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Abstract:–The evolutionary approach called scatter search, and its generalized form called path relinking,
originated from strategies for creating composite decision rules and surrogate constraints.  Recent studies
demonstrate the practical advantages of these approaches for solving a diverse array of optimization problems
from both classical and real world settings.

Scatter search and path relinking contrast with other evolutionary procedures, such as genetic
algorithms, by providing unifying principles for joining solutions based on generalized path constructions (in
both Euclidean and neighborhood spaces) and by utilizing strategic designs where other approaches resort to
randomization.  Additional advantages are provided by intensification and diversification mechanisms that exploit
adaptive memory, drawing on foundations that link scatter search and path relinking to tabu search.

The goal of this paper is to clarify the connection between these developments in evolutionary methods,
and to highlight key ideas and research issues that offer promise of yielding future advances.

Published in New Ideas in Optimization, D. Corne, M. Dorigo and F. Glover, eds, McGraw Hill, 1999, Chapter 19, 297-
316. This research was supported in part by the Air Force Office of Scientific Research Grant #F49620-97-1-0271.
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1.  Introduction

Scatter search and path relinking have recently been investigated in a number of studies, disclosing the
promise of these methods for solving difficult problems in discrete and nonlinear optimization.  Recent
applications of these methods (and of selected component strategies within these methods) are shown in Table 1.

Illustrative Applications of Scatter Search and Path Relinking Strategies

Vehicle Routing Rochat and Taillard (1995); Taillard (1996),
Rego (1999)

Quadratic Assignment Cung et al. (1996, 1977)
Financial Product Design Consiglio and Zenios (1996)
Neural Network Training Kelly, Rangaswamy and Xu (1996)
Job Shop Scheduling Yamada and Nakano (1996), Jain and

Meeran (1998a)
Flow Shop Scheduling Yamada and Reeves (1998, 1999), Jain and

Meeran (1998b)
Crew Scheduling Laurenço, Paixao and Portugal (1998)
Graph Drawing Laguna and Marti (1997)
Linear Ordering Laguna, Marti and Campos (1997, 1999)
Unconstrained Optimization Fleurent et al. (1996)
Bit Representation Rana and Whitley (1997)
Multi-objective Assignment Laguna, Laurenço and Marti (1999)
Optimizing Simulation Glover, Kelly and Laguna (1996)
Complex Control Systems Laguna (1997)
Mixed Integer Programming Glover, Løkketangen and Woodruff (1999)

Table 1

Improved benchmarks for solving a variety of classical problems have resulted from these applications,
along with new advances for solving a significant range of commercial problems, particularly those attended by
uncertainty and complex nonlinearities.

Scatter search and path relinking derive their foundations from earlier strategies for combining decision
rules and constraints, with the goal of enabling a solution procedure based on the combined elements to yield
better solutions than one based only on the original elements.  An examination of these origins sheds light on the
character of these methods.

1.1  Combining Decision Rules

Historically, the antecedent strategies for combining decision rules were introduced in the context of
scheduling methods to obtain improved local decision rules for job shop scheduling problems (Glover, 1963).
New rules were generated by creating numerically weighted combinations of existing rules, suitably restructured
so that their evaluations embodied a common metric.

The approach was motivated by the supposition that information about the relative desirability of
alternative choices is captured in different forms by different rules, and that this information can be exploited more
effectively when integrated by means of a combination mechanism than when treated by the standard strategy of
selecting different rules one at a time, in isolation from each other.  In addition, the method departed from the
customary approach of stopping upon reaching a local optimum, and instead continued to vary the parameters
that determined the combined rules, as a basis for producing additional trial solutions.  (This latter strategy also
became a fundamental component of tabu search.  See, e.g.,  Glover and Laguna, 1997.)
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The decision rules created from such combination strategies produced better empirical outcomes than
standard applications of local decision rules, and also proved superior to a “probabilistic learning approach” that
selected different rules probabilistically at different junctures, but without the integration effect provided by
generating combined rules (Crowston, et al., 1963).

1.2  Combining Constraints

The associated procedures for combining constraints likewise employed a mechanism of generating
weighted combinations, in this case applied in the setting of integer and nonlinear programming, by introducing
nonnegative weights to create new constraint inequalities, called surrogate constraints (Glover, 1965).  The
approach isolated subsets of constraints that were gauged to be most critical, relative to trial solutions based on
the surrogate constraints, and produced new weights that reflected the degree to which the component
constraints were satisfied or violated.

A principal function of surrogate constraints, in common with the approaches for combining decision
rules, was to provide ways to evaluate choices that could be used to generate and modify trial solutions.  From
this foundation, a variety of heuristic processes evolved that made use of surrogate constraints and their
evaluations.  Accordingly, these processes led to the complementary strategy of combining solutions, as a primal
counterpart to the dual strategy of combining constraints, which became manifest in scatter search and its path
relinking generalization.  (The primal/dual distinction stems from the fact that surrogate constraint methods give
rise to a mathematical duality theory associated with their role as relaxation methods for optimization.  E.g., see
Greenberg and Pierskalla, 1970, 1973; Glover, 1965, 1975; Karwan and Rardin, 1976, 1979; Freville and Plateau,
1986, 1993.)

2.  Elements of Scatter Search and Path Relinking

2.1  Scatter Search

The scatter search process, building on the principles that underlie the surrogate constraint design, is
organized to capture information not contained separately in the original vectors, and to take advantage of
auxiliary heuristic methods both for selecting the elements to be combined and for generating new vectors.1

The original form of scatter search (Glover, 1977) may be sketched as follows.

