

A Template For Scatter Search And Path Relinking

Fred Glover

School of Business, CB 419
University of Colorado

Boulder, CO 80309-0419, USA

fred.glover@colorado.edu

Abstract. Scatter search and its generalized form called path relinking are
evolutionary methods that have recently been shown to yield promising
outcomes for solving combinatorial and nonlinear optimization problems.
Based on formulations originally proposed in the 1960s for combining decision
rules and problem constraints, these methods use strategies for combining
solution vectors that have proved effective for scheduling, routing, financial
product design, neural network training, optimizing simulation and a variety of
other problem areas. These approaches can be implemented in multiple ways,
and offer numerous alternatives for exploiting their basic ideas. We identify a
template for scatter search and path relinking methods that provides a
convenient and "user friendly" basis for their implementation. The overall
design can be summarized by a small number of key steps, leading to versions
of scatter search and path relinking that are fully specified upon providing a
handful of subroutines. Illustrative forms of these subroutines are described that
make it possible to create methods for a wide range of optimization problems.
Highlights of these components include new diversification generators for
zero-one and permutation problems (extended by a mapping-by-objective
technique that handles additional classes of problems), together with processes
to avoid generating or incorporating duplicate solutions at various stages
(related to the avoidance of cycling in tabu search) and a new method for
creating improved solutions.

*** UPDATED AND EXTENDED: February 1998 ***

Previous version appeared in Lecture Notes in Computer Science, 1363, J.K.
Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers (Eds.), 13-54, 1997.

This research was supported in part by the Air Force Office of Scientific
Research Grant #F49620-97-1-0271.

 3

Table of Contents

1 Introduction ...4

2 Foundations Of Scatter Search And Path Relinking..5
2.1 Scatter Search...5
2.2 Path Relinking ..7

3 Outline Of The Scatter Search/Path Relinking Template11

4 Diversification Generator ...13
4.1 Diversification Generators for Zero-One Vectors..14
4.2 A Sequential Diversification Generator ...16
4.3 Diversification Generator for Permutation Problems...................................19
4.4 Additional Role for the Diversification Generator19

5 Maintaining And Updating The Reference Set...20
5.1 Notation and Initialization..20

6 Choosing Subsets Of The Reference Solutions ...24
6.1 Generating the Subsets of Reference Solutions..27
6.2 Methods for a Dynamic RefSet ..28
6.3 Arrays for the Subset Generation Method..29
6.4 Subset Generation Method ...29

7 Improvement Method ...35
7.1 Avoiding Duplications ...40
7.2 Move Descriptions ...41
7.3 Definitions of 1-moves and the Composition of M......................................43
7.4 Advanced Improvement Alternatives...44

8 Conclusions ..47

APPENDIX 1 Construction-by-Objective: Mixed Integer and Nonlinear
Optimization ...52
Creating Reference Solutions. ..55

APPENDIX 2: Checking for Duplicate Solutions..57

 4

1 Introduction

Scatter search and path relinking have recently been investigated in a number of
studies, disclosing the promise of these methods for solving difficult problems in
discrete and nonlinear optimization. Recent applications of these methods (and of
selected component strategies within these methods) include:1

Vehicle Routing – Rochat and Taillard (1995); Taillard (1996)
Quadratic Assignment – Cung et al. (1996)
Financial Product Design – Consiglio and Zenios (1996)
Neural Network Training – Kelly, Rangaswamy and Xu (1996)
Job Shop Scheduling – Yamada and Nakano (1996)
Flow Shop Scheduling – Yamada and Reeves (1997)
Graph Drawing – Laguna and Marti (1997)
Linear Ordering – Laguna, Marti and Campos (1997)
Unconstrained Continuous Optimization – Fleurent et al. (1996)
Bit Representation – Rana and Whitley (1997)
Optimizing Simulation – Glover, Kelly and Laguna (1996)
Complex System Optimization – Laguna (1997)

We propose a template for generating a broad class of scatter search and path

relinking methods, with the goal of creating versions of these approaches that are
convenient to implement. Our design is straightforward, and can be readily adapted
to optimization problems of diverse structures. We offer specific comments relating
to multidimensional knapsack problems, graph partitioning problems, linear and
nonlinear zero-one problems, mixed integer programming problems and permutation
problems.

From the standpoint of classification, scatter search and path relinking may be
viewed as evolutionary algorithms that construct solutions by combining others, and
derive their foundations from strategies originally proposed for combining decision
rules and constraints (Glover, 1963, 1965). The goal of these procedures is to enable
a solution procedure based on the combined elements to yield better solutions than
one based only on the original elements.

Historically, the antecedent strategies for combining decision rules were
introduced in the context of scheduling methods, to obtain improved local decision
rules for job shop scheduling problems, evaluated by simulations of consequences for
makespan. New rules were generated by creating numerically weighted combinations
of existing rules, suitably restructured so that their evaluations embodied a common
metric. The approach was motivated by the supposition that information about the
relative desirability of alternative choices is captured in different forms by different

1 The References Section contains website listings where abstracts and/or copies can be obtained for a
number of the references cited in this paper.

 5

rules, and that this information can be exploited more effectively when integrated by
means of a combination mechanism than when treated by the standard strategy of
selecting different rules one at a time, in isolation from each other. In addition, the
method departed from the customary approach of stopping upon reaching a local
optimum, and instead continued to vary the parameters that determined the combined
rules, as a basis for producing additional trial solutions. (This latter strategy also
became a fundamental component of tabu search. See, e.g., Glover and Laguna,
1997.) The decision rules created from such combination strategies produced better
empirical outcomes than standard applications of local decision rules, and also proved
superior to a “probabilistic learning approach” that selected different rules
probabilistcally at different junctures, but without the integration effect provided by
generating combined rules (Crowston, et al., 1963).

The associated procedures for combining constraints likewise employed a
mechanism of generating weighted combinations, in this case applied in the setting of
integer and nonlinear programming, by introducing nonnegative weights to create
new constraint inequalities, called surrogate constraints. The approach isolated
subsets of constraints that were gauged to be most critical, relative to trial solutions
based on the surrogate constraints, and produced new weights that reflected the
degree to which the component constraints were satisfied or violated.

A principal function of surrogate constraints, in common with the approaches for
combining decision rules, was to provide ways to evaluate choices that could be used
to generate and modify trial solutions. From this foundation, a variety of heuristic
processes evolved that made use of surrogate constraints and their evaluations.
Accordingly, these processes led to the complementary strategy of combining
solutions, as a primal counterpart to the dual strategy of combining constraints2,
which became manifest in scatter search and its path relinking generalization.

2 Foundations Of Scatter Search And Path Relinking

2.1 Scatter Search

The scatter search process, building on the principles that underlie the surrogate
constraint design, is organized to (1) capture information not contained separately in
the original vectors, (2) take advantage of auxiliary heuristic solution methods to
evaluate the combinations produced and to generate new vectors.

The original form of scatter search (Glover, 1977) may be sketched as follows.

2 Surrogate constraint methods give rise to a mathematical duality theory associated with their role as
relaxation methods for optimization (e.g., see Greenberg and Pierskalla, 1970, 1973; Glover, 1965, 1975;
Karwan and Rardin, 1976, 1979; Freville and Plateau, 1986, 1993).

 6

Scatter Search Procedure

1. Generate a starting set of solution vectors by heuristic processes designed for the
problem considered, and designate a subset of the best vectors to be
reference solutions. (Subsequent iterations of this step, transferring from
Step 3 below, incorporate advanced starting solutions and best solutions
from previous history as candidates for the reference solutions.)

2. Create new points consisting of linear combinations of subsets of the current
reference solutions. The linear combinations are:
(a) chosen to produce points both inside and outside the convex regions

spanned by the reference solutions.
(b) modified by generalized rounding processes to yield integer values for

integer-constrained vector components.
3. Extract a collection of the best solutions generated in Step 2 to be used as starting

points for a new application of the heuristic processes of Step 1. Repeat
these steps until reaching a specified iteration limit.

Three particular features of scatter search deserve mention. First, the linear

combinations are structured according to the goal of generating weighted centers of
selected subregions, allowing for nonconvex combinations that project these centers
into regions external to the original reference solutions. The dispersion pattern
created by such centers and their external projections is particularly useful for mixed
integer optimization. (Appendix 1 gives specific procedures in this context.) Second,
the strategies for selecting particular subsets of solutions to combine in Step 2 are
designed to make use of clustering, which allows different types of strategic variation
by generating new solutions “within clusters” and “across clusters”. Third, the
method is organized to use supporting heuristics that are able to start from infeasible
solutions, and hence which remove the restriction that solutions selected as starting
points for re-applying the heuristic processes must be feasible.3

In sum, scatter search is founded on the following premises.
(P1) Useful information about the form (or location) of optimal solutions

is typically contained in a suitably diverse collection of elite
solutions.

(P2) When solutions are combined as a strategy for exploiting such
information, it is important to provide for combinations that can
extrapolate beyond the regions spanned by the solutions considered,
and further to incorporate heuristic processes to map combined
solutions into new points. (This serves to provide both diversity and
quality.)

3 An incidental feature – that has more than incidental implications – is the incorporation of general (mixed
integer) solution vectors, in contrast to a reliance on binary representations. Although methods
incorporating non-binary vectors have long existed in domains outside of those that operate by combining
solution vectors, the GA proposals remained wedded to binary representations until the mid to late 1980s.
As shown in Glover (1994a), a reliance on such representations can create “information gaps” for
combining solutions. The problems of distortion in binary-based GAs are therefore not surprising.

 7

(P3) Taking account of multiple solutions simultaneously, as a foundation
for creating combinations, enhances the opportunity to exploit
information contained in the union of elite solutions.

The fact that the heuristic processes of scatter search are not restricted to a single
uniform design, but represent a varied collection of procedures, affords additional
strategic possibilities.

2.2 Path Relinking

From a spatial orientation, the process of generating linear combinations of a set of
reference solutions may be characterized as generating paths between and beyond
these solutions, where solutions on such paths also serve as sources for generating
additional paths. This leads to a broader conception of the meaning of creating
combinations of solutions. By natural extension, such combinations may be
conceived to arise by generating paths between and beyond selected solutions in
neighborhood space, rather than in Euclidean space (Glover 1989, 1994b).

This conception is reinforced by the fact that a path between solutions in a
neighborhood space will generally yield new solutions that share a significant subset
of attributes contained in the parent solutions, in varying "mixes" according to the
path selected and the location on the path that determines the solution currently
considered. The character of such paths is easily specified by reference to solution
attributes that are added, dropped or otherwise modified by the moves executed in
neighborhood space. Examples of such attributes include edges and nodes of a
graph, sequence positions in a schedule, vectors contained in linear programming
basic solutions, and values of variables and functions of variables. To generate the
desired paths, it is only necessary to select moves that perform the following role:
upon starting from an initiating solution, the moves must progressively introduce
attributes contributed by a guiding solution (or reduce the distance between attributes
of the initiating and guiding solutions). The process invites variation by
interchanging the roles of the initiating and guiding solutions, and also by inducing
each to move simultaneously toward the other as a way of generating combinations.4

Such an incorporation of attributes from elite parents in partially or fully
constructed solutions was foreshadowed by another aspect of scatter search,
embodied in an accompanying proposal to assign preferred values to subsets of
consistent and strongly determined variables. The theme is to isolate assignments
that frequently or influentially occur in high quality solutions, and then to introduce
compatible subsets of these assignments into other solutions that are generated or
amended by heuristic procedures. (Such a process implicitly relies on a simple form
of frequency based memory to identify and exploit variables that qualify as

4 Variants of path relinking that use constructive and destructive neighborhoods, called vocabulary building
approaches, produce strategic combinations of partial solutions (or "solution fragments") as well as of
complete solutions. The organization of vocabulary building permits the goal for combining the solution
components to be expressed as an optimization model in a number of contexts, with the added advantage of
allowing exact methods to be used to generate the moves (see, e.g., Glover and Laguna, 1997).

 8

consistent, and thereby provides a bridge to associated tabu search ideas discussed in
later sections.)

Multiparent path generation possibilities emerge in path relinking by considering
the combined attributes provided by a set of guiding solutions, where these attributes
are weighted to determine which moves are given higher priority. The generation of
such paths in neighborhood space characteristically "relinks" previous points in ways
not achieved in the previous search history, hence giving the approach its name.

Neighborhoods for these processes may differ from those used in other phases of
search. For example, they may be chosen to tunnel through infeasible regions that
may be avoided by other neighborhoods. Such possibilities arise because feasible
guiding points can be coordinated to assure that the process will re-enter the feasible
region, with out danger of becoming "lost." The ability of neighborhood structures to
capture contextual features additionally provides a foundation for incorporating
domain-specific knowledge about different classes of problems, thus enabling path
relinking to exploit such knowledge directly.5

2.3 Associated Considerations

The exploitation of strongly determined and consistent variables, as alluded to in
the preceding section, is particularly important in scatter search and path relinking.
The identities of such variables depend on the subsets of elite solutions chosen for
defining them, and in the present setting these subsets of solutions are the ones made
up of reference solutions.

Consistent variables, which receive a particular value (or small range of values) in
a significant proportion of the solutions of the chosen subset, may be restricted to
those that receive such a value in all solutions if the subset considered is relatively
small (e.g., containing up to 3 or 4 solutions). It is likely that the identities of such
variables may vary substantially over different subsets. The proportion of solutions
used to define consistency may, however, be modified depending both on the size of
the subject and the type of problem considered.

Strongly determined variables, which cause significant deterioration in the quality
or feasibility of one or more solutions of the subset – if their value is changed in the
indicated solution(s) – are similarly likely to have somewhat different identities in
different subsets. Strongly determined variables do not have to qualify as consistent.
Alternatively, they may be consistent over some set of solutions different from the
one under consideration. In many 0-1 formulations, it is appropriate to focus on
variables that receive a value of 1 as those that may qualify as strongly determined, as

5 This may be contrasted with the GA crossover concept, which lacks a unifying design to handle
applications that are not well served by the original proposals for exchanging components of binary vectors.
The crossover model, which has significantly influenced the popular view of the meaning of combining
vectors, compels one of two outcomes: (a) domain-specific knowledge must be disregarded (a property of
GAs once regarded to be a virtue); (b) amended versions of crossover must repeatedly be devised, without a
guiding principle for structuring the effort to accommodate new problems. The second outcome has led to
frequent reliance on ad hoc constructions, as noted by Reeves (1997) and Muhlenbein (1997).

 9

in "multiple choice" models where various subsets of variables must sum to 1. (In
such formulations a variable would be classed as strongly determined relative to a
particular solution if changing its value from 1 to 0 significantly damages the
solution, without allowing a trivial fix.)

A customary approach for handling strongly determined and consistent variables,
as proposed in the paper that introduced scatter search, is to temporarily confine them
to their preferred values or ranges, while other variables are allowed to be freely
manipulated. Once no further improvement is possible (by the rules of the method
employed, or within a specified limit of computation) the confining conditions are
relaxed to seek a final stage of improvement. Constructive heuristics can often be
useful for initially assigning values to variables other than those in the restricted sets,
and hence the outcome of evaluating and extending the specified sets of variables
may be viewed as building solution combinations from solution fragments (composed
of the value assignments to the restricted variables only), rather than from complete
solutions. This in general is the theme of the vocabulary building procedure, which is
a fundamental variant of scatter search and path relinking.6

Two natural approaches exist for determining values to be given to variables that
are not among those selected to be restricted.

Approach 1. Build the combined solution by starting from the partial solution that
assigns each consistent variable the value it receives (uniformly or most often) in the
currently chosen set of reference solutions.

