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1. INTRODUCTION

Mathematical programming problems with some or all variables
constrained to take on zero-one values are important in a large number of
applications. Many critical strategic and tactical decisions such as which
product lines to develop, which factories to open and close, which projects to
invest in, which sites to choose for locating new facilities, and so forth, all
directly or indirectly require reference to binary variables. In order to make
use of computers to help find good solutions for such problems, models that
incorporate discrete-valued variables must be developed.

Such models must always be based on simplifying assumptions. The
modeler often, by necessity, leaves out details that are hard to express
mathematically or details that will render the problem too hard to solve. An
important assumption often made is that costs and constraints can be
expressed as linear functions of the decision variables.  This enables the use
of powerful algorithms to help solve the problem. In fact, the modeling
power of zero-one variables enables non-linear function to be approximated
to great degree of accuracy using such linear functions.

The abstract formulation for linear problems with binary variables takes
as data a row vector c of length n, an m × n matrix T, a column vector b of
length m and lower and upper bound vectors l and u of length n. We assume
that the data has been scaled so that the values in the vector l are near zero
and the values in u are near one. The goal is to select a column vector, x of
length n to solve the problem.

(P) Minimize  cx

subject to
bTx ≥ (1)

}{ Ix ∈∈ i1,0i (2)
uxl ≤≤ (3)

where the index set Ι gives the variables that must take on integer values. We
refer to solutions that satisfy the constraints, except perhaps constraints (2)
as LP feasible, and to solutions that satisfy all constraints, including
constraints (2), as MIP feasible or as MIP solutions.

Our goal in this paper is to characterize and find a diverse set of solutions
to mixed integer programming problems. There are a number of reasons why
decision makers are interested in seeing a variety of solutions to (P), and not
just those that achieve the minimum. MIP solutions are sometimes used as
starting points for more detailed models (e.g. simulations). Such automated,
but stochastic, optimization systems often benefit from a variety of starting
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points. In the application area of decision support systems (DSS), practical
mixed integer programming models typically leave out a lot of details and
make use of very approximate data [9, 12]. The user of a DSS would often
like to look at a variety of solutions and mull over the so-called intangibles
omitted from the model.

These examples do not represent the same concerns as sensitivity
analysis, where one considers the effect on the optimal solution of
parametric changes in the data. The rich literature on MIP sensitivity
analysis, which is the subject of an extensive annotated bibliography
developed and maintained by Greenberg [8], discloses that sensitivity
analyses can be extremely valuable in some settings. But in many other
situations, analysis of the conditions of optimality can be premature given
the state of the data and the model. Sensitivity information can be a form of
information overload.

When the objective function is only an approximation of the actual goals
of the organization and its stakeholders, the one solution that optimizes it
may be no more interesting than other solutions that provide good values.
However, information overload can be a problem here as well. It is not
desirable to swamp the decision maker with solutions. Highly preferable is
to identify a set of solutions that are decently good and, especially, diverse.

We can reasonably rely on the objective function to quantify the notion
of “decently good”. Methods for quantifying the notion of “mutually
diverse” are given in §3. We devote §2 to a description of methods for
obtaining a diverse set of solutions for MIPs. In §4 we provide
computational experiments that show that our methods do indeed produce a
diverse set of solutions and accomplish this much more effectively than
branch and bound alone. The paper closes with some concluding remarks
and directions for further research.

2. SCATTER SEARCH AND STAR PATHS

Our diversification methods are based on the idea of generating extreme
points in a polyhedral region of interest and then using these points and the
paths between them in a variety of ways. The methods examine points on the
polyhedron, within and “near” it. It is natural, therefore, to use the
constraints (1) and (3) provided by problem (P) to define edges of the
polyhedron. The LP feasible point, x**, obtained by solving the relaxation
of (P), which is obtained by removing constraints (2) is also particularly
useful. We proceed in two phases: first we generate a set of centers and then
we connect them using star paths.
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2.1 Generating Centers

The description of the generation of centers can also be broken into two
phases. First we use a diversification generator to create points. In the
second phase, these points are provided as data to an optimization problem
that results in extreme points that are averaged to create the centers.

