delete” then mark it;
endfor;
7. if v is marked to “delete” goto line 1;
endfor;
endfor;

Fig. 2. Pseudo-code of the local partitioning operator

split a vertex with respect to only one elite partitioning, if
possible.

We shall first illustrate the local partitioning operator
with an hypothetical example. Then the illustration will
be given using Fig. 1.

Consider the hypergraph H;. Pick any vertex v of H;
(line 1 in Fig. 2). Note that v € V; is a cluster of vertices
of Hy. Let v = {2,7,8,9}. Here 2,7,8 and 9 are all vertices
of Hy. Consider an elite partitioning x of H;_; (line 2 in
Fig. 2). Here, we assume that the optimization problem is
to search for optimum 3-way partitionings. Let the three
subsets in the partitioning = be P, = {1,2,3,8,12}, P, =
{9,11,13,14} and P; = {4,5,6,7,10}. Now we get (line 4
in Fig. 2):

vN P ={2,8},vNP,={9}andvn P; = {7}.

We then create the following new vertices (line 5 in Fig. 2)
as a result of splitting vertex v of H;:

{2,8},{9} and {7}.

Ounce we identify a partitioning z (as above) and split ver-
tex v, then v is marked to be deleted (line 6) and the op-
erator returns to line 1 to pick a new vertex and check if
it could be split as above. In case the elite partitioning =
does not help to split the vertex v, we pick another par-
titioning from the list of elite partitionings X ;. If no
elite partitioning leads to a splitting of v, then this vertex
v in H; is left unchanged as it was before the execution of
the local partitioning operator. The algorithm for the local
partitioning operator terminates once all the vertices of H;
have been considered for possible splittings.

We now return to Fig. 1 for another illustration of the
local partitioning operator with a concrete example. Con-
sider the hypergraph H; of Fig. 1(a). (Vertices of coars-
ened hypergraphs as well as the subsets of partitionings are
sets of vertices from the hypergraph Hy.) This hypergraph
has 4 vertices a,b,c,d € Vi, where a is a cluster {0,1} of
vertices of Hp, b is a cluster {2,3} of vertices of Hy, and
so on. The elite bisection of Hy is P, = {0,1,3,7} and
P, = {2,4,5,6}. This elite bisection indicates that po-
tentially good solutions exist in the region of the solution
space in which vertices 2 and 3 are in the different subsets
of each bisection. But in Hy, vertices 2 and 3 form a cluster;
swaps on H; always move vertices 2 and 3 of Hy together
so that they are in the same subset of the bisection of H;

because they form a single vertex in H;. The region of the
solution space corresponding to the elite bisection of Hy is
not reachable in the search space defined by the coarsened
hypergraph H;. Although the search space of H; is smaller
than Xy and therefore faster to explore, this advantage is
lost because search space X; does not overlap with good
solutions of the basic optimization problem. This problem
is detected by the local partitioning operator because the
intersection of the sets b and P; is not empty and b is not
strictly included in P;. Similarly, the intersection of the
sets b and P, is non-empty and b is not strictly included
in P. Also, the intersections of vertex d = {6, 7} with P,
and P, are non-empty. In other words
bN Py F} and bN P = ?ﬁ
dﬂPl 7 anddr‘ngz 6

So, the vertex b is split into the two vertices {3} and {2},
and the vertex d is split into the two vertices {7} and {6}.
Note that the vertices a and ¢ are not split because they are
strictly included in P, and P, respectively. The resulting
coarsening of H; is shown in Fig. 1(b). Note that this new
coarsening of H; enables the search space X; to overlap
with the regions of X identified by the elite bisection.