Approach 2. Build the combined solution by starting from a partial solution based
on assigning values to some number of variables that are strongly determined but not
consistent. (These strongly determined variables may be screened by a measure of
consistency applied to a set of solutions different from the current one.)

In Approach 2, once a partial solution is generated by assigning values to a small
number of strongly determined variables, then the values of other variables can be
generated. This may require a more judicious process than starting from a partial
solution created from consistent variables as in Approach 1, since the value to be
assigned to a consistent variable is already predetermined to be the value that caused
it to be defined consistent. However, by considering strongly determined variables
that are not consistent, it is necessary to choose assignments for variables that do not
invariably (or with high frequency) receive the same value in the set under
consideration.7

A constructive process can create an undesirable mix of value assignments unless
each step of assigning a value is closely monitored to determine the effect of the
assignment on the solution being constructed. For a variety of problems, effective
forms of constructive and destructive methods can be based on evaluations derived
from surrogate constraint "ratio" evaluations (Glover 1965, 1977; Freville and

6 The scatter search strategy of building solutions from fragments of others, as a supplementary mechanism
for combining solutions, is refined in the vocabulary buildilng process by iteratively assembling and
disassembling the fragments, with the ultimate goal of creating and assembling fragments that produce elite
solutions.
7 A Min K-Tree example from Glover and Laguna (1997) illustrates the merit of using a threshold
evaluation to isolate high quality solution components.

 10

Plateau, 1986). In the process of creating the partial solution, and especially as
additional variables are subsequently selected and assigned values (after the partial
solution is completed), an appropriate value to assign a given variable may differ
from any value that the variable received in the set of reference solutions. This
applies to consistent variables as well — i.e., a variable that received a particular
value in all solutions of the reference set may no longer appropriately receive this
value after a partial solution is constructed by Approach 2. (Evidently, the
observation also holds for a partial solution constructed by Approach 1, if a
consistent variable is one that receives a particular value in a certain fraction, but not
all, of the reference solutions.) An approach that temporarily restricts possible
assignments to those found in the union of some larger set of elite solutions is a
common companion strategy to one that temporarily restricts values of selected
strongly determined and consistent variables. Such considerations suggest that the
reference solutions of scatter search and path relinking should be called "donors"
rather than "parents." That is, they "donate" certain parts of themselves to provide a
foundation for creating new solutions. The associated approach of generating
structured combinations (Glover, 1994b) extends these notions by transforming the
donor solutions into rules for generating solutions.

Building solutions from common values, as in Approach 1, gives a good approach
for tightly constrained problems such as those arising in scheduling and partitioning
applications, where constructive processes are important for achieving feasibility. An
initial partial solution created from all (or any subset) of the variables that receive a
common value is assured to have feasible completions.

2.4 Avoiding Duplication Constructions.

An important aspect of carrying out these processes is to avoid re-constructing
solutions already generated. The avoidance of duplications by controlling the
combined solutions, which includes submitting them to constructive and improving
heuristics, can be a significant factor in producing an effective overall procedure.
Such an avoidance can be viewed as a precondition for creating an appropriate level
of diversification. Accordingly, this is a point where adaptive memory, as introduced
in tabu search, becomes relevant.

A useful type of memory in the present context is provided by a "critical event"
design, where variable numbers of steps during a constructive solution process are
governed by choices that penalize assignments which tend toward solutions
previously generated. In the 0-1 setting, for example, a frequency vector can be
created by summing the critical solutions (those selected to be avoided). Frequency-
based control can then be applied by penalizing a value assignment of 1 or 0
according to whether a particular variable receives a value in the summed vector that
is larger or smaller than an associated threshold (which may differ by variable and the
value to be penalized). This approach has proved effective in tabu search approaches
for multidimensional knapsack and 0-1 quadratic programming problems (Glover and
Kochenberger, 1996, 1997, and Hanafi and Freville, 1997).

 11

Interesting variations exist for creating a memory scheme that will propel the
approach toward new solutions without too strongly restricting the choices. For
example, a conditional memory can be used, where the penalties or inducements
change at each step by removing consideration of solutions in the critical set that
evidently cannot be generated, given the values assigned so far. The elimination of
such donor solutions then accordingly removes whatever influence they might have
on penalizing future assignments of values to variables.

3 Outline Of The Scatter Search/Path Relinking Template

Drawing on the observations of the preceding section, we now describe a template for
implementing both scatter search and path relinking that takes advantage of their
common characteristics and principles. Components of this template consist of
specific subroutines of the following types:

(1) A Diversification Generator: to generate a collection of diverse trial
solutions, using an arbitrary trial solution (or seed solution) as an input.

(2) An Improvement Method: to transform a trial solution into one or more
enhanced trial solutions. (Neither the input nor output solutions are
required to be feasible, though the output solutions will more usually be
expected to be so. If no improvement of the input trial solution results, the
“enhanced” solution is considered to be the same as the input solution.)

(3) A Reference Set Update Method: to build and maintain a Reference Set
consisting of the b best solutions found (where the value of b is typically
small, e.g., between 20 and 40), organized to provide efficient accessing by
other parts of the method.

(4) A Subset Generation Method: to operate on the Reference Set, to produce
a subset of its solutions as a basis for creating combined solutions.

(5) A Solution Combination Method: to transform a given subset of solutions
produced by the Subset Generation Method into one or more combined
solution vectors.

We provide illustrative designs for each of these subroutines except the last, which
will typically vary according to the context. The processes for combining solutions in
scatter search and path relinking, as embodied in (5), have been alluded to in previous
sections and are discussed at greater length in the references cited in the Introduction,
especially in Glover and Laguna (1997). Consequently, we focus instead on other
features, which deserve greater attention than they have been accorded in the past.
Our purpose in particular is to identify forms of the subroutines (1) to (4), preceding,
that can be usefully adapted to a variety of settings, and that can be integrated to
produce an effective overall method.

We specify the general template in outline form as follows. This template reflects
the type of design often used in scatter search and path relinking.8

8 Other alternatives for organizing and implementing such methods can be found in Glover (1994a, 1995).

 12

SS/PR Template

Initial Phase
1. (Seed Solution Step.) Create one or more seed solutions, which are arbitrary trial

solutions used to initiate the remainder of the method.
2. (Diversification Generator.) Use the Diversification Generator to generate diverse

trial solutions from the seed solution(s).
3. (Improvement and Reference Set Update Methods.) For each trial solution

produced in Step 2, use the Improvement Method to create one or more
enhanced trial solutions. During successive applications of this step,
maintain and update a Reference Set consisting of the b best solutions
found.

4. (Repeat.) Execute Steps 2 and 3 until producing some designated total number of
enhanced trial solutions as a source of candidates for the Reference Set.

Scatter Search/Path Relinking Phase
5. (Subset Generation Method.) Generate subsets of the Reference Set as a basis for

creating combined solutions.
6. (Solution Combination Method.) For each subset X produced in Step 5, use the

Solution Combination Method to produce a set C(X) that consists of one
or more combined solutions. Treat each member of C(X) as a trial solution
for the following step.

7. (Improvement and Reference Set Update Methods.) For each trial solution
produced in Step 6, use the Improvement Method to create one or more
enhanced trial solutions, while continuing to maintain and update the
Reference Set.

8. (Repeat.) Execute Steps 5-7 in repeated sequence, until reaching a specified
cutoff limit on the total number of iterations.

Table 1, following, summarizes the relationships between sources of input and

output solutions in the preceding template.

Source of Input Solutions Source of Output Solutions
Arbitrary seed solutions Diversification Generator
Diversification Generator Improvement Method
Improvement Method Reference Set Update Method
Reference Set Update Method Subset Generation Method
Subset Generation Method Solution Combination Method
Solution Combination Method Improvement Method

Table 1: Input/Output Links

Scatter search and path relinking are often implemented in connection with tabu

search (TS), and their underlying ideas share a significant intersection with the TS
perspective. A principal element of this perspective is its emphasis on establishing a
strategic interplay between intensification and diversification. In the original scatter

 13

search design, which carries over to the present template, intensification is achieved
by:

(a) the repeated use of the Improvement Method as a basis for refining the
solutions created (from combinations of others);

(b) maintaining the Reference Set to consist of the highest quality solutions
found; and

(c) choosing subsets of the Reference Set and uniting their members by
strategies that reinforce the goal of generating good solutions (as opposed
to relying on mating and “crossover” schemes that are heavily based on
randomization).

In the mid to late 1980s, a number of the elements proposed earlier in scatter
search began to be introduced in hybrid variants of GA procedures. Consequently,
some of the current descendants of these hybrid approaches appear to have a structure
similar to the outline of the SS/PR Template. Nevertheless, significant differences
remain, due to perspectives underlying scatter search and path relinking that have not
become incorporated into the GA hybrids. These are particularly reflected in the
concepts underlying intensification and diversification, which will be elaborated in
subsequent discussions.

The remaining sections are devoted to providing illustrative forms of the
subroutines that support the foregoing template. We first focus on the diversification
generator, followed by the method for updating the reference set and then the method
for choosing subsets of the reference solutions. Finally we examine the issue of
specifying an improvement method, and identify an approach that likewise embodies
ideas that have not been adequately considered in the literature.

4 Diversification Generator

We indicate two simple types of diversification generators, one for problems that can
be formulated in a natural manner as optimizing a function of zero-one variables, and
the other for problems that can more appropriately be formulated as optimizing a
permutation of elements. In each of these instances we disregard the possible
existence of complicating constraints, in order to provide a simple representation of
the basic ideas. However, these methods can also be used in the presence of such
constraints by using the solutions generated as targets for creating solutions that
satisfy the additional requirements of feasibility. This can be done by applying
neighborhood procedures (including those that use constructive or destructive
neighborhoods) to insure the preservation or attainment of feasibility, while utilizing
evaluations that give preference to moves which approach the targets. In addition,
Appendix 1 shows how zero-one solution generators can be embedded in a method to
create diversified collections of feasible points for mixed integer programming and
nonlinear optimization problems.

These approaches embody the tabu search precept that diversification is not the
same as randomization. In this respect, they differ from the randomized approaches
for creating variation that are typically proposed in other types of evolutionary

 14

approaches. The goal of diversification is to produce solutions that differ from each
other in significant ways, and that yield productive (or “interesting”) alternatives in
the context of the problem considered. By contrast, the goal of randomization is to
produce solutions that may differ from each other in any way (or to any degree) at all,
as long as the differences are entirely “unsystematic”. From the tabu search
viewpoint, a reliance on variation that is strategically generated can offer advantages
over a reliance on variation that is distinguished only by its unpredictability.

4.1 Diversification Generators for Zero-One Vectors

We let x denote an n-vector each of whose components jx receives the value 0 or 1.
The first type of diversification generator we consider takes such a vector x as its
seed solution, and generates a collection of solutions associated with an integer h = 1,
2,..., h*, where h* ≤ n - 1. (Recommended is h* ≤ n/5.)

We generate two types of solutions, x′ and x ′′ , for each value of h, by the
following rule:

Type 1 Solution: Let the first component 1x′ of x′ be 1 - 1x , and let

khx +′1 = 1 - khx +1 for k = 1, 2, 3,..., k*, where k* is the largest
integer satisfying k* ≤ n/h. Remaining components of x′
equal 0.

To illustrate for x = (0,0,...,0): The values h = 1, 2 and 3 respectively yield
x′ = (1,1,...,1), x′ = (1,0,1,0,1 ...) and x′ = (1,0,0,1,0,0,1,0,0,1,....). This
progression suggests the reason for preferring h* ≤ n/5. As h becomes larger, the
solutions x′ for two adjacent values of h differ from each other proportionately less
than when h is smaller. An option to exploit this is to allow h to increase by an
increasing increment for larger values of h.

Type 2 Solution: Let x ′′ be the complement of x′ .

Again to illustrate for x = (0,0,...,0): the values h = 1, 2 and 3 respectively yield
x ′′ = (0,0,...,0), x ′′ = (0,1,0,1,....) and x ′′ = (0,1,1,0,1,1,0,...). Since x ′′ duplicates x
for h = 1, the value h = 1 can be skipped when generating x ′′ .

We extend the preceding design to generate additional solutions as follows. For
values of h ≥ 3 the solution vector is shifted so that the index 1 is instead represented
as a variable index q, which can take the values 1, 2, 3, ..., h. Continuing the
illustration for x = (0,0,...,0), suppose h = 3. Then, in addition to
x′ = (1,0,0,1,0,0,1,...), the method also generates the solutions given by
x′ = (0,1,0,0,1,0,0,1,...) and x′ = (0,0,1,0,0,1,0,0,1....), as q takes the values 2 and 3.

The following pseudo-code indicates how the resulting diversification generator
can be structured, where the parameter MaxSolutions indicates the maximum number

 15

of solutions desired to be generated. Comments within the code appear in italics,
enclosed within parentheses.

First Diversification Generator for Zero-One Solutions.

NumSolutions = 0
For h = 1 to h*
 Let q* = 1 if h < 3, and otherwise let q* = h

(q* denotes the value such that q will range from 1 to q*. We set q* = 1
instead of q* = h for h < 3 because otherwise the solutions produced for the
special case of h < 3 will duplicate other solutions or their complements.)

 For q = 1 to q*
 let k* = (n-q)/h <rounded down>
 For k = 1 to k*
 khqkhq xx ++ −=′ 1
 End k
 If h > 1, generate x ′′ as the complement of x′
 (x′ and x ′′ are the current output solutions.)
 NumSolutions = NumSolutions + 2 (or + 1 if h = 1)
 If NumSolutions ≥ MaxSolutions, then stop generating solutions.
 End q
End h

The number of solutions x′ and x ′′ produced by the preceding generator is
approximately q*(q*+1). Thus if n = 50 and h* = n/5 = 10, the method will generate
about 110 different output solutions, while if n = 100 and h* = n/5 = 20, the method
will generate about 420 different output solutions.

Since the number of output solutions grows fairly rapidly as n increases, this
number can be limited, while creating a relatively diverse subset of solutions, by
allowing q to skip over various values between 1 and q*. The greater the number of
values skipped, the less “similar” the successive solutions (for a given h) will be.
Also, as previously noted, h itself can be incremented by a value that differs from 1.

For added variation:

If further variety is sought, the preceding approach can be augmented as follows. Let
h = 3,4,..., h*, for h ≤ n - 2 (preferably h* ≤ n/3). Then for each value of h, generate
the following solutions.

Type 1A Solution: Let 1x′ = 1 - x1 and 2x′ = 1 - x2 . Thereafter, let khx +′1 = 1 -

khx +1 and let khx +′2 = 1 - khx +2 , for k = 1,2,...,k*, where k* is
the largest integer such that 2 + kp ≤ n. All other
components of x′ are the same as in x.

Type 2A Solution: Create x ′′ as the complement of x′ , as before.

 16

Related variants are evident. The index 1 can also be shifted (using a parameter q)
in a manner similar to that indicated for solutions of type 1 and 2.

4.2 A Sequential Diversification Generator

The concept of diversification invites a distinction between solutions that differ from
a given solution (e.g., a seed solution) and those that differ from each other.9 Our
preceding comments refer chiefly to the second type of diversification, by their
concern with creating a collection of solutions whose members exhibit certain
contrasting features.

Diversification of the first type can be emphasized in the foregoing design by
restricting attention to the complemented solutions denoted by x ′′ when h becomes
larger than 2. In general, diversification of the second type is supported by
complementing larger numbers of variables in the seed solution. We stress that this
type of diversification by itself is incomplete, and the relevance of diversification of
the first type is important to heed in many situations.