The diversification generator we employ creates a sequence wherein for
each new vector the minimum Hamming distance from all previously
generated vectors is maximized. We define the complement over an index set
J ∈ Ι of a solution vector x to be y where yj = 1 - xj and yj = xj for j ∈ Ι \ J.
The generator first described in [5] proceeds as shown in Figure 1 when
provided with a vector r of length n that satisfies constraints (2). This
generator creates approximately 2(1 + log |Ι |) solutions. Of course, the
algorithm can be terminated when fewer vectors have been generated by a
simple modification to step 3. We round x** to serve as the vector r for the
procedure and refer to this rounded solution as r**. To use the terminology
of branch and bound algorithms, it is the result of rounding the root node
solution.

Each of the solutions created by the generator is used for a construction
by objective to create points within and on the polyhedron that are called
primary centers and subcenters.

To generate primary centers, we modify the problem (P) by removing
constraints (2) and replacing the objective function with

∑
∈

−
Ii

1r2 i

where the vector r is provided as data with the property that it satisfies
constraints (2). To avoid exploring the regions that are extremely large and
likely to be uninteresting we add a constraint to those required by (P),

**cx**cxcx α+≤ (4)
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1. The solution vector r and its complement over Ι are the first two
solutions generated. Form an arbitrary partition of Ι into two equal-sized
cells and call these sets Ι´ and Ι´´; place Ι´ in a set of subsets called K´
and Ι´´ in one called K´´.

2. The next two solutions generated are the complement of r over Ι´ and Ι´´.
3. Move all of the subsets in K´ and K´´ that were created by the most

recent step into a set of subsets and call it K and consider K´ and K´´ to
be empty.  If all of the subsets in K are empty or contain only one
element, stop. Otherwise, partition each subset in K, into two equal-sized
sets and add the new sets to K´ and K´´, respectively. As sets in K are
encountered with an odd number of elements, alternate between
assigning more elements to those sets that will be placed in K´ and those
that will go into K´´.

4. Let Ι´ be the union of all subsets in K´ and let Ι´´ be the union of the K´´
sets. Go to Step 2.

Figure 1. The Sequential Diversification Algorithm Given the Data for Problem (P) and a
Solution Vector r as an Input Parameter

that bounds the polyhedron to be “not too far” from x**. Bearing in mind
that our methods will examine points outside the polyhedron, one can
believe that the choice of α is not critical. Computational experiments reveal
that values such as 0.1 or 0.2 seem to work well. Of course, we can refine
the representation of (4) by considering issues of scaling and accounting for
the possibility that cx** is zero. The problem we have constructed to
correspond to problem (P) is problem

( )P′      Minimize or Maximize  ∑
∈

−
Ii

i 1r2

subject to

bTx ≥
**** cxcxcx α+≤

uxl ≤≤
Refer to the solution to the minimization problem as )(rx

s  and the result of
maximizing )r(x

r
. The primary center associated with r  is

( ) 2/(r)x(r)x
sr

+  and the set of subcenters is ( ))()()( rxrxwrx
rsr

−+   for w
= 0, 1/4, 3/4, and 1.
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We use the result of the sequential generator shown in Figure 1 with
**rr =  to generate a set of vectors. The primary and secondary centers

associated with these vectors are collected to be connected by a series of star
paths that are used to generate potentially feasible, diverse solutions for (P).

2.2 Star Paths

Before proceeding to define star paths, we must first describe directional
rounding [4] upon which the notion of star paths is based. Directional
rounding is defined relative to a base point, 0x , and a focal point x′ . The
rounding is defined component-wise as

( )
{ }

otherwise
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where round (·) refers to simple rounding. The motivation for directional
rounding comes from the fact that if 0x  is LP feasible, then every feasible
0-1 solution can be obtained by directional rounding relative to focal points
that lie within the LP cone defined by non-negative values for the current
nonbasic variables. Moreover, attention can be restricted to focal points that
lie on any chosen hyperplane that intersects the LP cone and excludes 0x ,
hence that passes through points that correspond to positive values for each
of the nonbasic variables.