A.2 Local clustering operator

Local clustering changes the coarsening of H; by merging
some of the vertices (clusters) of H;_; into new vertices for
H;. A vertex from H; ; becomes a “candidate for merg-
ing” if it is strictly included in one of the subsets of each
elite partitioning from X/ ; (line 5 in Fig. 3). The iden-
tification of which vertex can be candidate for merging is
needed because between the time a partitioning enters the
set of elite partitionings and the time local clustering is
run, many vertices of H;_; may have been split or clus-
tered such that some of them may overlap more than one
subset of an elite partitioning. According to the definition
of Problem (2), a vertex is strictly included in exactly one
subset of a partitioning. Therefore, if j = k in line 6, vertex
v is strictly included in one subset of each elite partition-
ing. Once the candidates for merging have been identified,

Local_clustering( );
1. for each vertex v € V;_;

2. 7 =0
3 for each elite partitioning z € X|_;
4. for each subset Ps in partitioning =
5 if (v C Ps) then j =j +1;
endfor;
endfor;
6. if j is equal to k, mark v as a candidate for merging;
endfor;

Fig. 3. Pseudo-code of the local clustering operator

a pair of vertices can be merged if both vertices satisfy the
two following conditions: 1) both vertices lie on the same
hyperedge; 2) both vertices are together in the same sub-
set in all elite partitionings. Note that two vertices v; and
ve of H;_1 are on the same hyperedge e of Hy if they are
both strictly included in e. For instance, in the case each
hyperedge is a pair of vertices, then v; and vy are on the
hyperedge e if e = {v1,v2}. Once a vertex is identified as
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candidate for merging, the vertex is labeled with the subset
of each elite partitioning where it has been found. Vertices
with the same label satisfy condition 2 above.

We shall next illustrate the local clustering operator with
an hypothetical example. Consider vertices v; and vy of
H;_; (line 1 in Fig. 3). Let v, = {6,8} and v, = {12,13},
and let z1,z2 and z3 be the three elite partitionings of
H;_,. That is, they form the set X/ ;. Assuming 3-way
partitionings, let the three subsets in x1, x> and z3 be

zy ={2,7,9,11},{1,3,5,10}, {4,6,8,12,13, 14}

zo ={1,3,4,5,10},{2,7,9,11,14},{6,8,12,13}
5= {6,813, 13,1, {2,7,9,11, 14}, {1,3.4,5, 10}

We can see that the vertex v, = {6, 8} is strictly included
in one of the subsets in each of the above elite partitionings
(lines 3, 4, 5 in Fig. 3) and so it is eligible for merging. Si-
milarly, the vertex vy = {12, 13} is also eligible for merging.
If e = {3,6,8,9,10,12,13} is an hyperedge, then both v,
and v, lie on this hyperedge, and so we can merge them to
form a vertex {6,8,12,13} for the hypergraph H;.

Now we return to Fig. 1 for another illustration of the lo-
cal clustering operator with a concrete example. According
to the elite bisection of Hy (see Fig. 1(a)), vertices 0 and
1 are in the same subset of this elite bisection. These ver-
tices also lie on the same hyperedge. So, they are merged
to form vertex a of Hy (see Fig. 1(c)). For similar reasons,
we merge vertices 4 and 5 to form vertex b of Hy, merge
vertices 2 and 6 to form vertex ¢ of H; and merge vertices
3 and 7 to form vertex d of H;. These vertices a,b, c and
d now define the new coarsened hypergraph H;.

Local clustering tends to reduce the number of vertices in
a coarsened hypergraph and therefore to reduce the size of
the search space. This balances the effect of the local parti-
tioning operator which tends to increase the number of ver-
tices. It also makes the search space to retreat from over-
lapping with uninteresting regions of the solution space.
Together, local partitioning and local clustering operators
allow the search spaces to move in the solution space, which
is the desired effect of re-coarsening.

A.3 Interpolation Operator

In the interpolation operator, one partitioning from the set
of elite partitionings of H;i; is selected to be the initial
solution of a move-based heuristic in hypergraph H;. Our
interpolation operator would be identical to the interpo-
lation operator of multilevel algorithms if it were not for
the way we compute the coarsened hypergraphs. Recursive
coarsening used by most multilevel algorithms is such that
vertices C;; € H; are formed by the clustering of two ver-
tices from H;_;. For example, when vertices u,v € Hy are
mapped together to an aggregate C(;_1); € H; 1, those
two vertices are necessarily mapped to Cj;, the superset
of C(j_1); in the coarsened hypergraph H;. Hypergraphs
generated with recursive coarsening are said to be related
level by level. This is not necessarily the case with our
coarsening strategy. The vertices of Hy that are mapped
to a cluster C;; € H; may be spread over several clusters
in each hypergraph Hj, j > .

