
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

Coloring by Tabu Branch and Bound

FRED GLOVER, MARK PARKER, AND JENNIFER RYAN

20 March, 1995

Abstract. We give an adaptive depth procedure for coloring a graph that
combines elements of tabu search and branch and bound. The resulting
tabu branch and bound method can execute searches of varying de-
grees of exhaustiveness at different stages and in different regions of the
search space, ranging from pure heuristic search to pure tree search at the
extremes. The goal is generally to find near optimal colorings efficiently,
but with the ability to obtain optimal colorings if desired. We introduce
new theoretical results concerning depth and width of local optima that
motivate our approach, and employ a concept of color conditioned de-
pendency to permit shrinking of the graph at appropriate stages. We also
employ an associated notion of node danger to select a node to be colored
and to determine the color assigned.

Computational experiments show our method performs effectively for
a variety of problem types, including those taken from real world applica-
tions, and notably in graphs that are not excessively dense (as is typical
in practice). In general, our approach is significantly better than branch
and bound coloring methods which are considered to be state-of-the-art,
yet maintains a structure that likewise provides a theoretical ability to as-

sure optimality (controlled by a choice parameter). We demonstrate the
effectiveness of this approach by comparing the tabu branch and bound
method in both heuristic and exact mode with an efficient implementa-
tion of the DSATUR branch and bound algorithm. We find that the tabu
branch and bound approach is able to solve problem instances in 1/3 to
1/2400 of the time as DSATUR. Also, when run in a mode to identify near
optimal colorings quickly, the tabu branch and bound method terminated
with optimal solutions for 15 of 28 graphs taken from the DIMACS Chal-
lenge Benchmark (specially constructed to be difficult) for which optimal
solutions are known. Additionally, by finding colorings of the same cardi-
nality as lower bounds the method also identified, the method was able to
verify the optimality of its solution in 12 of these 15 problems.

1991 Mathematics Subject Classification. Primary 90C35, 68R10; Secondary 05C85.
This research was supported in part by AFOSR/ONR Contracts #F49620-90-C and

#F49620-92-J-DEF.
This paper is in final form and no version of it will be submitted for publication elsewhere.

c©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

1

2 GLOVER, PARKER, AND RYAN

1. Introduction

Our goal is to develop an efficient heuristic for near optimal colorings on a

general class of graphs with an additional specific capability to solve optimally

with verification when desired. In meeting this objective, we introduce new

results on the depth and width of local optima in graph coloring problems. Our

final goal is to develop this heuristic within a tabu search metastructure.

It has long been established that branch and bound (tree search) is somewhat

limited in its effectiveness as a mechanism for coloring. The studies of Hertz and

de Werra [8] and Mohr [10], for example, yield results using the more flexible

memory structures of tabu search that have not been matched by branch and

bound procedures. (These results have also been demonstrated superior to those

of heuristic approaches such as simulated annealing and genetic algorithms.)

One of our goals is to determine whether some of the principles of tabu search

can be directly superimposed upon a branch and bound structure to produce a

method which is better than branch and bound, but which also offers a theo-

retical guarantee of finiteness by selecting parameters at boundary values. At

issue is the manner in which such a combined method can be usefully organized,

and the degree to which the customary effectiveness of tabu search is compro-

mised by creating such a combined approach. We address these considerations

by developing new heuristic choice rules that are useful for such a combined

method, and by establishing theoretical results for guiding the “search depth” of

the procedure. Our results also can be applied with more customary tabu search

memory structures, and hence provide an opportunity for investigations outside

the branch and bound context which is our present focus.

In order to meet our initial objective, we find it necessary to quickly establish

bounds on χ(G), the chromatic number of our graph G. In this way, we reduce

the size of the search space for the tabu branch and bound phase of our heuris-

tic. A lower bound can be obtained by finding a clique in the graph, although

finding the maximum clique is theoretically as difficult as the original coloring

problem. We present a heuristic for quickly identifying large cliques which works

well on many classes of problems. Establishing an upper bound k means finding

a coloring on k colors. A sequential coloring algorithm can be implemented effi-

ciently for this purpose. In particular, we develop a dynamic sequential coloring

heuristic, called “DANGER”, whose ideas provide a generalization of the notions

underlying the DSATUR heuristic [1].

A fundamental part of our work is embodied in the new results on analysis of

the depth and width of local optima for graph coloring formulations. Previously,

Ryan [12] has analyzed the 0-1 knapsack problem and set covering problem and

defined sharp bounds on the depth and width of local minima. Here, these

concepts are applied to the graph coloring problem to obtain sharp bounds for

the depth and width of local minima. These results can be used by any search

heuristic which discretizes the solution space. We present only a single instance

COLORING BY TABU BRANCH AND BOUND 3

of their application.

The tabu search metaheuristic has been successfully implemented on numer-

ous combinatorial optimization problems in the recent past (see [6] for a brief

summary). Hertz and de Werra [8] describe an implementation for graph color-

ing where an infeasible coloring is kept, and the tabu search is used to reduce

the number of edges between nodes in the same color class by swapping nodes

between color classes. A feasible k coloring is obtained when each color class

contains no edge with both endpoints in the color class. Mohr [10] explores par-

allel implementations of this same approach. Tabu search can be implemented

in a variety of ways on a given problem. Here, we explore the use of tabu search

to control a branch and bound procedure which improves the coloring solution

obtained via our dynamic sequential coloring heuristic. We use a different move

mechanism from the Hertz and de Werra approach, and we utilize the tabu search

framework in a very different manner.

2. DANGER Coloring Heuristic

We develop DANGER to serve as the core of our heuristic. It provides an

upper bound during the first phase of our heuristic and is used during the recol-

oring phase of our tabu branch and bound process. We chose to use a dynamic

sequential coloring heuristic rather than an iterative coloring heuristic so that a

feasible solution is maintained. This can be especially important for large color-

ing instances where an exact coloring is (in most cases) impossible to obtain.

The DANGER coloring heuristic is based upon the concept of a dynamic node

danger measure which is used to prioritize the uncolored nodes at each iteration.

In addition, we also make use of the idea of color conditioned dependency to

shrink the size of the graph we are working with. We begin by describing this

process.

2.1. Recursive Shrinking. Consider the following simple idea. Letmax color

be the largest color index allowed, hence the largest number of colors permitted

to be used in coloring of graph G (during the current “phase”). If there is any

node i with degree(i) < max color, then classify node i as a “dependent”

node. Clearly, if we wait to color a dependent node until after all other nodes of

G are colored, then we can assign a dependent node any color we want different

from the colors of its neighbors, and be assured that we do not exceed the target

of using (at most) max color different colors.

