
DISCRETE
APPLIED

Discrete Applied Mathematics 65 (1996) 223-253

MATHEMATICS

Ejection chains, reference structures and alternating path
methods for traveling salesman problems”’

Received 4 January 1993; revised I2 July 1994

Abstract

Ejection chain procedures are based on the notion of generating compound sequences ol
moves. leading from one solution to another, by linked steps in which changes in selected
elements cause other elements to be “ejected from” their current state. position or value
assignment.

This paper introduces new ejection chain strategies designed to generate neighborhoods of
compound moves with attractive properties for traveling salesman problems. These procedures
derive from the principle of creating a reference structure that coordinates the options for the
moves generated. We focus on ejection chain processes related to alternating paths, and
introduce three reference structures, of progressively greater scope. that produce both classical
and non-standard alternating path trajectories. Theorems and examples show that various
rules for exploiting these structures can generate moves not available to customary neighbor-
hood search approaches. We also provide a reference structure that makes it possible to
generate a collection of alternating paths that precisely expresses the symmetric diffcrencc
between two tours.

In addition to providing new results related to generalized alternating paths, in directed and
undirected graphs. we lay a foundation for achieving a combinatorial leverage effect. where an
investment of polynomial effort yields solutions dominating exponential numbers of altcrna-
tives. These consequences are explored in a sequel.

K~~~ord.s: Traveling salesman; Graph theory; Combinatorial optimization; Integer propram-
ming: Neighborhood search

I. Introduction

Ejection chain strategies give a useful way to build compound neighborhoods, with

the goal of generating more powerful moves for solving discrete optimization

” This research was supported in part under the Air Force Ofice of Scientific Research and Wtice of

Naval Contract F4-9620-90-C-0033 at the University of Colorado.

* E-mail: fred.glover@colorado.edu.

0166-218X~96~$15.00 ‘\(~a, 1996PElsevier Science B.V. All rights reserved
SSDl 0166-218X(94)00037-2

224 F. Glorw / Discrete Applied Mathematics 65 (1996) 223-253

problems. Ejection chains combine and generalize ideas from a number of sources,

including classical alternating paths from graph theory [l, 141, network related base

exchange constructions in matroid optimization [S, 171, and bounding form struc-

tures for solving integer programming problems [7]. Each of these embodies a related

theme whose incorporation into neighborhood search offers a variety of new ap-

proaches to combinatorial optimization applications.

In rough overview, an ejection chain is initiated by selecting a set of elements to

undergo a change of state (e.g., to occupy new positions or receive new values). The

result of this change leads to identifying a collection of other sets, with the property

that the elements of at least one must be “ejected from” their current states. State-

change steps and ejection steps typically alternate, and the options for each depend on

the cumulative effect of previous steps (usually, but not necessarily, being influenced

by the step immediately preceding). In some cases, a cascading sequence of operations

may be triggered representing a domino effect. The ejection chain terminology is

intended to be suggestive rather than restrictive, providing a unifying thread that links

a collection of useful procedures for exploiting structure, without establishing a nar-

row membership that excludes other forms of classification.

A number of methods deriving from this perspective recently have appeared in the

literature. A node (or block) gjjection procedure has been proposed by Glover [S] for

traveling salesman problems, and extended to provide new approaches for quadratic

assignment and vehicle routing problems. Laguna et al. [16] introduce an ejection

chain approach in conjunction with a tabu search procedure for multilevel generalized

assignment problems, and demonstrate that ejection chains even of “small depth”

produce highly effective results in this context. Ejection chain strategies are also

proposed for clique partitioning by Dorndorf and Pesch [i] and for other forms of

clustering problems by Hubscher and Clover [1.5], similarly yielding good

outcomes.

This paper focuses on the traveling salesman problem (TSP), whose goal is to find

a minimum cost Hamiltonian cycle (tour) on a graph of n nodes. Letting c(i,j) denote

the cost of edge (i,,j), and allowing the notational convention of treating paths and

cycles as edge sets, the objective may be expressed as seeking a tour T that minimizes

C(c(i,j) : (i,,j) E T). (See [lS] for a comprehensive background.)

We characterize ejection chain strategies for the TSP that are founded on the notion

of creating a reference structure to guide the generation of acceptable moves. We show

such a structure can be controlled to produce transitions between tours with desirable

properties, in particular generating alternating paths (or collections of such paths) of

a non-standard yet advantageous type.

The organization of the paper is as follows. We begin by identifying a basic

stem-and-cycle reference structure in Section 2, and then describe a Subpath Ejection

Method for exploiting it in Section 3. We also illustrate how the approach generates

tours that cannot be obtained by “connectivity preserving” methods such as the

LinKernighan procedure. Fundamental rules for treating stem-and-cycle reference

structures are introduced in Section 4, together with characterizations of various types

of alternating paths that differ from those customarily treated in graph theory

literature. Section 5 examines parallel processing options applicable to these

methods.

In Section 6 we introduce a more general doubly rooted reference structure. uith

examples and theorems to characterize advantages provided in exchange for a rela-

tively modest increase in computational overhead. Section 7 completes the hierarchy

of reference structures with a stem-and-multicycle structure capable of generating

precisely the symmetric difference between any two tours, producing a succession of

alternating path trajectories that never add or drop a “wrong” edge. Finally. Section

8 examines implications of these outcomes. and identifies recent theoretical extensions

and empirical studies that indicate the computational value of these results.

2. A stem-and-cycle reference structure

The stem-and-cycle reference structure is a spanning subgraph that consists of

a node simple cycle attached to a path, called a stem. The node that represents the

intersection of the stem and the cycle is called the root node. denoted by I’, and the two

nodes of the cycle adjacent to the root are called the subroots. The other end of the

stem is called the tip of the stem. denoted by t. An example of the stem-and-cycle

structure is shown in Fig. 1.

The stem can be degenerate, consisting of a single node, in which case I’ = t and the

stem-and-cycle structure corresponds to a tour. Two trial solutions arc available fol

creating a tour when the stem is non-degenerate, each obtained by adding an edge

t = tip of stem

r = root

Sl, S2 = subroots

Fig. I. Stem-and-cycle reference structure

226 F. Glocer / Discrete Applied Mathematics 65 (1996) 223-253

(t, s) from the tip to one of the subroots s, and deleting the edge (r, s) between this

subroot and the root. (When the stem is degenerate, this operation adds and deletes

the same edge, leaving the tour unaffected.)

3. Chains for ejecting tour suhpaths

The first ejection chain construction we consider operates by cutting out and

relinking tour subpaths. The process generates an evolving stem-and-cycle configura-

tion which is initiated by selecting a node of the current tour to be the root node r, and

hence also the initial tip t. The stem is then extended by a series of steps that consist of

attaching a new non-tour edge (t,j) to a chain of tour nodes (j, . , k) which is thereby

ejected from the tour. We forbid the ejected segment from including any nodes from

a critical collection which initially contains node Y. In the simplest case, this segment

can consist of only nodej itself (i.e.,j = k). Pesch [21] has suggested a variant of the

node ejection of Glover [8] that follows a similar design, although without reference

to subpaths or the guiding influence of the stem-and-cycle structure. The general form

of the method is as follows.

Subpath Ejection Method.

Step 1: Select the root node Y and let t = I”. Let PC and SC respectively denote the

sets of primary and secondary critical nodes, where to begin PC = (r} and SC is

empty. Designate both subroots to be mxssible.

Step 2: Identify a tour subpath (‘j, . . , k) that contains no nodes of PC or SC. Eject

this segment from the tour by adding edge (t, j) and dropping the two tour edges (j’, j)

and (k, k”) that lie outside the subpath (where, relative to the orientation of the

subpath, j’ may be viewed as the predecessor of j, and k” may be viewed as the

successor of k). Complete the step by adding the non-tour edge (j’, k”) to “cap the

hole” left by the extracted segment.

Step 3: Let t = k, identifying the new tip of the extended stem. Add nodes j and k to

PC, and nodesj’ and k” to SC. If a node added to PC is a subroot, then designate it to

be no longer accessible and add the remaining subroot also to PC (to preserve its

accessibility).

Step 4: Examine the trial solutions for creating a completed tour that result by

joining t to each accessible subroot (keeping a record to recover the best trial solution

found). Stop if PC and SC together contain all tour nodes (or if the quality of the trial

solutions has not attained a desired threshold for a chosen number of steps). Other-

wise return to Step 2.

We note the preceding method permits subpaths to be ejected within other sub-

paths previously ejected. The sets PC and SC governing legitimate ejections need not

be disjoint (a node can belong to both if it is added to PC first), but only their union is

relevant except in the special case where a subroot becomes a member of PC. The

F. tilore~ I Discrete Applied Mathenratics 65 (IWhl 223- 25.3 797 --

method also allows one “exceptional situation.” We have not required that the

edge joining r to a subroot. for creating a trial solution. must be a non-tour edge.