Returning to Fig. 1, assume the elite partitioning of hy-
pergraph Hs is selected as initial solution for a move-based
heuristic of process p; associated with hypergraph H;. The
elite partitioning cannot be used because hypergraphs H;
and H, are not related level by level. For example, ver-
tex a of Hy spreads over vertices e and f of hypergraph
H, (same thing for b). The elite partitioning of Hs cannot
be a partitioning for the hypergraph H;. In order to use
the partitioning from Hs, we change the coarsening of H;.
A split of vertices in H; that spreads over more than one
vertex in Hs is performed using a similar procedure as for
the local partitioning operator. That is, we consider split-
ting the vertices a,b,c and d of Hy (see Fig. 1(a)) using
the bisection of Hs shown in Fig. 1(a). As shown in Fig.
1(d), after the split, it becomes possible to use the elite
partitioning from Hs as an initial solution to one of the
move-based heuristics in our search method.

A.4 The search heuristic of CoOMHP’s processes

We are now ready to describe the search heuristic run by
the | + 1 search processes of CoMHP. This search heuris-
tic combines, in a single iterative loop, several hypergraph
partitioning heuristics and the three operators that handle
hints from neighbor processes. Each iteration of the loop
executes the following sequence of operations: local parti-
tioning, local searches, interpolation, local searches, local
clustering, local searches and global searches. Fig. 4 con-
tains an abbreviated pseudo-code for this loop for process

Di-

CoMHP( ); /* process p; */
Initialization:
Compute H; using ;r-way partitioning
algorithm (see Section II);
Compute an initial partitioning x;
X! =x; BestEdgeCut = f(z);
While not terminated /* begin main loop */
1. Apply local partitioning operator to H;;
la. For each partitioning y found using FMS and PFM on new H;
1b.  if f(y) < BestEdgeCut then
X! = X! Uy; BestEdgeCut = f(y);
if | X}| > NumberO f AllowedEliteSolutions then
Remove the worst elite solution from X/;
2. Get a partitioning x from X{_H (interpolation operator);
2a. For each partitioning y found using FMS and PFM with
z as the initial solution
2b. run 1b;
3. Apply local clustering operator to current Hj;
3a. Run la and 1b;
4. If number of vertices < 500 do random search
else execute hMETIS;
4a. Run 1b;
5. Test termination criterion;
/* end main loop */
End CoMHP
Fig. 4. CoMHP for process p;

The initialization phase computes a coarsened hyper-
graph and an initial partitioning. The initial partitioning
is required to provide a first elite solution to the set X and
as an initial solution to the iterative local search methods
used in the main loop (unlike constructive methods, itera-
tive methods have to be provided with an initial solution
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that they then improve).

The execution sequence of the interaction operators (lo-
cal partitioning, interpolation, local clustering) has been
chosen arbitrarily. However, once the local partitioning
operator is performed at level i, hypergraph H; is modi-
fied. We then run iterative local search methods (line 1a)
on this new hypergraph H; to calculate new hyperedge-cuts
as well as to discover potential elite solutions (line 1b). As
local search methods we have used the Sanchis partitioning
algorithm (FMS) [?], and the multiway partitioning by free
moves (PFM) proposed by Dasdan and Aykanat [?]. Next,
on line 2, the interpolation operator is applied to get an
elite solution x from X/, so that = can be used as an ini-
tial solution for the search methods FMS and PFM. Finally,
the local clustering operator is applied, which transforms
H; once again, allowing to repeat the execution of FMS
and PFM on a different hypergraph H;.

The search of line 4 in Fig. 4 serves two different pur-
poses. For highly coarsened hypergraphs, less than 500
vertices for example, several random searches could be ex-
ecuted. As these hypergraphs are very small, the main loop
runs very fast and the process may run out of elite parti-
tionings from neighboring processes. By executing many
random searches, we slow down the execution of the main
loop while having chances to discover good partitionings.
The second purpose is to execute a search of H; which does
not depend on any initial partitioning. Both the hMETIS
software and random searches have this characteristic (our
random search routine consists of an initial partitioning
generated randomly, followed by the execution of an itera-
tive search to refine the random partitioning).