A star path, ( )x,x;xL 0 ′′′  is defined as an ordered set of vectors that satisfy

constraints (2) associated with a line between two arbitrary vectors, x′  and

x ′′  obtained from a sequence of directional roundings using 0x  as a base
point. For every real value of λ , the point ( )λxxx ′−′′+′  has a vector in

( )xxxL ′′′,;0  which we write as ( )( )λ;,;0 xxxL ′′′l  or just as ( )λl , which is

understood to be shorthand for the same thing. Define xx ′−′′=∆  and the

index sets −+ III ,,0  to be, respectively those j ∈ I such that j∆  is equal to,

greater than, and less than zero.  For −+ ∩∈ IIj  we define

( ) jjj xxj ∆′−= /)( 0λ .
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1. Let 0=λ , and generate a solution vector, ( )λl=x̂  by the method

described in Lemma C. If ( )( )t0λλ ≥ , it is the only vector to be

generated and the procedure stops. Otherwise, identify ( )qp 0= ,

where ( )( )( )λλ >= k:k 0minq .

2. Generate the next x̂  vector by setting pp xx ˆ1ˆ −= , without changing

any other elements of the vector.

3. Set q = q + 1. If q > t, stop.  Otherwise, set )(0 qp =  and go to
Step 2.

Figure 2. The Star Path Generation Algorithm, Which Generates a Sequence of Solution

Vectors given xandxx ′′′,,0

These definitions allow a precise characterization of ( )λl  as follows.

Lemma C. Given xandxx ′′′,,0 the elements of ( )λl  are given by

( ) ( )0; jjj xx′= δλl       for 0j I∈

( ) ( )
( )




≥
<

=
j

j
j λλ

λλ
λ

1

0
l      for +∈ Ij , and

( ) ( )
( )




<
≥

=
j

j
j λλ

λλ
λ

1

0
l      for −∈ Ij .

To take advantage of Lemma C, let ( ) ( )tθθ ,,1 K  be a permutation of the

indexes of 0\ II  so that ( )( ) ( )( ) ( )( )tθλθλθλ ≤≤≤ K21  where
0\ IIt = . In addition, let ( )0λ  be an arbitrary value less than ( )( )10λ . By

convention, we will suppose that the values ( )( ) tqq ,,1, K=θλ  are all

distinct so that ( )( ) ( )( )1+< qq θλθλ for all tq < .

This convention allows a maximum number of elements of the star-path
to be created, and also leads to characterizing these elements as adjacent
vertices of the unit hypercube established by constraints (2). We will show
that this convention is trivially easy to impose; that is, no explicit
perturbation needs to be introduced to allow the ( )( )qθλ  values to be treated
as distinct in case there are tied values.
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The star-path theorem given originally in [4] states that a star-path
generated by the rule of Lemma C when λ takes the values

( ) ( )( ) ( )( )t,,1,0 θλθλλ K contains precisely t + 1 distinct points. The points
constitute successively adjacent vertices of the unit hypercube, linked to
each other by the following relationship. For the arbitrary value of

( )( )tθλλ < , let λnext = λ(p), where p = θ (q) for q = min(k : λ(θ(k)) > λ).

Then ( )λl  and ( )nextλl  are associated by the rule ( ) ( )λλ jj ll =next  for j ≠

p, j ∈ I  and ( ) ( )λλ pp ll -1next = .

The fact that the points of the star path are successively adjacent vertices
of the unit hypercube implies that it is unnecessary to create a numerical
shift of tied values of ( )( )qθλ  by an explicit perturbation in order to allow
the specified points of the star-path to be generated. The star path generation
algorithm is shown in Figure 2.

Our full procedure for generating a set of diverse, feasible solutions for
MIP problem (P) is summarized in Figure 3, which we refer to as the scatter-
path method.