Scatter Search Procedure

1. Generate a starting set of solution vectors by heuristic processes designed for the problem considered, and
designate a subset of the best vectors to be reference solutions.  (Subsequent iterations of this step,
transferring from Step 3 below, incorporate advanced starting solutions and best solutions from
previous history as candidates for the reference solutions.)

2. Create new points consisting of linear combinations of subsets of the current reference solutions.  The linear
combinations are chosen to produce points both inside and outside the convex regions spanned by the
reference solutions, modified by generalized rounding processes to yield integer values for integer-
constrained vector components.

3. Extract a collection of the best solutions generated in Step 2 to be used as starting points for a new
application of the heuristic processes of Step 1.  Repeat these steps until reaching a specified iteration
limit.

Three particular features of scatter search deserve mention.  First, the linear combinations are structured
according to the goal of generating weighted centers of selected subregions, allowing for nonconvex
combinations that project these centers into regions external to the original reference solutions.  (The dispersion

                                                                
1 One group of researchers has argued that the coupling of heuristic improvement with solution combination strategies should be
given an entirely new name, and accordingly has inaugurated the term memetic algorithms to designate such a coupling (see, e.g.,
Moscato (1989), Radcliffe and Surrey (1994), Burke, Newall and Weare (1996)).
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patterns created by such centers and their external projections is particularly useful for mixed integer
optimization.)  Second, the strategies for selecting particular subsets of solutions to combine in Step 2 are
designed to make use of clustering, which allows different types of strategic variation by generating new
solutions “within clusters” and “across clusters”.  Third, the method is organized to use supporting heuristics
that are able to start from infeasible solutions, and hence removes the restriction that solutions selected as
starting points for re-applying the heuristic processes must be feasible.

A simple two-dimensional illustration of a type of distribution of points that might be generated by scatter
search is shown in Figure 1, by a criterion of selecting weighted centers of subregions.  Here, for example, the
parent solutions might consist of the three heavily shaded points or the three unshaded points, depending on
whether an emphasis is given to generating points inside or outside the region spanned by the reference
solutions.  Generally speaking, the perspectives of these two types of emphasis are combined, although only a
subset of the points produced by patterns such as depicted in Figure 1 are generated, and the offspring are
skewed or displaced by the influence of the heuristics applied.2  Larger number of reference points can be
selected, and can be used to influence the character of the displacement.

Fig. 1  Illustration of a Scatter Search Pattern

In sum, scatter search is founded on the following premises.

(P1) Useful information about the form (or location) of optimal solutions is typically contained in a
suitably diverse collection of elite solutions.

(P2) When solutions are combined as a strategy for exploiting such information, increased diversity
and quality become possible by including combinations that extrapolate beyond the regions
spanned by the reference solutions, and further by incorporating heuristic processes to map
combined solutions into new points.

(P3) The opportunity to exploit information contained in the union of elite solutions is enhanced by
taking account of multiple reference solutions simultaneously.

The fact that the heuristic processes of scatter search are not restricted to a single uniform design, but represent a
varied collection of procedures, affords additional strategic possibilities.

                                                                
2 In some contexts, high quality solutions are found more often near the boundaries of a feasible region than deep in the interior of
the region. For problems that technically have no interior due to the presence of equality constraints, the indicated phenomenon
nevertheless can occur relative to a subset of constraints that are inequalities, or relative to a space created by identifying and
removing variables that may take the role of slack variables for certain equalities, thus transforming them into inequalities. Then
linear combinations may reasonably be biased to generate points that lie within a chosen proximity to the feasible boundary.
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2.2.  Scatter Search and Parametric Search

The approach described in Section 1 for creating combined decision rules, which restructures
component rules for compatibility and then joins them by weighted combinations, can be viewed not only as a
precursor to scatter search, but also as a model for wider applications of the method.  In particular, scatter search
strategies can be applied to a variety of problems by the use of approaches that parameterize rules or problem
data, and which then generate solutions based on strategic manipulation of the parameters.

A strategy of this type has proved effective in a workforce planning application by Glover and McMillan
(1986), where useful gains in solution quality are obtained by replacing the original objective function by one
containing a smoothing criterion, whose role is gradually diminished until the original objective dominates.  The
notion of parametrically modifying an objective function to create a smoothing effect has more recently been
examined in the traveling salesman setting by Gu and Huang (1994), Schneider et al. (1997) and Coy et al. (1998).
These types of approaches can be extended by the use of strategic oscillation, as described later, which
periodically phases in and phases out the modified objective.

The application of scatter search with smoothed objectives, and likewise with smoothed constraints, can
be formalized by means of the class of approaches called ghost image (GI) processes (Glover, 1994c). In the form
applicable to our present discussion, the GI approach modifies constraint coefficients, objective function
coefficients and/or bounds, to generate a model that initially has an idealized structure which is easy to solve. For
example, in covering or matching problems, constraint coefficients can be modified so that they all initially equal
1.  In graph partitioning problems, weighted clique problems and traveling salesman problems, the weights (or
costs) of edges can be modified so that all initially take the same value, accompanied by adding edges where
necessary (penalized in the “true” formulation) so that the graph has an easily identified optimal or near optimal
solution.  As illustrated in Glover (1994c), these types of starting points can be progressively transformed in a
variety of ways to gradually recover the true problem structure, while generating trial solutions for the original
problem based on associated solutions to the transformed problems.

Figure 2 illustrates how selected types of problem data can be progressively transformed from an initial
idealized state where subsets of coefficients are made uniform (hence “smoothed” on chosen dimensions) and
gradually made to recover their original unmodified form.