Consequently, this suggests a strategy of shrinking the graph by removing

all dependent nodes, and coloring the graph that remains. Then the dependent

nodes can be reinserted, and the coloring process can be completed.

But we can immediately do better, because once a dependent node is removed,

the degree of each of its neighbors is reduced by 1, and hence one or more of

its neighbors may become dependent. This conditional dependence gives a basis

for further shrinking the graph, and it is only necessary to keep track of the

4 GLOVER, PARKER, AND RYAN

sequence in which nodes are removed in this recursive shrinking, in order to

assign colors properly when the graph is once again expanded to full size after

coloring the residual graph. (That is, the rule is simply to re-construct the full

graph in the sequence that reverses the shrinking sequence.) It is easy to prove

that conditional dependence is as valid as first order dependence to assure the

graph does not receive too many colors. In fact, the proof is given by the coloring

process of the reverse re-construction.

2.1.1. Generalization - color conditioned dependency. We can generalize the

basic notion of dependency to give a much more powerful strategy which operates

in a graph that is already partially colored. In effect, we look for conditional

dependency that is based on the colors currently assigned.

Define colored(i) and uncolored(i) to be the number of neighbors of node

i that are colored and uncolored; hence we have

colored(i) + uncolored(i) = degree(i)

Let different colored(i) denote the number of different colors assigned to neigh-

bors of node i and define

potential difference(i) = different colored(i) + uncolored(i)

In other literature, e.g [1], different colored(i) is sometimes called the sat-

uration degree of node i. Here we embed this measure as indicated in a new

measure that we can exploit rigorously. In particular, potential difference(i)

identifies a bound on the value that can be achieved by different colored(i) in

any completion of the current partial coloring of G. By extension of our previous

observations, whenever we find

potential difference(i) < max color

then we may classify node i as dependent by color conditioning, or cc-

dependent. Our first result, on which we will base a specialized coloring pro-

cedure, is therefore as follows.

Theorem 2.1. Let v be the minimum number of colors required to color G,

given the current partial coloring. Then all cc-dependent nodes can be eliminated

from G, and all nodes that conditionally become cc-dependent as a result of this

operation likewise can be removed recursively, without changing the value of v.

The recursive aspect of this result arises since, similar to the earlier simpler

case of conditional dependency, the removal of some of the nodes reduces the

degrees of their neighbors and so causes other nodes to become cc-dependent

(since reducing degree(i) reduces the value of uncolored(i), and hence reduces

the value of potential difference(i)). This outcome can therefore trigger a

chain of changes at various stages of the coloring process.

COLORING BY TABU BRANCH AND BOUND 5

2.1.2. Branch and bound effects. If we just restrict attention to how recursive

shrinking can affect branch and bound, we see the outcome can be considerable.

Each time a node is removed – rather than colored, for example – then we never

have to backtrack to this node and try to assign it colors other than the one first

attempted. This has the potential to eliminate large portions of the branch and

bound tree. Consequently, a branch and bound method that incorporates this

strategy will tend to dominate any such method that does not. Beyond this, the

shrinking process is designed to improve the effectiveness of any approach that

uses “controlled variable backtracking”, as does the method presented here.

This idea is easily implemented. When the graph is initially read in, uncolored(i)

is set to the number of neighbors for each node i. As a node j is colored,

different colored(i) is updated for all neighbors i by looking at whether j’s

color is available to it. If it is, then j is the only neighbor of i that is colored

that color and different colored(i) is updated. In either case, uncolored(i) is

decremented, potential difference(i) is recalculated and node i is checked for

to see if it is cc-dependent. If it is, its color is set to 0. While backtracking

(linearly), we check to see if a node has color 0. If so, we do not need to try

to change its color. Upon completing a coloring, the cc-dependent nodes are

assigned an actual color.

Now that we have seen how to restrict the size of our graph at each iteration,

we present the node and color selection rules for the DANGER heuristic.

2.2. Node Danger. At each iteration of our DANGER heuristic, we must

select an uncolored node from the graph as our next node to color. We introduce

the simple concept of node danger – at step k of our heuristic, we wish to know:

How dangerous is it if we do not color node i? Several criteria are used to define

this danger measure. A node with a high value of different colored(i) and of

uncolored(i), if not colored at once, will potentially become more and more

difficult to color within the targeted color number bound. Also, if the number of

colors available to a node and to its uncolored neighbors is large relative to the

number of colors available to the node, generally it will be difficult to color that

node and its neighbors. Define avail(i) to be the number of colors available to

node i, and share(i) to be the number of colors available to node i that are also

available to its uncolored neighbors. At each iteration, these “danger” attributes

are combined in the following sense to weight a subset of uncolored nodes:

Define

danger(i) = F (different colored(i)) + kuuncolored(i) + ka
share(i)

avail(i)

where F is a monotonic increasing function and ku and ka are nonnegative

constants.

Note if F is the identity function and ku = 1 and ka = 0, then danger(i) =

potential difference(i); that is, the danger represented by node i is the num-

ber of different colors that may potentially be assigned to its neighbors. Then

6 GLOVER, PARKER, AND RYAN

danger(i) < max color discloses that node i is not dangerous enough to worry

about, and we may eliminate it by cc-dependency as previously described.

The function F is taken to be different from the identity function because the

“real” (or probable) danger of node i depends much more strongly on the number

of different colors used by its neighbors than by the value of uncolored(i).

Various choices of F were considered in our empirical studies. We determined

the following form to be particularly promising.

Consider the function F (y). Note y ranges from 0 to max color − 1, hence

the value v = max color− y ranges in reverse from max color to 1. Let C be

an arbitrary positive constant. Then let

F (y) =
C

(max color− y)k

As v gets close to 1, the “criticality of F” becomes more pronounced. That

is, the ratio F (y+1)
F (y) increases as y grows. Thus, we are more likely to use the

“secondary” parameters of danger in selecting a node when different colored

is small for all nodes; and as different colored approaches max color these

secondary parameters are used only to break ties. The effect of this rule may

be further understood by contrasting it with the popular approach embedded

in the DSATUR algorithm, which relies chiefly on different colored (or sat-

uration degree) to select nodes, while invoking uncolored to break ties. This

approach makes no reference to avail or share, and incorporates no functional

relationship as in the danger concept. Consequently, our rule provides a versa-

tility that derives from using fuller information and establishing a parameterized

interdependence among components.