1. Solve the relaxation of (P) to obtain x** and apply simple rounding to
obtain a solution of  r**  that satisfies constraints (2).

2. Provide r** to the sequential diversification algorithm shown in Figure 1.
Use each vector created by the diversification algorithm as a vector r for
problem (P´) to create a primary center and subcenters.

3. Generate star paths as described in Figure 2 using x0 = x**  and
combinations of centers, subcenters and the average of the centers as x´
and x´´. Check the solutions along the star path for feasibility with
respect to (P) perhaps by solving the LP that results from fixing the
integers as indicated by the vectors x̂  generated by the star path
algorithm. Retain feasible solutions.

4. Sort the set of retained solutions to remove duplicates.

Figure 3. Summary of the Scatter-Path Method to Generate a Diverse Set of Feasible Vectors
for (P)
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3. MEASURING DIVERSITY OF MIP SOLUTIONS

Although a diverse set of good solutions is clearly desirable, it is not
clear in advance how to measure the property of diversity.  In spite of the
fact that the objective function is not exact, it presumably gives a reasonable
way to assess the relative “goodness” of a set of solutions. No such simple
mapping is known from solution vectors to a one-dimensional measure of
diversity.

3.1 Diversity Metrics

We need diversity measures both for the design of practical software and
for research purposes. For practical software, we want to know if the user
should be “bothered” with a particular solution vector. That is, we want to
know if a vector adds enough diversity to warrant adding it to the set of
solutions that are displayed. For research purposes, we might want to
compare the set of vectors generated by one method with a set of vectors
generated by another. These issues are intertwined with solution quality and
are ultimately a matter of taste, but we can shed some light by briefly
considering measures of diversity in isolation.

Vector L.A. S.F. Hamburg Contingency
A(1) 1 0 0 94.8
A(2) 0 1 0 32.9
A(3) 1 0 1 4.3
A(4) 0 0 1 2.9
A(5) 1 0 1 12.9
Mean 0.6 0.2 0.6 29.56
Std. Dev. 0.5 0.4 0.5 38.39

Figure 4: A Small Example of a Set of Solution Vectors

Some of the issues can be seen easily using a contrived example.
Suppose we have a problem whose first three variables take zero-one values
that indicate whether there is a production facility in Los Angeles, San
Francisco, and Hamburg respectively. A fourth and final value indicates the
amount of money to place in an exchange rate contingency fund. For
example, the solution vector (0,1,1,6.3) indicates that there will be factories
in San Francisco and Hamburg, and there will be 6.3 million dollars in the
contingency fund. Suppose we have a set of vectors and the size of the
contingency fund is negatively correlated with the existence of a factory in
Hamburg, as shown in Figure 4. The addition of a vector B=(0,0,1,31.1)
would clearly be more diversifying than C=(0,0,1,3.3). The only column that
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varies between B and C is the contingency fund. Both values are within a
standard deviation of the mean for set A so neither would be considered an
outlier. However, if one conditions the statistical analysis on the value of the
Hamburg column, a straightforward t-test would suggest to a reasonable
person that vector B does not seem to come from the same population as A,
i.e., its addition would be diversifying. What we desire is an automatic way
of discovering such a relationship in large solution vectors without knowing
in advance what columns to consider. Furthermore, in addition to an
indication of whether vectors are diversifying, it would be useful to have
metrics that allow comparison of vectors and sets of vectors.

Before proceeding with our proposal, we show why some fairly obvious
ideas do not work well in general. The first thing to notice is that column-
wise methods will generally not produce satisfactory results because, for one
thing, they fail to consider interactions. For example, the addition of vector
C to set A increases both the variance and coefficient of variation for the last
column more than B. Of course, one can contrive examples where univariate
methods are effective, but for MIP solutions there are typically significant
interactions between the columns; when there are no interactions, the
problem can be separated into smaller problems.