Fig. 2   All Costs (or Capacities, Resource Levels, etc.)  Above – or Alternately Below –
       the Moving Threshold are Treated as if Equal the Threshold Value

Upper Threshold

Moving Threshold

Lower Threshold

Cost,

Capacity,

Etc.
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The moving threshold in Figure 2 consists of a single value such that all associated data values (costs,
resource availabilities, etc.) that lie on a specified side of the threshold are treated "as if" they are the same as the
threshold.  For example, the moving threshold can begin at the maximum of the data values, with the stipulation
that all values smaller than the threshold are treated as equal to the threshold, while all values larger than the
threshold are not affected.  Therefore, to begin, all values equal the maximum data value. Subsequently, on
successive steps the threshold is dropped and an increasing number of data values receive their true values, until
finally all do so.  The same approach can be applied in reverse, by starting the threshold at the minimum data
value and treating all values larger than the threshold as equal to the threshold.

Such a procedure may be applied in conjunction with rules that initially either “spread out” or “contract”
the data values, again adopting the ghost image approach to gradually recover the true representation.  For
example, a special set covering problem described in Glover (1977) proves to be more readily solvable by
spreading out the original cost data, in this case by squaring its values.  Raising data (and weighted sums of data)
to powers and fractional powers has also proved effective in creating data normalizations for surrogate constraint
methods in optimization (Løkketangen and Glover, 1997).  Similarly, Coy, Golden and Wasil (1998) have shown the
ideas of spreading out and contracting data to be useful in smoothing methods for the traveling salesman
problem.

The thresholding approach can be applied more generally by reference to paired upper and lower
thresholds, as also depicted in Figure 2.  In this case, data values above the upper threshold are treated as equal
to the upper threshold and those below the lower threshold are treated as equal to the lower threshold, while all
other values are unaffected.  The paired threshold approach allows the two thresholds to begin equal (in the
“mid-range,” or in the lower or upper quartile of values, for example) and then to be gradually separated.  This
approach includes the single moving threshold approach as a special case.  To refine the process, modifications
of the data based on recency and frequency memory provide a set of strategies that are able to generate changes
with additional selectivity.

Within this framework, scatter search can then be applied to the different sets of changed data exactly as
it would be applied to the solutions created on the basis of this data.  Thus, by such a design, the data sets that
have led to the best solutions become the reference points, and selected collections of these points are joined by
linear combinations to generate new data sets, which in turn are processed by the associated heuristics to
generate new trial solutions.

3.  Path Relinking

Features that have been added to scatter search, by extension of its basic philosophy, are captured in
the path relinking framework.  From a spatial orientation, the process of generating linear combinations of a set of
reference solutions may be characterized as generating paths between and beyond these solutions, where
solutions on such paths also serve as sources for generating additional paths.  This leads to a broader
conception of the meaning of creating combinations of solutions.  By natural extension, such combinations may be
conceived to arise by generating paths between and beyond selected solutions in neighborhood space, rather
than in Euclidean space (Glover 1989, 1994a; Glover and Laguna, 1993).

This conception is reinforced by the fact that a path between solutions in a neighborhood space will
generally yield new solutions that share a significant subset of attributes contained in the parent solutions, in
varying "mixes" according to the path selected and the location on the path that determines the solution currently
considered.  The character of such paths is easily specified by reference to solution attributes that are added,
dropped or otherwise modified by the moves executed in neighborhood space.  Examples of such attributes
include edges and nodes of a graph, sequence positions in a schedule, vectors contained in linear programming
basic solutions, and values of variables and functions of variables.

To generate the desired paths, it is only necessary to select moves that perform the following role:  upon
starting from an  initiating solution, the moves must progressively introduce attributes contributed by a guiding
solution (or reduce the distance between attributes of the initiating and guiding solutions).  The roles of the
initiating and guiding solutions are interchangeable; each solution can also be induced to move simultaneously
toward the other as a way of generating combinations.

The incorporation of attributes from elite parents in partially or fully constructed solutions was
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foreshadowed by another aspect of scatter search, embodied in an accompanying proposal to assign preferred
values to subsets of consistent and strongly determined variables.  The theme is to isolate assignments that
frequently or influentially occur in high quality solutions, and then to introduce compatible subsets of these
assignments into other solutions that are generated or amended by heuristic procedures.  (Such a process
implicitly relies on a form of frequency based memory to identify and exploit variables that qualify as consistent.)

Multiparent path generation possibilities emerge in path relinking by considering the combined
attributes provided by a set of guiding solutions, where these attributes are weighted to determine which moves
are given higher priority.  The generation of such paths in neighborhood space characteristically "relinks"
previous points in ways not achieved in the previous search history, hence giving the approach its name.

3.1  Initial Steps

First consider the creation of paths that join two selected solutions x� and x�, restricting attention to
the part of the path that lies ‘between’ the solutions, producing a solution sequence x� = x(l),x(2),. . . ,x(r) = x�.
To reduce the number of options to be considered, the solution x(i + 1) may be created from x(i) at each step by
choosing a move that leaves a reduced number of moves remaining to reach x (or more aggressively, a “fewest”
number of moves).  This policy, even if applied without exception, can permit a significant number of alternative
choices for generating the next solution at each step. Consequently, additional criteria are relevant to creating the
path, as indicated shortly.

It is possible, as in applying scatter search, that x� and x� were previously joined by a search trajectory
produced by a heuristic method (or by a metaheuristic such as tabu search). In this event, the new trajectory
created by path relinking is likely to be somewhat different than the one initially established, representing a ‘more
direct route’ between the solutions. An illustration of this is given in Fig. 3.