The danger value is used to choose the next node i∗ to color, by picking

the node achieving max(danger(i) : for i uncolored). This requires node i∗

to be a node with the highest, or one of the top two or three highest values

of different colored(i). In our implementation, we choose i∗ from the set of

nodes having one of the three highest values of different colored(i). In this

way, we reduce the computational effort at each iteration, and typically evaluate

danger for less than 10% of all nodes.

In practice, we have found that the following parameter values work well over

a large class of graphs: C = 1.0, k = 1.0 ku = 0.025, and ka = 0.33. Im-

provements of course are possible if parameters are fine tuned for graphs with

particular structures, but our goal has been to provide a coloring procedure that

works well across a broad range of graphs without taking advantage of special

characteristics. In fact, as noted later, the speed of our method makes it pos-

sible to incorporate 5 increments in the parameter k, holding other parameters

constant, to achieve additional robustness while maintaining a high level of effi-

ciency.

We now focus our efforts on selecting a color for i∗.

COLORING BY TABU BRANCH AND BOUND 7

2.3. Color Danger. Once we have chosen a node to color, we want to select

a color that is least likely to be required by neighboring nodes at later iterations.

We present the concept of color danger, which is similar in form to the node

danger idea just presented. Loosely speaking, we will say that a color is attractive

to a specified node if our rules would judge it to be a good choice for that node.

Then we will consider a color to be dangerous to use for coloring node n if this

color is:

• attractive to an uncolored node with a large value of different colored,

• attractive to an uncolored node with many uncolored neighbors,

• infrequently used (we prefer to use colors that are already used exten-

sively).

For a particular color c, define diff neighbors(c) to be the maximum number

of different colored neighbors, over all uncolored nodes having c available as a

color. Let nc be the node achieving this maximum. Let num(c) denote the

number of times that c has been used. We choose to use the color c that minimizes

the quantity

k1
(max color− diff neighbors(c))k2

+ k3uncolored(nc)− k4num(c))

where k1, k2, k3, and k4 are nonnegative constants.

Again, this formulation is similar to that defined for node danger, where our

functional choice for diff neighbors requires that our color danger value increase

rapidly as diff neighbors approaches max color.

In practice, we have found that the following parameter values work well over

a large class of graphs: k1 = 1.0, k2 = 1.0 k3 = 0.5, and k4 = 0.025. As described

later, these parameters are maintained fixed throughout the application of our

procedure with the exception of k2.

We use the DANGER heuristic to dynamically and sequentially color a graph,

making use of new results which form the crux of our tabu branch and bound

strategy to improve upon this coloring.

3. Depth and Width of Local Optima

We can view a solution to our coloring problem as a local minimum in the

topology defined by our move mechanism. We develop a theory to enable us

to determine how far we must move away from our current solution in order to

improve upon it, and apply this theory within the tabu branch and bound phase

of our heuristic to demonstrate its use in practice. Once we have obtained a valid

coloring on k colors, we attempt to improve upon it, by setting lower bnd ≤
knew < k. We then backtrack to a prescribed level in the branch and bound

tree (i.e. uncolor a set of previously colored nodes) and resume our search down

another branch of the tree (i.e. continue coloring nodes). The theoretical results

derived in this section provide an algorithm for guiding this movement through

the branch and bound tree. We emphasize that any heuristic which discretizes

8 GLOVER, PARKER, AND RYAN

the solution space can make use of this information, or information derived in a

similar manner for a different move mechanism. We begin by defining the depth

and width of a local minimum for a general problem.

3.1. The Depth and Width of a Local Minimum. Consider a combi-

natorial optimization problem min{v(x)|x ∈ X ⊆ Rn}, where v is a real valued

function and X is a finite set. Heuristics such as simulated annealing [9] and

tabu search [4] search X by “moving” from one element to another.

The structure of the solution space depends on the move mechanism being

used. Clearly, in order for any heuristic to be effective, the move mechanism

should ensure that each member of X is reachable from any other. A local

minimum of X is an x ∈ X such that no y ∈ X with v(y) < v(x) is reachable

from x without first passing through z ∈ X with v(z) ≥ v(x). A global minimum

of X is an x ∈ X such that there is no y ∈ X with v(y) < v(x). Let GL denote

the set of global minima, and let L denote the set of local minima which are not

global minima. The definition of the depth of a local minimum below follows [7]

and [2]. The definition of the width of a local minimum was introduced in [12].

A solution x ∈ L has depth d(x), if d(x) is the minimum d such that some

y ∈ X with v(y) < v(x) can be reached from x without passing through any

z ∈ X with v(z)− v(x) > d, i.e., it is the minimum distance uphill that must be

traveled in order to escape from the local minimum x. Let d∗ = maxx∈L{d(x)}.
In [7], Hajek gives a cooling schedule for simulated annealing that is guaranteed

to converge in probability to an element of GL. The choice of temperatures

in the cooling schedule depends on d∗. Moreover, Chiang and Chow ([2] and

[3]) show that the rate of convergence also depends on d∗. Tabu search can

likewise exploit d∗, though by reference to a somewhat different mechanism called

strategic oscillation (which does not rely on a monotonic “cooling” operation).

More particularly, tabu search can also exploit the notion of width, as follows.

An x ∈ L has width w(x), if w(x) is the minimum w such that some y ∈ X with

v(y) < v(x) can be reached from x without making more than w nonimproving

moves. Let w∗ = maxx∈L{w(x)}. The width gives an estimate of the the

necessary length of a tabu list in a tabu search. A “flat” topography, i.e., one

where the width is large in relation to the depth will impose difficulties for an

objective driven search. Tabu search therefore proposes the use of additional

measures such as influence in such situations [6]. Estimates of depth and width

for different neighborhood structures can provide further insight and guidance

when selecting a neighborhood to be used in such a search.

The following terms will be used in the next sections. An independent set is

a set of nonadjacent nodes. A matching is a set of edges M so that no two edges

in M share an endpoint. We let χ(G) denote the fewest number of colors that

can be used to color the nodes of graph G and let α(G) denote the size of the

largest independent set of G.