This leads to a desire for a metric that considers entire vectors. We
quickly reject Hamming distances because they ignore the real-valued
variables. For example, the Hamming distance between vectors B and C is
zero. Euclidean distances are not scale invariant (the currency used to
denominate the contingency fund controls the pairwise distances). Their
more important shortcoming, shared by Hamming distances, is that they fail
to take correlations into account. For the example shown in Figure 4 the
Euclidean distance from the mean of A to B is much less than the distance to
C. This remains true even if the vectors are scaled so that the mean of all
vector elements in A are 1 and the scaling is applied to B and C. The
rejection of Euclidean distances leads to rejection of algorithms such as K-
means to cluster solutions.

There are a number of advantages to the quadratic metric known in this
context as Mahalanobis distances. A p-vector x can be said to have a squared
Mahalanobis distance from a p-vector µ under a p × p positive, definite
symmetric matrix S that is given by

( ) ( ) ( )µµµ −−≡ − xSxxd 1T2 S;,

This metric is scale invariant and can take correlations into account if the
matrix S is a covariance matrix. An estimate of the covariance matrix for the
population from which a sample, A containing h vectors is
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( )( ) ( )( )∑
=

−−
−

h

j

jj AAAA
h 1

T

1
1

,

where A  is the usual mean of the set of vectors, which is indexed here by j.
Note that the Euclidean metric is a special case that uses the identity matrix
as S. The motivation for the Mahalanobis distance comes from multivariate
probability theory. If a multivariate normal distribution is defined by mean µ
and covariance S, then for points v governed by the distribution, the

Mahalanobis distances, ( )Svd ;,2 µ  have a x2 distribution (see e.g., [1, pages
72-75]).

Furthermore, this type of distance connects naturally with a scalar
measure of the diversity of a set of vectors, which is the determinant of the
covariance matrix of the set. Under the assumption of multivariate
normality, the covariance matrix defines ellipsoids of constant Mahalanobis
distances that constitute probability contours. Large covariance determinants
correspond to large volumes in the ellipsoids. The assumption of
multivariate normality is not needed to use the covariance determinant to put
an order on sets of vectors and furthermore it is not needed to see that adding
points with large Mahalanobis distances will increase the covariance
determinant.

To summarize, we can use the covariance determinant to put an ordering
on the diversity of sets of solution vectors and the Mahalanobis distance to
put an order on the diversifying effect of vectors on a set. In the simple
example given, this works nicely. The Mahalanobis distance from the mean
of the set A under its covariance matrix to vector B is much greater than the
distance to C as we would expect. Consequently, we would correctly
conclude that vector B would be more diversifying than vector C if we used
Mahalanobis distances.

However, there is a major difficulty. In order to calculate a covariance
matrix for a set of vectors of length p = n one must have a set of vectors that
does not lie entirely in a subspace. This means that at a minimum the set
must contain n + 1 vectors and for MIP solutions, more vectors will often be
required to span the full n dimensions. For even modest sized MIPs this is
not good. In order to have a working definition of diversity, one must have
thousands of solution vectors. A remedy for this difficulty that also increases
the plausibility of multivariate normality has been referred to as chunking.

3.2 Chunking Solution Vectors

The specific chunking method that we use is an application of more
general constructs described by Woodruff [13].  We refer readers to that
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paper for background information on chunking.  We will refer to a non-
empty subset of the solution vector indexes 1,...,n as a chunk. An instance of
a partial vector corresponding to a chunk is referred to as a chunk
instantiating value. That is, a chunk instantiating value for a given chunk

{ }pC ,,1K⊆  depends on the specific vector x whose values are under

consideration. Let Ρ be a partition of {1,...,n} with p cells. The mappings
from chunk instantiating values to reals are referred to as chunk valuation
functions, v. We will deal with a fairly specific valuation function. Each
element of the valuation vector is defined as

∑
∈

=
Ci

iC x
C

xv
1

)(

where |C| is the number of indexes in the chunk for each chunk P∈C . If we
index the chunks P∈C , using i we can write iv  in the same way for

pi ,,1K= . The unweighted summation makes intuitive sense only in the
presence of our requirement that the problem data be scaled so that the
bounds vectors l and u specified in problem (P) are approximately zero and
one respectively.