Fig. 3   Path relinking. Original path shown by heavy line; relinked path (one possibility) shown by dotted line

It may also be that x� and x� were not previously joined by a search path at all, but were generated on
different search paths, which may have been produced either by a heuristic or by a previous relinking process.
Such a situation is depicted in Figure 4.

x� x"
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Fig. 4  Path Relinking: Previously generated paths shown by heavy lines; relinked path shown by dotted line.
(Multiple additional points in the space are not shown.)

In this case, the path between x� and x� performs a relinking function by changing the connections that
generated x� and x� originally. The relinking path of this diagram is shown as extending beyond the points x�
and x�.  We discuss this type of construction subsequently under the heading of extrapolated relinking.

To choose among the different paths that may be possible in going from x� to x� , let c(x) denote an
objective function which is to be minimized.  Selecting unattractive moves relative to c(x), from the moves that are
candidates to generate the path at each step, will tend to produce a final series of strongly improving moves to
complete the path. Correspondingly, selecting attractive moves at each step will tend to produce lower quality
moves at the end. (The last move, however, will be improving, or leave c(x) unchanged, if x� is selected to be a
local optimum.) Thus, choosing best, worst or average moves, provides options that produce contrasting effects
in generating the indicated sequence. An aspiration criterion may be used as in tabu search to override choices in
the last two cases if a sufficiently attractive solution is available. (In general, it appears reasonable to select best
moves at each step, and then to allow the option of reinitiating the process in the opposite direction by
interchanging x� and x�.)

The choice of one or more solutions x(i) to become reference points for launching a new search phase
will preferably be made to depend not only on c(x(i)) but also on the values c(x) of those solutions x that can be
reached by a move from x(i).  The process can additionally be varied to allow solutions to be evaluated other than
those that yield x(i + 1) closer to x�. Aspiration criteria again are relevant for deciding whether such solutions
qualify as candidates for selection.

To elaborate the process, let x*(i) denote a neighbor of x(i) that yields a minimum c(x) value during an
evaluation step, excluding x*(i) = x(i + 1). If the choice rules do not automatically eliminate the possibility x*(i) =
x(h) for h < i, then a simple tabu restriction can be used to do this (e.g., see Glover and Laguna, 1997). Then the
method selects a solution x* (i) that yields a minimum value for c(x*(i)) as a new point to launch the search. If only
a limited set of neighbors of x(i) are examined to identify x*(i), then a superior least cost solution x(i), excluding x�
and x�, may be selected instead. Early termination becomes possible (though is not compulsory) upon
encountering an x* (i) that yields c(x*(i)) < min(c(x�),c(x�),c(x(p)), where x(p) is the minimum cost x(h) for all h < i.
The procedure will continue if x(i), in contrast to x*(i), yields a smaller c(x) value than x� and x�, since x(i)
effectively adopts the role of x�.

3.2  Variation and Tunnelling

A variant of the path relinking approach starts with both endpoints x� and x� simultaneously
producing two sequences x� = x�(l),. . . ,x�(r) and x� = x� (l), . . ., x�(s). The choices in this case are designed to
yield x�(r) = x�(s), for final values of r and s. To progress toward this outcome when x�(r) = x�(s), either x�(r) is
selected to create x�(r + 1), as by the criterion of minimizing reducing the number of moves remaining to reach

x′

x″
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x�(s), or x�(s) is chosen to create x�(s + 1), as by the criterion of minimizing (reducing) the number of moves
remaining to reach x�(r). From these options, the move is selected that produces the smallest c(x) value, thus also
determining which of r or s is incremented on the next step.  Useful variation is also produced by basing the
relinking process on more than one neighborhood.

The path relinking approach benefits by a tunnelling strategy that often encourages a different
neighborhood structure to be used than in the standard search phase. For example, moves for path relinking may
be periodically allowed that normally would be excluded due to creating infeasibility. Such a practice is protected
against the possibility of becoming ‘lost’ in an infeasible region, since feasibility evidently must be recovered by
the time x� is reached. The tunnelling effect therefore offers a chance to reach solutions that might otherwise be
bypassed. In the variant that starts from both x� and x�, at least one of x�(r) and x� (s) may be kept feasible.
An example of tunnelling is shown in Figure 5.

Fig. 5  Feasible region consists of disconnected components. The path “tunnels through” the infeasible region to
regain feasibility.

As in tabu search strategies for achieving intensification and diversification, it is appropriate to select
the points x� and x� by reference to clusters of solutions that are created according to criteria of similarity or
affinity.  Choosing x� and x� from the same cluster then stimulates intensification, while choosing them from two
‘widely separated’ clusters stimulates diversification.  Alternately, parents can be chosen by “anti-clustering,”
where each parent is selected to be as far as possible from those previously chosen within the same “family” of
parents.  A separation criterion such as maximizing the minimum distance to previous points can be used, for
example.

3.3  Extrapolated Relinking

The path relinking approach goes beyond consideration of points ‘between’ x� and x� in the same way
that linear combinations extend beyond points that are expressed as convex combinations of two endpoints. In
seeking a path that continues beyond x� (starting from the point x�) we invoke a tabu search concept, referring
to sets of attributes associated with the solutions generated, as a basis for choosing a move that ‘approximately’
leaves the fewest moves remaining to reach x�. Let A(x) denote the set of solution attributes associated with
(‘contained in’) x, and let A_drop denote the set of solution attributes that are dropped by moves performed to
reach the current solution x�(i), starting from x�. (Such attributes may be components of the x vectors
themselves, or may be related to these components by appropriately defined mappings.)