It is possible that this edge may be a tour edge that was deleted immediately prior to

examining the trial solution. Although the edge has been temporarily deleted and

then added back. the organization of the method encounters no contradiction by

this.

Throughout this paper we assume that data structures for carrying out prescribed

operations are evident. A simple example will be given for the present method. Begin

the SEM procedure with a list J that contains the nodes in any order. Associated with

J keep an array LOC(I’) that names the position of node i on J (i.e., J(LOC(i)) = i.

where LOC(i) = 0 if i is not on J, or LOC(i) can simply be a binary flag in this limited

application). When a node thus is to be added to PC or SC. it is removed from J, as by

writing the last node of J over it and decreasing the size of J by 1 (updating the LOC

array appropriately). Then at each execution of Step 2. nodej can be any element of J.

and the subpath (j. k) can be generated by tracing along the tour in either direction

from node ,j, stopping when desired, subject to not going beyond the first node

i encountered such that LOC(I’) = 0. In the latter case. the node reachedjust before i ih

the last acceptable choice of k in the direction traced.

By this organization. any choice rule that allows at most a fixed given number of

nodes to be examined at each iteration of Step 2 (in selectingj from J and tracing the

subpaths (,j. k) as indicated) will result in an effort of O(H) for applying the method

from start to finish.

We now establish the validity of the method as follows.

Proposition. Each trial solution generated ut Step 4 of the Suhpth Ejection Method is

(1 f&isihle tour’.

Proof. We must show that the method generates a valid stem-and-cycle structure at

each step, and that a subroot qualifies as accessible only if in fact it constitutes

a current suhroot. By induction, assume the construction gives a valid stem-and-cycle

structure before the current execution of Step 2. If no node of (,j. . k) is on PC or SC.

then none of these nodes meets a previously added or deleted edge, and hence the

subpath is well defined, constituting a component of the initial tour. Moreover. (j’. j)

and (k, k”) also must be edges of the initial tour. If the ejected segment comes from the

current cycle. the capping edge therefore creates a new cycle, while if it comes from the

current stem. the capping edge retains the stem intact (where in each case the ejected

segment is transferred to the tip). Finally. since the root I’ belongs to PC. no Ned

non-tour edge can meet I’ (after the first) except where I’ also becomes a member of SC.

This implies that an edge is dropped between the root and a subroot s and that .\ is

added to PC (as j or k) in Step 4. Thus this condition accurately identifies that s no

longer fulfills the role of a subroot, and the operation of adding the remaining subroot

to PC assures it cannot become inaccessible. 0

228 F. Clocer 1 Discrete Applied Mathematics 65 (1996) 223-253

3.1. Exploiting the subpath ejection neighborhoods

The Subpath Ejection Method generates a compound neighborhood for defining

moves to transition from a current tour to a new one. The termination condition in

Step 4 provides a signal to select the best trial solution found at this step as the new

current tour, and then to begin again with this tour at Step 1.

Our motive for creating an ejection chain of the type generated by the Subpath

Ejection Method derives from the following consideration. If the current tour is not

optimal, there must exist some node r and a sequence of nodes starting from r and

leading finally back to an adjacent node, that will bring the current tour in closer

correspondence to an optimal tour. Moreover, if the current tour is already “locally

optimal” (by applying an approach such as 2-opt, for example), then it is likely that

a number of subpaths of the tour are already properly sequenced. Consequently, an

ejection chain process designed to piece together appropriate segments may provide

a foundation for finding additional improvements.

3.2. An illustrated construction

We provide an example to illustrate the kinds of outcomes the Subpath Ejection

Method is capable of generating in transitioning from one tour to another, establish-

ing a basis that leads to more advanced considerations. The graph for our example

consists of ten nodes, shown in Fig. 2. The current tour is assumed to visit these nodes

in their numerical order. The illustrated process ejects two subpaths, each consisting

of a single edge, and then selects a trial solution. In Fig. 2, the ejection chain starts

with node 1 as the root r, then adds edge (1,8) to attach to and eject (“cut free”) the

subpath (8,9) (which in this case consists of an edge), followed by adding edge (9,4) to

attach to and eject the subpath (4,5) (likewise in this case consisting of an edge). Thus

the capping edges added by these two ejections are (7,lO) and (3,6), while the edges

deleted are (7,8), (9, lo), (3,4) and (.5,6). Of the two trial solutions available at this

point, we select the one associated with subroot 2 to conclude the process, thus adding

edge (5,2) and deleting edge (1,2).

Fig. 2. An ejected subpath tour construction (not obtainable by maintaining tour connectivity).

The transformation of the current tour into the new one of this simple example

produces an outcome that cannot be achieved by the popular heuristic approach of

tin and Kernighan [19], or by any heuristic that is designed similarly to maintain an

underlying feasible tour construction at each step. Specifically. we see that the two

deleted edges adjacent to the first added edge destroy- the connectivity of the graph.

That is. the initial addition of edge (1,X) cannot be accompanied by the deletion of

both (1,2) and (7,8), since this divides the graph into a disjoint path and subtour.

Moreover. the same sort of inf~asibiIity occurs in this example regardless of which

edge is added first. Thus, the resulting tour cannot be obtained by a “connectivity

preserving” approach regardless of which node of the graph is selected to initiate the

process. (The Lin Kernighan procedure allows for an optional maneuver on its first

step in an attempt to overcome its connectivity limitation, but even after such

a rn~~neLl~‘er the example again destroys the connectivity required to continue at the

following step.)

Additional somewhat different but equally simple constructions by the Subpath

Ejection Method yield the same type of outcome. (For example, an instance of such

a construction occurs by replacing the three interior edges of Fig. 2 by the three edges

(1.4). (5. X) and (9, Z).) If it is indeed desirable to be able to build new tours by linking

-‘good segments”, as previously suggested. then the question arises as to how to

identify such segments, and more broadly. whether there may exist alternative types ot

linking that can produce other tour constructions Lvorth considering. We will sho\v it

is possible to exploit the reference structure concept to create more powerful processes

whose tnoves include those of the Subpath Ejection Method as a special case.

There is a link between the preceding Subpath Ejection Method and classical

alternating path constructions from graph theory (see, e.g.. Cl. 141). Assume the edges

of a path are numbered consecutively according to their order of occurrence. An

alternating path may be defined as an edge simple path in which even-numbered edges

belong to a current solution subgraph, and odd-numbered edges do not. (In typical

graph theory applications. the current solution subgraph is one whose edges define

a matching or satisfy other degree constrained conditions.)

The purpose of such a path is to identify a transformation of the current solution

into another by successively adding and deleting path edges according to whether

they are absent or present, respectively, in the current solution. Each edge to be

deleted is determined by its adjacency to the preceding edge that is added (at the

endpoint to tvhich the path is currently traced) in order to lnailltain feasibility. In the

in~~t~hing problem context. prima1 methods use this construction to generate cost

improving alternating cycles, while dual methods use it to augment the current

solution by reference to successive shortest (minimum cost) alternating paths. (See. for

example. [4].)

230 F. Clover I Discrete Applied Mathematics 65 (1996) 223-253

Although derived from a different perspective, it is not hard to see that the Subpath

Ejection Method implicitly generates a type of alternating path construction. This

interpretation arises by conceiving the ejection of Step 2 to be broken into a sequence

of four operations, first adding the non-tour edge (t,,j), followed by deleting the tour

edge (,j’,j), adding the capping edge (j’, k”), and finally deleting the tour edge (k, k”).

The ordering of this sequence, and the fact that node k becomes the new t, reveals the

correspondence with an alternating path. (It is shown in Giover [lo] that the

Lin-Kernighan heuristic also can be interpreted as a form of alternating path

procedure.) The following sections extend this orientation to establish further links

between alternating path constructions and the traveling salesman problem.

4. A fundamental stem-and-cycle approach

We now describe an ejection chain process, likewise guided by the stem-and-cycle

reference structure, which is able to generate alternating paths not accessible to the

Subpath Ejection Method, and at the same time to produce constructions that differ

from alternating paths. Rather than seek to eject (and attach) tour segments in

conjunction with a capping operation, the process is organized to apply more

fundamental ejection steps that preserve the stem-and-cycle structure. In addition, we

replace the restrictions based on identifying the critical nodes by a simpler restriction,

stipulating only that any edge deleted must not be added back. Each step then consists

of adding a single edge and deleting another. We subdivide the rules for maintaining

the stem-and-cycle reference structure into those that produce an alternating path and

those that do not.

Fundamental stem-and-cycle rules.

Rule 1: Add an edge (ttj) wherej belongs to the cycle. Identify the deleted edge (j, 4)

to be either of the two edges of the cycle incident at j. Node q becomes the new tip t.