COLORING BY TABU BRANCH AND BOUND 9

3.2. Application to Tabu Branch and Bound. Once a coloring is ob-

tained, we attempt to improve upon it by keeping a fixed number of colors and

iterating between improving and nonimproving moves until either we find a fea-

sible coloring or determine that this is not “readily” possible. Therefore, a trial

solution will have some, but not necessarily all, of the nodes colored. A “move”

involves uncoloring a colored node, or coloring an uncolored node. In our com-

binatorial optimization setting, the value of a trial solution (to be minimized) is

the number of uncolored nodes. The optimal value is 0 if and only if the graph

G has a feasible coloring using k colors.

For this topology, which we refer to henceforth as the fixed number of colors

topology, the depth and width are equivalent. This can be seen by noting that the

depth of a local minimum is the distance in terms of objective function that we

must move in order to escape the influence of the minimum. Since our objective

is measured in terms of the number of nodes colored, this tells us the number of

nodes which must be uncolored in order to escape the local minimum. This is

equivalent to the definition of width of a local minimum, since this is the number

of nonimproving moves necessary to escape the influence of the minimum. Recall

that a nonimproving move corresponds to the uncoloring of a colored node. We

now derive the value of d∗, and hence the value of w∗.

3.3. Theoretical Results. In any legal graph coloring, the nodes of any

one color will always form an independent set. Our solution technique can be

considered a set covering approach where we want to cover the nodes with in-

dependent sets. Thus we keep a set of k independent sets, and cover as many

nodes as possible.

Let C1, C2, . . . Ck denote the k independent sets used by the coloring x. (So

Ci is colored with color i.) Similarly, let C ′
1, C

′
2, . . . , C

′
k denote the k indepen-

dents sets used by the coloring x′. We “exchange” Ci and C ′
i by uncoloring

all of the nodes in Ci \ C ′
i that are still colored with color i, and then color-

ing the nodes in C ′
i \ Ci with color i. After � − 1 steps of coloring and un-

coloring, the number of nodes that have been uncolored but not recolored is
∑�−1

i=1 (|Ci ∩ (C ′
i ∪ . . . ∪ C ′

k)| − |C ′
i ∩ (C1 ∪ . . . ∪ Ci)|). The increase in the num-

ber of nodes uncolored will reach a maximum after � sets of uncoloring have been

done, and only �− 1 recolorings, for some �. Define the following:

f(�) ≡ |(C ′
� ∪ . . . ∪ C ′

k) ∩ (C1 ∪ . . . ∪ C�)|.

After the �th step of uncoloring, (and before the �th step of recoloring), the

number of nodes uncolored but not recolored is f(�) − |C� ∩ C ′
�|. (Note that

there is no need to uncolor the nodes in C� ∩ C ′
�.)

The value of f(�) is clearly affected by the ordering of the Ci’s and the C ′
i’s.

The following lemmas show how to order these sets to achieve the bound of

Theorem 3.1.

10 GLOVER, PARKER, AND RYAN

Lemma 3.1. After the (� − 1)st uncoloring sequence, the set C ′
�−1 can be se-

lected (possibly after reindexing) from {C ′
�−1, . . . , C

′
k} so that

A ≡ |C ′
�−1 ∩ (C1 ∪ . . . ∪ C�−1)| ≥

f(�− 1)

k + 2− �
.

Proof. Since C ′
�−1 ∩ (C1 ∪ . . . ∪ C�−1) ∪ . . . ∪ C ′

k ∩ (C1 ∪ . . . ∪ C�−1) is the

same as (C ′
�−1 ∪ . . . ∪ C ′

k) ∩ (C1 ∪ . . . ∪ C�−1), at least one of the k + 2 − � sets

in {C ′
�−1 ∩ (C1 ∪ . . . ∪ C�−1), . . . , C

′
k ∩ (C1 ∪ . . . ∪ C�−1)} must cover at least

|(C′
�−1∪...∪C′

k)∩(C1∪...∪C�−1)|
k+2−� nodes.

Lemma 3.2. After the (�−1)st recoloring sequence, the �th set to uncolor can

be chosen from {C�, . . . , Ck} so that

B ≡ C� ∩ (C ′
� ∪ . . . ∪ C ′

k) ≤
A

k + 1− �
+ α(G)− f(�− 1)

k + 1− �
.

Proof. Since (C� ∩ (C ′
� ∪ . . . ∪ C ′

k)) ∪ . . . ∪ (Ck ∩ (C ′
� ∪ . . . ∪ C ′

k)) is the

same as (C� ∪ . . . ∪ Ck) ∩ (C ′
� ∪ . . . ∪ C ′

k), at least one of the k + 1 − � disjoint

sets in {(C� ∩ (C ′
� ∪ . . . ∪ C ′

k)) . . . (Ck ∩ (C ′
� ∪ . . . ∪ C ′

k))} must cover at most
|(C�∪...∪Ck)∩(C′

�∪...∪C′
k)|

k+1−� nodes. So without loss of generality we can assume that

C� ∩ (C ′
� ∪ . . . ∪ C ′

k) ≤
|(C� ∪ . . . ∪ Ck) ∩ (C ′

� ∪ . . . ∪ C ′
k)|

k + 1− �
.

Let C ′′
i = C ′

i ∩ (C1 ∪ · · · ∪ Ck). Then the above expression is equal to

|C ′′
�−1 ∪ . . . ∪ C ′′

k |
k + 1− �

−
|(C ′

�−1 ∪ . . . ∪ C ′
k) ∩ (C1 ∪ . . . ∪ C�−1)|

k + 1− �

−
|C ′

�−1 ∩ (C� ∪ . . . ∪ Ck)|
k + 1− �

.

=
|C ′

�−1 ∩ (C1 ∪ . . . ∪ C�−1)|
k + 1− �

+
|C ′′

� ∪ . . . ∪ C ′′
k |

k + 1− �

− f(�− 1)

k + 1− �

≤ A

k + 1− �
+ α(G)− f(�− 1)

k + 1− �
,

where the last inequality holds because each C ′
i is an independent set and so

|C ′′
� ∪ · · · ∪ C ′′

k | ≤ α(G)(k + 1− �).

In the following theorem, “asymptotically sharp” means that the bound is

sharp except possibly for an O(1) term.

Theorem 3.1. For the topology we have defined for the graph coloring prob-

lem,

d∗ ≤ α(G)

k

(
(k + 1)2

4

)

.

and this is an asymptotically sharp bound.