Define a to-attribute of a move to be an attribute of the solution produced by the move, but not an
attribute of the solution that initiates the move. Similarly, define a from-attribute to be an attribute of the initiating
solution but not of the new solution produced. Then we seek a move at each step to maximize the number of to-
attributes that belong to A(x") - A(x(i)), and subject to this to minimize the number that belong to A_drop - A(x").
Such a rule generally can be implemented very efficiently by appropriate data structures.

Once x(r) = x� is reached, the process continues by modifying the choice rule as follows. The criterion

x′

x″



10

now selects a move to maximize the number of its to-attributes not in A_drop minus the number of its to-attributes
that are in A_drop, and subject to this to minimize the number of its from-attributes that belong to A(x�). The
combination of these criteria establishes an effect analogous to that achieved by the standard algebraic formula
for extending a line segment beyond an endpoint. (The secondary minimization criterion is probably less
important in this determination.) The path then stops whenever no choice remains that permits the maximization
criterion to be positive. The maximization goals of these two criteria are of course approximate, and can be relaxed.

For neighborhoods that allow relatively unrestricted choices of moves, this approach yields a path
extending beyond x� that introduces new attributes, without reincorporating any old attributes, until no move
remains that satisfies this condition. The ability to go beyond the limiting points x� and x� creates a form of
diversification analogous to that provided by the original scatter search approach. At the same time the exterior
points are influenced by the trajectory that links x� and x�.

3.4  Multiple Parents

New points can be generated from multiple parents as follows. Instead of moving from a point x� to (or
through) a second point x�, we replace x� by a collection of solutions X�. Upon generating a point x(i), the
options for determining a next point x(i + 1) are given by the union of the solutions in X�, or more precisely, by
the union A� of the attribute sets A(x), for x ∈ X�.  A� takes the role of A(x) in the attribute-based approach
previously described, with the added stipulation that each attribute is counted (weighted) in accordance with the
number of times it appears in elements A(x) of the collection. Still more generally, we may assign a weight to A(x),
which thus translates into a sum of weights over A" applicable to each attribute, creating an effect analogous to
that of creating a weighted linear combination in Euclidean space. Parallel processing can be applied to operate on
an entire collection of points x� ∈ X� relative to a second collection x� ∈ X� by this approach. Further
considerations that build on these ideas, and that go beyond the scope of our present development, are detailed
in Glover (1994b).

This multiparent path relinking approach generates new elements by a process that emulates the
strategies of the original scatter search approach at a higher level of generalization. The reference to
neighborhood spaces makes it possible to preserve desirable solution properties (such as complex feasibility
conditions in scheduling and routing), without requiring artificial mechanisms to recover these properties in
situations where they may otherwise become lost.

Promising regions may be searched more thoroughly in path relinking by modifying the weights attached
to attributes of guiding solutions, and by altering the bias associated with solution quality and selected solution
features.  Figure 6 depicts the type of variation that can result, where the point X represents an initiating solution
and the points A, B, and C represent guiding solutions.  For appropriate choices of the reference points (and
neighborhoods for generating paths from them), principles such as those discussed in Glover and Laguna (1997)
suggest that additional elite points are likely to be found in the regions traversed by the paths, upon launching
new searches from high quality points on these paths.
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Fig. 6  Neighborhood Space Paths with Different Attribute Trade-offs.

3.5  Constructive Neigborhoods and Vocabulary Building

A natural variation of path relinking occurs by using constructive neighborhoods for creating offspring
from a collection of parent solutions. In this case the guiding solutions consist of subsets of elite solutions, as
before, but the initiating solution begins as a partial (incomplete) solution or even as a null solution, where some
of the components of the solutions, such as values for variables, are not yet assigned.  The use of a constructive
neighborhood permits such an initiating solution to "move toward" the guiding solutions, by a neighborhood
path that progressively introduces elements contained in the guiding solutions, or that are evaluated as attractive
based on the composition of the guiding solutions.

The evaluations can be conceived as produced by a process where the guiding solutions vote for
attributes to be included in the initiating solution. It is possible, for example, that a certain partial configuration
may be reached where none of the attributes of the guiding solutions can be incorporated within the existing
solution, relative to a given constructive neighborhood.  Then it is important to still be able to select a next
constructive step, by relying upon the voting process for evaluating moves.  This same consideration can arise in
transition neighborhoods, though it is encountered less frequently there.

Combinations created in this way are called structured combinations, and their generation rests upon three
properties.

Property 1 (representation property).  Each guiding solution represents a vector of votes for particular
decisions (e.g., the decision of assigning a specific value to a particular variable).

Property 2 (trial solution property).  The votes prescribed by a guiding solution translate into a trial
solution to the problem of interest by a well-defined process (determined by the neighborhood structure).

A

C

B

X = Solution selected to generate a relinked path.
      (A, B and C may also interchange roles with X,      
        alternately or simultaneously.)

X



12

Property 3 (update property). If a decision is made according to the votes of a given vector, a clearly
defined rule exists to update all voting vectors for the residual problem so that Properties 1 and 2 continue to
hold.

Features of these properties in particular contexts may be clarified as follows.
Elaboration of Property 1: Standard solution vectors for many problems can directly operate as voting

vectors, or can be expanded in a natural way to create such vectors.  For instance, a solution vector for a job shop
scheduling problem can be interpreted as a set of 0-1 votes for predecessor decisions in scheduling specific jobs
on particular machines.

