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The binary assignment problem with a side constraint requiring the objective function to
receive a specified value, which in general is an NP-hard problem, has been the focus of
several papers in recent years. The current literature addresses various theoretical aspects
of the problem, with a particular emphasis on a simplifying special case, but stops short
of giving any computational experience. In this paper, we present a simple reformulation
that enables the problem, and some of its extensions, to be solved by commenly available
heuristic methods. We present preliminary computational experience with a Tabu search '
method that illustrates the effectiveness and computational robustness of the approach.
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1. Imntroduction
The side constrained binary assignment problem (SC-BAP, or BAP for short), may
be formulated as follows:

BAP: Find a feasible binary solution, 45, %, € N = {1, ..., n} to the equations

Zﬂgj:l ie N (1)
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n n
Z Z c,;j:[:ij =T (3)
i=1 j=1
where ¢;; and r are integers unrestricted in sign. Equation (3) is called the side
constraint.

Applications of BAP associated with core management of pressurized water
nuclear reactors have been reported.5® Other applications,!® include analysis of
medical images by Tanimoto (1976) and timetabling by Even, et al. (1976).

The general BAP problem® is shown to be NP-hard. For the special case where
the matrix C = (¢ : i, 7 € N) is binary and the graph is complete, polynomial
algorithms for BAP are given.'% Analysis of the polyhedral characterization of
this special case is given! while Ref. 2, again for this special case, describes facet-
inducing inequalities. None of these papers, even for the indicated special case,
report any computational experience.

In this paper, we propose a solution procedure that starts with a simple reformu-
lation enabling the problem to be solved by readily available heuristics. Preliminary
computational experience is given to illustrate the approach and to document its
relevance and promise for solving significant instances of BAP.

2. Reformulation

Our approach is based on introducing a quadratic infeasibility penalty function to
implicitly enforce constraints (in this case the side constraint) rather than explie-
itly representing such restrictions in the form of traditional constraints. Variants of
this type of transformation have been applied in other problem contexts.!®11:18
Examples illustrating this type of reformulation approach to create an uncon-
strained binary quadratic programming representation that models a wide variety
of zero-one problems is given in Ref. 12.

For BAP, we perform the transformation in a way that causes the resulting
optimization problem to take the form of a quadratic assignment problem (QAP),
which can then be solved by any of a variety of available solution methods. While
the QAP is itself a difficult (NP-Hard) problem, several heuristic methods have
recently proven to perform well on large-scale instances. Moreover, in the present
case, knowledge about the optimum objective function value to QAP, if a feasible
BAP solution exists, can be used to permit early termination of the search.

The objective function for our transformed problem consists of minimizing

2
7 T
Z Z CijTig — T (4)
i=1 j=1
To simplify the notation in what follows, we re-label both parameters and variables
using single subscripts in the natural way from 1 to m = n?

(T1.- Tny eeeseen Tm) =(T11 -+« Tlnyoos--- Tum)
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and similarly reindex the ¢;; coefficients to receive single subscripts. Then, the
objective function (4) can be re-written in the form

zQz + 72
where

@i = 2 — 2r¢;
gij =cic; for iy

Dropping the additive constant {r?), we have the re-formulated equivalent of BAP
that takes the quadratic assignment form:

QAP: Minimize z¢ = Qz subject to equations (with re-labeled variables) (1) and
(2).

A solution to QAP that solves BAP must have xy = —r2. Thus, a heuristic used
to solve QAP can be terminated whenever x¢ == —r?; that is, —r? becomes a target
the heuristic procedure attempts to achieve,

Example: This approach is illustrated by the following 3 x 3 example.

BAP:
4y 4 6rg +8x3 + 6x4 + 65 +dxg + 8z7 +4dxg + Gg = 18

1 +x2 +x3 =1
T4 +25 +xg =1

T7 +Tg +x9=1

Ty + x4 + a7 =1
T2 + 5 + xg =1

T3 + zg +xg =1

Transforming the side constraint as indicated above gives the equivalent QAP
problem:

QAP: Minimize xy = zQx subject to

r +ze +x3 =1
T4 + x5 + T =1

7 +ag trg =1

Iy +z4 +Z7 =1
b + x5 + g =1

T3 + g +xg =1

where the optimal (target) value for zg is given by —r? = —324 and the Q matrix
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is
[—128 24 32 24 24 16 32 16 247
24 180 48 36 36 24 48 24 36
32 48 224 48 48 32 64 32 48
24 36 48 180 36 24 48 24 36
Q= 24 36 48 36 —180 24 48 24 36
16 24 32 24 24 128 32 16 24
32 48 64 43 48 32 224 32 48
16 24 32 24 24 16 32 128 24
24 36 48 36 36 24 48 24 —180]

Solving this quadratic assignment problem yields z3 = zg = z7 = 1 for which
o = —324. Since g achieves the target level, this solution is feasible for BAP.