All the processes run the same combination of heuristics
and interaction operators, except for the special conditions
that hold for the boundaries processes po and p; and for
the difference between highly coarsened hypergraphs and
the other hypergraphs.

CoMHP is an asynchronous algorithm in the sense that
each process executes the iterative loop of the search
method without synchronization with other processes.
Therefore, processes associated with highly coarsened hy-
pergraphs run more iterations of the search method com-
pared, for example, to the process associated with Hy. The
time requirement for the cooperation protocol is the same
for all processes. Furthermore, this time requirement is
insignificant compared to the time required by the search
heuristics.

B. Convergence behavior of CoMHP

Because of the local interactions among the search pro-
cesses, the convergence behavior of cooperative algorithms
is sometime modeled according to the theory of complex
systems. For example, Huberman [?] uses a probabilistic
model to show that the performance of cooperating pro-
cesses is log-normally distributed for successful cooperative
algorithms, in contrast with the normal distribution of in-
dependent searches (or restarts). In this model, the effect
of cooperation on the distribution is a smaller number of
average quality searches but an increase of the length of the

tails on both sides of the distribution. The long tail of the
positive side of the distribution produces the overall per-
formance improvement. But to achieve such performance
improvement, the cooperative procedure must satisfy the
following requirements:

1. A large set of heuristically guided searches.

2. The searches apply successfully different search strate-
gies, leading to non-redundant explorations of the solution
space.

3. Processes exchange some useful information (hints) that
allows some of them to cut the number of steps required to
reach an optimal or acceptable solution.

4. Hints are statistically independent.

Requirements 1 and 2 are necessary to provide statisti-
cal independence among the hints. In practice, however,
these requirements often conflict with one another. Ei-
ther the number of guided searches is too small or the ex-
plorations of the different searches overlap in the solution
space. When this happens, cooperative programs do not
provide consistent quality of solutions: they converge well
on some instances, yet very poorly on other instances of
the same optimization problem.

Beside addressing the limitations induced by static coars-
ened hypergraphs in standard multilevel algorithms, a sec-
ond motivation for mixing the cooperative paradigm with
the multilevel paradigm has been to address the issue
of conflicting requirements facing many implementations
of cooperative algorithms. In the context of cooperative
search, the stability of coarsened hypergraphs helps to re-
duce the negative influence that sub-optimal hints can have
on the convergence behavior of the system. Hints have first
to change the static neighborhood structures defined by
coarsened hypergraphs before directing the search in new
regions of the solution space. This is unlike any other co-
operative algorithms. We believe that this is the reason
why the best solutions found by CoMHP are very close to
those of cooperative procedures that meet the requirements
above. However, the performance of cooperating processes
in CoMHP does not settle in a log-normal distribution be-
cause there are usually too few processes and hints are of-
ten strongly correlated. Rather, the cooperation protocol
in CoMHP is such that it tends to minimize the differences
between the hyperedge-cuts of the elite partitionings. The
evolution of CoMHP settles in a minimum energy state
(such as Hopfield networks [?]). The energy function is
given by the sum of the differences between the averages
for the hyperedge-cuts f(z) of the elite partitionings x of
the different processes:

¢ |f(33) 3 EzEXZ{_H f(:n)} (1)

-1
E(X) =
=2y X!