Elaboration of Property 2:  A set of "yes-no" votes for items to include in a knapsack, for instance, can be
translated into a trial solution according to a designated sequence for processing the votes (such as determined
by benefit-to-weight ratios), until either the knapsack is full or all votes are considered.  More general numerical
votes for the same problem may additionally prescribe the sequence to be employed, as where knapsack items are
rearranged so the votes occur in descending order. (The voting vectors are not required to represent feasible
solutions to the problems considered, or even represent solutions in a customary sense at all.  Thus, for example,
the scheme can also operate to combine decision rules as in the approach for doing this described in section 1.1.)

Elaboration of Property 3.  Upon assigning a specific value to a particular variable, all votes for assigning
different values to this variable effectively become cancelled.  Property 3 then implies that the remaining updated
votes of each vector retain the ability to be translated into a trial solution for the residual problem in which the
assignment has been made.

Concrete illustrations of processes for generating structured combinations by reference to these
properties are provided in Glover (1994b).  These same kinds of processes can be implemented by reference to
destructive neighborhoods – that is, neighborhoods that allow the removal of less attractive elements.  Typically,
destructive processes are applied to solutions that begin with an “excessive assignment” (such as too many
elements to satisfy cardinality or capacity restrictions).

3.6  Vocabulary Building

Vocabulary building creates structured combinations not only by using the primitive elements of
customary neighborhoods, but also building and joining more complex assemblies of such elements.  The process
receives its name by analogy with the process of building words progressively into useful phrases, sentences
and paragraphs, where valuable constructions at each level can be visualized as represented by “higher order
words,” just as natural languages generate new words to take the place of collections of words that embody
useful concepts.

The motive underlying vocabulary building is to take advantage of those contexts where certain partial
configurations of solutions often occur as components of good complete solutions.  A strategy of seeking “good
partial configurations” – good vocabulary elements – can help to circumvent the combinatorial explosion that
potentially results by manipulating only the most primitive elements by themselves. The process also avoids the
need to reinvent (or rediscover) the structure of a partial configuration as a basis for building a good complete
solution.  (The same principle operates in mathematical analysis generally, where basic premises are organized to
produce useful lemmas, which in turn facilitate the generation of more complex theorems.)

Vocabulary building has an additional useful feature in some problem settings by providing compound
elements linked by special neighborhoods that are more exploitable than the neighborhoods which operate on the
primitive elements.  For example, a vocabulary building proposal of Glover (1992) discloses that certain
subassemblies (partial "tours") for traveling salesman problems can be linked by exact algorithms to produce
optimal unions of these components.  Variants of this strategy have more recently been introduced by Aggarwal,
Orlin and Tai (1997) as a proposal for modifying traditional genetic algorithms, and have also been applied to
weighted clique problems by Balas and Niehaus (1998).  A particularly interesting application occurs in the work
of Lourenço, Paixao and Portugal (1998), who use such concepts to create “perfect children” for crew scheduling
problems.
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In general, vocabulary building relies on destructive as well as constructive processes to generate
desirable partial solutions, as in the early proposals for exploiting strongly determined and consistent variables –
which essentially “break apart” good solutions to extract good component assignments, and then subject these
assignments to heuristics to rebuild them into complete solutions. Construction and destruction therefore operate
hand in hand in these approaches.  An illustration of vocabulary building is depicted in Figure 7.

Fig. 7  Vocabulary Building Process

4. Implications for Future Developments

The focus and emphasis of the scatter search and path relinking approaches have a number of specific
implications for the goal of designing improved optimization procedures.  To understand these implications, it is
useful to consider certain contrasts between the highly exploitable meaning of “solution combination” provided
by path relinking and the rather amorphous concept of “crossover” used in genetic algorithms.  Originally, GAs
were founded on precise notions of crossover, using definitions based on binary stings and motivated by
analogies with genetics.  Although there are still many GA researchers who favor the types of crossover models
originally proposed with genetic algorithms – since these give rise to the theorems that have helped to popularize
GAs – there are also many who have largely abandoned these ideas and who have sought, on a case-by-case
basis, to replace them with something different.  The well-defined earlier notions of crossover have not been
abandoned without a price.  The literature is rife with examples where a new problem (or a new variant of an old
one) has compelled the search for an appropriate “crossover” to begin anew.3

As a result of this lack of an organizing principle, many less-than-suitable modes of combination have
been produced, some eventually replacing others, without a clear basis for taking advantage of context – in
contrast to the strong context-exploiting emphasis embodied in the concept of search neighborhoods. The
difficulty of devising a unifying basis for understanding or exploiting context in GAs was inherited from its
original theme, which had the goal of making GAs context free.

A few of the more conspicuous features of  “genetic crossover” and path relinking that embody such
contrasts appear in the following table.

                                                                
3 The disadvantage of lacking a clear and unified model for combining solutions has had its compensations for academic
researchers, since each new application creates an opportunity to publish another form of crossover!  The resulting abundance of
papers has done nothing to tarnish the image of a dynamic and prospering field.
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“Genetic Crossover” Features Contrasting Path Relinking Features

• Contains No Integrated
Framework

• Embodies a Unifying “Path
Combination” Principle

• Each New “Crossover” is
Separate, with No Guidance for
the Next

• Each Implementation of Path
Relinking Derives From a Common
Foundation

• No Basis Exists to • Context Inheres in Neighborhood
        Systematically Exploit Context        Structures and is Directly

       Exploitable by them

• Advances are Piecemeal, Without
Clear Sources of Potential for
Transfer

• Advances in Neighborhood Search
Foster Advances in Path Relinking
(and  Reciprocally)

• There is No Design Plan that Is
Subject to Analysis or
Improvement

• A Cohesive Framework exists for
Developing Progressively Improved
Methods

Table 2

The differences identified in Table 2 have important consequences for research to yield improved methods.
Specific areas of research for developing improved solution strategies that emerge directly from the path relinking
orientation are catalogued in Table 3.