We can compute the mean and covariance matrix for the valuation vectors
that correspond to a set of vectors and use those to characterize the location
(mean), shape (covariance), and diversity (covariance determinant) of the
set. Valuation vectors for candidate vectors can be computed and their
Mahalanobis distance from the set can be used to characterize the effect on
the diversity of the set if they were to be added to it. If the same chunking is
applied to other sets of vectors, their diversity can be compared. The
question is, how should we choose the chunk partition?

3.3 Finding Good Chunks

The idea is to find a way to group the solution vector indexes so that the
resulting valuation vectors are as useful as possible for measuring the
diversity of a set of solution vectors and for anticipating the diversifying
effects of adding a vector to the set. We cast these as optimization problems
of finding a chunking for a given vector set subject to constraints on the
number of cells in the partition and the number of elements in each cell. We
have two related objectives and therefore two related objective functions.

For both problems, we want to specify the number of cells, p, in the
partition and a minimum number of indexes in each cell, H. Based on the
desire for normality, H should usually be significantly greater than 20. We
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want to use a collection of solution vectors of length n, that are given as data
in a set A to find a partition P of the indexes n,,1K , with cells  Pi, i = 1,..., p
so as to solve a problem

(MW) minimize or maximize W

subject to

( )( ) ( )( )T
1∑ =

−−=
a

j

jj vvvvW

( )( ) avv
a

j

j /
1∑ =

=

( ) ( )j
kPk

i

j
i A

P
v

i∑ ∈= 1
    ,,,1 pi K=     j = 1,..., a

HPi ≥                       pi ,,1K=

where W  is the determinant of W, iP  is the number of indexes in cell i of

the partition P and a is the number of vectors in A. Note that ( )jv  and v  are
column vectors of length P and that W is ( )1−a  times an unbiased
covariance estimate of the valuation vectors associated with A.

One objective is to be able to maximize the ability to distinguish vectors
from each other. For example, it would be desirable from some DSS
applications to distinguish new solutions that are encountered from those
that have already been displayed. This objective is beyond the scope of this
paper, but one possibility would be to minimize the covariance determinant
as shown in problem (MW).

For research purposes one would also like to be able to compare methods
of measuring and creating diversity.

For the purpose of comparing two methods of generating vectors, the
method that produces the set with the largest covariance determinant has
produced the set that occupies the greatest volume and hence is the most
diverse. If we are testing the hypothesis that method B, which produced
vector set B, is better than method C, which produced vector set C, we would
want to be conservative and select a chunking that tends to maximize the
volume occupied by the valuation vectors created from set C and then apply
that chunking to the vectors in B. If the determinant of the covariance matrix
of valuation vectors for B is greater than that of the valuation vectors for C
even under a chunking that favors method C, then this would be strong
evidence that method B is better for the purpose of producing a diverse set of
vectors.

Unfortunately, there is no free lunch. Apart from the obvious risks that
accompany dimension reduction and the associated loss of information, there
are some other difficulties. Under fairly reasonable assumptions, and
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typically as a practical matter, the objective function is decreasing in the
number of chunks; so it is not possible to automate the selection of p. The
only mathematical guidance is that one should reduce p or increase H if a
zero determinant is found (i.e., if H or more co-planar evaluation vectors are
present).

Furthermore, problem (MW) is a highly nonlinear, combinatorial
optimization problem. Instances of realistic size are not easily solved to
optimality. This difficulty is mitigated by the fact that the optimization is
primarily of importance for theoretical reasons and approximate solutions
suffice in practice.

4. COMPUTATIONAL EXPERIMENTS

Our primary goal in this section is to demonstrate that the scatter-path
method is useful for generating good, diverse vectors for MIP problems (P)
and that it offers particular advantages when used in conjunction with branch
and bound. A secondary goal is to demonstrate the value of chunking as a
means of measuring diversity. For both goals we need heuristic solutions to
problems (MW). The methods we used for obtaining approximate solutions
for these problems are described in the Appendix.