1l

The initial state of the system is given by the elite partition-
ings computed after the coarsening phase. If the coarsening
phase is successful, the elite partitionings from neighboring
processes will have different hyperedge-cuts. The differen-
tials among the best hyperedge-cuts of neighbor processes
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create opportunities to change, by percolation, the coarsen-
ing of the neighbor hypergraphs. New coarsenings provide
new elite partitionings which in turn affect the coarsen-
ing of neighboring hypergraphs. This percolation process
stops to have an impact on the exploration of the solution
space when all the elite partitionings have about the same
hyperedge-cuts, which corresponds to a minimum energy

TABLE 1
MIN-CUT 2,4,8-WAY PARTITIONING RESULTS WITH UP TO A 10%
DEVIATION FROM EXACT PARTITIONING, CELLS ARE ASSIGNED UNIT
AREA (COLUMNS “HM” AND “CO” STAND RESPECTIVELY FOR
HMETIS aAND COHMP).

level of the system. Once the system has reached such Circuit 2-way 4-way 8-way

minimum energy state, the quality of the best partitioning hM [ Co [ bM | Co | hM | Co
does not improve much. In terms of the best partitioning, IBMOL | 180 | 180 | 495 | 430 | 750 | 711
when the system (as modeled in Equation (4)) is stable, IBMO2 1T 262 | 262 | 616 | 560 | 1841 | 1483
that is, it has reached a fixed point, the computation can IBMO3 1T 953 | 950 | 1682 | 1619 | 2402 | 2219
then be ended. TBMO4 || 529 | 530 | 1689 | 1597 | 2778 | 2507

IBMO5 || 1708 | 1697 | 3024 | 2888 | 4306 | 3874
IBMO6 || 889 | 890 | 1484 | 1465 | 2275 | 2204
We have evaluated the performance of our CoMHP algo- IBMO7 || 849 | 824 | 2188 | 2036 | 3308 | 3098
rithm on the ISPD98 benchmark suite of netlists [?], com- IBMOS |[ 1142 | 1140 | 2363 | 2241 | 3469 | 3240
paring the performance of CoMHP with version 1.5.3 of IBMO9 || 629 | 620 | 1670 | 1606 | 2659 | 2474
the hMETIS partitioning package. We have implemented IBM10 I 1256 | 1249 | 2283 | 2164 | 3761 | 3305

IV. EXPERIMENTAL RESULTS

a parallel version of our hypergraph partitioning algorithm IBMIL I 960 | 960 | 2321 | 2196 | 3433 | 3160
and have run it on the SGI Computer at the RCF (Re— IBM12 1881 1872 3730 3520 5972 5384
search Computing Facility) of the University of Nebraska- IBMI3 | 840 | 832 11661 | 1671 | 2717 | 2483
Lincoln. hMETIS has also been run on this same environ- IBM14 || 1891 | 1816 | 3278 | 3097 | 5060 | 4263

m‘ent. RCF possesses a shared memory SGI 02000 system IBM15 2598 1 2619 | 5019 | 4591 | 6623 | 5960

with 16 250Mhz R10k CPUs, 4GB main memory, and runs
. . IBM16 || 1755 | 1709 | 3816 | 3745 | 6475 | 5360

on the IRIX 6.5 Operating System. For each problem in-
. . IBM17 || 2212 | 2187 | 5395 | 5194 | 8695 | 7960
stance, we have executed 10 runs of hMETIS with recursive BNV T 1525 151 | 5381 | 2810 | 5169 | 4435
bisection and 10 runs with hMETIS-Kway (the direct ap-
proach) [?]. Our algorithm has been run for 10 iterations
of process pp. Since hypergraph Hy is the largest one in
the sequence of hypergraphs, process py takes more time
than any other process to complete one iteration of the

refinement phase.

Tables I and II present the 2,4,8-way hyperedge-cuts for,
respectively, the unit cell area and the non-unit (real) cell
area with CoMHP (Co) and hMETIS (hM). Out of the 108

TABLE II
MIN-CUT 2,4,8-WAY PARTITIONING RESULTS WITH UP TO A 10%
DEVIATION FROM EXACT PARTITIONING, CELLS ARE ASSIGNED NON-
UNIT (ACTUAL) AREA.