Research Areas Providing Opportunities for Improved Methods

• Connections and Complementarities Between Neighborhoods for Search
Methods and Neighborhoods for Path Relinking

 
• Rules for Generating Paths to Different Depths and Thresholds of Quality

• Strategies for Generating Multiple Paths Between and Beyond Reference
Solutions (with Parallel Processing Applications)

• Path Interpolations and Extrapolations that are Effective for Intensification
and Diversification Goals

 

• Strategies for Clustering and Anti-Clustering, to Generate Candidate Sets
of Solutions to be Combined

 
• Rules for Multi-Parent Compositions

• Isolating and Assembling Solution Components by Means of
Constructive Linking and Vocabulary Building

Table 3
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These research opportunities carry with them an emphasis on producing systematic and strategically
designed rules, rather than following the policy of relegating decisions to random choices, as often is fashionable
in evolutionary methods.  The strategic orientation underlying path relinking is motivated by connections with
the tabu search setting where the path relinking ideas were first proposed, and invites the use of adaptive memory
structures in determining the strategies produced.  The learning approach called target analysis (Glover and
Laguna, 1997) gives a particularly useful basis for pursuing such research.

5.  Intensification and Diversification

A significant feature that distinguishes scatter search and path relinking from other evolutionary
approaches is the fact that intensification and diversification processes are not conceived to be embedded solely
within the mechanisms for combining solutions, or within supplementary "mutation" strategies based on
randomly varying offspring to produce new solutions.4

Evidently, except where hybrids are being created with tabu search, alternative evolutionary compuation
approaches do not undertake to control search paths by adaptive memory strategies such as those based on
measures of recency, frequency and influence.

The initial connections between scatter search and strategies involving these types of measures have
already been noted in reference to exploiting consistent and strongly determined variables.  Such strategies naturally
fall in the category of intensification strategies, in the sense that they undertake to take advantage of features
associated with good solutions.  They are predicated on highly explicit analysis of the frequencies that attributes
belong to high quality solutions, supplemented by considerations such as clustering the solutions to give
increased meaning to the frequencies.  This stands in notable contrast to the philosophy of other mainstream
evolutionary procedures, where the relevance of attribute membership in solutions is left to be "discovered"
chiefly by the device of shuffling and combining solutions.

An approach called strategic oscillation introduced with the original scatter search proposal is important
for linking intensification and diversification.  The basic idea of this approach is to identify critical regions of
search, and to induce the search pattern to visit these regions to various depths within their boundaries, by a
variable pattern that approaches and retreats from the boundaries in oscillating waves.  Examples of such regions
and their associated boundaries are indicated in the following table.

Regions Boundary

 Feasible and Infeasible  Determined by Constraints
 Partial Constructions and (sometimes)
 “Exessive” Constructions

 A complete Construction (tree, clique,
 tour, etc.)

 Underfilled or Overfilled Schedules  Satisfied Schedules (all or an
 appropriate set of jobs assigned)

 Local Optima and Suboptima  Solutions with no Immediate
 Improvement

 Elite Solution Clusters (or Partitioned
 Spaces)

 Zones between Clusters (or between
 Partitions)

 Alternative Neighborhoods  Transitions among Move Types

Table 4:  Applications of Strategic Oscillation

A number of variations of the regions and associated boundaries are evident, such as replacing the

                                                                
4 Within the last few years, some researchers in the evolutionary computation field have begun to adopt aspects of scatter search
and path relinking by incorporating systematic strategies for achieving intensification and diversification, instead of relying on
randomization to achieve less purposeful forms of variation.  However, some of the latest literature still disallows this type of
approach as a legitimate feature of evolutionary computation.  For example, Fogel (1998) says that the main disciplines of
evolutionary computation all involve a process whereby "New solutions are created by randomly varying the existing solutions."
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feasible/infeasible dichotomy by a focus on selected critical constraints to define varying domains of "partial
infeasibility."  In each case, the strategic oscillation approach operates by moving through one region to
approach the boundary, and then either crosses the boundary or reverses direction to move back into the region
just traversed (in the case of a "one-sided" oscillation).

Often there are advantages to crossing boundaries to descend for varying depths within different
regions and then doubling back to return again to the boundary. For example, in a number of discrete optimization
problems the solutions that are most readily accessible from the feasible and infeasible regions differ � and, quite
significantly the types of moves and choice criteria for traversing feasible and infeasible regions also differ.  The
ability to exploit these differences by rules that are specific to the regions traversed and the direction of
movement within these regions (e.g., toward or away from their boundaries) provides an enriched set of options
for carrying out the search.  Similar characteristics are found in processes that build solutions by constructive
processes and then dismantle them by destructive processes.  In many settings, classical heuristics have been
restricted to constructive processes for generating solutions and in these cases strategic oscillation entails the
creation of additional destructive moves to complement the constructive moves.

From the perspective of intensification and diversification, greater diversification is normally achieved
by penetrating to greater depths beyond regional boundaries, while greater intensification is normally achieved
by spending more time in the vicinity of such boundaries.  However, the spatial image of remaining close to a
boundary is misleading, because oscillations of small depths can create significant changes.  For example, even
when only a few destructive moves are made to reverse a constructive process, the portions of the construction
dismantled can have a significant influence on the solution structure and composition, and this influence can
become magnified after a few oscillation cycles.  The guidance of memory as used in tabu search allows the
oscillations to avoid becoming mired in local optima or in a process that unproductively examines similar points in
a common locale.