In keeping with the recommended practice for computational
experiments [2, 7, 10, 11] we use a measure of computational effort that is
independent of the computer or programming language employed, which is
the number of relaxations that must be solved. This is conservative in that
the branch and bound relaxations typically have more free variables than the
scatter-path relaxations (since the star path process fixes the value of all
integer variables). For a fixed objective function threshold and total number
of relaxations, we compare the diversity of solutions generated by branch
and bound with those generated by adding the scatter-path method to the
branch and bound procedure. To be conservative, the chunking scheme was
selected so as to maximize the objective function for (MW) using the feasible
vectors generated by branch and bound. This chunking scheme was then
applied to the vectors generated by the combined methods. Our experiments
were conducted using XPress-MP [3] version 10. The value of α for problem
(P´) was fixed at 0.1.

The results are strong. Table 1 shows the ratio of the determinant of the W
matrix for the valuation vectors corresponding to the two sets of solution
vectors. The first set is formed by the first 500 branch and bound relaxations
plus the first 500 relaxations solved by the scatter-path method. The second
is 1000 branch and bound relaxations alone. In both cases, the chunking
scheme is created with the goal of maximizing the determinant for branch
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and bound alone. Only those solutions with objective functions within 20 per
cent of the best solution found are considered.

There are a number of issues to discuss. Note that there is a tendency for
the margin by which the combined method dominates to be decreasing in p.
This is an artifact of our conservative comparison methods. The optimization
algorithms can simply do a better job fitting a chunking to the branch and
bound method with more degrees of freedom. If the chunking were
optimized for the combined methods, the trend would be reversed. For
MISC04, the branch and bound finds very few solutions, so values of p
greater than 2 are not sensible so these entries in the table contain a dash.

A more important issue is raised by the instances marked with an asterisk,
which are those for which branch and bound terminates before it solves 1000
relaxations. The relationship between diversification methods and branch
and bound in practice would not be one of competing with each other but of
complementing each other. A practitioner would still find it valuable to use
branch and bound in order to have information about the quality of solutions
obtained, and in order to find solutions for classes of problems that are
especially susceptible to solution by this approach. We have used a branch
and bound algorithm as the “competition” in order to have a well-known
frame of reference. There are some instances in MIPLIB for which the
logical partitioning of branch and bound is highly effective, and indeed
indispensable for finding optimal solutions. Thus our preceding results −
which disclose the advantages of joining the scatter-path method with branch
and bound, by comparison with branch and bound itself − should not be
interpreted to derive from the scatter-path method in isolation, because the
method is incomplete as a search engine to find best solutions. Moreover, the
logical partitioning of branch and bound also appears essential in some cases
to isolate the regions in which good diverse solutions can be generated.

p
Instance 2 3 4
DCMULT 815.9 117.1 37.4
EGOUT* 5.6 2.8 2.9
MISC04* 9942 - -
MISC05 1.6 1.1 1.0
MISC06 89.5 21.3 11.4
RGN 14.5 5.2 3.5

Table 1. The pth Root of the Ration of Determinant of the W Matrix of the Valuation Vectors
of a Combination of Scatter-Path and Branch and Bound Compared with Branch and Bound
Alone for Some MIPLIB Instances

To illustrate, applied to the DANOIN problem from MIPLIB, the scatter-
path method by itself cannot find solutions that are within 20% of the best
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branch and bound solution in a reasonable amount of time. There are other
instances such as PP08AC, VPM1 and VPM2 for which the scatter-path method
on its own requires more than 1000 relaxations to find good diversifying
solutions. For example, after 20,000 relaxations, the entries for PP08AC that
would go in Table 1 if the scatter-path method were applied in exclusion
from branch and bound would be 7.8, 5.0 and 3.5. Of course, if a practitioner
has the luxury of examining larger numbers of relaxations as a basis for
finding good diversifying solutions, then over time the scatter-path approach
may find them. But the chief message from these outcomes is that value
derives from the interaction between diversification and partitioning, and
that the advantages go in both directions. That is, the diversification of the
scatter-path method can significantly multiply the number of high quality
(and appreciably distinct) solutions found by branch and bound, while the
partitioning of branch and bound can significantly enhance the effectiveness
of the scatter-path process.