tests executed, hMETIS outperforms or yields the same re- Circuit, 2-way 4-way 8-way
sults as COMHP in 8 instances, while CoMHP outperforms hM [ Co [ bM | Co | hM | Co
hMETIS in 100 instances. For 2-way partitioning, the im- IBMO1 || 217 | 215 | 343 | 340 | 606 | 573
provements of CoMHP over hMETIS are not significant. IBMO2 || 266 | 247 | 470 | 399 | 833 | 762
For 4-way and 8-way partitioning, COMHP can get up to IBMO3 || 707 | 608 | 1348 | 1220 | 1981 | 1879
a 15% improvement in the hyperedge-cuts over hMETIS. IBMO4 || 440 | 438 | 1321 | 1209 | 2408 | 2241
For hMETIS, Tables I and II report the best solution of bi- IBMO5 || 1716 | 1681 | 3002 | 2895 | 4331 | 3950
section or hMETIS-Kway. In 102 cases, hMETIS with bi- IBMO6 || 367 | 363 | 1149 | 1056 | 1716 | 1688
section found the best solution while hMETIS-Kway found IBMO7 716 721 | 1539 | 1480 | 2918 | 2707
the best solution in the 6 other instances. IBMOS || 1149 | 1120 | 2143 | 1992 | 3330 | 3120
Tables IIT and IV present the runtimes (parallel compu- IBMO09 || 523 | 519 | 1418 | 1334 | 2337 | 2079
tational time) of both algorithms. For CoMHP, the run- IBM10 || 769 | 734 | 1845 | 1636 | 3098 | 2751
time indicates the total time to run 10 iterations of py plus IBM11 || 697 | 688 | 1893 | 1699 | 2948 | 2768
the time to perform the coarsening phase. For hMETIS we IBM12 11975 | 1970 | 3577 | 3402 | 4957 | 4762
report the time to execute 1 run of the bisection approach IBM13 I 859 | 832 | 1698 | 1568 | 2439 | 2298
in order to factor the use of several processors by CoMHP. IBM14 || 1520 | 1494 | 3048 | 2869 | 4833 | 4360
This biases the results slightly in favor of hMETIS given IBM15 || 1786 | 1771 | 4435 | 4314 | 6111 | 5756
that CoMHP uses 10 processors only for a few problem IBM16 171681 | 1639 | 3562 | 3149 | 5580 | 5146
mstances. IBM17 || 2252 | 2156 | 4824 | 4393 | 8222 | 7003
As can be seen from Tables III and IV, on average IBMIS || 1520 | 1520 | 3104 | 2941 | 4833 | 4416

hMETIS is 20 to 25 times faster than CoMHP for the 108
tests. A time optimized implementation of CoMHP can
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improve on the current prototype in the following ways.

The outer loop of CoMHP has only a few sequential de- TABLE II1

pendencies, therefore it can be easily parallelized. Though RUN-TIME PERFORMANCE FOR MIN-CUT 2,4,8-WAY PARTITIONING
this parallelization will not reduce the work ratio between WITH UP TO A 10% DEVIATION FROM EXACT PARTITIONING, CELLS
CoMHP and other partitioners, it will considerably im- ARE ASSIGNED UNIT AREA.

prove the time ratio. Secondly, the amount of improvement

in the hyperedge-cuts of COMHP is not significant after 2 Circuit 2-way 4-way 8-way

or 3 iterations of the search phase by process pg. At that hM [ Co | bM [ Co | M [ Co
point the energy function (4) is low and seems stable in mBMoL T 021 5 03 - 05 | 11

its minimum. Running the current prototype implemen- mBMo2 04 T 10 T 07 | 12 11 51
tation of CoMHP only 2 or 3 iterations will not result in IBMO3 104 16 108 17 | 111 25

any serious degradations of the results obtained using 10 TBNOA 0:5 16 1:0 19 1:3 6

iterations, which means we can get similar results as in Ta-
bles I and II with only about 1/5 to 1/3 of run times as
in Tables IIT and IV. Thirdly, the computational time of
CoMHP is dominated by the execution of the global and lo-
cal search subroutines. We believe we can reduce the time
spent in the global and local searches by adapting these
routines to CoMHP, for example, by not flipping all ver-
tices for refinement, but rather stopping the search after
flipping part (20%, for example) of the vertices. However,