Rule 2: Add an edge (t,j) where j belongs to the stem. Identify the edge deleted (j, 4)

by requiring q to lie on the portion of the stem betweenI and t. Node y becomes the

new tip t.

Auxilinry rules.

R&e 3: Add ft,j), for an arbitrary node j. Delete an edge (r, y) incident at Y, where

q is restricted to be a subroot if j is not a cycle node. Node q becomes the new tip t.

Rule 4: Add (q,.j), where q is adjacent to r, and delete the uniquely identified edge

(r, q). Node j is an arbitrary node if q is a subroot and otherwise j is a cycle node. Node

f remains the tip node.

The application of these rules is illustrated in Figs. 3 and 4. Note that the root never

changes its identity. In Rule 1, if .j is one of the subroots and q is the root r, the

stem-and-cycle reduces to a cycle (with a degenerate stem), causing the root r and new

Fig. 3. Stem-and-cycle rules to generate an alternating path.

Rule

Fig. 4. Auxiliary stem-and-cycle rule\.

tip r to coincide. Also, since r belongs both to the stem and the cycle, both Rule 1 and

Rule 2 apply when j = r, and hence in this case there are three options for identifying

the edge (j, q) to delete. (A null move may be possible that adds and drops the same

edge.)

232 F. Clocer / Discrete Applied Mathematics 65 (1996) 223-253

Rules 1 and 2 yield an alternating path sincej is a node in common with (t, j) and

(,j, 4) and 4 is identified as the new t. As in the Subpath Ejection Method, such a path

may not represent a sequence of feasible tour modifications in the customary sense,

although a feasible tour completion always results by the two trial solution alterna-

tives available at each step. Each step of the Subpath Ejection Method can be broken

into either two or three steps of applying Rules 1 and 2, though we will later see that

the “aggregate move” orientation has merit under certain conditions.

The alternatives by Rules 3 and 4 slightly overlap with those available by Rules

1 and 2. Rule 3 can create both a new tip and a new root, while Rule 4 always creates

a new root. Heuristic choice criteria for applying Rules 1-4 (when the steps are not

aggregated) can be based on selecting the combination that yields a best trial solution

at each step, breaking ties according to the immediate cost of the move (that is, the

cost of the added edge minus the cost of the dropped edge). Tie breaking is important

since the trial solutions produced by the moves overlap. A more opportunistic (less

expensive) alternative is to use the immediate move costs without reference to trial

solutions.

The foregoing rules clearly require O(n) effort to apply. The use of a candidate list to

limit the number of edges meeting t (or y in Rule 4) does not change the order of this

effort, because of the need to differentiate the stem from the cycle, and to keep track of

subpaths that change orientation. However, the O(n) effort of updating can be reduced

to an 0(1) effort, by means of specialized processes which are treated in a sequel [lo].

While Rules 3 and 4 offer viable choice possibilities using a stem-and-cycle reference

structure, we restrict attention to Rules 1 and 2 in this section in order to analyze

implications concerning the generation of alternating paths.

By applying Rules 1 and 2 subject to the stipulation that an edge deleted cannot

subsequently be added back, we permit constructions that may not be edge simple in

a customary sense. That is, by this stipulation, an edge that is added may possibly be

deleted later. The classical conception of an alternating path does not harmonize well

with this provision, but rather is static, where the edges that qualify as available to be

deleted are assumed to be those initially present in the subgraph that is transformed.

Instead, we require a conception that allows a path to be ~yn~~~i~~ so that the process

of adding new edges enlarges the set susceptible to being deleted.’

Consequently, we seek a system of classification enabling us to treat alternating

paths from such a perspective. For this purpose, we begin by defining an alternating

path to be u&l simple (delete simple) if no added (deleted) edge appears more than once

in the path. Note a path that is both add simple and delete simple is not necessarily

’ This notion may be viewed as complementary to the ideas of de Werra and Roberts [2], who give a way to
generalize alternating paths in the context of chain packing problems.

edge simple in a static sense, since such a path allows the same edge to be both added

and deleted.

An additional level of differentiation is required to encompass the restriction we

have imposed on generating alternating paths. Specifically. we require the notion ol

a c.orlditir,rz~r//!. sirllple alternating path, in which the presence of one class of cdgcs

depends on that of another. Define a path to be tl~lcr~ rrtlrl .s~uI~I/~ if a deleted cdgc

does not subsequently reappear as an added edge. and to be trlltl’ delr~fc sirrlplc if an

added edge does not subsequently reappear as a deleted edge. (By the natural analogs

of these definitions, it can be seen that the classes of add add simple paths and

delete ,deletc simple paths are the same as those of add simple and delete simple paths.

respectively. In addition, add\delete simple paths and delete add simple paths arc

both instances of paths that are simultaneously add simple and delete simple.) The

type of alternating path produced by the restriction we apply with Rules 1 and 3 thus

constitutes what we have called a delete add simple path. Our analysis \vill hc

concerned with identifying special properties about the nature and existence of such

paths in connection with the traveling salesman problem.

A simple example shows the necessity of considering alternating paths more general

than customary in order to transform one traveling salesman tour into another. The

example is a familiar one known to provide an instance where the Lin-Kernighan

construction fails to transform one tour into another. and can be expressed bq

reference to a graph consisting of eight nodes. shokvn in Fig. 5.

Starting from the tour that visits the eight nodes in numerical order. the goal is to

reach the tour that visits the nodes in the order 1,6.7.4,5.3.3,8. 1. This tour deletes

edges (1.2). (3,4), (5.6), (7.8), and adds edges (1.6). (2.5). (3.8). (4.7). It is clear the

indicated transformation does not represent a connected alternating path. but rather

two disjoint (and piecewise infeasible) alternating paths. (Evidently. the symmetric

difference between two tours always can be expressed as a collection of alternating

paths (cycles) whose maximum components are node dis.joint. Results bearing on this

appear in Section 8.) Nevertheless, there does exist a delete add simple path that

transforms the first tour into the second. which makes USC of the dotted edge in Fig. 5.

We demonstrate this outcome by showing in addition that such a path can bc

obtained by the stem-and-cycle approach following Rules I and 3.

Starting from node 1 as the root I’ (and hence also the initial tip f). the alternating

sequence of edges added and dropped by applying Rules 1 and 2 are as follows:

(l-6).(6.5), (5. X).(X. 7).(7.4),(4.3),(3,8).(8,5).(5,2),(2. 1). At each step, the second node

of the odd-numbered (added) edges represents the current node j in Rules I and 2.

while the second node of the even-numbered (deleted) edges represents the current

node (1. which becomes node t at the next step. The last pair of edges added and

dropped may also be viewed as the outcome of selecting the trial solution associated

with subroot 2 at the next to last step. (The indicated transformation is not the onl!

one that can be obtained by this process.)

234 F. Glower / Discrete Applied Mathemutics 65 (1996) 223-253

Fig. 5. A delete’;add simple alternating path transformation using a stem-and-cycle construction.

4.2. Delete\add simple paths and the stem-and-cycle structure

Clearly no alternating path exists to transform the first tour of the preceding

example into the second except by adding an edge that must subsequently be deleted.

At a more general level, the example prompts the question of whether a given tour

may be transformed into any other by an alternating path that is delete\add

simple.

For this question to be meaningful, we assume either that the graph is dense or that

artificial edges may be added as needed (which will also be removed during the path

construction). The illustrated path in the example of Fig. 5 also exhibits another

property we regard to be significant. After adding the edge (5,8) that subsequently

becomes deleted, the next added edge is one that is not deleted. We call a delete\add

simple path with this characteristic, i.e., in which at least one of any two successively

added arcs is never subsequently deleted, ajrst order delete\add simple path. Results

proved in [101 establish that such an alternating path can transform any tour into any

other, and more importantly (from our perspective), that the transformation can

always be produced by the stem-and-cycle approach using Rules 1 and 2. A useful

implication is that an optimal tour is always potentially accessible at each execution of

the stem-and-cycle approach. This outcome may be viewed as a connectivity result in

the space defined by these special types of alternating paths.

Moreover, the rules described for the symmetric case can be modified in a natural

manner to handle asymmetric traveling salesman problems. This is a feature not

shared by some popular approaches, such as 2-opt and the LinKernighan procedure,

which entail reversals of subpaths in order to achieve such an extension.

Next we examine how these ideas can be exploited in a parallel processing frame-

work, which gives an implicit ability to generate structures more varied than by

a serial approach.

F. Glocer / Discrete Applied Mathematics 65 (IX%) 223-253 2.35

5. Parallel processing and stem-and-cycle structures

The issue of applying the stem-and-cycle reference structure to solve traveling

salesman problems by parallel processing introduces concerns that are particularly

relevant to solving large problems. We show it is possible to organize separate

stem-and-cycle processes into a method that creates a graph with multiple cycles and

stems, not necessarily connected, while operating only with the rules previously

described.