COLORING BY TABU BRANCH AND BOUND 11

Proof. Consider the sequence of coloring and uncoloring moves described in

Lemma 3.1 and Lemma 3.2 above. As noted, the largest difference between the

number of nodes originally colored, and the number of nodes currently colored,

will be f(�)− |C� ∪ C ′
�| for some �. We will prove that

f(�) ≤ α(G)

k

(
(k + 1)�− �2

)
.

The value on the right hand side achieves its maximum when � = k+1
2 so that

d(x) ≤ α(G)

k

(
(k + 1)2

4

)

.

Thus since |C� ∪ C ′
�| ≥ 0 the bound on f(�) implies the theorem. The proof

is by induction on �. The bound is clearly valid when � = 1. So suppose

that f(� − 1) ≤ α(G)
k

(
(k + 1)(�− 1)− (�− 1)2

)
. It is easy to see that f(�) =

f(�− 1)−A+B, where A and B are as defined in Lemma 3.1 and Lemma 3.2.

By Lemma 3.2, we have then f(�) ≤ k−�
k+1−�f(� − 1) − k−�

k+1−�A + α(G). By

Lemma 3.1, f(�) ≤ k−�
k+2−�f(� − 1) + α(G). By induction, this is bounded by

(k−�
k+2−�)(

α(G)
k)

(
(k + 1)(�− 1)− (�− 1)2

)
+ α(G). Simplifying gives the bound

of the theorem.

To see the sharpness of this bound, consider the example of Figure 1. The k

horizontal circles will denote the sets C1, . . . , Ck. The k vertical circles denote

the sets C ′
1, . . . , C

′
k. All pairs of nodes not contained in a circle are adjacent.

Note that x′ colors one node that is not colored by x. (This node is colored by

C ′
r but “missed” by Cs. Note that all circles contain k nodes except for the circle

corresponding to Cs which contains k − 1. So α(G) = k. In order to determine

the depth of x we must consider various ways to order the sets when performing

the set exchanges. We consider all possible choices of ordering, and the value of

f(�)− |C� ∩ C ′
�| for all possible �.

Case 1. The sets are ordered so that s < r:

Case 1a. � < s: In this case f(�) = �(k+1−�) and |C�∩C ′
�| = 1.

So f(�)− |C� ∩ C ′
�| = �(k + 1− �)− 1.

Case 1b. s ≤ � ≤ r: In this case f(�) = �(k + 1 − �) − 1 but

we still have |C� ∩ C ′
�| = 1 since s 	= r. So f(�) − |C� ∩ C ′

�| =
�(k + 1− �)− 2.

Case 1c. r < �: In this case we again have f(�) = �(k + 1− �)

and |C� ∩ C ′
�| = 1. So f(�)− |C� ∩ C ′

�| = �(k + 1− �)− 1.

Case 2. The sets are ordered so that s = r:

Case 2a. � 	= s: In this case f(�) = �(k+1−�) and |C�∩C ′
�| = 1.

So f(�)− |C� ∩ C ′
�| = �(k + 1− �)− 1.

Case2b. � = s = r: In this case f(�) = �(k+1− �) -1 and |C�∩
C ′

�| = 0. So f(�)− |C� ∩ C ′
�| = �(k + 1− �)− 1.

Case 3. s > r: A similar analysis shows that in this case, no matter

what � is, f(�)− |C� ∩ C ′
�| = �(k + 1− �)− 1.

12 GLOVER, PARKER, AND RYAN

Thus it is clear that the maximum f(�) − |C� ∩ C ′
�| can be minimized by

choosing s = 1 and r = k so that for all �, s ≤ � ≤ r and f(�) − |C� ∩ C ′
�| =

�(k + 1 − �) − 2. This in turn is maximized when � = (k + 1)/2 giving a depth

of (k + 1)2/4 − 2. Since α(G) = k in this example, we see that our bound is

asymptotically sharp.

Figure 1. Sharp example for Theorem 3.1

We now show how this result is used in the tabu branch and bound phase of

our algorithm.

4. Tabu Branch and Bound Phase

Once an initial feasible coloring is obtained, we seek to improve upon it in the

tabu branch and bound phase of our heuristic. At an extreme level, this phase

takes the form of a complete tree search. As a heuristic, we have experimented

with using the d∗ bound derived in the previous section to guide the tabu branch

and bound. This result is based upon knowing what set of nodes to uncolor and

then recolor to achieve the most direct route out of the local minimum. In

general, since this information is not known in advance, we assume there exists

a sequence of nodes to uncolor. This allows us to take advantage of the result in

a backtracking algorithm. We emphasize that this is only one of many possible

ways to use this information.

COLORING BY TABU BRANCH AND BOUND 13

We incorporate the d∗ parameter into a tabu search framework as follows.

First, note that in addition to obtaining a feasible coloring from the dynamic

sequential coloring phase of our heuristic, we also construct a node coloring

sequence. This represents a path through a more general branch and bound

tree. If we look at uncoloring a subsequence of these ordered nodes, forcing a

change, and recoloring, we are exploring a different node sequence or path in

the branch and bound tree. The number of nodes which must be uncolored is

a function F (d∗) of d∗. F (d∗) would be the identity function if we knew the

optimal path back out. However, we do not have this information, and with

near certainty will not take the optimal path out of the minimum. Define a

backtrack node to be the earliest node of the current sequence that is uncolored

by a backtrack step (hence, the node we “backtrack to”). We seek a range for

F (d∗) over which we search for a backtrack node. A node can be a backtrack

node if it was not cc-dependent and it has a color available to it in addition to

the color currently assigned to it. During a pass where we seek to color the graph

with current color colors, and n nodes are presently assigned, we attempt to

find a backtrack node that lies in position n−up bnd∗d∗ down to n− lo bnd∗d∗
of the sequence of colored nodes. In other words, we say it is tabu to backtrack

to a node in position p of this sequence, where n ≥ p > n − up bnd ∗ d∗ or

n − lo bnd ∗ d∗ > p ≥ min colors, where min colors is the lower bound on the

graph’s chromatic number. We allow an aspiration criterion to override the tabu

status of the first range. This is satisfied if we find no acceptable backtrack node

in a position p satisfying n − up bnd ∗ d∗ ≥ p ≥ n − lo bnd ∗ d∗. In practice

we have found values of 1 for up bnd and 3 for lo bnd to work well in quickly

finding good colorings. As the value of lo bnd increases, the algorithm’s behavior

approaches that of a traditional branch and bound algorithm.

Thus, the method enhances a traditional depth first search of the branch and

bound tree by backtracking to “good” areas for escaping from our local minimum.