IBMO5 || 0.7 | 18 | 1.2 | 24 | 1.6 | 30
IBMO6 || 0.6 | 21 1.2 | 23 | 1.7 | 33
IBMO7 || 1.1 | 32 | 20 | 38 | 2.6 | 53
IBMO8 || 1.6 | 36 | 26 | 51 | 34 | 59
IBMO9 || 1.0 | 34 | 20 | 40 | 2.6 | 58
IBM10 || 2.2 | 56 | 3.5 | 65 | 5.0 | 91
IBM11 || 1.5 | 50 | 3.0 | 59 | 3.9 | 78
IBM12 || 1.9 | 62 | 46 | 73 | 5.1 | 115

even if all these optimizations were realized, it is obvious IBM13 || 20 | 60 | 36 | 72 | 5.1 | 100
that CoMHP will not be faster than hMETIS, or other par- IBM14 || 5.9 | 79 | 9.1 | 141 | 13.0 | 169
titioners for that matter, given that CoMHP uses repeat- IBM15 || 6.6 | 121 | 11.0 | 176 | 14.1 | 217
edly those partitioners as subroutines. On the other hand, IBM16 || 7.6 | 142 | 13.3 | 192 | 19.0 | 238
with the same amount of computing resources as given to IBM17 || 9.4 | 219 | 17.1 | 196 | 22.2 | 374
CoMHP (when run for 10 iterations of pg), hMETIS didn’t IBM18 || 7.7 | 178 | 15.1 | 192 | 20.4 | 301

improve noticeably the quality of partitionings reported in
Tables I and II. The situation is, however, different when
hMETIS is embedded in CoMHP. Computational results
from a “cooperative hMETIS’ to be called ChMETIS are
reported in Table V for netlists IBMO1 to IBM08. The
computation of these hyperedge-cuts is based on the pro-
cedure of Fig. 4 after replacing the local partitioners FMS
and PFM by calls to hMETIS (except for line 2a, since
search after interpolation starts from an initial partition-

TABLE IV
RUN-TIME PERFORMANCE FOR MIN-CUT 2,4,8-WAY PARTITIONING
WITH UP TO A 10% DEVIATION FROM EXACT PARTITIONING, CELLS
ARE ASSIGNED NON-UNIT (ACTUAL) AREA.

ing). The quality of hyperedge-cuts produced by ChMETIS Circuit 2-way 4-way 8-way
is very close to the quality of those produced by CoMHP. hM | Co | hM | Co | hM [ Co
Since hMETIS is faster than FMS and PFM, computa- IBMO1 || 0.2 6 0.3 7 05 | 11
tional times were about 10 to 20% better than CoMHP. IBMO2 || 0.3 10 | 0.7 13 1.0 | 20
Table V clearly demonstrates that the cooperation scheme IBMO3 || 04 | 11 | 0.8 | 19 | 1.2 | 26
plays a key role in the quality of the solutions produced by IBMO4 || 05 | 16 | 09 | 18 | 1.3 | 26
CoMHP. The improvement in the quality of the solutions IBMO5 || 0.6 | 18 | 1.2 | 23 | 1.6 | 35
produced by CoMHP is to a large extent independent of IBMO6 || 0.5 | 15 | 1.2 | 22 | 1.7 | 35
the partitioners used in the implementation of CoMHP. IBMO7 || 1.0 | 29 | 2.0 | 41 | 2.7 | 54
IBMO8 || 1.2 | 25 | 2.2 | 35 | 3.1 | 57
V. SUMMARY AND DISCUSSION MO I 1.1 | 40 | 18 | 45 | 26 | 65
We have explored two objectives: design an approach for IBMIO || 1.7 | 52 | 34 | 64 | 49 | 93
the netlist partitioning problem using the cooperative mul- IBM11 14 | 44 | 27 | 53 | 44 | 88
tilevel search paradigm introduced by Toulouse, Thulasir- IBM12 | 2.0 | 58 | 38 | 75 | 5.1 | 113
aman and Glover [24], and study the effectiveness of this IBM13 || 1.9 | 83 | 3.7 | 71 | 49 | 113
paradigm for solving combinatorial optimization problems, IBM14 || 6.0 | 8 | 9.0 | 145 | 13.0 | 151
in particular, those arising in the VLSI CAD area. We have IBM15 || 5.6 | 111 | 12.0 | 160 | 14.2 | 197
presented the design and parallel implementation of an al- IBM16 || 6.7 | 168 | 13.1 | 197 | 18.0 | 264
gorithm, called CoOMHP, for the netlist partitioning prob- IBM17 || 11.2 | 243 | 18.2 | 286 | 23.8 | 354
lem. In this algorithm we combine the multilevel paradigm IBM18 || 87 | 189 | 15.9 | 235 | 20.5 | 296