Approaches that combine characteristics of both types of diversification can be
founded on the ideas of sequential diversification (Glover and Laguna, 1997). A
“diverse sequence” can be composed by a rule that selects each successive vector to
maximize the minimum distance from all vectors previously considered, according to
a chosen distance metric. (There can sometimes be many vectors that qualify to be
chosen as the next member of a partially constructed sequence by such a criterion.
Ties can be broken by a perturbed distance function where distances to vectors that
appear later in the partial sequence are considered smaller than distances to vectors
that appear earlier in the sequence.) Sequential diversification makes it possible to
generate solutions that differ from a set of solutions (such as a set of solutions
examined during a search process), rather than those that differ from a single
solution, by considering the members of the set to be first members of the sequence.

A sequential diversification generator for 0-1 vectors that follows the prescription
to maximize the minimum distance from preceding vectors is embodied in the
following procedure. We say that a solution y complements x over an index set J if

jj xy −=1 for Jj∈ and jj xy = for Jj∉ .

Sequential (Max/Min) Diversification Generator

1. Designate the seed solution x and its complement to be the first two solutions
generated.

2. Partition the index set N = {1,…,n} for x into two sets N ′ and N ′′ that, as
nearly as possible, contain equal numbers of indexes. Create the two

9 These distinctions have often been overlooked by the genetic algorithm community, in spite of the
emergence of GA hybrids that take advantage of tabu search to obtain improved outcomes. The interplay
between intensification and diversification is sometimes further obscured by confusing it with the control
theory notion of "exploitation versus exploration," which GAs have traditionally adopted. The nature and
consequences of these differing ideas are discussed, for example, in Glover and Laguna (1997).

 17

solutions x′ and x ′′ so that x′ complements x over N ′ and x ′′
complements x over N ′′ .

3. Define each subset of N that is created by the most recent partition of N to be a
key subset. If no key subset of N contains more than 1 element, stop.
Otherwise partition each key subset S of N into two sets S' and S" that
contain, as nearly as possible, equal numbers of elements. (For the special
case where S may contain only 1 element, designate one of S' and S" to be
the same as S, and the other to be empty.) Overall, choose the designations
S' and S" so that the number of partitions with |S'| > |S"| equals the number
with |S"| > |S'|, as nearly as possible.

4. Let N ′ be the union of all subsets S ′ and let N ′′ be the union of all subsets
S ′′ . Create the complementary solutions x′ and x ′′ relative to N ′ and N ′′
as in Step 2, and then return to Step 3. (The partition of each critical set into
two parts in the preceding execution of Step 3 will cause the number of
critical sets in the next execution of Step 3 to double.)

The foregoing process generates approximately 2(1 + log n) solutions. If n is a

power of 2, every solution produced maximizes the minimum Hamming distance
from all previous solutions generated. (This maxmin distance, measured as the
number of elements by which the solutions differ, is n/2 for every iteration after the
first two solutions are generated in Step 1. Such a maxmin value is also
approximately achieved when n is not a power of 2.)

In particular, starting with k = n, and updating k at the beginning of Step 3 by
setting k: = k/2 (rounding fractional values upward), the number of elements in each
key subset is either k or k-1. Thus, the method stops when k = 1. The balance
between the numbers of sets S' and S" of different sizes can be achieved simply by
alternating, each time a set S with an odd number of elements is encountered, in
specifying the larger of the two members of the partition to be S' or S".

Useful variations result by partitioning N in different ways, but different partitions
do not always produce different results. For example, if the initial approach uses a
convenient ascending index rule that partitions each set so that the first member of
the partition only contains indexes that are smaller than the minimum index contained
in the second, then a modified basis for this rule that reindexes the last fourth of the
elements of N to become instead the second fourth of these elements will produce
exactly the same set of solutions as produced by the original indexing. A simple way
to create additional partitions that does not have the indicated weakness, but that still
takes advantage of the ascending index rule, is as follows.

For each of several selected prime numbers p, generate the sequence jp (modulo n)
as the index j runs from 1 to n. The value 0 of the sequence is replaced by the value
n. (E.g., if n = 8 and p = 3, the sequence is 3, 6, 1, 4, 7, 2, 5, 8.) The variables are
then reindexed so that, for j = 1, 2, ..., n, the current index jp becomes the new index
j. (In the special case where p divides n, the sequence cycles. Such divisors of n can
be omitted, or else the sequence can be shifted to become k + jp (modulo n), where j
= 1 to n/p and, in an outer loop, k ranges from 0 to n/p - 1.)

 18

Preferably, only a relatively small number of prime numbers should be chosen to
generate such different partitions, since the Max/Min Generator complements
approximately half of the variables in each solution produced, and the proportion of
variables complemented should reasonably be varied. This type of variation can be
achieved indirectly, but effectively, by altering the seed solution for the generator. A
natural approach is to allow seed solutions to be given by the best solutions found
(e.g., a limited number of members of the Reference Set, which are selected to be
somewhat different from each other). This generates solutions that are diverse in
relation to those created by other problem solving processes employed.

The Max/Min Generator may also be usefully coupled with the first diversification
generator to produce a composite approach. This provides a controlled means for
varying the number of variables that are complemented. For instance, the Max/Min
Generator (including the variant for reindexing relative to selected prime numbers)
can begin with each of the following seed solutions produced by the earlier
diversification generator.

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...)

(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...)
(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, ...)
(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, ...)

(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, ...)
(0, 1, 0, 0, 0, 1, 0, 0, 0, 1, ...)
(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ...)
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ...)

and so on.

Complemented solutions are excluded in the preceding representation, since these are
automatically created by the Max/Min Generator. The solution (1, 0, 1, 0, 1, 0, ...) is
also excluded, because it is likewise among those produced by the Max/Min
Generator from the initial (0, 0, 0, 0, 0, 0, ...) solution, using the ascending index
rule.

The foregoing 0-1 Diversification Generator and the one first described can
additionally be applied to generate solutions that differ from a set of solutions by
using a TS frequency-based approach. An example occurs by weighting the vectors
of the set according to their importance, and creating a combined vector of weighted
frequencies by summing the weighted vectors. The resulting vector can then be
transformed into a seed solution for the Diversification Generator by mapping each of
its components into 0 or 1, according to whether the value of the component lies
below or above a chosen threshold.

The next section offers another type of organization to assure that new solutions
differ from the seed solution as well as from each other.

 19

4.3 Diversification Generator for Permutation Problems

Although permutation problems can be formulated as 0-1 problems, they constitute a
special class that preferably should be treated somewhat differently. Assume that a
given trial permutation P used as a seed is represented by indexing its elements so
they appear in consecutive order, to yield P = (1,2, ..., n). Define the subsequence
P(h:s), where s is a positive integer between 1 and h, to be given by P(h:s) = (s, s+h,
s+2h, ..., s+rh), where r is the largest nonnegative integer such that s+rh ≤n. Then
define the permutation P(h), for h ≤ n, to be P(h) = (P(h:h), P(h:h-1), ..., P(h:1)).

Illustration:

Suppose P is given by
P = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)

If we choose h = 5, then P(5:5) = (5,10,15), P(5:4) = (4,9,14), P(5:3) = (3,8,13,18),
P(5:2) = (2,7,12,17), P(5:1) = (1,6,11,16), to give:

P(5) = (5, 10, 15, 4, 9, 14, 3, 8, 13, 18, 2, 7, 12, 17, 1, 6, 11, 16)
Similarly, if we choose h = 4 then P(4:4) = (4,8,12,16), P(4:3) = (3,7,11,15),
P(4:2) = (2,6,10,14,18), P(4:1) = (1,5,9,13,17) to give:

P(4) = (4, 8, 12, 16, 3, 7, 11, 15, 2, 6, 10, 14, 18, 1, 5, 9, 13, 17)
In this illustration we have allowed h to take the two values closest to the square

root of n. These values are interesting based on the fact that, when h equals the
square root of n, the minimum relative separation of each element from each other
element in the new permutation is maximum, compared to the relative separation of
exactly 1 in the permutation P. In addition, other useful types of separation result,
and become more pronounced for larger values of n.

In general, for the goal of generating a diverse set of permutations, preferable
values for h range from 1 to n/2. We also generate the reverse of the preceding
permutations, denoted by P*(h), which we consider to be more interesting than P(h).
The preference of P*(h) to P(h) is greater for smaller values of h. For example, when
h = 1, P(h) = P and P*(h) is the reverse of P. (Also, P(n) = P*(1).) In sum, we
propose a Diversification Generator for permutation problems to be one that
generates a subset of the collection P(h) and P*(h), for h = 1 to n/2 (excluding
P(1) = P).

4.4 Additional Role for the Diversification Generator

A diversification generator that takes one of the forms indicated above can be used to
modify the balance between intensification and diversification in the SS/PR
Template. In particular, a stronger diversification emphasis can be effected by means
of optional additions to Steps 6 and 7, which we denote by 6A and 7A, as follows.

6A. (Pre-Improvement Diversification.) Use selected trial solutions produced
in Step 6 as seeds to produce additional trial solutions by the
Diversification Generator.

 20

7A. (Post-Improvement Diversification.) Similarly, use selected trial solutions
produced in Step 7 to produce additional trial solutions by the
Diversification Generator, where each resulting trial solution in this case is
immediately subjected again to Step 7 to produce an enhanced solution.

The provision to apply Step 7 again in the Post-Improvement Diversification is not
required in the Pre-Improvement Diversification because Step 6 (and hence 6A) is
directly followed by Step 7 in the SS/PR Template. Typically the optional steps 6A
and 7A will be used to generate a single additional trial solution for each trial solution
selected to be a seed solution. The Diversification Generator of the next section can
easily be restricted to generate such a solution that is “far from” the seed solution by
reference to the observations previously indicated. The potential value of these
optional steps for a given application can of course be conveniently determined by
implementing a version of the SS/PR Template that excludes them, and then
comparing the outcomes with those produced by incorporating Step 6A and/or Step
7A.

5 Maintaining And Updating The Reference Set

The Reference Set Update method accompanies each application of the Improvement
Method, and we examine this updating function first because of its linking role,
which also introduces structures that provide a foundation for the Subset Generation
Method. The update operation consists of maintaining a record of the b best solutions
found, where value of b is treated as a chosen constant, but may readily be allowed to
vary. The underlying issues are conceptually straightforward, but their ramifications
within the SS/PR Template are sufficiently extensive to motivate a concrete design
for such a procedure.10

Hereafter, we will refer to the Reference Set by the abbreviation “RefSet”. We
provide a pseudo-code description of the procedure for maintaining RefSet, which we
call the RefSet Update Routine, that is organized to handle vectors of 0-1 variables.
Related forms to handle permutation vectors follow the same general format.

5.1 Notation and Initialization

Let bNow denote the current number of solutions in the Reference Set. bNow begins
at 0 in an Initialization Step, and is increased each time a new solution is added to the
Reference Set, until reaching the value bMax (as where bMax may take a value from
10 to 40, for example).

At each step, RefSet stores the best solutions in an array x[i], i = 1 to bNow. The
solution vector x[i] may be viewed as the “ith row” of the array. An associated
location array loc(i), i = 1 to bNow, indicates the ranking of the solutions; that is,

10 This section and the next are devoted explicitly to concerns of computer implementation. We include
details that serve primarily for convenience as well as those that serve a more substantial function.

 21

x[loc(1)] (the x vector stored in location “loc(1)”) is the best solution, x[loc(2)] is the
next best solution, and so forth.

A solution x = x′ is not permitted to be recorded if it duplicates another already in
RefSet.11 We speed the check to see if one solution duplicates another by keeping
some simple auxiliary information about each solution. Specifically, in addition to
keeping a value E(loc(i)) which identifies the evaluation (such as an objective
function value) for x[loc(i)]), we may also keep a hash function value for this solution
which we denote by Hash(loc(i)). Such a value can be determined by a single pass of
the components of x[loc(i)].

To test for adding x′ to RefSet, let E0 and Hash0 be defined for x′ in the same
way the corresponding quantities E(loc(i)) and Hash(loc(i)) are defined for x[loc(i)].
In addition to storing x′ properly, if it qualifies to be added to RefSet, the RefSet
Update Subroutine will keep track of a value NewRank, which will be the rank of x′
(as 1st best, 2nd best, etc.) if it is added to RefSet, and otherwise receives the value 0.
(Thus, checking whether NewRank is 0 or positive upon completion of the subroutine
will automatically disclose whether x′ succeeded or failed to qualify for inclusion.)

Finally, we let RefSetCall count the number of times the RefSet Update subroutine
is called (which thus tells how many solutions are generated and examined as
potential additions to RefSet), and let RefSetAdd count the number of times a
solution is actually added. These values can be useful in the situation where it is
desired to control the number of steps of executing the overall algorithm by limiting
the maximum value of RefSetCall or RefSetAdd, for example. The values may
appropriately be segregated and re-initialized to give separate statistics for the Initial
Phase and for the Scatter Search/Path Relinking Phase of the SS/PR Template.
Auxiliary information that may be useful is recorded by three counters, DupCheck,
FullDupCheck and FullDupFound, which respectively count the number of partial
duplication checks, full duplication checks, and the number of occurrences when
duplications were found.

Pseudo-Code for the RefSet Update
Initialization Step
 bNow = 0
 RefSetCall = 0
 RefSetAdd = 0
 DupCheck = 0
 FullDupCheck = 0
 FullDupFound = 0

11 Unlike the development of scatter search and path relinking, where duplications have no relevance, the
notion of avoiding duplicate population members was not embraced in GA methods for many years, and
some GA researchers continue instead to argue in favor of duplications (see, e.g., Goldberg, 1989).
However, the work of Whitley and Kauth (1988) and Whitley (1989) introduces a “steady state” design that
accords with the SS/PR perspective by seeking to avoid duplications, and the usefulness of this policy for
such amended GAs has also been demonstrated by Davis (1991). There remain other types of duplications,
however, that the GA orientation still does not contemplate, and which the SS/PR perspective identifies as
important to eliminate – as discussed in Section 2.4 and in Appendix 2.

 22

RefSet Update Subroutine (To Add x′ to RefSet if it qualifies):
(This subroutine calls the Add Subroutine, specified below, which carries out the
details of adding the solution x′ to Refset.)
Begin Subroutine:
 RefSetCall = RefSetCall + 1
 NewRank = 0
 If bNow = 0 then:
 NewRank = 1

(this indicates that x′ will be recorded as the solution with the first rank,
i.e., the best, since no other solution is yet recorded.)

 Compute Hash0
 Call the Add Subroutine
 End the RefSet Update Subroutine
 Elseif bNow > 0 then:
 (First check x′ against the worst of the bNow best solutions, as follows:)
 If E0 ≤ E(loc(bNow)) and if bNow = bMax then:
 (x′ is not better than the worst, and the list is full, so don't add x′ to RefSet)
 End the RefSet Update Subroutine.
 Else
 Compute Hash0
 Endif
 If E0 > E(loc(1)) then:
 (x′ is the new best solution of all, so record the rank of x′ as NewRank)
 NewRank = 1.
 Else

(go through the solutions x[loc(1)] to x[loc(bNow)] in reverse order, to
test if x′ duplicates a previous solution or is new)

 For i = bNow to 1 (decreasing index order)
 If E(loc(i)) = E0 then:
 DupCheck = DupCheck + 1

(this counts the duplication checks that are not trivially
eliminated by the objective function value)

 If Hash(loc(i)) = Hash0 then:
 FullDupCheck = FullDupCheck + 1
 (check x′ against x[(loc(i)])
 If x′ = x[loc(i)] then:
 FullDupFound = FullDupFound + 1
 End the RefSet Update Subroutine
 (x′ is not added to RefSet)
 Endif
 Endif
 Elseif E(loc(i)) > E0 then:

(by the sequence of the loop, the current i is the largest index i
that satisfies E(loc(i)) > E0 – i.e., x[loc(i)] is the worst solution

 23

that is still better than x′ , so x′ will be ranked as the (i+1)-st
best solution)

 NewRank = i+1
 Call the Add Subroutine
 End the RefSet Update Subroutine
 Endif
 End i

(If the method reaches here, it has gone through the loop above without
finding a solution better than x′ and without finding a duplicate for x′ .
So x′ qualifies as a new best solution, though its evaluation value must
implicitly tie for best.)