From the previous section, we have

d∗ ≤ α

current color

(current color+ 1)2

4

where current color is the number of colors currently used, and α is the size

of the largest independent set. In our implementation, we approximate α by the

maximum number of nodes currently colored by any one color.

5. Lower Bound Identification

As the graph is being read in the degree of each vertex is calculated. A

large clique will usually contain a vertex of large degree. Therefore, we take

all vertices having degree among the top three and create a subset of vertices

to create cliques on. For each of these root vertices in the set, we attempt to

heuristically find a maximal clique containing that vertex. For each neighbor,

a greedy algorithm attempts to find the largest clique containing the neighbor

14 GLOVER, PARKER, AND RYAN

and the root vertex. The maximum cardinality clique found is used as the lower

bound on the chromatic number for the graph. This heuristic is relatively fast,

and tends to find large cliques.

6. The Algorithm

By using the DANGER heuristic to quickly find feasible colorings, and by

heuristically identifying large cliques, we obtain an upper and lower bound on

the chromatic number of a graph G. We further tighten the upper bound by

applying the DANGER algorithm over a small range of parameter values. The

node danger formula:

danger(i) =
C

(max color− y)k
+ kuuncolored(i) + ka

share(i)

avail(i)

uses the following baseline parameter values:

C = 1.0, k = 1.0, ku = 0.025, and ka = 0.33,

and the color danger formula:

danger(j) =
k1

(max color− diff neighbors(c))k2
+k3uncolored(nc)−k4num(c))

uses the following baseline parameter values:

k1 = 1.0, k2 = 1.0, k3 = 0.5, and k4 = 0.025.

From this starting point, we take advantage of the guidelines embodied in

the theoretical results of Section 3.3, making use of the strategies described in

Section 4 and Section 5. Here we provide an overview of how these pieces fit

together to form the tabu branch and bound algorithm.

DANGER Heuristic

(i) Define lower bound. Heuristically identify a large clique in the graph.

(ii) Iteratively examine alternate parameter values for the constants in the

danger node selection and color selection rules.

(iii) For each set of parameter values, color G by the choice rule(s) speci-

fied, without a target for max color and without allowing backtrack-

ing. (Hence the coloring process simply assigns a color to each node

once, and then stops.)

(iv) Identify the parameter values that produced the smallest number of

colors in Step 3, and denote this number of colors by U (giving an upper

bound for max color). Let L denote the lower bound for max color

derived from clique information.

(v) Select a starting value of max color as a function of L and U .

In practice, we use five iterations of steps 2 and 3. The value of the exponent

for both the node danger and color danger (k and k2) are increased by 1 between

COLORING BY TABU BRANCH AND BOUND 15

each run. We also choose the starting value of max color (from step 5 above)

to be U − 1.

Tabu Branch and Bound

(i) Initialization: Use the parameters that gave the best coloring in the

initial DANGER phase. If max color = U stop.

(ii) Destructive Phase I: Backtrack to the first occurrence of colormax color+

1 – call this the nth node.

(iii) Destructive Phase II: Backtrack up bnd ∗ d∗ more nodes, continue

backtracking until an eligible node is found or either node n− lo bnd∗d∗
or the maximum backtrack depth is reached. (The maximum backtrack

depth is:

L+ number of cc-dependent nodes from the initial clique coloring).

If the maximum backtrack depth is reached, set L = max color,max color =

max color+1 and go to step 1. If node n− lo bnd ∗ d∗ is reached, then

we override the tabu status and search in the range from n−up bnd∗d∗
to n − 1. If nothing is found in this range, set L = max color,

max color = max color+ 1 and go to step 1.

(iv) Constructive Phase: Color with the DANGER heuristic, using a tar-

get of max color colors.

If no feasible coloring is found in this target, go to step 2.

If a feasible coloring is found, set U = max color, and select a value of

max color as a function of L and U and go to step 1.

In practice we update max color with U − 1 and lo bnd and up bnd are set

to 4 and 1 respectively.

7. Results

The tabu branch and bound code was compiled using the Pascal compiler

“pc” on a DEC Alpha 3000 computer. Additional runs were made on a Balance

Sequent 21000 computer, where the code was compiled using the DYNIX Pascal

compiler. All computer times listed in this section are CPU time measurements

taken using the UNIX time command, and are expressed in seconds as the sum

of user and system time for the execution.

In order for the tabu branch and bound algorithm to work effectively, it must

be able to quickly produce good colorings and it must backtrack efficiently. The

tabu branch and bound uses the dynamic sequential coloring heuristic DANGER

to solve its coloring subproblems. In order to demonstrate the utility of DAN-

GER, a set of comparisons were made between DANGER and the highly efficient

version of the DSATUR algorithm coded by Morgenstern [11]. We tested the

algorithms on a test bed of random problems ranging in size from 100 nodes

to 1000 nodes and having edge probabilities from 25 to 75%. Five different

problems of each size were created. The results are presented below.

16 GLOVER, PARKER, AND RYAN

Problem DANGER DSATUR

Avg. Solution Avg. Time Avg. Solution Avg. Time

G(100,0.25) 10.0 0.26 10.2 0.17

G(100,0.50) 17.8 0.34 18.4 0.37

G(100,0.75) 29.4 0.40 29.8 0.57

G(200,0.25) 16.0 0.79 16.4 0.66

G(200,0.50) 29.8 1.01 31.2 1.31

G(200,0.75) 50.6 1.36 51.2 1.99

G(500,0.25) 32.8 3.80 32.8 4.21

G(500,0.50) 63.5 6.79 65.0 8.46

G(500,0.75) 110.4 8.92 112.4 13.18

G(1000,0.50) 113.0 26.26 115.4 37.05
Table 1. Comparison of the DANGER and DSATUR sequen-

tial coloring algorithms

The DSATUR algorithm was run with no backtracking and a target coloring

of 150 to operate as a heuristic approach according to the design specifications

of [11]. The outcome yields an upper bound on the chromatic number of the

graph. It should be noted that this version of Morgenstern’s code was optimized

for planar graphs. These refinements were focused on heuristic constructive

moves rather than on deep backtracking.

To exploit its speed to achieve greater robustness, the DANGER heuristic

was run by varying two of its parameters to create 5 different settings for each

problem. The best coloring found and the total run time are used to calculate

the averages presented below. The parameter sets are those identified in Section

6. The value of the exponents in both the node danger and color danger formulae

(k and k2 respectively) are increased by 1 between each of the 5 runs. This has

the effect of modifying the criticality of the exponential function over a range

that covers a large number of graphs. This set of runs was made on the DEC

Alpha 3000.