An extreme application of strategic oscillation in the context of a constructive approach is to employ
destructive steps to completely dismantle the solution built by the constructive phase, which thus simply reduces
the approach to a "restart" procedure.  However, the use of memory to guide the successively restarted
constructions produces significantly different outcomes than those produced by customary restarting
procedures based on randomization. These outcomes also contrast sharply with those produced by “randomized
greedy” construction schemes.  The comparative advantages of memory-based strategies for rebuilding solutions
are documented, for example, in Fleurent and Glover (1999).

Intensification is often associated with shallow oscillations because in many settings the best solutions
are found on or near the boundary.  This is clearly true for multidimensional knapsack and covering problems, for
instance, and it is also true by definition where the boundary is established to segregate local optima from
suboptimal solutions.  In such cases the oscillation process is augmented by spending additional time in the
proximity of the boundary, as by shifting from a simple neighborhood to a more complex neighborhood.  For
instance, simple "add/drop" or "increment/decrement" moves may be augmented by a series of "exchange" or
"paired increment/decrement" moves upon reaching (or drawing close to) the boundary. Candidate list strategies
are important when complex neighborhoods are used, in order to achieve proper tradeoffs between time spent
looking for moves and the quality of the moves found.  (Principal approaches of this type are described in Glover
and Laguna, 1997.)

5.1  Randomization and the Intensification/Diversification Dichotomy

The emphasis on systematic strategies in achieving intensification and diversification does not preclude
the use of randomized selection schemes, which are often motivated by the fact that they require little thought or
sophistication to apply.  By the same token, deterministic rules that are constructed with no more reflection than
devoted to creating a simple randomized rule can be quite risky, because they can easily embody oversights that
will cause them to perform poorly.  A randomized rule can then offer a safety net, by preventing a bad decision
from being applied persistently and without exception.

Yet a somewhat different perspective suggests that deterministic rules can offer important advantages in
the longer run.  A “foolish mistake” incorporated into a deterministic rule becomes highly visible by its
consequences, whereas such a mistake in a randomized rule may be buried from view – obscured by the
patternless fluctuations that surround it.  Deterministic rules afford the opportunity to profit by mistakes and
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learn to do better.  The character of randomized rules, that provides the chance to escape from repetitive folly,
also inhibits the chance to identify more effective decisions.

The concepts of intensification and diversification are predicated on the view that intelligent variation
and randomized variation are rarely the same.5  This clearly contrasts with the prevailing perspective in the
literature of evolutionary methods although, perhaps surprisingly, the intensification and diversification
terminology has been appearing with steadily increasing frequency in this literature. Nevertheless, a number of
the fundamental strategies for achieving the goals of intensification and diversification in scatter search and path
relinking applications have still escaped the purview of other evolutionary methods.

Perhaps one of the factors that is slowing a more complete assimilation of these ideas is a confusion
between the terminology of intensification and diversification and the terminology of “exploitation versus
exploration” popularized in association with genetic algorithms.  The exploitation/exploration distinction comes
from control theory, where exploitation refers to following a particular recipe (traditionally memoryless) until it
fails to be effective, and exploration then refers to instituting a series of random changes � typically via multi-
armed bandit schemes � before reverting to the tactical recipe.  The issue of exploitation versus exploration
concerns how often and under what circumstances the randomized departures are launched.

By contrast, intensification and diversification are mutually reinforcing (rather than being mutually
opposed), and can be implemented in conjunction as well as in alternation.  In longer term strategies,
intensification and diversification are both activated when simpler tactics lose their effectiveness.
Characteristically, they are designed to profit from memory, rather than to rely solely on indirect “inheritance
effects.”

6.  Conclusion

It is not possible within the limited scope of this paper to detail completely the aspects of scatter search and
its path relinking generalization that warrant further investigation.  Additional implementation considerations,
including associated intensification and diversification processes, and the design of accompanying methods to
improve solutions produced by combination strategies, may be found in the template for scatter search and path
relinking in Glover (1997).

However, a key observation deserves to be stressed.  The literature often contrasts evolutionary methods –
especially those based on combining solutions – with local search methods, as though these two types of
approaches are fundamentally different.  In addition, evolutionary procedures are conceived to be independent of
any reliance on memory, except in the very limited sense where solutions forged from combinations of others
carry the imprint of their parents.  Yet as previously noted, the foundations of scatter search strongly overlap
with those of tabu search and, in addition, path relinking was initiated as a strategy to be applied with the
guidance of adaptive memory processes.  By means of these connections, a wide range of strategic possibilities
exist for implementing scatter search and path relinking.

Very little computational investigation of these methods has been done by comparison to other evolutionary
methods, and a great deal remains to be learned about the most effective implementations for various classes of
problems.  The highly promising outcomes of studies such as those cited in Section 1 suggest that these
approaches may offer a useful potential for applications in areas beyond those investigated up to now.

                                                                
5 Intelligence can sometimes mean quickly doing something mildly clever, rather than slowly doing something profound. This can
occur where the quality of a single move obtained by extended analysis is not enough to match the quality of multiple moves
obtained by more superficial analysis. Randomized moves, which are quick, sometimes gain a reputation for effectiveness because
of this phenomenon.  In such setting, a different perspective may result by investigating comparably fast mechanisms that replace
randomization with intelligent variation.
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