 NewRank = 1
 Endif
 Call the Add Subroutine
 Endif
End RefSet Update Subroutine

Now we indicate the subroutine called by the RefSet Update Subroutine. In
addition to the arrays already noted, we include a LastTime(loc0) array (updated at
the end of the following Add Subroutine) where loc0 ranges over the locations loc(i),
i = 1 to bMax. The array LastTime(loc0), which records the last (“most recent”) time
that the solution stored in location loc0 changes its identity, is important for linking
with the routines of Section 4, which are designed to assure no duplicate subsets X of
RefSet are ever generated).

Add Subroutine (to add x′ to RefSet, given that it qualifies):
Begin Subroutine
 RefSetAdd = RefSetAdd + 1

(x′ will be recorded in the location occupied by the current worst solution. In
case bNow < bMax, imagine the “worst” to be the empty solution in the location
loc(bNow + 1), which will become loc(bNow) after incrementing bNow.)

 If bNow < bMax then:
 bNow = bNow + 1
 loc(bNow) = bNow
 Endif

(Next, the location pointers, loc(i), must be updated. First save the pointer to the
solution that is currently worst, because this is the location where x′ will be
stored.)

 loc0 = loc(bNow)
(Now update the location pointers that change, as a result of making x′ the
solution that acquires the rank of NewRank. We only need to change pointers
from NewRank + 1 to bNow, because loc(NewRank) will be updated for x′ ,
below. To avoid destroying proper values, the change must be made in reverse
order.)

 If NewRank < bNow then:

 24

 For i = bNow to NewRank + 1 (in decreasing index order)
 loc(i) = loc(i-1)
 End i
 Endif
 x[loc0] = x′
 (thus x′ is stored in the current location loc0)
 loc(NewRank) = loc0

(x′ will now be accessed as the solution whose rank is NewRank, via the loc
array)

 Hash(loc0) = Hash0.
(Finally, record the “time”, given by NowTime, when the solution in location
loc0 last changed its identity. NowTime is updated elsewhere, as shown later.)

 LastChange(loc0) = NowTime
End of Add Subroutine

A variation on ideas embodied in the preceding routines can be used to provide a
method that checks for and eliminates duplications among solutions that are passed to
the Improvement Method in Steps 2 and 7 of the SS/PR Template. By the philosophy
of the approach developed here, such a weeding out of duplicates in the part of the
overall approach can also be particularly useful, and a pseudo-code for the
corresponding method is provided in Appendix 2.12

6 Choosing Subsets Of The Reference Solutions

We now introduce a special approach for creating different subsets X of RefSet, as a
basis for implementing Step 5 of the SS/PR Template. It is important to note the
SS/PR Template prescribes that the set C(X) of combined solutions (i.e., the set of all
combined solutions that we intend to generate) is produced in its entirety at the point
where X is created. Therefore, once a given subset X is created, there is no merit in
creating it again. This creates a situation that differs noticeably from those
considered in the context of genetic algorithms.

In some scatter search proposals, for example, the set C(X) associated with X
consists of a single (weighted) center of gravity of the elements of X. Once the
center of gravity is created from X, it is preferable to avoid recreating the same subset
X in the future. Other proposals similarly specify a particular set of combined points
to be created from a given subset X. These points may be variable in number, as
from a deterministic algorithm applied to X that terminates when the quality of points
generated falls below a threshold. However, the total number of such points that are

12 A simple refinement can also be introduced in the current routine by identifying the first and last indexes
of nonzero components of x′ during the pass of the components of x′ that identifies Hash0. In case the
hash value check does not disclose that x′ differs from x[loc(i)], the correspondence of these first and last
indexes with those previously saved for x[loc(i)] can also be checked. This allows a full check of x′ to
x[loc(i)] to be restricted to components within the range of these indexes.

 25

retained after an initial screening is usually small. Some path relinking proposals
have a corresponding character (see, e.g., Glover, 1994b).

In such situations, we seek a procedure that generates subsets X of RefSet that
have useful properties, while avoiding the duplication of subsets previously
generated. Our approach for doing this is organized to generate four different
collections of subsets of RefSet, which we refer to as SubSetType = 1, 2, 3 and 4.
The principles we apply to generate these subsets can be applied to create additional
of subsets of a related character. We can also adapt the basic ideas to handle a policy
that, by contrast, allows selected subsets of solutions to be generated a second time —
as where it may be desired to create more than one “brood” of offspring from a given
collection of parents, under conditions where the history of the method suggests that
such a collection should be singled out for generating additional offspring.

A central consideration is that RefSet itself will not be static, but will be changing
as new solutions are added to replace old ones (when these new solutions qualify to
be among the current b best solutions found). The dynamic nature of RefSet requires
a method that is more subtle than one that itemizes various subsets of an unchanging
RefSet. In addition, we wish to restrict attention to a relatively small number of
subsets with useful features, since there are massive numbers of subsets that may be
generated in general. The types of subsets we consider are as follows.

SubsetType = 1: all 2-element subsets.
SubsetType = 2: 3-element subsets derived from the 2-element subsets by

augmenting each 2-element subset to include the best
solution not in this subset.

SubsetType = 3: 4-element subsets derived from the 3-element subsets by
augmenting each 3-element subset to include the best
solutions not in this subset.

SubsetType = 4: the subsets consisting of the best i elements, for i = 5 to
bNow.

The total number of subsets that satisfy the preceding stipulations is usually quite

manageable. For example, if bMax = 10 there are 45 different 2-elements subsets for
SubsetType = 1, and the collections for SubsetType = 2 and 3 each contain a bit less
than 45 additional subsets. All together, SubsetType = 1 to 4 would generate
approximately 130 distinct subsets. If bMax = 20, the total number of different
subsets generated is a little less than 600. Depending on the number of solutions
contained in C(X), and on the amount of time required to generate a given combined
solution and to enhance it by the Improvement Method, the value of bMax can be
increased or decreased, or the types of subsets produced can similarly be changed (to
produce variants or subsets of the four types generated by the process subsequently
indicated).

Since the method will continue to add new solutions to RefSet — until no new
solutions can be found that are better than the bMax best — the number of subsets
generated will typically be larger than the preceding figures. Consequently, a limit is
placed on the number of solutions generated in total, in case the best solutions keep

 26

changing. (A limit may also be placed on the number of iterations that elapse after
one of the top 2 or 3 solutions has changed.) An appropriate cutoff can be selected
by initial testing that gives the cutoff a large value, and by saving statistics to
determine what smaller value is sufficient to generate good solutions.

Rationale

The reason for choosing the four indicated types of subsets of RefSet is as follows.
First, 2-element subsets are the foundation of the first “provably optimal” procedures
for generating constraint vector combinations in the surrogate constraint setting,
whose ideas are the precursors of the ideas that became embodied in scatter search
(see, e.g., Glover, 1965; Greenberg and Pierskalla, 1970). Also, conspicuously,
2-element combinations have for many years dominated the genetic algorithm
literature (in “2-parent” combinations for crossover).

The generation of 2-element subsets also automatically generates (b-2)-element
subsets, as complements of the 2-element subsets. We find the collection of (b-2)-
element subsets less interesting, in the sense that the relative composition of such
subsets tends to be much less varied than that of the 2-element subsets. (An
exception occurs where the excluded elements may significantly affect the nature of
the set C(X).)

Our extension of the 2-element subsets to 3-element subsets is motivated by the
fact that the values 2 and 3 are (proportionally) somewhat different from each other,
and hence we anticipate the 3-element subsets will have an influence that likewise is
is somewhat different than that of the 2-element subsets. However, since the 3-
element subsets are much more numerous than the 2-element subsets, we restrict
consideration to those that always contains the best current solution in each such
subset, which therefore creates approximately the same number of subsets as the 2-
element subsets. A variation would be to replace this best solution with one of the
top several best solutions, chosen pseudo randomly. Likewise, we extend the 3-
element subsets to 4-element subsets for the same reason, and similarly restrict
attention to a subcollection of these that always includes the two best solutions in
each such subset. A simple alternative, which can be easily embedded in the
framework we describe, is to generate all combinations of 3 solutions from the best 6
to be matched with each single remaining solution, or all combinations of 2 solutions
from the best 4 or 5 to be matched with each pair of remaining solutions. Similar
alternatives can be used where the subsets are restricted to 3 elements in total.

As the subsets become larger, the proportional difference in their successive sizes
becomes smaller. The computational effort of handling such subsets also tends to
grow. Hence we have chosen to limit the numbers of elements in these subsets (in
this case to 4). Nevertheless, to obtain a limited sampling of subsets that contain
larger numbers of solutions we include the special subsets designated as SubsetType
= 4, which include the b best solutions as b ranges from 5 to bNow. (Recall that
bNow increases as each new solution is added, until reaching bMax.) Since such
subsets increasingly resemble each other for adjacent values of b as b grows, an
option is to increment b by some fraction of bMax, e.g., bMax/5, instead of by 1.

 27

6.1 Generating the Subsets of Reference Solutions

Each of the following algorithms embodies within it a step that consists of generating
the set of combined solutions C(X) and executing the Improvement Method (e.g., as
proposed in Section 4). Regardless of the form of the Improvement Method used, we
will understand that the Reference Set Update method of the previous section is
automatically applied with it.

To introduce the general approach to create the four types of subsets, we first
briefly sketch a set of four corresponding simple algorithms that could be used in the
situation where RefSet is entirely static (i.e., where the set of bMax best solutions
never changes). These algorithms have the deficiency of potentially generating
massive numbers of duplications if applied in the dynamic setting (where they must
be re-initiated when RefSet becomes modified). However, their simple nature gives a
basis for understanding the issues addressed by the more advanced approach.

In the following, when we specify that a particular solution is to become the
second solution in X, we understand that the current first solution in X is unchanged,
and similarly when we specify that a solution is to become the third (fourth) solution
in X, we understand that the previous first and second (and third) solutions are
unchanged.

Simple Algorithm for Subset Type 1
For i = 1 to bNow - 1
 Let x[loc(i)] be the first solution in X
 For j = i+1 to bNow
 Let x[loc(j)] be the second solution in X
 Create C(X) and execute the Improvement Method
 End j
End i

Simple Algorithm for Subset Type 2
Let x[loc(1)] be the first solution in X
For i = 2 to bNow - 1
 Let x[loc(i)] be the second solution in X
 For j = i+1 to bNow
 Let x[loc(j)] be the third solution in X
 Create C(X) and execute the Improvement Method
 End j
End i

 28

Simple Algorithm For Subset Type 3
Let x[loc(1)] and x[loc(2)] be the first two solutions in X
For i = 3 to bNow - 1
 Let x[loc(i)] be the third solution in X
 For j = i+1 to bNow
 Let x[loc(j)] be the fourth solution in X
 Create C(X) and execute the Improvement Method
 End j
End i

Simple Algorithm for Subset Type 4
For i = 1 to bNow
 Let x[loc(i)] be the ith solution in X
 If i ≥ 5:
 Create C(X) and execute the Improvement Method
End i

6.2 Methods for a Dynamic RefSet

We must create somewhat more elaborate processes than the preceding to handle a
dynamically changing reference set. We first indicate initializations that will be used
to facilitate these processes.

Initialization Step:
For iLoc = 1 to bMax
 LastChange(iLoc) = 0
End iLoc
For SubsetType = 1 to 4
 LastRunTime(SubsetType) = 0
End SubsetType
NowTime = 0
StopCondition = 0
SubsetType = 0

In the iterative application of the steps of the SS/PR Template, we start from
SubsetType = 0, as in the final statement of the Initialization Step, and repeatedly
increase this index in a circular pattern that returns to SubsetType = 1 after reaching
SubsetType = 4. However, the design that follows can be readily adapted to cycle
through the subsets in any other order.

 29

6.3 Arrays for the Subset Generation Method

There are two key arrays for the subset generation method, LastChange(loc(i)) and
LastRunTime(SubsetType), that form the basis for avoiding duplications efficiently.
We describe the function of these arrays, and the associated components that govern
their updates, as follows.

(1) LastChange(loc(i)) – identifies the last (most recent) time that the solution
stored in location loc(i) changed its identity (i.e., the last time a new solution was
written over the old one in this location). More precisely, LastChange(loc(i)) is
assigned the value NowTime when this change occurs. NowTime is increased by 1
each time one of the four algorithms prepares to generate the subsets of the type it
deals with. As a result, NowTime is always 1 more than the value that could have
been assigned to LastChange(loc(i)) on the previous execution of any (other)
algorithm. Thus, the condition LastChange(loc(i)) = NowTime can only hold if a
solution was changed in location loc(i) during the execution of the currrent algorithm
for selecting elements to combine.

(2) LastRunTime(SubsetType) – identifies the last time (the value of NowTime on
the last time) that the Algorithm SubsetType (= 1, 2, 3, or 4) was executed, prior to
its current execution. Thus, for iLoc = loc(i), the condition LastChange(iLoc) <
LastRunTime(SubsetType) means that the last time the solution x[iLoc] changed,
occurred before the last time the Algorithm SubsetType was run. Hence x[iLoc] will
now be the same as when the Algorithm looked at it previously. On the other hand, if
LastChange(iLoc) ≥ LastRunTime(SubsetType), then the solution was changed either
by Algorithm SubsetType itself, or by another algorithm executed more recently, and
so x[iLoc] is not the same as when Algorithm SubsetType looked at it before.

6.4 Subset Generation Method

A basic part of the Subset Generation Method is the Subset Control Subroutine,
which oversees the method and calls other subroutines to execute each Algorithm
SubsetType (for SubsetType = 1 to 4). We indicate the form of this subroutine first.
(The parameter StopCondition that governs the outer loop, which immediately
follows, is initialized to 0 in the Initialization Step. When the cumulative number of
executions of the Improvement Method, as it is applied within the various Algorithm
Subroutines, exceeds a chosen limit, then StopCondition is set to 1 and the overall
method thereby stops.)

Subset Control Subroutine
While StopCondition = 0 do
 SubsetType = SubsetType + 1
 If SubsetType > 4 then SubsetType = 1
 NowTime = NowTime + 1
 iNew = 0
 jOld = 0

 30

(The next loop isolates all new (changed) solutions by storing their locations
in LocNew(i), i = 1 to iNew, and all old (unchanged) solutions by storing
their locations in LocOld(j), j = 1 to jOld. If iNew winds up 0, nothing has
changed. When all algorithms are performed one after another, as here,
regardless of sequence, the condition iNew = 0 means nothing has changed
for any of them, and the method can stop.)