3. Computational Experience

The equivalent QAP models representing BAP can be solved by any of the
several new approaches to QAP problems. The reader is referred to recent
articles®®7:13:16,17.18 for descriptions of representative methods. For the work re-
ported here, we use a straightforward Tabu search method that employs short and
long term memory to guide the search process. Details of the Tabu search compo-
nents used here are given in Ref. 8.

In this section, we present our experience with problem sizes of 100, 225, and
400 variables with three instances considered for each problem size. The ¢; values
were randomly chosen from the uniform interval (1-10). For each problem, the right
hand side value, r, was chosen so that at least one feasible solution exists.

As indicated in Table 1, our approach was able to quickly find optimal QAP
solutions (hence feasible BAP solutions) to all of the test problems in the test bed.
The largest of the problems (those with 400 variables) were solved in 3 seconds
or less on a Pentium 200 PC. Based on our experience with problems of similar
structure but larger size, we would expect to solve instances of BAP with up to
1500 variables in a few minutes with our Tabu search method.

Table 1. Computational experience.

ID m r? Tp Time

Al 100 3136 3136 <1 sec
A2 100 1849 1849 <« 1 sec
A3 100 2916 2916 < 1 sec
Bl 2256 6561 6661 <1 sec
B2 225 2304 2304 <1 sec
B3 225 6889 6889 < 1Isec
1 400 2401 2401 2 sec
C2 400 4489 4489 3 sec
C3 400 7396 7396 2 sec
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4. Extensions of the Basic Model

Several extensions of the base model can be readily accommodated by the approach
of this paper. In this section, we highlight three such extensions.

4.1, Missing variables

Reference 2 describes the case where one or more variables are missing from the

problem or where, for problem specific reasons, certain variables are “forbidden”

to be chosen. The polynomial algorithm they give to solve the special case where

the C matrix is binary will not work on problems with missing variables. In fact,

they comment (p. 366) that whether an efficient algorithm exists for such problems
. remains an open question”.

Our approach to solving BAP, for both the binary and general coefficient cases,
is unaffected by missing or forbidden variables. Each such variable is readily forced
to be zero by placing a large penalty in each of the row and column entries of the
) matrix that correspond to the variable in question. (An alternative would be to
simply remove each missing variable from the problem. This, however, would alter
the QAP structure that we are utilizing in our approach here and thus we have
adopted the penalty approach.)

As an illustration, consider again the example of Sec. 2 where a feasible solution
was obtained with z9, zg and z7 equal to 1. Suppose we now want to consider g to
be a forbidden varfable, implying that a solution is required with zg = (. This can
readily be accomplished by choosing a large positive penalty P and solving QAP
with the penalized Q matrix

32 16 24]
48 24 36
64 32 48
48 24 36
48 24 36
P P P
224 32 48
32 —128 24
48 24 180

[—128 24 32 24 24
24 180 48 36 36
32 48 —224 48 48
24 36 48 180 36
Q= 24 36 48 36 —180
p P p P P
32 48 64 48 48
16 24 32 24 24
24 36 48 36 36

2 M < B v VR s B L

Solving this new QAP example, with P arbitrarily chosen to be 600, gives the result
T2 = T4 = xg = 1 for which ¢y = —324 and, as desired, our forbidden variable is
equal to zero. Since we have again reached the target level for T, this solution is
feasible for BAP.