We see that even without the benefit of the special data structures and code

optimizations incorporated into Morgenstern’s code, our DANGER approach

finds solutions whose quality dominates those obtained by DSATUR, yielding

generally better solutions for problems of all sizes and densities except one, where

the average outcomes were the same. The DANGER approach also requires less

run time except in two cases, consisting of the smallest graph and the least

dense graph on 200 nodes. As problem size and density increases, the differences

become more pronounced.

The second phase of testing involved examining the effectiveness of the tabu

branch and bound in directing the search towards promising areas of the solution

space. The d∗ parameter described in Section 3 is used to guide the tabu branch

and bound heuristic. In order to demonstrate the effectiveness of using this d∗

COLORING BY TABU BRANCH AND BOUND 17

Problem TBB with d∗ TBB exhaustive DSATUR

Solution Time Solution Time Solution Time

G(20,0.50) 6 0.13 6 0.16 6 0.12

G(30,0.50) 8 0.12 8 0.12 8 17.69

G(40,0.50) 8 0.18 8 0.20 8 47.99

G(50,0.50) 10 0.28 9 0.70 9 2403.22

G(60,0.50) 11 0.50 10 37.40 10 3712.56

G(70,0.50) 13 0.74 12 3108.04 12 9735.92
Table 2. Comparison between TBB with d∗, TBB exhaustive

search, and DSATUR

parameter, we compare results of this implementation with a full backtracking

version of the algorithm, which yields a depth first search of the branch and

bound tree. In order to place these results in perspective, we also applied the

DSATUR algorithm with backtracking. Since a target color number must be

given as input to the DSATUR algorithm, these runs were made last and we

selected as its target color number k − 1, where k is the chromatic number

obtained from the full backtrack version of the tabu branch and bound. This

gives DSATUR an important advanced start advantage, and the time reported is

only the time to verify that no k−1–coloring exists. Each of the three algorithms

was run on a set of random problems and the results are presented below. The

best feasible coloring, and the total number of CPU seconds spent working on

the problem are reported. Five iterations of DANGER (with parameter sets as

previously defined) were used for the initial coloring, both for the tabu branch

and bound method in exhaustive search mode (TBB exhaustive) approach and

for the tabu branch and bound method with the adaptive depth parameter (TBB

with d∗).

The same parameter sets were likewise used by these two methods for both

the initial phase and the backtracking phase. Hence, the only difference in the

algorithms was the tabu branch and bound versus unlimited depth first search

branch and bound. These runs were also made on the DEC Alpha 3000.

Note that both the TBB with d∗ and TBB exhaustive solve a more difficult

problem than DSATUR. They must find an initial lower bound, find an initial

coloring, improve that coloring, and either prove it optimal or not find a better

coloring with the d∗ restrictions in place. DSATUR attempts to find a coloring

only on k − 1 colors. Yet in all problems but the first, which is a 20 node prob-

lem, both of the TBB algorithms works significantly faster than the DSATUR

algorithm. We also note that the solution time increases much more slowly as a

function of problem size for the TBB approaches versus the DSATUR approach.

We only begin to see the advantage of utilizing the d∗ parameter in the branch

and bound phase of the TBB as the problems get larger. As expected, we trade

verified optimality for the ability to identify the “quickest” improvements to the

18 GLOVER, PARKER, AND RYAN

Problem TBB with d∗ TBB exhaustive

Solution Time Solution Time

le450 15b 15 935.6 17 (130132.5)

R250.5 66 339.6 68 (83041.8)

DSJC500.5 65 (96440.1) 65 (163954.3)
Table 3. Comparison between TBB with d∗ and TBB exhaus-

tive search

current coloring.

To further explore what happens as problem size increases, we look at the

following problems from the DIMACS challenge test bed. Time results contained

in parenthesis were time limit terminated rather than algorithm terminated. The

best feasible coloring and the total number of CPU seconds spent working on the

problem are reported. The feasible colorings found by exhaustive search are in

fact the same solutions found during the initial DANGER coloring phase, that

is, the depth first search was overwhelmed by the combinatorial complexity of

the problem. These results were obtained on the Sequent Balance 21000.

We see that for the leighton graph and the geometric random graph (le450 15b

and R250.5 respectively), the TBB with d∗ offers a significant improvement in

much less time over the colorings obtained by the TBB exhaustive method.

The third graph is a specially constructed graph which has an optimal coloring

of 25, but has other characteristics (density) of a random graph on 500 vertices

with 50% edge probabilities. In this case, the TBB with d∗ has as much trouble

as TBB exhaustive. Neither improved the initial coloring (of 65) and terminated

after approximately 26 and 45 hours respectively. This particular graph appears

to belong to an exceptional category.

Additional test results with a larger range of problems from the DIMACS test

bed are shown in Table 4. These runs were made on the DEC alpha 3000. In

this table, “clique” is the cardinality of the largest clique found heuristically and

is used as a lower bound on chromatic number by the algorithm. “Soln.” is the

best feasible coloring found. “Time” is the total cpu time, where the algorithm

terminates either by exhausting available alternatives determined by the choice

of d∗, or by meeting a one hour time limit that was imposed by the user. In the

latter case, the time is enclosed in parenthesis. If the solution is optimal, a “Y”

is in the optimal column. If the solution is known to be non-optimal, an “N” is in

this column, otherwise a “U” for unknown is in the optimal column. The column

headed “DANGER” gives the initial upper bound on the color number found by

the DANGER heuristic. The “best known low. bound” heading indicates either

the size of the largest clique found for this problem or the chromatic number for

this problem. Thus, the value in this column is a lower bound on the chromatic

number of the graph. In many instances, the lower bound is simply the largest

clique identified by this algorithm.

The problems are separated into different classes according to their construc-

COLORING BY TABU BRANCH AND BOUND 19

tion. The first set of graphs is leighton graphs, each 15-colorable by construction.

Two of the problems are rather sparse, and the second two are dense. Note the

significant decrease in performance for the denser graphs.

The second set of graphs represents real life problems. The first eight are

register allocation problems, and are easily solved by our method. The next

two are class scheduling problems, which are more difficult and seem to have

characteristics similar to random graphs.

The third set of graphs consists of geometric random graphs and their com-

plements (those ending with a “c”). The structure of these problems, both for

the original graphs and their complements, is exploited quite effectively by our

tabu branch and bound algorithm.