Our approach is based on the simple strategy of creating houndar~ norirs that

subdivide a selected starting tour into subpaths. Each parallel process then is applied

to the nodes of a given subpath (see, e.g., [6,20]). Our goal is to implement an ejection

chain approach on the subgraph induced by the selected subpath nodes, in such a way

that the stem-and-cycle structures of the separate processes can always be concat-

enated to create a single feasible tour.

Let N(u, P) denote the set of nodes of a given starting subpath, initiated by the

boundary node u and terminated by the boundary node I‘. By applying the stem-and-

cycle reference structure to this set of nodes, the rules for deleting edges will create

stems and cycles that implicitly must be routed through nodes outside this set (in

order to maintain an appropriate structure). The effect of operating in parallel on

other sets of nodes of the graph, thereby introducing other stem-and-cycle configura-

tions external to N(u, P) , creates a “divided” stem-and-cycle structure that destroys

the simple external path routing on which the rules for altering the structure relative

to N(u, P) presumably rely. Some device must be employed to assure that the diverse

components of the divided structure are susceptible to relinking. Fortunately, this

turns out to be easy to do, as noted in the following observation.

Remark. To operate on the subpaths in parallel, create an initial subtour for each pail

of successive boundary nodes u and u, consisting of the starting path from II to I’ and

a single artificial edge (u, c). Then apply the stem-and-cycle preservation rules to each

such subtour and the subgraph induced by N(u, ~1). subject to the restriction that edge

(u, 1.) is never deleted. The trial solutions for the separate stem-and-cycle structures

create a feasible tour over all nodes upon removing the artificial edges.

The foregoing remark is immediately justified by the fact that each trial solution

must generate a feasible tour over N(u, c), and this tour will constitute a path from u to

r upon eliminating the artificial edge. The union of the paths is evidently a feasible

tour.

An example of a divided stem-and-cycle structure generated by the approach of the

Remark is shown in Fig. 6. The starting structure represents one obtained after a first

step that adds and deletes an edge in each subtour to create a non-degenerate

stem-and-cycle. The three square nodes of the figure identify the selected boundary

nodes and the artificial edges (not shown) thus connect each successive pair of these

nodes. The final stem-and-cycle structure shown in Fig. 6 is obtained after two

236 F. Glows ; Discrete Applied Mathematics 65 (1996) 223-253

Numbered nodes are tips, square nodes are boundary nodes

Fig. 6. Divided stem-and-cycle structure for parallel processing.

iterations applying Rules 1 and 2 to each subtour, subject to not deleting artificial

edges. The stem tips for each of the three initial and final component configurations

are indicated by the nodes numbered 1,2 and 3.

Either of the two trial solutions for each component can be linked with remaining

trial solutions to create a feasible tour. In practice, the best trial solution obtained by

parallel processing over each component will be retained to construct the desired

composite tour. Then another set of boundary nodes is selected to create a different

division into subpaths, and the process repeats.

We now show how the simple concept of the preceding Remark can be usefully

broadened.

Extended Remark. Let u~,c~,u~,v~, ,uk,ck, be a succession of consecutive boundary

nodes. Create an initial subtour consisting of the starting subpaths over

each of the sets N(ui, ci), i = 1, . . k, together with linking artificial edges

(I.,,Uia,),i= l...., k.where~~+, = ~1,. Then apply the stem-and-cycle rules over the

composite subgraph induced by the union of the ,Y(uj, ~1,) node sets. subject to the

restriction that no artificial edge is deleted, and independently apply the approach

over each separate subgraph induced by the node sets N(v,, 11, , I). by the rule of the

preceding Remark. The trail solutions for each of these subgraphs can then be linked

to create a feasible tour by deleting the artificial edges.

The significance of the Extended Remark is to permit a strategy of identifying the

sets N(ui. /li) with the goal of incorporating nodes which possibly should be redis-

tributed among these sets. In particular. the application of the Extended Remark

makes it possible for the final trial solution subpaths (from each Ifi to each I’,) to

incorporate nodes other than those contained in the sets N(L/,. ri), as initially idcnti-

tied. Further. these subpaths may become linked to the other subpaths in a sequence

different from that indicated by their indexes. (The added flexibility of this second

condition prevents the simultaneous creation of another subgraph induced b> the

union of selected remaining subpaths. since the final subtours obtained from these

“aggregate subgraphs” may arrange their components in incompatible sequences.)

Finally, the Extended Remark can be applied recursively. That is. each node subset

,\'(r,. ui_,) and its associated starting subpath can be subdivided by the rules of the

Extended Remark exactly as if it represented the node set of the complete problem. In

this way. when boundary nodes are reselected in a repetitive application of the

approach. it is possible to allow interactions among non-adjacent subpaths on the

basis of varying criteria. We note these observations apply not only to the application

of the stem-and-cycle approach. but also to any procedure capable of recovering

a feasible trial solution at each step (over the subgraph considered).

To exploit parallel processing opportunities as fully as possible in this setting. it is

useful to supplement the possibilities made available by the Extended Remark.

Ideally. we would seek to encompass interactions across non-adjacent subpaths that

do not depend solely on the recursive identification of boundary points to qualify a4

the pairs ([I,. t.J. This goal can be pursued by an ejection chain strategy using the

constructions of [8]. A method using these constructions can easily control subdi\i-

sions of a tour so that component subpaths will not become resequenccd relative to

each other. Thus. in a parallel processing environment. such an approach may probide

a useful companion to ejection chain approaches based on the roregoing ideas.

6. Doubly rooted reference structures

We identify a reference structure in this section that not only permits more direct

trajectories between tours, but provides moves beyond those available by the combi-

nation of the preceding approaches. This structure requires only slightly more effort to

manage than the stem-and-cycle structure, still involving O(n) computation at each

238 F. Glooer / Discrete Applied Mathematics 65 (19%) 223-253

execution. The structure may be conceived as arising from a stem-and-cycle by

introducing a single additional edge (t,j), which connects stem tip t to an arbitrary

nodej (without simultaneously deleting an edge). Nodej thus identifies a second root

(possibly coinciding with the first root), and accordingly we call this construction

a doubly rooted reference structure. When the two roots are distinct, each meets

exactly three edges of the structure, and when they coincide, they meet four edges of

the structure. All other nodes meet exactly two edges.

The doubly rooted structure has two forms: a tricycle in which the two roots are

connected by the three paths, thereby generating three cycles (two that share the

“inner” path between the roots, and one that does not); and a bicycle in which the

roots are connected by a single path, joining two cycles. (A degenerate bicycle is

produced when the roots correspond.) These forms are illustrated in Fig. 7.

The doubly rooted structure contains no explicit tips, but contains up to six implicit

tips identified by deleting edges (one at a time) that meet the roots. Thus, the implicit

tips coincide with the subroots, which we define to constitute the nodes adjacent to the

roots. Subroots are divided into two classes, cycle subroots and non-cycle subroots,

where the latter are those that lie on the path between the two roots of a bicycle. (A

tricycle and a degenerate bicycle contain only cycle subroots.) The roots can also be

tricycle structure

bicycle structure

rl, r2 = roots

Fig. 7. Doubly rooted stem-and-cycle structures.

F Glower i Discrete Applied Muthemutics 65 (19%) 223-253 239

subroots if they join by an edge. In this special case. a root r of a bicycle that is also

a subroot must by definition be a non-cycle subroot. Although it lies on a cycle, the

cycle is not shared with the root to which it is adjacent.

A stem-and-cycle structure results by deleting any edge (r, s) such that I’ is a root

and s is a cycle subroot. Node s becomes the tip, while the (root) node that remains

with three incident edges becomes the stem-and-cycle root. The trial solutions avail-

able to the doubly rooted structure are thus the union of the trial solutions available

to these component stem-and-cycle structures. In fact, the trial solutions that result by

transforming a cycle subroot s into a tip, for each such s associated with a given root I^.

are the same as the trial solutions similarly produced from the subroots of the other

root, and hence attention can be restricted to only one of the two sets of subroots for

this purpose. (Each cycle subroot of a given root produces two trial solutions.) The

enriched pool of such trial solutions, together with an enriched set of moves for

transitioning from one reference structure to the next. provide the potential advantage

of the doubly rooted structure. The rules to transition between structures are as

follows.

Rules for the doubly rooted structure.

Rule I-DR: Select a cycle subroot s and an associated root r. Add an arbitrary new

edge (.s,j) (not in the current structure) and delete the edge (s, r). After the step,

j becomes a root (and r is no longer a root unless the two roots coincided before the

step).

Ruk 2-DR: Select a non-cycle subroot s and an associated root r. Add a new edge

(s,,j) such that ,j lies on the cycle in common with r, and delete (s, I’). Node,j becomes

a new root (and I’ is no longer a root).