5. CONCLUSIONS AND DIRECTIONS FOR
FURTHER RESEARCH

In this paper we have presented methods of systematically uncovering a
diverse set of solutions for 0-1 mixed integer programming problems. These
methods can be applied to instances without any special foreknowledge
concerning the characteristics of the instances, but the absence of such
knowledge gives rise to a need for general methods to assess diversity. We
have also presented methods based on chunking for this purpose.

More research is needed concerning the mapping between the order put
on solution sets by covariance determinants and the diversity perceived by a
user. For example, we have compared methods by looking at the ratio of the
determinants of the W matrix which compares the volume occupied by the
vectors, but the covariance matrices (which are the average W matrix) might
be interesting in some applications because the measure of dispersion is then
weighted by the number of vectors. Objectives other than minimizing
problem (MW) also warrant further research.

Optimization methods are enjoying a resurgence in fields such as data
mining, supply chain management and finance. As general purpose
optimization methods are embedded in decision support systems we
anticipate an increased need not only for optimal solutions, but also for a
diverse set of good solutions. This paper has presented methods that serve
this purpose as well as methods that facilitate on-going research in this area.
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APPENDIX — METHODS USED TO GENERATE INDEX
  PARTITIONS

We proceed in two stages. First we use a fast heuristic to get an initial
solution, then a simple, general purpose tabu search is used to improve it.

To quickly generate an index partition that tends to maximize (minimize)
the covariance determinant for the set of valuation vectors that correspond to
a particular set of full solution vectors, A, we make use of the idea that this
will tend to correspond to chunkings where the covariation of full vector
values within a cell of the partition is minimized (maximized) thereby
tending to maximize (minimize) the covariance between the valuation
vectors. This does not characterize optimal solutions in any rigorous way,
but is a reasonable basis for design of a heuristic.

We provide one fast heuristic for the maximization problem and a similar
one for the minimization problem. Both heuristics begin by calculating the
variances of all vector elements in the set for each index. For a particular
index i, we will abuse the notation 2

iiσ  to represent the variance by defining

( )( ) ( )( )
A
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ji
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ij

j2 −−∈
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where |A| is the number of vectors in A and  
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≡
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indexes corresponding to zero variances are randomly assigned to the
partitions and removed from further consideration. This leaves a set of
indexes to be assigned that we will refer to as Ι.

The basic data structure is a list of pairs of indexes (i, j), which initially
covers all of Ι × Ι along with the sample covariance, ijσ  for the values in A
of the vector elements for the index pair. We define the next member in a
chains for a particular list and a particular list element characterized by
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index pair (i, i´) as the list element characterized by (i´, i´´) that has highest
covariance from among all i´´∈ Ι with ties broken arbitrarily.

For the maximization problem, repeat the following until the list is empty:

Begin with the list element that corresponds to the highest covariance
value, call the index pair (i, j). Repeat the following step with iterations
indexed by k until the list is empty or there is no next chain member for
the list element characterized by (i, j):

Assign i to chunk (k mod p) + 1, remove i from Ι and for all i´∈ Ι, remove
elements for (i, i´) from the list. If possible, proceed to the next member
of the chain for (i, j), whose index pair is then called (i, j).

This is similar to sorting a deck of playing cards and then dealing out p
hands. The effect is that each hand has as much variety as possible. These
groups will be roughly equal in size. We use the results of these heuristics as
starting points for a simple, first improving tabu search. Because these
chunkings will be used to analyze vectors that do not come from the
population used to generate them, we want to avoid overfitting so we use

pnH 2/= , which keeps all of the chunks fairly large. The search uses a
neighborhood formed by moving an index from one chunk to another and
terminates when 10 passes through the indexes have not resulted in a new
best solution. The tabu tenure is also set at 10. For more information about
tabu search, see [6].
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