4.2, Multiple side constraints

Our approach for solving BAP can also readily accommodate multiple side con-
straints. Each such side constraint, in equation form, can be converted into a
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quadratic penalty function exactly the way (3) was converted, and the @ matrices
produced can be simply added together to get a “grand” () matrix for the equiv-
alent QAP problem. To illustrate, return to the example of Sec. 2 and consider a
second side constraint given by:

3zy + 3x3 + by + Gy + Tas + 4xs + S5z7 4+ 3zg + dwg = 13

Converting this constraint to a quadratic penalty function and combining the as-
sociated () matrix with that of the first side constraint yields the QAP with a
(combined) @ matrix given by

(197 33 47 42 45 28 47 25 36
33 —249 63 54 57 36 63 33 48
47 63 329 78 83 52 &9 47 68
42 54 78 =300 78 48 T8 42 60
Q= 45 57 83 78 313 52 83 45 4
28 36 52 48 K2 216 52 28 40
47 63 89 78 83 32 329 47 68
25 33 47 42 45 28 47 197 36
36 48 68 60 64 40 68 36 -—-269

Note that the target level for this expanded problem is or —(rf + rj) or —493.
Solving QAP by our Tabu search method gives zp = x4 = xg = 1 for which g
is —493. Since our target level has been reached, this solution satisfies both of the
side constraints as well as the assignment constraints.

4.3. Explicit objective function

The previous cases started as satisfiability problems that were subsequently con-
verted into optimization problems via the introduction of an objective function
derived from a quadratic penalty function. A generalization is to consider the prob-
lem of finding a bipartite matching that sirmultaneously satisfies a side constraint
while minimizing an explicit linear objective function.
This more general problem can be stated by
ne

min g = E a5y
j=1

subject to (1)—(3).

(As earlier, we reindex double subscripted variables and parameters to put them
in a single subscript form.) A special case of this generalization was mentioned by
Yi (1994) as a topic for further research to extend the work of his dissertation.
However, to the present date, no work addresses this problem.

The model that includes an explicit objective function, like the previous exten-
sions of the base model, can be reformulated as:
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QAP: min @z subject to (1) and (2)

where
i = ai + M{c} - 2rci)
gij = Mcie; for i#]

The constant M is a positive scalar penalty chosen large enough to ensure that
the side constraint, through the construction of the quadratic penalty function, is
satisfied. A suitable choice for M can always be made.l® For the problems con-
sidered here, assuming all data are integers, any value larger that the sum of the
absolute values of the a; coefficients will work. Note that we can readily carry this
reformulation a step further by supposing that the original objective function is not
linear, but is itself a quadratic function. The rules for handling this are analogous
to those previously described.

To illustrate the procedure, consider modifying our original example by includ-
ing the objective function

min zg = 5x1 + 2xo + 2z + 6x4 + x5 + Ywe + 427 4 Swe + ITy

which is to be optimized subject to the side constraint and assignment constraints
shown in Sec. 2. Choosing the penalty M to be 50, and recasting this problem into
the QAP format by our indicated transformation gives the equivalent QAP problem
with the @ matrix:

[—6395 1200 1600 1200 1200 800 1600 800 1200 ]
1200 —8996 2400 1800 1800 1200 2400 1200 1800
1600 2400 —11198 2460 2400 1600 3200 1600 2400
1260 1800 2400 8994 1800 1200 2400 1200 1800 }-
Q= 1200 1800 2400 1800 8991 1200 2400 1200 1800
800 1200 1600 1200 1200 —6391 1600 800 1200
1600 2400 3200 2400 2400 1600 —11196 1600 2400
800 1200 1600 1200 1200 800 1600 —6395 1200
1206 1800 2400 1800 1800 1200 2400 1200 8997 |

Solving this quadratic assignment problem yields the solution: zo = z4 = g = 1
for which the origina) objective function is equal to 13. It is easy to check that this
solution satisfies all problem constraints and in fact is optimal.

5. Summary and Conclusions

We have presented a reformulation of the assignment problem with side constraints
that enables solutions to be computed using commonly available heuristic proce-
dures for the quadratic assignment problem. Our approach is not restricted to spe-
cial cases, nor does it rely on simplifying assumptions concerning the completeness



128 . Kochenberger, ¥. Glover £ B. Alidaee

of the bipartite matching sought. To illustrate the robustness of our approach, we
have shown how various extensions of the base model, including missing variables,
multiple side constraints, and explicit objective functions, can be readily modeled
and solved by the same reformulation.

Computational experience using a straightforward Tabu search method for prob-
lems up to size 400 discloses the practical viability of the procedure. Qur compu-
tational experience, the first to be offered for this class of problems, suggests that
the approach outlined here is both very effective and eflicient. Specialized solution
methods for larger problems and further extensions of the base model are the sub-
ject of on-going work.
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