These two rules, although simple to describe, encompass all alternatives available to

the Subpath Ejection Method and all possibilities contained in Rules 1~ 4 of the

stem-and-cycle approach, as applied to each of the component stem-and-cycle struc-

tures implicit within the doubly rooted structure. This outcome is somewhat counter-

intuitive, since the stem-and-cycle rules appear to offer a broader range of options,

allowing for the deletion of edges not specified in Rules l-DR and 2-DR.

The broader purview of Rules l-DR and 2-DR becomes understandable by consid-

ering how they achieve the effect of Rule 1 for the stem-and-cycle structure. which

adds an edge (t.,j) from the tip t to the cycle, and drops an adjacent cycle edge (y. j).

The corresponding doubly rooted structure contains an edge that joins t to a root F’,

which makes t a cycle subroot of 1.‘. Assume the same edge (t,j) is added to this

augmented structure. No corresponding deletion of an edge (q,,j) occurs by Rule 1 -DR

or 2-DR. The fact that j becomes a new root means that q corresponds a new subroot.

(If ,j = r’ the root and subroot are unchanged.) It thus can be seen that the trial

solutions available to the stem-and-cycle structure after applying Rule 1 (and drop-

ping (q,j)) are a subset of those available to the doubly rooted structure after applying

Rule I-DR or 2-DR (and making,j a new root). Moreover. the doubly rooted structure

240 F. Glorw ; Discrrte Applied Mothemutics 65 (1996) 223-253

has the option now to execute a move that drops (q,,j), which implicitly corresponds to

choosing y as the new tip t in the stem-and-cycle approach. However, we are not

limited to the options that result by specifying 4 to be the new tip, and hence an

expanded set of move possibilities is available.

Rules I-DR and 2-DR of course do not in general create a connected path sequence,

and thus go beyond alternating path structures, though again we will be interested in

such constructions as an important special case. To prevent a return to an alternative

available on the preceding step, an edge deleted may be prevented from in~mediately

being added back (or, more broadly, prescriptions of the form used with tabu search

can be applied).

6. I. The doubly rooted structure,fbr the asymmetric problem

The form of the doubly rooted structure for the asymmetric problem is a direct

analog of the one for the symmetric problem. The asymmetric structure gives rise to

three directed cycles in the case of a tricycle, and to two directed cycles, joined by

a directed path, in the case of a bicycle. (The directed path may have no arcs if the

roots coincide.) When the roots are distinct, one root has two arcs entering and one

arc leaving, while the other root has two arcs leaving and one arc entering. Each root

has two subroots (instead of three), which he on the two arcs that enter or the two arcs

that leave the root. In the degenerate case, as before, each of the four nodes adjacent to

the root is a subroot. The distinction between cycle subroots and non-cycle subroots

remains unchanged.

By these conventions, the rules for the directed case of the doubly rooted structure

are exactly the same as Rules l-DR and 2-DR, except that the added and deleted arcs

must be directed the same relative to the subroot s (i.e., the added and deleted pair is

either (sj) and (s, r) or (,j, s) and (r, s)).

The ability of the doubly rooted structure to generate more effective alternating

path sequences can be established rigorously as follows.

Theorem 1. There exists n,fir.st rtrder de~et~~,add simple ~l~t~r~~tin~ path, .~tff~ti~g.fr~~

an arbitrary node r as a,first root, and obta~nub~e by the doubly rooted structure using

Rules l-DR and 2-DR1 that \vill trunsfbrm an initial directed tour into another directed
tour his adding less than 2m urcs, where m is the number qf‘arcs in the second tour not in
the ,fir.st.

Proof. We begin by adding a non-tour arc (P, r*) to the initial tour to create a doubly

rooted structure with roots r and I’ *. Since the doubly rooted structure always

contains one more arc than a tour, we seek a transformation that yields the second

tour plus a single arc (which is dropped in a final degenerate trial solution). As before,

arcs belonging to the second tour will be classified white and others black. and we

identify a linked succession of steps that assures the path is alternating.

In the worst case, the first non-tour arc added is compelled to be black (where the

tour arc out of node I’ is white). Then choose r* so that the unique arc (L. I’*) into

V* also is black. (If instead (r. r*) is white, then (L r*) automatically is black.) In

general. we use such an approach to assure each step of adding an arc likewise creates

a root Y* that is met by an associated arc (k. r*) which is black. At this point h

is a subroot s of v*. since the doubly rooted structure has two arcs entering I.*.

The next step therefore will be to drop the black arc (s. v”). If this deletion

creates a tour (corresponding to a degenerate trial solution). and if all arcs are white.

the process is completed. Otherwise. we add a neu arc (.L j) by either Rule l-DR OI

‘-DR.

Assume first s is a cycle subroot (as it must be on the first step after adding (I’. I’*)).

Then Rule l-DR applies, permittingj to be an arbitrary node. We therefore can select

(s, j) to be white. provided either that s was not a root node before deleting (s. F*). ot

else that there is no white arc out of this root. Then, upon identifyingj as the new I.*.

we are ready to begin again under the same conditions that initiated the preceding

step (where (li, I.*) is black, etc.).

The only way to break a sequence of add-drop steps where every added arc is white

(and every dropped arc is black) is therefore reduced to two cases: (1) encountering

a non-cycle subroot s that renders Rule I-DR inapplicable: or (2) encountering a cycle

subroot s that also is a root with a white arc out of it. First suppose (1) applies. Then

the nodc,j of the added arc (s,,j) must lie on the cycle containing the root r* (where this

cycle is disconnected from the rest of the structure by deleting (s, r*)). If the white arc

out of node s does not lie on this cycle. the cycle must contain at least one black arc.

which we denote by (k,j), thus identifyins node,j chosen for the endpoint of the added

arc (s.,j). Since j becomes the new v*, we fulfill the previous claim that the arc (IL P) is

always black. t’urther, node li must in fact be a cycle subroot, since k and the new P lie

on the same cycle identified by reference to the previous r*. Consequently. Rule I-DK

is applicable when k becomes s on the following step, and we conclude s cannot be

a root. This assures that the next arc added is white. as desired.

Next suppose case (2) applies. Node s can be both a cycle subroot and a root that

already initiates a white arc only if the deletion of (s. r.*) reduces the structure to

a cycle. Thus, if the cycle is not the desired tour, and any black arc remains. we can

select such an arc as (k,,j), and by the argument just given we conclude a white arc can

be added on the step after adding a black arc. The alternating path therefore is a first

order path. Fewer than 2m arcs are added. due to the first order condition and the fact

that at least two white arcs must be added after the last black arc is added.

Finally, we must show the path is delete\add simple. Suppose on the contrary

:I black arc (&j) is deleted and then subsequently added. birst. we argue that (L i)

cannot be deleted in a step that also adds a white arc (s, j). This would prelent (IL i)

from being added later by the construction previously indicated. which permits

;I black arc to be added to meet a node,j only if there is exactly one arc into j and this

242 F. Glocer J Discrete Applied Mathematics 65 (1996) 223-253

arc is black. The presence of a white arc (s,j) renders this impossible, and hence (s,j)

must be black. We have shown a new white arc (k,j’) is added on the next step, and at

this point no black arc exists out of node k. In order to add any new arc (k, q) out of

node k (and in particular (k,j)), it is necessary first to drop some arc (k, h) out of k.

Moreover (k, h) must be black since the process never drops a white arc. But this is

impossible, since no black arc currently exists out of node k, and none can be added

(unless one exists already to be dropped). We therefore conclude the path is de-

lete\add simple. 0

Corollary to Theorem 1. The statement of Theorem 3 also is vulid,for the symmetric

TSP (upon stipulating that tours are undirected).

Proof. The result follows by an argument that parallels the proof for the directed

case. 0

Theorem 1 is a stronger result than the theorems for stem-and-cycle reference

structures, which raises the question of whether this outcome may have practical as

well as theoretical significance. From an applied standpoint, the potential value of the

doubly rooted reference structure rests on the tradeoff in effort required to manage it

and on identifying choice rules that can capitalize on its expanded range of options. It

is shown in [lo] that the doubly rooted structure offers particular benefits in

designing a method to create a combinatorial leverage effect,

7. Stem-and-multicycle reference structures

The relationship between the stem-and-cycle structure and the doubly rooted

structure suggests that a further advanced reference structure is likely to encompass

an additional number of edges (or arcs). However, we will show that a reference

structure satisfying the desired conditions exists which contains only the same number

of edges as in a tour. This structure, which we call the stem-and-multicycle structure, is

a spanning subgraph whose components include a stem-and-cycle, denoted S-C, and

a collection of cycles, denoted C(h), h E H (where N may be empty). The components

of the stem-and-multicycle are pairwise node disjoint. An illustration of this structure

appears in Fig. 8.