 For i = 1 to bNow
 iLoc = loc(i)
 if LastChange(iLoc) ≥ LastRunTime(SubsetType) then
 iNew = iNew + 1
 LocNew(iNew) = iLoc
 else
 jOld = jOld + 1
 LocOld(jOld) = iLoc
 Endif
 End i
 If iNew = 0 then end the Subset Control Subroutine

(iNew = 0 here implies all combinations of the four types of subsets have
been examined for their current composition without generating any new
solutions, and so the SS/PR Template can terminate as a result of
exhaustively considering all relevant subsets of RefSet in its final
composition.)

 If SubsetType = 1 Call Algorithm 1 Subroutine
 If SubsetType = 2 Call Algorithm 2 Subroutine
 If SubsetType = 3 Call Algorithm 3 Subroutine
 If SubsetType = 4 Call Algorithm 4 Subroutine
 (if StopCondition > 0 stop)

 (Having identified the sets of old and new solutions and generated new
combinations from them, update LastRunTime(SubsetType) to be the current
NowTime value, so that the next time the algorithm is applied,
LastRunTime(SubsetType) will be the last (most recent) time the algorithm
was run.)

 LastRunTime(SubsetType) = NowTime
End do
End Subset Control Subroutine

Next we identify the Algorithm Subroutines. Each Algorithm Subroutine works
on the following principle. A subset X of RefSet can be new if and only if at least
one element of X has not been contained in any previous X for the same SubsetType.
We exploit this by sorting the solutions into old and new components, and executing
a loop that first generates all combinations of new with new, and then a loop that
generates all combinations of new with old. Meanwhile, any solution that is changed
on the present application of the algorithm is excluded from being accessed once it
has changed, because all subsets that include this solution will be generated on a later
pass. To access a solution after it changes its rank, but before the loop is completed,
would create duplications (unless the solution changes again), and in any case may

 31

generate more solutions than necessary. The method generates the least number of
solutions “currently known” to be necessary.

Algorithm 1 Subroutine
Begin Subroutine
 (Currently iNew > 0. If iNew > 1, then look at all combinations of new with new)
 If iNew > 1 then
 For i = 1 to iNew - 1
 iLoc = LocNew(i)
 If LastChange(iLoc) < NowTime then

(the solution in iLoc is still unchanged, so we can use it, otherwise
the mehod ld skips it)

 Let x[iLoc] be the first element of X
 For j = i + 1 to iNew
 jLoc = LocNew(j)
 If LastChange(jLoc) < NowTime then
 Let x[jLoc] be the second element of X
 Create the set C(X) and execute the Improvement Method

(Optional check: if LastChange(iLoc) = NowTime, then
can jump to the end of the "I loop" to pick up the next I,
and generate fewer solutions.)

 Endif
 End j
 Endif
 End i
 Endif
 If jOld > 0 then
 For i = 1 to iNew
 iLoc =LocNew(i)
 If LastChange(iLoc) < NowTime then
 Let x[iLoc] be the first element of X
 For j = 1 to jOld
 jLoc = LocOld(j)
 If LastChange(jLoc) < NowTime then
 Let x[jLoc] be the second element of X
 Create the set C(X) and execute the Improvement Method

(Optional check: if LastChange(iLoc) = NowTime, then
can jump to the end of the “i loop” to pick up the next i,
and generate fewer solutions.)

 Endif
 End j
 Endif
 End i
 Endif
End Subroutine

 32

Algorithm 2 Subroutine
Begin Subroutine
 loc1 = loc(1)
 Let x[loc1] be the first element of X
 If LastChange(loc1) ≥ LastRunTime(SubsetType) then
 (The solution in location loc1 is new, since last time Subroutine was run.)
 For i = 2 to bNow - 1
 iLoc = loc(i)
 If LastChange(iLoc) < NowTime then

(The solution in iLoc is still unchanged, so we can use it, otherwise
the method skips it)

 x[iLoc] is the second element of X
 For j = i + 1 to bNow
 jLoc = loc(j)
 If LastChange(jLoc) < NowTime then
 x[jLoc] is the third element of X
 Create C(X) and execute the Improvement Method

(Optional check: if LastChange(iLoc) = NowTime, then
can jump to the end of the “i loop” to pick up the next i,
and generate fewer solutions.)

 Endif
 End j
 Endif
 End i
 End Algorithm 2 Subroutine (if reach here)
 Else
 (The solution in location loc1 is not new, since last time.)
 (If iNew > 1, then look at all combinations of new with new.)
 If iNew > 1 then
 For i = 1 to iNew - 1
 iLoc = LocNew(i)
 If LastChange(iLoc) < NowTime Then
 x[iLoc] is the second element of X
 For j = i + 1 to iNew
 jLoc = LocNew(j)
 If LastChange(jLoc) < NowTime then
 x[jLoc] is the third element of X
 Create C(X) and execute the Improvement Method

(Optional check: if LastChange(iLoc) = NowTime,
then can jump to the end of the “i loop” to pick up the
next i, and generate fewer solutions.)

 Endif
 End j
 Endif
 End i
 Endif

 33

 If jOld > 1 then
 For i = 1 to iNew
 iLoc =LocNew(i)
 If LastChange(iLoc) < NowTime then
 Let x[iLoc] be the second element of X
 For j = 2 to jOld
 (loc1 is actually also LocOld(1))
 jLoc = LocOld(j)
 If LastChange(jLoc) < NowTime then
 Let x[jLoc] be the third element of X
 Create C(X) and execute the Improvement Method

(Optional check: if LastChange(iLoc) = NowTime,
then can jump to the end of the “i loop” to pick up the
next i, and generate fewer solutions.)

 Endif
 End j
 Endif
 End i
 Endif
 Endif
End Subroutine

The optional checks in Algorithms 1 and 2 are based on the fact that the condition
LastChange(iLoc) = NowTime implies that x[iLoc] has been changed by finding a
new solution with the Improvement Method. No duplications are created if the
algorithm continues its course, using the old version of x[iLoc]. But it is also
legitimate to jump to the end of the "i loop", as indicated, to generate fewer solutions.
Algorithm 2 can also include a more influential check (in the same locations) which
asks if LastChange(loc1) = NowTime, and terminates the current execution of the
algorithm if so. In this case, a variation on the general organization could allow
Algorithm 2 to be re-initiated immediately, since all it subsets will not incorporate a
new "best overall" solution. Similar comments apply to introducing optional checks
within the Algorithm 3 Subroutine, where LastChange(loc2) can also be checked.
We do not bother to include further mention of such options.

Algorithm 3 Subroutine
Begin Subroutine
 loc1 = loc(1)
 loc2 = loc(2)
 Let x[loc1] and x[loc2] be the first two elements of X

If LastChange(loc1) ≥ LastRunTime(SubsetType) or LastChange(loc2) ≥
LastRunTime(SubsetType) then

 (The solution in location loc 1 or in loc2 is new, since last time.)
 For i = 3 to bNow - 1
 iLoc = loc(i)
 If LastChange(iLoc) < NowTime Then

 34

(The solution in ILoc is still unchanged, so we can use it, otherwise
the method skips it.)

 Let x[iLoc] be the third solution in X
 For j = i + 1 to bNow
 jLoc = loc(j)
 If LastTime(jLoc) < NowTime then
 Let x[jLoc] be the fourth solution in X
 Create C(X) and execute the Improvement Method
 Endif
 End j
 Endif
 End i
 End Algorithm 3 Subroutine (if reach here)
 Else
 (Solutions in locations loc1 and loc2 are not new, since last time)
 (If iNew > 1, then we look at all combinations of new with new.)
 If iNew > 1 then
 For i = 1 to iNew - 1
 iLoc = LocNew(i)
 If LastChange(iLoc) < NowTime Then
 Let x[iLoc] be the third solution in X
 For j = i + 1 to iNew
 jLoc = LocNew(j)
 If LastTime(jLoc) < NowTime then
 Let x[jLoc] be the fourth solution in X
 Create C(X) and execute the Improvement Method
 Endif
 End j
 Endif
 End i
 Endif
 If jOld > 2 then
 For i = 1 to iNew
 iLoc =LocNew(i)
 If LastChange(iLoc) < NowTime then
 Let x[iLoc] be the third solution in X
 For j = 3 to jOld
 jLoc = LocOld(j)
 If LastChange(jLoc) < NowTime then
 Let x[jLoc] be the fourth solution in X
 Create C(X) and Execute Improvement Method
 Endif
 End j
 Endif
 End i
 Endif

 35

 Endif
End Subroutine

Algorithm 4 Subroutine
Begin Subroutine
 new = 0
 For i = 1 to 4
 iLoc = loc(i)
 Let x[iLoc] be the ith solution in X
 If LastChange(iLoc) ≥ LastRunTime(SubsetType) then new = 1
 End i
 For i = 5 to bNow
 iLoc = loc(i)
 If LastChange(iLoc) ≥ LastRunTime(SubsetType) then new = 1
 If LastChange(iLoc) < NowTime then
 Let x[iLoc] be the ith solution in X
 If new = 1 then
 Create C(X) and execute the Improvement Method
 Endif
 Endif
 End i
End Subroutine

The preceding subroutines complete the collection for generating subsets of the
Reference Set, without duplication. The comments within the subroutines should be
sufficient to make their rationale visible, and to provide a basis for variations of the
forms previously discussed.

7 Improvement Method

We have already examined some of the issues relevant to designing an
Improvement Method, particularly in reference to exploiting strongly determined and
consistent variables. Such concerns underscore the importance of coordinating
transition neighborhood methods with approaches that make use of constructive and
destructive neighborhoods. Specifically, we re-emphasize that a process of exploiting
strongly determined and consistent variables leads to generating and combining
fragments of solutions, rather than complete solutions, and within such a setting the
reliance on constructive and destructive processes is essential.

A first step toward considering an Improvement Method, therefore, entails an
examination of elements appropriate to include in a constructive phase. (In the
present discussion we bypass consideration of the simultaneous coordination of
constructive and destructive processes, which is a theme of the tabu search
component called strategic oscillation, and which is covered at length in the TS
literature.)

 36

A constructive phase that builds partial solutions into complete solutions is
confronted by the need to decide among multiple alternative moves at each step.
Often the relative attractiveness of such moves can be hard to differentiate except in a
limited local sense. Under these circumstances it is appropriate either to scan
portions of these alternatives in parallel, or else to iteratively generate more than one
complete solution, as a basis for subsequent modification by a transition
neighborhood approach. We first examine issues that are important for iterated
constructive processes, and in later sections focus on parallel procedures, which are
organized to be executed in a transition neighborhood setting as well as a constructive
neighborhood setting.

In spite of their limitations, local evaluations generally reflect features that play a
role in creating good solutions, and we are motivated to concentrate primarily on
making moves with high evaluations. (In problem settings where the information
content of such evaluations is low, and little meaning attaches to the difference
between higher and lower evaluations, it is evidently appropriate to use revised
evaluations that attenuate or otherwise amend original evaluations. In these cases,
supplemental memory-based strategies for distinguishing among alternative choices
become increasingly important.) A straightforward means for emphasizing high
evaluations while simultaneously achieving variation in a constructive phase is either
to adopt a probabilistic TS design, which isolates a subset of the top choices and
weights them probabilistically as a monotone function of their evaluations, or to use
an approach that alters the criteria for selecting moves on different passes in order to
favor evaluations of varying ranks.13

An especially simple manifestation of the latter approach, which might be called a
variable-rank-choice rule, selects only the best (highest evaluation) moves on one
pass, then only the second best moves on another pass, and so on. This type of
iterated approach can be carried beyond a constructive phase to launch a series of
improving phases (where a kth best move, if not improving, is replaced by the current
least improving move). The variable-rank-choice rule offers an experimental basis to
uncover situations where the original evaluations may be misleading to various
degrees, and to induce a useful variation or displacement of the choices under such
circumstances. An apparent variant of this approach is to impose oscillation patterns
on the choices, so that moves of various ranks are selected alternately, in specified
proportions.

A variable-rank-choice is myopic, in the sense that it neglects several central
considerations that can only be uncovered by a memory-based design. This
shortcoming is illustrated by the situation in which choices available at one stage of a
constructive (or transition) process persist for a number of moves, and remain among
the attractive choices. When this occurs, a policy which periodically (or uniformly)

13 The GRASP procedure, which has gained some popularity in recent years, uses the special variant of a
probabilistic TS design where the probability assigned to every member of the chosen subset is the same;
i.e., the choice among these members is random. This strategy is applied in GRASP without reference to
memory or search history, and strictly within the confines of a constructive phase. See, e.g., Feo and
Resende (1995).

 37

chooses second or third best moves may not appreciably change the solution that
results by choosing only the "first best" moves, because the second and third best
moves may also correspond to choices destined to become first best choices on later
iterations (or that were already first best choices on previous iterations). An
appropriate reliance on memory can identify such phenomena, and provide a
foundation for making compensating choices that will assure suitable variability.

Likewise, variable-rank-choice is blind to conditional effects that can be
advantageously exploited by the form of adaptive memory incorporated in TS, as
where a particular choice remains attractive for several steps before it finally becomes
ranked highly enough to be chosen. Given the eventual choice of this move, a revised
sequence of choices my prove advisable, which selects the move at an earlier stage,
and therefore gains the benefit of disclosing modified evaluations of other moves that
may uncover a different set of preferred choices.

In reverse, attractive moves that are not executed, and which become inaccessible
or unattractive later, give evidence of alternatives that provide access to somewhat
different regions of the search space. Tracking the occurrence of unselected moves
of this type gives a means for identifying alternatives that are useful for achieving
diversification. In a related manner, a record of unselected moves that persistently or
recurrently become attractive, over a limited but non-negligible interval, provides a
type of strategy whose relevance is stressed in the TS literature, but which also is
often neglected. Such considerations can readily be integrated with the critical event
memory approach described in section 2.3, which takes account of solutions
previously generated at critical events. The indicated relationships between
evaluations and choices that can be exploited by historical monitoring are the type
that are particularly susceptible to being analyzed by the tool of target analysis
(Glover and Laguna, 1997).

While we have touched only cursorily on such alternatives for creating improved
constructive procedures, we emphasize their relevance for processes that build
fragments of solutions into complete solutions during the application of an SS/PR
approach. In the sections that follow, we turn to a consideration of elements that are
important to the creation of an Improvement Method at stages beyond those primarily
devoted to construction.

7.1 A Filter and Fan Method

There often exist alternative neighborhoods of moves available to compose
improvement methods for various kinds of optimization problems. Experience from
numerous applications suggests that there is merit in using more than one such
neighborhood. For example, a common theme of strategic oscillation is to cycle
among alternative neighborhoods according to various patterns. Strategic oscillation
also commonly operates by cycling through various regions, or “levels” of a given
neighborhood.

The approach of cycling through different levels of a neighborhood is manifest in
two types of candidate list strategies, the Filtration Strategy and the Sequential Fan

 38

Strategy, proposed with tabu search (see, e.g., Glover and Laguna, 1997). The goal
of these strategies is to identify attractive moves with an economical degree of effort.
In addition, however, the Filtration and Sequential Fan strategies offer a useful basis
for converting a simple Improvement Method into a more advanced one. We propose
a way to marry these two candidate list strategies to create a Filter and Fan Method
which provides a convenient form of an Improvement Method for the SS/PR
Template.

We have selected a type of improvement approach that has the convenient feature
of being able to extend or enhance other improvement procedures that may have
independently demonstrated their utility. For example, components of other
procedures – such as the moves they rely on and the evaluations they use to choose
among these moves – can be embedded within the following general approach in an
entirely straightforward manner.

Component Moves

The moves to serve as building blocks for the proposed method will characteristically
be simple types of moves as illustrated by adjacent integer changes for integer
variables (e.g., “flip” moves for 0-1 variables) and by elementary insert or swap
moves for permutation problems. We call the chosen component moves level 1
moves, or 1-moves.