and the cooperative search paradigm and take advantage
of the good features of both these paradigms. To date, the
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TABLE V
COMPARING HYPEREDGE-CUTS BETWEEN COHMP AxD CHMETIS
(cOLUMNS “C0” AND “CH” STAND RESPECTIVELY FOR COHMP AND
CHMETIS). UP TO A 10% DEVIATION FROM EXACT PARTITIONING,
CELLS ARE ASSIGNED UNIT AREA.

Circuit 2-way 4-way 8-way
Co | Ch Co | Ch | Co | Ch

IBMO1 || 180 | 180 | 430 | 431 | 711 | 705
IBMO02 262 262 560 537 | 1483 | 1492
IBMO03 || 950 | 950 | 1619 | 1646 | 2219 | 2294
IBMO04 || 530 | 527 | 1597 | 1573 | 2507 | 2534
IBMO5 || 1697 | 1703 | 2888 | 2905 | 3874 | 3875
IBMO6 || 890 | 892 | 1465 | 1467 | 2204 | 2222
IBMO7 || 824 | 824 | 2036 | 2033 | 3098 | 3113
IBMOS || 1140 | 1140 | 2241 | 2266 | 3240 | 3217

most successful approach to the netlist partitioning prob-
lem has been the multilevel algorithm hMETIS of Karypis,
Aggarwal and Kumar [?] which formulates the netlist par-
titioning problem as a hypergraph partitioning problem.
So, we have chosen this algorithm for a comparative eval-
uation of the quality of solutions produced.

In CoMHP, each level is associated with a coarsened
(appropriately reduced) hypergraph and a search pro-
gram derived from known heuristics such as the Fiduccia-
Mattheyses (FM) heuristics. These programs execute
searches on the coarsened hypergraphs at their respective
levels. A distinguishing feature of CoMHP is the use of a
cooperation protocol to control the coarsening of the hy-
pergraphs at the different levels. This involves the use of
three cooperation operators. The effectiveness of the al-
gorithm depends on the specification and implementation
of these operators. They control the coarsening which im-
pacts the solution subspaces explored at the different lev-
els. We have been conservative in exploiting this aspect of
the cooperation strategy. Improvements both in terms of
computational time and quality of partitionings will result
from the choice of elite solutions (those selected at each
level for information sharing), the choice of operators for
refinement, and the selection of the levels between which
cooperation takes place.

Our cooperative search paradigm can be applied to cre-
ate partitioning methods capable of partitioning hyper-
graphs with fixed vertices, which could enhance the use-
fulness of this paradigm in VLSI design. The refinement
phase of CoMHP is flexible, and can adapt to local con-
straints imposed on coarsening by specific needs from the
physical design process.

In the case of COMHP, each iteration of the slowest pro-
cess executes hMETIS, FM and FMS as subroutines. It is
therefore not surprising that CoMHP takes considerably
longer time than any of its subroutines. On the other
hand, our work supports the hypothesis that individual
search algorithms, with the same amount of computing re-
sources as the cooperative computation (through restarts
or other means), cannot match the performance of a suc-

cessful cooperative algorithm. Based on the results pre-
sented in this paper, we believe that multilevel design pro-
vides such a successful approach to develop cooperation
protocols. The cooperative multilevel search paradigm in
combination with other heuristics will help produce solu-
tions with better quality than those obtained by the origi-
nal heuristics. This paradigm will also be useful to design
algorithms for other combinatorial optimization problems
(besides partitioning) arising in the VLSI CAD area. Our
work in this paper is the first study to demonstrate this.
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