Although the organization and transition rules of the stem-and-multicycle structure

are more complex than those of the reference structures previously discussed, they are

not difficult to manage. Each step for modifying the structure, as before, is a simple

add-drop operation. The effort required to perform each step remains O(n) .

We first describe the rules for transitioning from one stem-and-multicycle structure

to another, and then indicate how these rules may be integrated with the generation of

trial solutions.

F. Gloaer II_ Discrete Applied Mrrthematics 65 IIYYh) 223-253 133

Fig. 8. Stem-and-multicycle structure

7.1. Trunsition rules ,jbr the stem-and-multicyle rgference structure

For convenience, we let SMC denote the full stem-and-multicycle structure, and let

S and C respectively denote the stem and the cycle of the SC component. The rules to

modify SMC consist exactly of Rules 1 and 2 for the ordinary stem-and-cycle, plus two

others. We identify these rules as follows.

Stem-and-multicycle rules.

Rule l*: Apply Rule 1 to S-C.

Rule 2*: Apply Rule 2 to S-C.

Rule 3*: Add edge (t,,j), where t is the tip of S, and node j lies on some cycle

C’(h), h E H. Delete either cycle edge (q,,j) meetingj. Node q becomes the new tip t of

S (which is now augmented), and C(h) is removed from the collection of cycles (by

deleting h from H).

244 F. Glows / Discr-ete Applied Muthematics 65 (1996) 223-253

Rule 4”: Add edge (t, j), where t is the tip of S and node j lies on S, with j # Y. Delete

edge (q, j), where q is the stem node adjacent to j that lies closer to r. Edge (r, j) together

with the segment (j, . , t) of the stem becomes a new cycle C(h), h E H, and node

q becomes the new tip of S (which is now reduced).

Special provision. If S becomes degenerate as a result of Rule 1* or 4* (hence

causing the cycle C to compose all of S-C), then a new root r and tip t may be selected

(with r = t).

The preceding special provision can be accompanied by changing the designation

of the cycle identified as S-C, if desired. Also, after executing the provision, the

method optionally may restrict attention to applying Rule 3* on the succeeding step, if

H is not empty. Rules 3* and 4*, which provide the elements of this approach that are

new, are illustrated in Fig. 9.

We establish that the foregoing rules indeed suffice to transform one tour into

another without superfluous moves. In fact, we give a stronger result which shows that

the stem-and-multicycle reference structure in a sense is the “correct” structure for

Rule 3*

Rule 3’: Add (t,j3), delete either edge (q3,j3)

Rule 4’: Add (t,j4). delete edge (q4,j4)

Fig. 9. Additional rules of the stem-and-multicycle reference structure.

transforming one tour into another, for the goal of creating a collection of alternating

paths (cycles) that yield a partition of the symmetric difference of the tours. More

precisely, by the preceding rules, the structure makes it possible to produce any such

collection that is capable of transforming the first tour into the second. We state this

result as follows, where alternating cycles are understood to be defined relative to the

tours considered.

Theorem 2. Lrt T, md T, he two distinct tours, and let Ci, i E I, hc LE collrctior~ of’c~lyc

simple ultcmutimq cycles, pairwise edye disjoint, which e.uactl~. describe the s~wvnctric~

rliffkwnce hetwcen T, und T, (i.e., T, - Tz = T1 n C und T, - T, = T2 n C, fiw C =

[I (Ci : i E I) Then Rules I* - 4* cun he applied to yrneratc~ preciwl~~ ewh c~,c,lc of’tlw

collcctiou Ci, i E I, .sturting,from T 1, The stcnz-and_multic~~l~J structure produced ut LJLK/I

step corrr.spond.s to the trmsformntion of’ T 1 produced his thr currmt suhcollcction of’

rrltcrnuting puths, rind the ,final structure c~orrc~sponds to T,.

Proof. Designate edges of T2 to be white and others black. We begin with SMC as the

tour T,, and select r (with r = t) to be any node that meets a white edge not in SMC.

This edge, (t,,j), belongs to some alternating cycle Ci, and an adjacent black edge (cl.,j~

of C, must exist that also lies on T1, hence SMC. Rule 1 permits this edge to be deleted.

transforming SMC into the S-C structure where S is non-degenerate. SMC contains

all edges of T 1 except those already accounted for as part of C,, and on a general step

contains all edges except those that are elements of paths previously generated or in

the process of being generated. Further. the white edges that have not yet become

a part of SMC are exactly those edges in cycles that are not yet accounted for. and this

also holds on a general step. Consequently, upon designating the new tip t to be ~1, we

are assured the next white edge (t,,j) of CL is not in SMC. and more broadly, whenevel

S is non-degenerate (and hence t has degree 1 in SMC). there must exist a white edge

(t.,j) of a current Ci being generated that likewise is not in SMC. (The cycle cannot be

completed until dropping an edge results in t = r, creating a degenerate stem.) Hence

we now select this white (t,,j) to add to SMC. At least one of the edges (~l,,j) of SMC

must be the next black edge of C,. Rules I*-4* permit this edge to be deleted.

regardless of its identity. by the following correspondences: (1) Rule I * governs if (y, j)

lies on C: (2) Rule 2” governs if (q,,j) lies on S and q is on the path from j to t: (3) Rule

3* governs if (y.,j) lies on a cycle C(h) ; (4) Rule 4* governs if (cl,,j) lies on S and y is on

the path from,j to r. In each case, a new SMC is created that preserves the conditions

previously identified and permits Rules l*- 4* to be applied again. Upon encountering

a degenerate S, an alternating cycle is produced. This cycle may not be all of C‘, . since

Ci is not required to be node simple. In this case. we continue exactly as before.

without changing r. But if C, is fully generated. and if SMC dots not yet correspond to

T2. then there must be some node r of C that meets a white edge not in SMC. (If H is

not empty, we further can find such an edge that joins C to some other cycle of SMC.)

The argument now repeats, permitting the generation of the (new) cycle c’i that

contains this white edge meeting r. Eventually, all white edges will be brought

246 F. Glocer 1 Discrete Applied Mathematics 65 (1996) 223-253

into SMC, thus assuring that all cycles are generated, and causing SMC to correspond

to T,. 0

The foregoing proof also can be used as a constructive argument to show the

existence of a collection Ci, i E I of the form indicated (allowing some simplification of

the proof for this purpose).

The stem-and-multicycle structures for the asymmetric TSP

For the asymmetric problem, we assume all cycles are directed cycles, and S is

directed from P to t. The rules applicable to this problem are as follows.

Directed stem-and-multicycle rules.

Rule lA*: Apply Rule 1A to SC.

Rule 2A*: (Nonexistent).

Rule 3A*: Replace “edge” by “arc” in Rule 3*, and delete the unique cycle arc (q,j)

meeting ,j.

Rule 4A*: Replace “edge” by “arc” in Rule 4*.

Corollary to Theorem 2. Theorem 4 is valid for the asymmetric problem by replacing

Rules l*-4* with Rules IA*-4A”. In addition, the application of these rules identifies

the collection of alternating cycles Ci, i E I to be uniquely determined, given T1 and T,.

Proof. The argument takes a form analogous to the proof of Theorem 2. The unique

identity of the collection Ci, i E I follows from the fact that as long as S is non-

degenerate, the identity of each (t,j) and (q,j) is uniquely determined, and the

generation of the current Ci is completed as soon as S becomes degenerate. 0

7.2. Trial solutions for the stem-and-multicycle structure

To characterize the form of trial solutions, and also to update the stem-and-

multicycle reference structure, we stipulate the use of linked lists identifying the

predecessor and successor of each node in the cycles C(h), h E H, and in S-C. (When

S is non-degenerate, the tip t has no successor and r has two successors, one on S and

one on C.) All observations are expressed in terms of the symmetric problem, but can

be applied in an evident manner to the asymmetric problem also.

Assume H consists of positive indexes only, and each node i of a cycle C(h) is given

a label n(i) = h. Also, label each node i of S, except r, by n(i) = 0 and each node i of

C by z(i) = - 1. Changes in the labels that result by applying Rules l*-4* can easily

be carried out in O(n) time. Associated trial solutions are generated as follows.

For each cycle C(h), we identify a trial edge (u(h), v(h)), whose removal creates

a partial stem S(h) with tip u(h) and tail v(h). The cycles, and hence partial stems, are

ordered in a strict sequence, each with a predecessor and successor cycle (except that

F. Glover 1 Discrete Applied Mathematics 65 (I 996) 223-253 241

the first lacks a predecessor and the last lacks a successor). Thus we connect the tip

u(h) and tail u(k) of S(k) by edges (u(k), u), and (u, u(k)) to the tail z’ of the successor

partial stem and the tip u of the predecessor partial stem. If S(k) is the first partial stem,

the node u of (u, u(k)) is in fact t of the stem S, thus creating a linking that establishes

a complete stem S* of a trial stem-and-cycle structure. The tip u(k) of the last partial

stem is also the tip t* of S*. An illustration of such a linking appears in Fig. 10. This

trial stem-and-cycle structure provides the source of trial solutions by the customary

rules.