An associated Level 1 Improvement Method can be defined relative to the
1-moves, which operates by segregating a collection of 1-moves by a preliminary
candidate list approach, such as an Aspiration Plus strategy (Glover and Laguna,
1997). A random selection of such a collection is possible, in the interest of
simplification, but at an appreciable risk of reducing overall effectiveness. (When
randomization is used, the initial list should typically be larger than otherwise
required.)

A useful goal for the initial candidate list strategy is to assure that a number of
these 1-moves are among the highest evaluation moves currently available, so that if
none of them is improving, the method is likely to be at a local optimum relative to
these moves. The Level 1 Method then terminates when no moves from its candidate
list are improving moves, thus presumably stopping at a local optimum or a “near”
local optimum (relative to a larger collection of moves that encompasses those of the
candidate list). The candidate list construction for Level 1 can be dynamic to allow
the size of the list to grow when no improving move is found. (The Aspiration Plus
strategy has this character, for example.) Such an optimum makes it possible to assure
that termination will occur at a local optimum, if desired. The Filter and Fan Method
then goes beyond this stopping point to create higher level moves. For this purpose,
we extract a subset M of some number of best moves from those examined by the
Level 1 method when it terminates, where for example |M| = 20 or 40.

General Design.

The general design of the Filter and Fan Method is to isolate a subset M(L) of the
best moves at a given level L, to be used as a basis for generating more advanced

 39

moves at level L+1 when level L fails to yield an improving move. In case L=1, we
choose M(1) to be a subset of M.

Suppose that m is a given L-move from M(L), and let A(m), be a related set of
1-moves (derived from M) so that the result of applying any 1-move m' in A(m), after
applying m will create an (L+1)-move which we denote by m@m'. By restricting
M(L) to consist of a relatively small number of the moves examined at Level L (e.g.,
choosing |M(L)| = 10 or 20), and likewise restricting A(m) to consist of a relatively
small number of 1-moves, the total number of L+1 moves m@m' can be maintained
at a modest size. For example, a steady state choice that always picks |M(L)| = 16 and
|A(m)| = 8 (for each m in M(L)) will generate only 128 (L+1)-moves to be examined
at each level L+1. If none are improving, in this example the 16 best are selected to
compose M(L+1), and the process repeats.

The utility of this design is to avoid the combinatorial explosion of possibilities
that results by generating the set of all possible (L+1)-moves at each step. Instead the
approach filters a subset M(L) of best moves at level L, and for each of these moves
likewise filters a set A(m) of best 1-moves from M. The “fan” that generates
|M(L)||A(m)| potential (L+1)-moves as candidates to examine at Level L+1 is
therefore maintained to be of reasonable size.14

We say that A(m) is derived from M, not only because A(m) may be smaller than
M, but also because some of the moves of M may not be legitimate once the L-move
m in M(L) is executed. The 1-moves available after applying move m may not
precisely correspond to moves of the original set M. For example, if the 1-moves
correspond to flipping the values of 0-1 variables, then a move m may have flipped
values for several variables in M, and the corresponding 1-moves in M will no longer
be accessible. However, it is generally easy to keep a record for each move m in
M(L) that identifies the moves of M that should be excluded from A(m), allowing
A(m) to be composed of the best |A(m)| remaining members of M. Similar comments
apply to moves such as swap moves and insert moves.

A simple steady state version of the Filter and Fan method can be summarized as
follows. Let n0 be the chosen size of the initial M, n1 be the size of each set M(L)
and n2 be the size of each set A(m) (where n1 and n2 do not exceed n0). In many
applications, n0 will be at most 40 and n1 and n2 will be at most 20 (and smaller
values may be preferable). We call this version a strict improvement method because
it does not allow steps that are nonimproving, and therefore terminates at a local
optimum relative to the multilevel moves it employs.

14 The emphasis on controlling computational effort while producing good candidate moves can be
facilitated in some settings by an accelerated (shortcut) evaluation process. This can occur by selecting
members of an initial candidate list that provides the source of M, as illustrated by the use of surrogate
constraint evaluations in place of a lengthier evaluation that identifies the full consequences of a move
relative to all constraints of a problem. Accelerated evaluations can also be applied to isolating M from the
initial candidate list, while reserving more extensive types of evaluations to isolating M(1) from M, and to
deriving A(m) from M for the moves m generated at various levels.

 40

Filter and Fan Strict Improvement Method

1. Generate a candidate list of 1-moves for the current solution x.
(a) If any of the 1-moves are improving: Choose the best member from the list

and execute it to create a new current solution x. (The “best member” may
be the only member if the list terminates with the first improving move
encountered.) Then return to the start of step 1.

(b) If none of the 1-moves are improving: Identify the set M of the n0 best 1-
moves examined. Let M(1) be a subset of the n1 best moves from M, and
let X(1) be the set of solutions produced by these moves. Set L = 1 and
proceed to step 2.

2. For each L-move m in M(L): Identify the associated set A(m) of the n2 best
compatible moves m' derived from M, and evaluate each resulting (L+1)-move
m@m'. (Equivalently, evaluate each solution that results by applying move m'
to the corresponding member of X(L).) When fewer than n2 moves of M are
compatible with move m, restrict consideration to this smaller set of moves in
composing A(m).
(a) If an improving move is found during the foregoing process: Select the

best such move generated (by the point where the process is elected to
terminate), and execute the move to create a new current solution x. Then
return to step 1.

(b) If no improving move is found by the time all moves in M(L) are
examined: Stop if L has reached a chosen upper limit MaxL. Otherwise,
identify the set M(L+1) of the n1 best (L+1)-moves evaluated (and/or
identify the associated set X(L+1)). (If fewer than n1 distinct (L+1)-moves
are available to be evaluated, then include all distinct (L+1)-moves in
M(L+1).) Then set L = L + 1 and return to the start of Step 2.

The identification of M(L+1) (and/or X(L+1)) in Step 2(b) can of course be

undertaken as part of the process of looking for an improving move, rather than
waiting until no improving move is found. The appropriate organization depends on
the setting. Also, an evident option for executing the preceding method is to allow a
variable-state version where n1 and/or n2 decreases as L increases, thereby reducing
the number of candidates for successively higher levels of moves. Another option is
to allow L to change its value by a different pattern. We now examine relevant
considerations for implementing this method.

7.2 Avoiding Duplications

A slight change in the preceding description can improve the approach by avoiding
the generation of a number of duplicate outcomes. Such duplications are especially
likely to arise when generating 2-moves, in the setting where solutions are generated
by flipping 0-1 variables. To illustrate, suppose n0 = n1 = n2 = 20. Thus, initially M
consists of the 20 best 0-1 flips, and we consider the case where none are improving.
Then at Step 2, having chosen M(1) = M (since n1 = n0), the method as described

 41

would select each move m from M(1) and extend it by applying a compatible 1-move
m' taken from A(m), where in this case A(m) consists of all of M excluding the single
flip that produced m. Thus, each move m in M(1) would be matched with the 19 other
1-moves that constitute flips other than the one embodied in m. Over the 20 elements
of M(1) this yields 20X19 = 380 possibilities to evaluate. But this is double the
number that is relevant, since each flip of two variables ix and jx will be generated
twice — once when the ix flip is in M(1) and the jx flip is in A(m), and once when
the jx flip is in M(1) and the ix flip is in A(m). Such duplication can easily be
removed by restricting a flip of two variables ix and jx so that j > i, where ix
belongs to M(1) and jx belongs to A(m). This indexing restriction may alternately
be applied after the flips are sorted in order of their attractiveness. In either case, the
result may be viewed as restricting the definition of A(m).

Potential duplications for other types of moves can similarly be easily avoided at
the level L = 1, where 2-moves are being generated in Step 2. In the case of swap
and insert moves, a more balanced set of options can be created by restricting the
number of moves recorded in M that involve any given element (or position). For
example, if 5 of the 20 best swap moves involve swapping a given element i, then it
may be preferable to record only the 2 or 3 best of these in M, and therefore complete
the remainder of M with moves that may not strictly be among the 20 best.

As L grows larger, the chance for duplications drops significantly, provided they
have been eliminated at the first execution of Step 2. Consequently, special
restrictions for larger values of L can be disregarded. Instead, it is easier to screen for
duplications at the point where a move becomes a candidate to include in M(L+1) (or
equivalently, the associated solution becomes a candidate to include in X(L+1)). The
method for updating the Reference Set, given in the Section 3, can be used as a
design to conveniently identify and eliminate such duplications in the present context
as well.15

7.3 Move Descriptions

The influence of move descriptions, where the same move can be characterized in
alternative ways, can affect the nature of moves available independently of the
neighborhood used. This phenomenon is worth noting, because standard analyses
tend to conceive the neighborhood structure as the sole determinant of relevant
outcomes. The phenomenon arises in the Filter and Fan method because the move
description implicitly transmits restrictions on deeper level moves in a manner similar
to the imposition of tabu restrictions in tabu search. Thus, an implicit memory

15 This can be made simpler by recording “incremental solutions” – or more precisely the representations of
solutions in X(L) that result when the current solution x is represented as the zero vector – since these will
generally have few nonzero components, and may be stored and accessed more quickly than complete
solution vectors.

 42

operates by means of the attributes of the moves considered, and these attributes
depend on the move description.

To illustrate, a description that characterizes an insert move to consist of inserting
element i in position p (and shifting other elements appropriately) can yield a
different outcome, once intervening moves are made, than a description that
characterizes the same move as inserting element i immediately before an element v.
(Note that a more restrictive description, such as specifying that the move consists of
inserting element i between elements u and v, may render the move impossible once
either u or v changes its position.)

The phenomenon can be usefully demonstrated for swap moves by the situation
where two moves in M are respectively characterized as swapping elements i and j
and swapping elements i and k. After performing the first swap, the second will
receive a changed evaluation, since i is no longer in the same position. If instead the
same moves are characterized as swapping the elements in positions p and q, and in
positions p and r (where elements i, j and k are currently in these positions), then the
result of the first swap gives a different outcome for the second swap than the one
illustrated previously; that is, the second swap now corresponds to swapping
elements j and k rather than i and k. (Still another outcome results if a swap is
characterized as a double insert move, e.g., as inserting an element i immediately
after the current predecessor of j and inserting j immediately after the current
predecessor of i.)

A preferable description of course depends in part on the nature of the problem.
An interesting possibility is to allow two (or more) move characterizations, and then
to choose the one in a given situation that yields the best result. This is analogous to
allowing different solution attributes to define potential restrictions by the attribute-
based memory of tabu search.

By the same token, it may be seen that greater flexibility can be obtained simply
by relaxing the definition of a move. For example, in the setting of 0-1 problems,
instead of characterizing M as a set of value-specific flips (as illustrated by
stipulating that jx should change from 0 to 1), we can allow M to be value-
independent (as illustrated by stipulating that jx should change to 1 - jx). The value
-independent characterization allows greater latitude for generating moves from M,
and is relevant as L grows beyond the value of 1. Such a characterization should be
accompanied by a more explicit (and structured) use of tabu search memory,
however, to control the possibility of cycling. The value-specific characterization is
sufficiently limiting to avoid this need in the present illustration.

Another degree of latitude exists in deriving A(m) from M. Suppose the moves of
M are denoted m(1), m(2), ..., m(u), where the moves with smaller indexes have
higher evaluations. If we stipulate that A(m) should consist of the r best of these
moves, restricted to those that are compatible with m, we may choose to avoid some
computation by ordering M in advance, as indicated, and then simply selecting the
first r compatible members to compose A(m). However, since the relative
attractiveness of the moves in M may change once the move m is made, an alternative
strategy is instead to examine some larger number of compatible members m' of M to

 43

improve the likelihood of including the “true r best” options for the compound moves
m@m'. This of course does not change the form of the method, since it amounts to
another possibility for choosing the size of |A(m)|. However, this observation
discloses that it may be preferable to choose the size of |A(m)| to be larger relative to
the size of |M(L)| than intuition may at first suggest.

7.4 Definitions of 1-moves and the Composition of M

It is entirely possible in the application of the Filter and Fan Method that a 1-move
may be defined in such a way to produce an infeasible solution, but a coordinated
succession of 1-moves will restore feasibility. A simple example is provided by the
graph partitioning problem, where feasible solutions consist of partitioning a set of 2n
nodes into two sets that contain n nodes each. A 1-move that consists of swapping
two nodes that lie in different sets will maintain feasibility, but a 1-move that consists
of moving a node from one set to the other will not. Nevertheless, since the second
(simpler) 1-moves are many fewer in number, a candidate list strategy that identifies
attractive moves of this type, differentiated according to the set in which they
originate, also provides a useful basis for composing compound moves by the Filter
and Fan Method. In this situation, the successive 1-moves must alternately be chosen
from different sets, and feasible solutions only occur for even values of L. Such
implementations are easily accommodated within the general framework, and we do
not bother to introduce more complicated notation to represent them.

Similarly, a method that applies 0-1 flips to an integer programming problem may
allow M to include flips that create infeasibility (as in a muldimensional knapsack
problem where any flip from 0 to 1 will drive a “boundary solution” infeasible).
Rather than avoiding moves that produce infeasibility, the process may make
provision for an infeasibility generated at a level L to be countered by focusing on
moves to recover feasibility at level L + 1. (The focus may be extended to additional
levels as necessary.)

A related but more advanced situation arises in ejection chain strategies where
1-moves may be defined so that no sequence of them produces a feasible solution. In
this type of construction a reference structure guides the moves selected to assure that
a feasible solution can always be generated by one or more associated trial solutions
(see, e.g., Glover, 1992; Rego 1996; Rego and Roucairol, 1996). In these instances
the Filter and Fan Method can accordingly be modified to rely on the trial solutions
as a basis for evaluating the L-moves generated.

The composition of M can be affected by an interdependency among
subcollections of moves. In certain pivot strategies for network flow optimization,
for example, once the best pivot move associated with a given node of the network is
executed, then the quality of all other moves associated with the node deteriorates.
Thus, instead of choosing M to consist of the n0 best moves overall, which could
possibly include several moves associated with the same node, it can be preferable to
allow M to include only one move for any given node. More generally, M may be
restricted by limiting the numbers of moves of different categories that compose it.

 44

The potential to modify M, M(L) and A(m) as the method progresses can be
expanded by allowing these sets to be “refreshed” by a more extensive examination
of alternatives than those earmarked for consideration when L = 1. For example, in
some settings the execution of a move m may lead to identifying a somewhat
restricted subset of further moves that comprise the only alternatives from which a
compound improving move can be generated at the next level. In such a case, M and
A(m) should draw from such alternatives even though they may not be encompassed
by the original M. Such an expansion of M and its derivative sets must be carefully
controlled to avoid losing the benefit of reducing overall computation that is provided
by a more restricted determination of these sets.

Allowing for such an expansion can increase the appropriate value of MaxL. Or
inversely, the reliance on smaller sizes of M, M(L) and A(m) can decrease the
appropriate value of MaxL. A reasonable alternative is to determine MaxL indirectly
by a decision to terminate when the quality of the best current L-moves (or of the 1-
moves that are used to generate these L-moves) drops below a chosen threshold.
These considerations are relevant to the “partial refreshing” process of the Multi-
Stream variant, described in the next section.