Once the trial edges are chosen and a linking is established, updates to the linking

and the identification of new trial solutions for each tentative move examined by

Rules l*-4* can be achieved in constant time. In the case where a move would destroy

a cycle, a sequential ordering of the remaining cycles (partial stems) is preserved by

relinking the predecessor and successor of the cycle removed (allowing a simplified

relinking if this cycle is the first or the last in the sequence). If instead the move would

create a cycle. this cycle becomes the new “first” C(k), k E H. (The effort of the

preceding updates is independent of the size of H once H contains two or more

elements.)

Fig. 10. Linked partial stems (to create trial solutions)

248 F. Glmer I Discrete Applied Mathematics 65 (1996) 223-253

The precise rules for changing the links defining the trial solutions, except those

already established for linking the tip t* to the associated subroots of Y, may be stated

as follows.

Changes to S*.

After applying Rule 1” or Rule 2*. Drop (t, u(1)) and add (q, ~(1)) Node q becomes

the new t and t” is unchanged.

After applying Rule 3*. Let C(h’) and C(h”) respectively denote the cycles that

precede and follow C(h), where C(h) contains the deleted edge (q,j).

Case 1: C(K) and C(h”) both exist. Drop (t, v(l)), (u(h), v(h”)) and (u(h’), u(k)). Add

(4, v(l)), (G), c(h)), and (u(h’), UP”)).
Case 2: C(k’) exists but C(h”) does not. Drop (t, v(l)) and (U(K), u(k)). Add (q, v(l))

and (u(h), v(k)). C(k’) becomes the new “last” cycle and u(h’) becomes the new t*.

Cuse 3: C(k”) exists but C(k’) does wt. Drop (t, ~(1)) and (u(h), u(k”)). Add (q, o(h”))

and (u(h), u(k)).

Case 4: C(k’) and C(k”) both do not exist. Drop (t, v(l)) and add (u(h), v(k)). Node

q becomes the new t* (and H becomes empty).

After applying Rule 4”. No change in S* occurs. (Edge (t,j) becomes the trial edge

(u(l), o(l)) for the newly created cycle C(l).)

We express these as changes to S*, which occur in addition to the changes of adding

(t, j) and dropping (q, j) after applying each of the Rules l*-4*. We assume H is

non-empty for Rules l*-3*, for otherwise the changes are those already stipulated for

a simple stem-and-cycle. Also, we use the convention that C(1) denotes the “first”

C(h), k E H, hence identifying (u(l), v(1)) as the trial edge associated with this cycle.

Note in the cases associated with Rule 3*, the changes should be interpreted as

occurring before the addition of (t,j) and deletion of (q,j). Thus, the addition of

(u(h), c(k)), which restores S(k) to C(k), may be offset by the deletion of (q,j), if the two

edges are the same. Similarly, the deletion of (t, v(l)) may be offset by the addition of

(t,j) in Case 4, if these edges are the same. The fact that S* does not change after

applying Rule 4* underscores the importance of evaluating moves by reference to cost

changes other than (or in addition to) those produced by trial solutions. For example,

trial solutions may be used as a secondary evaluation criterion except where one of

particularly high quality is produced.

The identification of (t,j) as the trial edge (u(l), v(1)) after applying Rule 4* of course

may not be the best choice, and an option that can be quickly tested is to consider the

more costly of the two edges adjacent to (t, j) on C(1) as a candidate for (u(l), v(1)).

Such options normally will be restricted during the examination of potential moves so

that each move can be evaluated in constant time. However, once a move is selected

and executed (or a preferred of moves are isolated for more extensive evaluation),

superior choices for the trial edges may be considered. The next section examines this

issue.

7.3. Ident$tiing trial edges and relinking partial stems

We describe a straightforward method to identify trial edges for the goal 01

determining improved trial solutions, constituting a local improvement process that

can be applied in O(n) time (or less). For this, let H* = H u (0, - 1) and consider two

additional cycles, C(0) and C(- 1) C(- 1) is just C (recalling that each node i of C is

labeled n(i) = ~ 1). We create C(0) by first identifying the partial stem S(0) that spans

the nodes i labeled n(i) = 0 (all nodes of S except r). and then adding an edge joining

the endpoints of S(0) to complete the cycle. For this we assume S is non-degenerate

(else S(0) has no nodes), and denote the endpoints of S(0) by v(O) and r(O). where

u(0) = t and z(O) is the node that links S(0) to C by the edge (Y, r(0)).

The cycle C(O), created by adding (~(0). r(0)) to S(O), may be degenerate if S(0) has

only one node, and also (in the symmetric problem) if S(O) has two nodes. since then

the added edge (u(0). t>(O)) duplicates the single edge of S(0).

We identify the trial edge (u(- l), z:(- 1)) of C(- I) by stipulating that 14(- 1) = r

and I(-- 1) is the subroot s of C that yields a preferred trial solution (upon deleting

(1.. s)). H* is ordered just as H is ordered, taking - 1 and 0 to be the first two elements

of H *, followed by the first element of H (if H is non-empty). H * further is treated as

cyclic, where the last element of H* precedes the first. (In special case where S is

degenerate and S(0) does not exist, we remove the index 0 from N*.) Thus, the linking

of partial stems S(h) by adding (n(h), c(h”)), where h” follows /I. for each /I E tf*.

corresponds exactly to the trial solution previously specified for SMC. This holds true

also for the case where S(0) contains only one or two nodes (and C(0) is degenerate).

Given this framework, the local improvement procedure for determining a better

trial solution seeks an identity for (u(h), r(h)) in each C(h), so that the linking of the

resulting partial stems S(h) yields a least cost tour. We observe that u(O) and r,(O) must

be held invariant if S(0) contains no more than two nodes. and hence C(0) is excluded

from the process in this circumstance.

Local improvement of trial edges.

Initiulizution. Let L be a list of all h E H* such that C(h), or its predecessor OI

successor cycle in H*, has changed since the last execution of this method.

Step I: Select and remove some h from L, and identify the predecessor h’ and

successor h” of h in H *.

Step 2: Select (u(h), l:(h)) to be an edge of C(A) that minimizes c(u(h), I) +

c(u(h’), C(h)) - C(ll(h), u(h)). If u(h) or o(h) changes its identity, add h’ and h” to L. Then

return to Step 1 unless L is empty.

The identity of u(h) and 11(h) in the edge (z4(h), u(h)) implicitly “orders” these nodes.

That is. if u(h) and t:(h) are interchanged in the minimization criterion of Step 2,

a different outcome results. Thus each (i.,j) of C(h) is examined twice, once to check for

i = u(h) and,j = c(h), and once to check for i = r(h) andj = u(lz) This procedure can

alter the stem S if it selects u(O) to be different from t, and also can alter the root of C if

250 F. Glocer J Discrete Applied Mathematics 65 (1996) 223-253

it selects u(- 1) to be different from r. Since the number of edges in all cycles on the

list L is at most n, the method requires at most O(n) effort between successive

improvements, or before terminating after the last improvement.

7.4. A global method for identibing best trial edges

We now provide a more advanced procedure that generates a globally best

selection of trial edges, given the identification of the partial stem S(O), with tip

t = u(0) and tail v(O). In particular, we seek edges (u(h), v(h)) for each C(h), h # 0, that

yield a trial solution that is optimal over the alternatives available (henceforth called

an optimal trial solution).

The method makes a single pass of the nodes of the SMC, and of edges that meet

each node, hence involving O(n’) effort in a dense graph. For star(i) defined relative to

the “best k” edges meeting node i, the method reduces to O(kn) effort, hence to O(n)

effort for k constant.

The method has two types of steps, “across cycle” steps and “within cycle” steps.

For each node i, we maintain an “across cycle” cost and predecessor node, denoted

a-cost(i) and a_pred(i), and also maintain a “within cycle” cost and predecessor node,

denoted w-cost(i) and w_pred(i). In contrast to the Local Improvement Method for

selecting trial edges, we do not allow S to be degenerate, and hence, assume S(0)

contains at least one node. To handle the case of a degenerate S, we extract r from C to

compose S(O), with u(0) = v(O) = r, and reconstitute C by joining the two previous

subroots of Y.

Define N(h) to be the set of nodes in C(h), for h E H* and h # 0, and define N(0) to

be the set consisting of the single node v(O). The method starts with h = 0, and then

examines elements of H* in reverse (predecessor) order, from 0 to - 1 to the last

element of H*, and finally ending with the element whose predecessor is the first

element of H, if H is non-empty.