7.5 Advanced Improvement Alternatives

The preceding Strict Improvement version of the Filter and Fan method has a
conspicuous limitation that can impair the quality of the solutions it produces. In the
absence of applying a refreshing option, which can entail a considerable increase in
computation or complexity, the merit of the set M as the source of the sets M(L) and
A(m) diminishes as L grows. This is due to the fact that M is composed of moves
that received a high evaluation relative to the current solution before the
compounding effects of successive 1-moves is considered, and as these moves are
drawn from M for progressively larger values of L, the relevance of M as the source
of such moves deteriorates. Under such circumstances the value of MaxL will
normally not be usefully chosen to be very large (and a value as small as 4 or 5 may
not be atypical).

This limitation of the strict improvement method can be countered by one of three
relatively simple schemes:

(1) A Shift-and-Update variant.
(2) A Diversification variant.
(3) A Multi-Stream variant.

We examine these three variants as follows.

Shift-and-Update Variant

The Shift-and-Update method operates by choosing a nonimproving move when the
method would otherwise terminate, but shifting the outcome away from the lowest
levels to insure that the choice will yield a new solution that lies some minimum
number of 1-moves “away from” the current solution x. The new solution is then

 45

updated to become the current solution, and the method repeats. The method can be
described by the following rule.

Shift-and-Update Rule

Identify a value MinL such that 1 < MinL ≤ MaxL. When no
improvement is found upon reaching L = MaxL, select the best
solution found over the levels L ≥ MinL. Then specify this solution to
be the current solution x and return to the beginning of Step 1.

Simple recency-based tabu search memory can be used with this rule to keep from

returning to a preceding solution and generally to induce successively generated
solutions to continue to move away from regions previously visited. This variant
creates a degree of diversification which may be increased by restricting attention to
value-specific move descriptions, so that each set M(L) will be progressively farther
removed from M(1).

Diversification Variant

A more ambitious form of diversification, which can be applied independently or
introduced as a periodic alternative to the Shift-and-Update approach, operates by
temporarily replacing the steps of the Filter and Fan Method with a series of steps
specifically designed to move away from regions previously visited. We express this
approach by the following rule.

Diversification Rule

Introduce an explicit Diversification Stage when the approach fails to
find an improvement (and terminates with L = MaxL). In this stage
change the evaluator to favor new solutions whose attributes differ
from those of solutions previously encountered, and execute a chosen
number MinL of successive 1-moves guided by the changed evaluator.
Immediately following this stage, the next pass of the Filter and Fan
Method (starting again from Step 1 with a new x) uses the normal
evaluator, without a diversification influence.

This diversification approach can use tabu search frequency memory to encourage

moves that introduce attributes that were rarely or never found in solutions previously
generated, and similarly to encourage moves that eliminate attributes from the current
solution that were often found in previous solutions. An alternative is to apply the
Diversification Stage directly within the Filter and Fan structure, where M and its
derivative sets are generated by keeping the value of n0, and especially the values n1
and n2, small. The evaluator in this case may alternatively be a composite of the
normal evaluator and a diversification evaluator, with the goal of producing solutions
that are reasonably good as well as somewhat different from previous solutions.
Then the values of n0, n1 and n2 may be closer to those during a non-diversification
stage. For a simpler implementation, instead of using frequency memory in the

 46

Diversification Stage, the approach can be applied as noted in Section 1 by
introducing a Post-Improvement step that uses the Diversification Generator.

Multi-Stream Variant

The Sequential Fan candidate list strategy embodies an additional element, not yet
considered, that consists of generating several solution streams simultaneously. The
inclusion of this element in the Filter and Fan Method produces a method that
increases the likelihood of finding improved solutions. The ideas underlying this
variant may be sketched in overview as follows.

Starting from the current solution x in Step 1 of the Filter and Fan Method, the
approach selects a small number s of the best moves from the set M. Each selected
move is allowed to initiate a different stream by creating an associated set of
additional moves to launch the rest of the Filter and Fan Method. The outcome
effectively shifts the Filter and Fan Method by one step, so that the solutions
produced by these s moves take the place of solution x to produce additional levels of
moves.

Specifically, let x[i], i ∈ S = {1,...,s} denote the solutions produced by the s best
moves derived from x. The evaluations for each x[i] are updated to generate a
refreshed candidate list for each. Let M(0:i) denote the set of n0 best 1-moves from
the candidate list created for x[i] (in the same way that M represents the set of n0 best
1-moves from the candidate list created for x). Similarly, let M(L:i) and X(L:i), i ∈
S, denote the sets of moves and corresponding sets of solutions for an arbitrary level
L ≥ 1.

The Multi-Stream variant then operates exactly as the single stream variant, by
allowing each x[i] for i ∈ S to take the role of x, except that the computation is
restricted in a special way. The purpose of this restriction is to allow the Multi-
Stream variant to require only slightly more effort than the single stream variant,
except for the initial step that identifies a fresh candidate list for each x[i]. (To
achieve greater speed, an option is to forego this identification and instead rely on
choosing each M(0:i) as a subset of an enlarged set M generated for x. The relevance
of this alternative is determined by considerations discussed in Section 3.)

The restricted treatment of the sets M(L:i) at each stage of the Multi-Stream
variant produces the following modifications of Steps 1 and 2 of the Filter and Fan
Method.

Multi-Stream Implementation

1A. (Modification of step 1.)
(a) As in the original step 1(a), return to the start of step 1 with a new solution

x if an improving move is identified while examining the candidate list for
x. Similarly, if no such improving move is found, but an improving move
is identified in the process of examining the candidate list for one of the
solutions x[i], i ∈ S, then choose the best such move (up to the point where
the process is elected to discontinue), and return to the start of step 1.

 47

(b) If no improving moves are found in step 1A (a), then amend the approach
of the original step 1 (b) as follows. Instead of creating each set M(1:i) as
the n1 best moves from M(0:i), coordinate the streams so that the entire
collection M(1:i), i ∈ S, retains only the n1 best moves from the collection
M(0:i), i ∈ S. (Thus, on average, each M(1:i) contains only n1/s moves.
Some of these sets may be empty.) Then set L = 1 and proceed to step 2A.

2A. (Modification of step 2). Consider each i ∈ S such that M(L:i) is not empty. For
each L-move in M(L:i) identify the associated set A(m) of the n2 best compatible 1-
moves taken from M(0:i), to produce candidate (L+1)-moves of the form m@m' for
m' ∈ A(m).

(a) If an improving (L+1)-move is found, select such a move as in the original
step 2(a) and return to the start of step 1 with a new x.

(b) If no improving move is found while examining the set of moves in the
collection M(L:i), i ∈ S: Stop if L has reached MaxL. Otherwise, identify
the collection M(L+1:i), i ∈ S, to consist of the best n1 moves generated
from the entire collection M(L:i), i ∈ S. Then set L = L + 1 and return to
the start of step 2A.

The Multi-Stream variant requires some monitoring to assure that the sets M(L:i)

do not contain duplicate L-moves (i.e., the sets X(L:i) do not contain duplicate
solutions), or to assure that such duplications are removed when they occur. Simple
forms of TS memory can be used for this purpose, or again the type of screening used
to update the set of Reference Solutions for the SS/PR Template (as described in
Section 3) can be employed with the method. Special restrictions for level L = 1, as
previously noted for the single-stream case discussed in the first part of Section 5, can
be readily extended to the Multi-Stream case.

The Multi-Stream approach can be joined with the Shift-and-Update variant or the
Diversification variant, and is particularly susceptible to being exploited by parallel
processing.

8 Conclusions

This paper is intended to support the development of scatter search and path relinking
methods, by offering highly specific procedures for executing component routines.
Included are proposals for new diversification generators and for special processes to
avoid generating or incorporating duplicate solutions at various stages. These
developments point to the relevance of including adaptive memory designs of the
form proposed in connection with tabu search. We have also undertaken to indicate a
type of Improvement Method that exploits the marriage of two TS candidate list
strategies – the Filtration and Sequential Fan strategies – that invite further
examination in their own right. While there are additional ways to implement scatter
search and path relinking, the SS/PR Template and its subroutines offer a potential to

 48

facilitate the creation of initial methods and to reduce the effort involved in creating
additional refinements.

 49

REFERENCES
1. Consiglio, A. and S.A. Zenios (1996). “Designing Portfolios of Financial Products via

Integrated Simulation and Optimization Models,” Report 96-05, Department of Public
and Business Administration, University of Cyprus, Nicosia, CYPRUS, to appear in
Operations Research. [http://zeus.cc.ucy.ac.cy/ucy/pba/zenios/public.html]

2. Consiglio, A. and S.A. Zenios (1997). "a Model for Designing Callable Bonds and its
Solution Using Tabu Search." Journal of Economic Dynamics and Control 21, 1445-1470.
[http://zeus.cc.ucy.ac.cy/ucy/pba/zenios/public.html]

3. Crowston, W.B., F. Glover, G.L.Thompson and J.D. Trawick (1963). "Probabilistic and
Parametric Learning Combinations of Local Job Shop Scheduling Rules," ONR Research
Memorandum No. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA

4. Cung, V-D., T. Mautor, P. Michelon, A. Tavares (1996). “Scatter Search for the
Quadratic Assignment Problem”, Laboratoire PRiSM-CNRS URA 1525.
[http://www.prism.uvsq.fr/public/vdc/CONFS/ieee_icec97.ps.Z]

5. Davis, L., ed. (1991). Handbook of Genetic Algorithms, Van Nostrand Reinhold.
6. Feo, T.A. and M.G.C. Resende, (1995). “Greedy Randomized Adoptive Search

Procedures,” Journal of Global Optimization, 6, 109-133.
7. Fleurent, C., F. Glover, P. Michelon and Z. Valli (1996). “A Scatter Search Approach for

Unconstrained Continuous Optimization,” Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, 643-648.

8. Freville, A. and G. Plateau (1986). "Heuristics and Reduction Methods for Multiple
Constraint 0-1 Linear Programming Problems," European Journal of Operational
Research, 24, 206-215.

9. Freville, A. and G. Plateau (1993). "An Exact Search for the Solution of the Surrogate
Dual of the 0-1 Bidimensional Knapsack Problem," European Journal of Operational
Research, 68, 413-421.

10. Glover, F. (1963). "Parametric Combinations of Local Job Shop Rules," Chapter IV,
ONR Research Memorandum no. 117, GSIA, Carnegie Mellon University, Pittsburgh,
PA.

11. Glover, F. (1965). “A Multiphase Dual Algorithm for the Zero-One Integer Programming
Problem,” Operations Research, Vol 13, No 6, 879.

12. Glover, F. (1975). "Surrogate Constraint Duality in Mathematical Programming,"
Operations Research, 23, 434-451.

13. Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints,”
Decision Sciences, Vol 8, No 1, 156-166.

14. Glover, F. (1992). “Ejection Chains, Reference Structures and Alternating Path Methods
for Traveling Salesman Problems,” University of Colorado. Shortened version published
in Discrete Applied Mathematics, 1996, 65, 223-253. [http://spot.colorado.edu/~glover
(under Publications)]

15. Glover, F. (1994a). “Genetic Algorithms and Scatter Search: Unsuspected Potentials,”
Statistics and Computing, 4, 131-140. [http://spot.colorado.edu/~glover (under
Publications)]

16. Glover, F. (1994b). “Tabu Search for Nonlinear and Parametric Optimization (with Links
to Genetic Algorithms),” Discrete Applied Mathematics, 49, 231-255.
[http://spot.colorado.edu/~glover (under Publications)]

17. Glover, F. (1995). “Scatter Search and Star-Paths: Beyond the Genetic Metaphor,” OR
Spectrum, 17, 125-137. [http://spot.colorado.edu/~glover (under Publications)]

18. Glover, F., J. P. Kelly and M. Laguna (1996). “New Advances and Applications of
Combining Simulation and Optimization,” Proceedings of the 1996 Winter Simulation

 50

Conference, J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain (Eds.), 144-152.
[http://spot.colorado.edu/~glover (under OptQuest heading)]

19. Glover, F. and M. Laguna (1997). Tabu Search, Kluwer Academic Publishers.
[http://spot.colorado.edu/~glover (under Tabu Search heading)]

20. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning, Reading, Massachusetts: Addison-Wesley.

21. Greenberg, H. J. and Pierskalla, W.P. (1970). “Surrogate Mathematical Programs,”
Operations Research, 18, 924-939.

22. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

23. Karwan, M.H. and R.L. Rardin (1976). "Surrogate Dual Multiplier Search Procedures in
Integer Programming," School of Industrial Systems Engineering, Report Series No. J-77-
13, Georgia Institute of Technology.

24. Karwan, M.H. and R.L. Rardin (1979). "Some Relationships Between Lagrangean and
Surrogate Duality in Integer Programming," Mathematical Programming, 17, 230-334.

25. Kelly, J., B. Rangaswamy and J. Xu (1996). “A Scatter Search-Based Learning Algorithm
for Neural Network Training,” Journal of Heuristics, Vol. 2, pp. 129-146.

26. Laguna, M. and R. Marti (1997). “GRASP and Path Relinking for 2-Layer Straight Line
Crossing Minimization,” Research Report, University of Colorado
[http://www.bus.colorado.edu/Faculty/Laguna/Papers/crossmin.html]

27. Laguna, M. (1997). “Optimizing Complex Systems with OptQuest,” Research Report,
University of Colorado, [http://www.bus.colorado.edu/Faculty/Laguna/Papers]

28. Laguna, M., R. Martí and V. Campos (1997). “Tabu Search with Path Relinking for the
Linear Ordering Problem,” Research Report, University of Colorado.
[http://www.bus.colorado.edu/Faculty/Laguna/Papers/lop.html]

29. Muhlenbein, H. (1997). "The Equation for the Response to Selection and its Use for
Prediction," to appear in Evolutionary Computation. [http://set.gmd.de/AS/ga/ga.html]

30. Rana, S. and D. Whitley (1997). “Bit Representations with a Twist,” Proc. 7th
International Conference on Genetic Algorithms, T. Baeck ed. pp: 188-196, Morgan
Kaufman. [http://www.cs.colostate.edu/~whitley/Pubs.html]

31. Rego, C. (1996). “Relaxed Tours and Path Ejections for the Traveling Salesman
Problems,” to appear in the European Journal of Operational Research.
[http://www.uportu.pt/~crego]

32. Rego, C. and C. Roucairol (1996). “A Parallel Tabu Search Algorithm Using Ejection
Chains for the Vehicle Routing Problem,” in Meta-Heuristics: Theory & Applications,
661-675, I.H. Osman and J.P. Kelly, (eds.), Kluwer Academic Publishers.
[http://www.uportu.pt/~crego]

33. Reeves, C.R. (1997). "Genetic Algorithms for the Operations Researcher," Journal on
Computing, Vol 9, No 3, 231-250 (with commentaries and rejoinder).

34. Rochat, Y. and É. D. Taillard (1995). “Probabilistic diversification and intensification in
local search for vehicle routing”. Journal of Heuristics 1, 147-167.
[http://www.idsia.ch/~eric]

35. Taillard, É. D. (1996). “A heuristic column generation method for the heterogeneous
VRP”, Publication CRT-96-03, Centre de recherche sur les transports, Université de
Montréal. To appear in RAIRO-OR. [http://www.idsia.ch/~eric]

36. Whitley, D. and J. Kauth, (1988). “GENITOR: A Different Genetic Algorithm,”
Proceedings of the 1988 Rocky Mountain Conference on Artificial Intelligence.

 51

37. Whitley, D. (1989). The GENITOR Algorithm and Selective Pressure: Why Rank Based
Allocation of Reproductive Trials is Best, Morgan Kaufmann, J. D. Schaffer, ed., pp. 116-
121.