SMC Cycle Linking Procedure.

Initialization step. Set acost and w-cost(i) to infinity for all nodes i # u(0) and set

w_cost(zj(O)) = 0. Begin with h = 0.

Across cycle step. Let h’ denote the predecessor of h in H *. For each node i of N(h),

examine each edge (i,j) such that j E star(i)nN(h’). If c(i, j) + w-cost(i) < a-cost(j),

then set a-cost(j) = c(i, j) + w-cost(i), and set i = a_pred(j).

Within cycle step. Let h = h’ (the predecessor element of h in H*). For each

i E N(h), examine the two edges (i, j) in C(h) meeting node i. If

a&cost(j) - c(i,j) < w-cost(j), then set w-cost(j) = a-cost(j) - c(i,,j) and set

i = w_pred(j). Finally, if the predecessor of h is 0, go to the Final Step. Otherwise,

return to the across cycle step.

Final step. Let i* = argmin(w_cost(i, u(0)) + c(i, u(0)): i E N(h)), and let

a-cost (u(0)) = w_cost(i*, u(0) + c(i*, u(0)). The trial edges (u(h), u(h)) for each C(h),
h E H and h = - 1, are identified as follows. Begin with h at its current value

F. Glowr 1 Discrete Applied Mathematics 65 (1996) 223 -253 251

(with predecessor 0).

(1) Let v(h) = i* and u(h) = w_pred(i*).

(2) If h = - 1, stop. Otherwise, redefine i* = a_pred(u(h)), replace h by its suc-

cessor in H *, and return to (1).

The following theorem establishes the optimality of this procedure.

Theorem 3. For the giuen sequencing of the cycles C(h). h E H, the SMC C~,cle Linkirlg

Procedure yields an optimal triul solution bused on determining u(h) lmd c(h),@ c~acl~

h E H* - (0). wYth u(O) and v(O),fixed. The cost of this triul solution equals:

a_cost(u(O) + cost(S(0)) + C(cost(C(h)): h E H* - (0)).

M,here cost(X) denotes the sum cf edge costs irz suhgruph X.

Proof. The validity of the theorem follows by identifying the linking problem as

equivalent to solving an acyclic shortest path problem whose digraph results by

creating two layers of nodes, each duplicating the nodes of N(h), for every h E H *.

A collection of ucross cycle arcs (i,,j) is created, for each i in the second layer of N(h)

and eachi in the first layer of N(h’), where h’ precedes 11, over all h E H*. The cost of

each such arc equals the cost c(i, j) of the associated edge of the original problem. The

digraph also contains within cycle arcs (i, j), for each i in the first layer of N(h) and fat

each of the two nodes j in the second layer of N(h) such that (i, j) is an edge of C(h).

over all h E HI* - [Oi. Each within cycle arc has a cost of - c(i.,j) (associated with

dropping edge c(i,,j)). Evidently, each way to identify edges (u(h), c(h)) over all

h E H * - (01, and each way to create linking edges (u(h’), v(h)), where h’ precedes 11,

over all II E H*, corresponds to a unique path from ~(0) to U(O) in the acyclic digraph.

The SMC Linking Procedure then can be interpreted as a specialization of a standard

method for solving an acyclic shortest path problem. U

8. Implications and conclusions

The preceding sections give characterizations and connectivity results for TSP

neighborhoods created by ejection chain constructions, which range from generaliz-

ations of alternating paths to more complex transformations. In each instance, the key

to generating the desired forms of these constructions lies in establishing an associated

reference structure as a guidance mechanism. Our designs allow transformations to be

carried out in a different space than the space of tours, yet allow access to tours by

associated trial solution mappings.

The orientation of this paper has been primarily structural, seeking to identify

transformations based on a graph theory perspective, and to disclose their underlying

properties. Special algorithmic consequences of these results are explored in a sequel

[lo] by showing the ejection chain constructions identified here can be exploited by

252 F. Glocer / Discrete Applied Mathematics 65 (1996) 223-253

a fast updating procedure that requires only O(1) effort per iteration. In addition, our

results give a basis for obtaining a combinatorial leverage efkct, where the investment of

O(n2) or 0(n3) effort produces solutions that dominate O(n2”) or O((n/2)!) alternatives,

respectively. We also show how this work yields strategies to create combinatorial

leverage for NP hard graph problems other than the traveling salesman problem.

In conclusion, we note that recent studies are confirming the usefulness of these

ejection chain approaches. Pesch 1221 develops a TSP method based on the stem-and-

cycle reference structure that performs more effectively than recent extensions of the

Lin-Kernighan approach (which combine the L-K method with genetic algorithms).

Rego [23] provides an effective application of ejection chain procedures to vehicle

routing which likewise proves competitive with currently leading approaches. Finally,

by extension of the results of Section 7, Glover and Punnen [l l] develop new methods

that find optimal tours in linear time over subsets that contain exponential numbers of

tours. These outcomes suggest a variety of possibilities exist for further applications of

these ideas.

References

[l] C. Berge, Theory of Graphs and its Applications (Methuen, London, 1962).

[2] D. de Werra and F.S. Roberts, On the use of augmenting chains in chain packings, Discrete Appl.

Math. 30 (1991) 1377149.

[3] U. Dorndorf and E. Pesch, Fast clustering algorithms, INFORM and University of Limburg (1992).

[4] J. Edmonds, Maximum matching and a polyhedron with 0, l-vertices, J. Res. Nat. Bureau Standards

69B (1965) 1255130.

[S] J. Edmonds, Matroid intersection, Ann. Discrete Math. 4 (1979) 39940.

[6] C.-N. Fiechter, A parallel tabu search algorithm for large scale traveling salesman problems, Working

Paper 90/l, Departement de Mathematiques, Ecole Polytechnique Fed&ale de Lausanne, Lausanne

(1990).

[7] F. Clover, A bound escalation method for the solution of integer linear programs, Cahiers Centre

Etudes Rech. Oper. 6(3) (1964) 131-168.

[S] F. Clover, Multilevel tabu search and embedded search neighborhoods for the traveling salesman

problem. School of Business, University of Colorado, Boulder, CO (1991).
[9] F. Clover, New ejection chain and alternating path methods for traveling salesman problems, in:

Balci. Sharda and Zenios, eds., Computer Science in Operations Research: New Developments in

Their Interfaces (Pergamon, Oxford, 1992) 491-507.

[lo] F. Clover, Ejection chains and combinatorial leverage for traveling salesman problems, School of

Business, University of Colorado, Boulder, CO (1992).

[1 l] F. Clover and A. Punnen, The traveling salesman problem: Linear time heuristics with exponential

combinatorial leverage, School of Business, University of Colorado, Boulder, CO (1994).

1121 F. Clover, E. Taillard and D. de Werra, A user’s guide to tabu search, Ann. Oper. Res. 41 (1993) 12-37.

[13] B.L. Golden and W. R. Stewart, Empirical analysis of heuristics, in: E.L. Lawler, J.K. Lenstra, A.H.G.
Rinooy Kan and D.B. Schmoys, eds., The Traveling Salesman Problem (Wiley, New York, 1985)
2077250.

[14] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

[15] R. Hubscher and F. Clover, Ejection chain methods and tabu search for clustering, School of

Business, University of Colorado, Boulder, CO (1992).

[16] M. Laguna, J. Kelly. J.L. Gonzales-Velarde and F. Glover, Tabu search for the multilevel generalized

assignment problem, European J. Oper. Res. 82 (1995) 1766189.

F. Glorer ” Discrete .4pplied Mnthemutics 6S (1996) 223 -2.i3 253

[171 E.L. Lawler. Combinatorial Optimization: Networks and Matroids (Halt. Rinehart and WInston.

New York, 1976).

[181 E.L. Lawler. J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Schmoys. The Traveling Salesman Problem

(Wiley, New York, 1985).

[191 S. Lln and B.W. Kernighan, An effective heuristic algorithm for the traveling salesman problem. Opcr.

Res. 71 (1973) 498 516.

[IO] M. Malek. M. Guruswany, M. Pandya and I-1. Owens, Serial and parallel simulated anncalmg and

tabu search algorithms for the travehng salesman problem. in: F. Glover and H.J. Grecnbcrg. cd..

Lmkages With Artificial Intelligence, Ann. Oper. Res. 21 (19891 59-84.

[Zl] E. Pesch. Personal communications, 1991.
[2] E. Pesch. Reference structures, neighborhoods and candidate lists for TSP eJectIon chains. Ilni\er\lc)

of Maastricht. Maastricht (1993).

[23] C. Rego, Une heuristic tabou avec structure\ de voisinage composi pour les tournies de vehicule~.

INRIA. Le Chesnay. France (1993).