38. Yamada, T. and C. Reeves (1997). “Permutation Flowshop Scheduling by Genetic Local
Search,” 2nd IEE/IEEE Int. Conf. on Genetic Algorithms in Engineering Systems
(GALESIA ’97), pp. 232-238, Glasglow, UK.

39. Yamada, T. and R. Nakano (1996). “Scheduling by Genetic Local Search with Multi-Step
Crossover,” 4th International Conference on Parallel Problem Solving from Nature, 960-
969.

 52

APPENDIX 1 Construction-by-Objective: Mixed Integer and
Nonlinear Optimization

The generality of the zero-one diversification generators of Section 3 can be
significantly enhanced by a construction-by-objective approach, which makes it
possible to generate points that satisfy constraints defining a polyhedral region. This
approach is particularly relevant for mixed integer programming (MIP) problems and
also for nonlinear optimization problems that include linear constraints. Within the
MIP context, the resulting solutions can further be processed by standard supporting
software to produce associated points that satisfy integer feasibility conditions.

The approach stems from the observation that a specified set of vectors produced
by a zero-one diversification generator can instead be generated by introducing
appropriately defined objective functions which are optimized over the space of 0-1
solutions. These same objective functions can then be introduced and optimized,
either exactly or heuristically, over other solution spaces, to create a more general
process for generating trial solutions.

Denote the set of x vectors that satisfy a specified set of constraining conditions by
XC, and denote the set of zero-one vectors by)1,0(X . We then identify a
construction function f(x) relative to a complementary pair of 0-1 solutions x′ and
x ′′ so that

=′x argmax))1,0(:)((Xxxf ∈
=′′x argmin))1,0(:)((Xxxf ∈ .

Such a function can be given by any linear function):()(Njfxf j ∈Σ= , where

jf > 0 if 1=′jx and jf < 0 if 0=′jx . Let H-argmax and H-argmin denote heuristic
counterparts of the argmax and argmin functions, which are based on applying
heuristic methods that approximately maximize or minimize f(x) over the more
complex space XC. Then we define solutions xMax and xMin in XC that correspond
to x′ and x ′′ in X(0,1) by

=xMax H-argmax):)((XCxxf ∈
=xMin H-argmin):)((XCxxf ∈

If f(x) is a linear function as specified above, and XC corresponds to a bounded
feasible linear programming (LP) region, which we denote by XLP, then the method
that underlies H-argmax and H-argmin can in fact be an exact method for LP
problems, to produce points xMax and xMin that are linear optima over XLP. This
observation provides the foundation for a procedure to generate trial solutions for
MIP problems.

Following the scatter search strategy of generating weighted centers of selected
subregions, we apply the construction-by-objective approach by first identifying a
small collection of primary centers. These constitute simple centers given by the
midpoints of line segments that join pairs of points xMin and xMax, together with the

 53

center of all such points generated. Additional secondary centers are then produced
by an accelerated process that does not rely on the exact solution of LP problems, but
employs the primary centers to create approximate solutions. Both processes are
accompanied by identifying subcenters, which are weighted centers of subregions
composed by reference to the primary and secondary centers, and include the
boundary points xMax and xMin.

Method to Create Primary Centers

1. Identify a construction function f(x) and initialize the set PC of primary centers
and the set SubC of subcenters to be empty. Apply a Diversification
Generator to produce a small collection of diversified points)1,0(Xx ∈′ .
For each point generated, execute the following steps.

2. Identify points xMax and xMin by maximizing and minimizing f(x) over XLP.
3. Let xCenter = (xMax + xMin)/2 and add xCenter to PC. Also, create associated

subcenters xSubCenter = xMax + w(xMin - xMax), where the scalar weight
w takes the values 0, 1/4, 3/4 and 1, and add these subcenters to the set
SubC.

4. After the chosen x' vectors have been generated and processed, create a final
point xCenter* which is the mean of all points xMax and xMin generated,
and add xCenter* to PC.

The accelerated process for generating secondary centers, which augments the
preceding method, continues to rely on a zero-one diversification generator to create
0-1 points)1,0(Xx ∈′ , but bypasses LP optimization. The 0-1 points are first
mapped into points of an associated region X(0,U), where U is a vector of upper
bounds chosen to assure that Ux ≤≤0 is satisfied by all solutions ∈x XLP. Then
each point)1,0(Xx ∈′ produces a corresponding point)1,0(XxTest ∈ by specifying

that 0=′jx becomes 0=jxTest , and 1=′jx becomes jj UxTest = .
Since these created points),0(UXxTest ∈ are likely to lie outside XLP, we map

them into points of XLP by reference to the elements of PC. For a given xTest and a
given primary center ∈xCenter PC, identify the line

)()(xCenterxTestwxCenterwL −+=
where w is a scalar parameter. Then a simple calculation identifies the values

∈=)(:(wLwMaxwMax XLP)
∈=)(:(wLwMinwMin XLP)

which are respectively positive and negative, in the usual condition where xCenter
does not lie on the boundary of XLP. The associated points of XLP, which are given
by

xNear = L(wMax)
xFar = L(wMin),

constitute the two points of XLP nearest to and farthest from xTest on the line
through xCenter.

 54

For a given point xTest, several primary centers xCenter are chosen, thus
generating several associated points xNear and xFar, which are accumulated in sets
we denote by NearSet and FarSet. We then use the function f(x) to identify which of
the points NearSetxNear ∈ may take the role of xMax and which of the points

FarSetxFar ∈ may take the role of xMin. In this case, xMax and xMin are not
determined by solving a linear program, but by identifying the special sets NearSet
and FarSet, and picking the points that qualify as best — i.e, that yield the maximum
and minimum values of f(x) over these sets of candidates. The result may be viewed
as a heuristic approximation to solving the linear programs that maximize and
minimize f(x) over XLP. The process may be described as follows.

Method for Generating Secondary Centers

1. Generate a collection of points)1,0(Xx ∈′ and map each into an associated
point),0(UXxTest ∈ . Begin with the set SC of secondary solutions
empty.

2. For each xTest, choose one or more elements xCenter from PC, including
xCenter*.

3. For each xCenter chosen, identify the pair of solutions xNear and xFar (by
reference to xCenter and xTest), and let NearSet and FarSet respectively
denote the sets that consist of these xNear and xFar solutions. Then select
xMax and xMin by defining

xMax = argmax(f(xNear): NearSetxNear ∈)
xMin = argmin(f(xFar): FarSetxFar∈)

4. Let xNewCenter = (xMax + xMin)/2, and add xNewCenter to SC. Also, create
associated subcenters given by xSubCenter = xMax+ w)(xMaxxMin − , as
the scalar weight w takes the values 0, 1/4, 3/4 and 1, and add these to
SubC.

An alternative to selecting xMax and xMin by reference to f(x) is to choose these

solutions to be those that respectively lie closest to and farthest from xTest, according
to a chosen distance metric D, such as given by the L1 or L2 norm. In this case we
define

xMax = argmin(D(xTest,xNear): NearSetxNear ∈)
xMin = argmax(D(xTest,xFar): FarSetxFar ∈)

The determination of xMax in this way can also be used to map an LP-infeasible
point xTest, such as one that is generated by a scatter search combination process,
into an LP-feasible point xMax, similarly using various selected points xCenter as a
basis for determining associated points xNear that are candidates for identifying
xMax.

It is possible to circumvent the need to identify the vector U as a foundation for
determining xTest by creating xTest as a vertex of a unit hypercube that contains
xCenter as its midpoint, instead of as a vertex of the (0,U) region. Specifically, we
may define the components of xTest to be given by

 55

5.+= jj xCenterxTest if 1=jx
5.−= jj xCenterxTest if .0=jx

Then xNear and xFar are defined as earlier, so that xNear becomes the farthest
feasible point from xCenter in the positive direction on the ray from xCenter through
xTest, and xFar becomes the farthest feasible point from xCenter in the negative
direction on this ray.

To take advantage of generating larger numbers of points x′ by the
Diversification Generator, the foregoing process may be modified to create each
secondary center from multiple xTest points. Specifically, for a chosen number
TargetNumber of such points, accumulate a vector xSum that starts at 0 and is
incremented by xSum = xSum + xMax + xMin for each pair of solutions xMax and
xMin identified in Step 3 of the foregoing procedure. Once TargetNumber of such
points have been accumulated, set xNewCenter = xSum/TargetNumber, and start
again with xSum equal to the zero vector. The overall primary center xCenter* may
optionally be updated in a similar fashion.

The values of w for generating subcenters can be varied, and used to generate
more or fewer points. Also, it is possible to use more than one construction function
f(x) to create additional points for the preceding approach. For MIP problems, the
original objective function can be used to give the general structure for defining a
seed solution. The process for transforming the points ultimately selected into
solutions that are also integer feasible is examined next.

Creating Reference Solutions.

The primary centers, secondary centers and subcenters provide the source solutions
which, after improvement, become candidates for the set RefSet of reference
solutions to be combined by scatter search. To create an initial RefSet, we cull out an
appropriately dispersed subset of these source solutions by creating a precursor set
PreRefSet, whose members will be made integer-feasible and hence become full
fledged candidates for RefSet This may be done by starting with the primary center
xCenter* as the first element of PreRefSet, and then applying the criterion indicated
in Section 3 to choose each successive element of PreRefSet to be a source solution
that maximizes the minimum distance from all solutions thus far added to PreRefSet.

Once PreRefSet reaches its targeted size, the final step is to modify its members by
an adaptive rounding process that yields integer values for the discrete variables. For
problems small enough that standard MIP software can be expected to generate
feasible MIP solutions within a reasonable time, such software can be used to
implement the rounding process by introducing an objective function that minimizes
the sum of deviations of the integer values from the initial values. (The deviations
may be weighted to reflect the MIP objective, or to embody priorities as used in tabu
search.) Alternatively, a simple adaptive scheme of the following form can be used
to exploit such an objective.

 56

Adaptive Rounding Method to Create Reference Solutions

1. For each integer-infeasible variable in a given candidate solution, introduce a
bound at an integer value neighboring its current value, and establish a large
LP penalty for deviating from this bound. (Variables not constrained to be
integer retain their ordinary objective function coefficients, or can be mildly
penalized for deviating from their current values.)

2. Find an LP optimal solution for the current objective. If all integer-constrained
variables receive integer values, stop. (The resulting solution is the one
sought.)

3. If the LP solution is not MIP feasible, use postoptimality penalty calculations for
each integer-constrained variable to identify the cost or profit that results by
releasing its current penalty and seeking to drive the variable to a new bound
at the closest integer value in the opposite direction from its current bound.
Choose the variable that yields the greatest profit (or smallest cost) and
impose a penalty for deviating from the indicated new bound. Then return to
Step 2.

A natural priority scheme for Step 3 of the preceding approach is to give

preference to selecting integer-infeasible variables to be those driven to new bounds,
though this type of priority is not as relevant as it is in branch and bound methods. A
simple tabu search memory can be used as a basis for avoiding cycling, while
allowing greater flexibility of choices than provided by branch and bound.

After applying such a rounding procedure, the transformed members of PreRefSet
are ready to be submitted to the customary scatter search processes of applying an
Improvement Method and generating combined solutions. (Improvement heuristics
can be included as part of the transformation process.) Future diversification phases
of the search may be launched at various junctures by following the same pattern as
indicated, where the diversification generator may be started from the point where it
was discontinued in the preceding phase, or re-started by reference to a different seed
solution. The initial PreRefSet for such future phases is populated by elements
chosen to maximize the minimum distance from the collection of points previously
generated as members of RefSet and PreRefSet, as well as from members currently
added to PreRefSet.

 57

APPENDIX 2: Checking for Duplicate Solutions

An additional source of potential duplications arises among solutions x′ that are
generated as combinations of other solutions (in the phase of Scatter Search or Path
Relinking that generates such combined solutions). These solutions x′ are inputs to
the Improvement Method rather than outputs of this method. By the philosophy of
scatter search and path relinking, it is valuable to avoid duplications in these input
solutions as well as to avoid duplications in the solutions saved in RefSet. To do this,
we store only the r = rNow most recent solutions generated (allowing rNow to grow
to a maximum of rMax different solutions recorded), following a scheme reminiscent
of a simple short-term recency memory approach in tabu search. In particular, we
keep these solutions in an array xsave[r], r = 1 to rNow, and also keep track of a
pointer rNext, which indicates where the next solution x′ will be recorded once the
array is full, i.e., once all rMax locations are filled.

Let E0 and Hash0 be defined for x′ as before, and denote associated values for
the xsave[r] array by Esave(r) and Hashsave(r). These are accompanied by a “depth”
value, which is 0 if no duplication occurs, and otherwise tells how deep in the list –
how far back from the last solution recorded – a duplication has been found. For
example, depth = 3 indicates that the current solution duplicates a solution that was
recorded 3 iterations ago. (This is not entirely accurate, since, for example, depth = 3
could mean the solution was recorded 5 iterations ago and then 2 other duplications
occurred, which still results in recording only 3 solutions.)

An appropriate value for rMax can be determined by initial testing that sets this
value larger than expected to be useful. An array CountDup(depth), for depth = 1 to
rMax, can then be kept that counts how often duplications are found at various
depths. If the array discloses thatvery few duplications occur for depths beyond a
given value, then rMax can be reduced to such a value, without the risk of having to
process many solutions that duplicate others encountered. (Although the reduced
value of rMax will save some effort checking for duplications, it may be the effort
will not be too great anyway, if a quick check based on using Hash0 can screen out
most of the potential duplications.)

To keep track of auxiliary information we introduce counters corresponding to
DupCheck, FullDupCheck and FullDupFound of the RefSet Update Routine, which
we give the names DupCheckA, FullDupCheckA, and FullDupFoundA. Finally, we
keep track of the number of times the routine is called by a value DupCheckCall.

Initialization Step:
 rNow = 0
 rNext = 0
 CountDup(depth) = 0, for depth = 1 to rMax
 DupCheckA = 0
 FullDupCheckA = 0

 58

 FullDupFoundA = 0
 DupCheckCall = 0

Duplication Check Subroutine.
Begin Subroutine.
 DupCheckCall = DupCheckCall + 1
 depth = 0
 If rNow = 0 then:
 rNow = 1; rNext = 1;
 xsave[1] = x′ (record x′ in xsave[1]),
 Esave(1) = E0; Firstsave(1) = FirstIndex0
 End the Subroutine
 Elseif rNow > 0 then:

(Go through the solutions in “depth order”, from the one most recently
stored to the one least recently stored. When a duplication is found, the loop
index r (below) indicates the value of rMax that would have been large
enough to identify the duplication.)

 i = rNext
 For r = 1 to rNow
 If Esave(i) = E0 then:
 DupCheckA = DupCheckA + 1
 If Hash0 = Hashsave(i) then:
 FullDupCheckA = FullDupCheckA + 1
 If x′ = x[i] then:
 (x′ duplicates a previous solution)
 FullDupFoundA = FullDupFoundA + 1
 depth = r
 CountDup(depth) = CountDup(depth) + 1
 End the Duplication Check Subroutine
 Endif
 Endif
 Endif
 i = i-1
 if i < 1 then i = rNow
 End r

(Here, no solutions were duplicated by x′ . Add x′ to the list in position
rNext, which will replace the solution previously in rNext if the list is full.)

 rNext = rNext + 1
 If rNext > rMax then rNext = 1
 If rNow < rMax then rNow = rNow + 1
 xsave[rNext] = x′
 Esave(rNext) = E0
 Hashsave(rNext) = Hash0
 Endif
End of Duplication Check Subroutine