The fourth set of graphs constitutes a family of specially constructed graphs

having characteristics of a G(x,y) random graph, but a feasible coloring much

smaller than the expected color number for such a graph. The initial colorings

obtained by the DANGER algorithm appeared to be reasonably good, and the

TBB with d∗ found it very difficult to improve upon them. In this case the color

numbers are only slightly better than those obtained by the DSATUR algorithm.

The last class of difficult graphs are “flat” graphs specially constructed on 300

vertices to have guaranteed color numbers and “hidden” cliques.

The TBB with d∗ method terminated with an optimal solution on 15 of 28

difficult graphs for which optimal solutions are known. Additionally, by identi-

fying a clique of the same cardinality as its coloring, the heuristic was able to

identify the optimality of its solution in 12 of these 15 problems. It performed

especially well on the register allocation problems and geometric random graphs.

The evidence of these efforts indicates that the d∗ theory has merit in applica-

tion to dynamically variable backtracking. In general, we are able to quickly

backtrack to areas that allow coloring improvements. This appears to be es-

pecially true for graphs of lower density. At the same time, our experiments

suggest that tying a tabu search approach to a branch and bound structure can

sometimes constrain the operation of the tabu search component too rigidly. In

particular, it appears that if the density of a graph reaches a “critical” level,

the combinatorics of backtracking are too difficult to overcome even using the

d∗ information. Nevertheless, our results support the general finding that for

many problems, including those taken from real world applications, the coupling

of tabu search with branch and bound produces a very effective method, and

performs significantly better than a tailored branch and bound procedure on its

own.

20 GLOVER, PARKER, AND RYAN

Second DIMACS Challenge

Coloring Benchmark Results

GENERAL INFORMATION Authors: Fred Glover, Mark Parker and Jennifer

Ryan

Title: Coloring by Tabu Branch and Bound

Name of Algorithm: Tabu Branch and Bound

Brief Description of Algorithm:

Heuristic: Dynamic sequential coloring algorithm combined with tabu branch

and bound. Has capability to run in exact mode – when tabu branch and bound

is relaxed to complete branch and bound. Type of Machine: DEC Alpha 3000

Compiler and flags used: pc -o

MACHINE BENCHMARKS

User time for instances:
r100.5 r200.5 r300.5 r400.5 r500.5

0.02 0.41 3.55 22.47 86.91

ALGORITHM BENCHMARKS

Authors’ Comments: Our implementation is written in pascal, and reads files

in the ASCII format rather than the more efficient binary format. Due to storage

problems, a number of problems were not run. These are denoted with a “DNR”

in the table.

Our algorithm will continue to look for improving colorings until it determines

that none are available due to the tabu branch and bound restrictions. The times

presented here are the complete run time until termination, and the solution is

the best feasible coloring found at time of termination. The times to actually

find the best feasible coloring were not determined, but in general most of the

cpu time is spent looking for a coloring which would improve upon the solution

presented. In most instances, the best feasible coloring is found within the first

1 to 10% of the total computer time. A time limit of 3600 seconds was specified

for each run.

COLORING BY TABU BRANCH AND BOUND 21

Results on Benchmark Instances
Time Solution

Name Runs (Fail) Avg Avg

DSJC125.5.col 1 160.31 20

DSJC250.5.col 1 3600.00 35

DSJC500.5.col 1 3600.00 65

DSJC1000.5.col 1 3600.00 117

C2000.5.col DNR

C4000.5.col DNR

R125.1.col 1 0.38 5

R125.1c.col 1 0.97 46

R125.5.col 1 0.70 36

R250.1.col 1 0.25 8

R250.1c.col 1 48.54 65

R250.5.col 1 61.67 66

DSJR500.1.col 1 0.48 12

DSJR500.1c.col 1 3600.00 87

DSJR500.5.col 1 413.21 126

R1000.1.col 1 1.71 20

R1000.1c.col 1 3600.00 105

R1000.5.col 1 3600.00 248

flat300 20 0.col 1 3600.00 39

flat300 26 0.col 1 3600.00 41

flat300 28 0.col 1 3600.00 41

flat1000 50 0.col DNR

flat1000 60 0.col DNR

flat1000 76 0.col DNR

latin square 10.col 1 3600.00 130

le450 15a.col 1 18.65 16

le450 15b.col 1 29.72 15

le450 15c.col 1 3600.00 23

le450 15d.col 1 3600.00 23

mulsol.i.1.col 1 0.33 49

school1.col 1 94.83 29

school1 nsh.col 1 32.63 26

22 GLOVER, PARKER, AND RYAN

References

1. D. Brélaz, New Methods to Color the Vertices of a Graph, Communications of the ACM
22:4 (1979), 251-256.

2. T. S. Chiang and T. Chow, On the Convergence Rate of Annealing Processes, SIAM
Journal of Control and Optimization 26 (1988), 1455-1470.

3. A Limit Theorem for a Class of Inhomogeneous Markov Processes, Annals of Prob-
ability 17 (1989), 1438-1502.

4. F. Glover, Tabu Search, Part 1, ORSA Journal on Computing 1 (1989), 190-206.
5. Tabu Thresholding: Improved Search by Nonmonotonic Trajectories, ORSA Jour-

nal of Computing (to appear).
6. F. Glover and M. Laguna, Tabu Search, Modern Heuristic Techniques for Combinatorial

Problems (C. Reeves, ed.), Blackwell Scientific Publications, Oxford, 1993.
7. B. Hajek, Cooling Schedules for Optimal Annealing, Mathematics of Operations Research

13:2 (1988), 311-329.
8. A. Hertz and D. De Werra, The Tabu Search Metaheuristic: How we used it, Annals of

Mathematics and Artificial Intelligence 1 (1990),111-121.
9. S. Kirkpatrick , C. D. Gelatt, and M. P. Becchi, Optimization by Simulated Annealing,

Science 220 (1983), 621-680.
10. Th. Mohr, Parallel Tabu Search Algorithms for the Graph Coloring Problem, preprint

(1990).
11. C. Morgenstern , Improved Implementations of Dynamic Sequential Coloring Algorithms,

TCU Tech Report: CoSc-91-4 (1991).
12. J. Ryan , The Depth and Width of Local Minima in Discrete Solution Spaces, Discrete

Applied Math (to appear).

U.S. West Chair in Systems Science, Graduate School of Business and Adminis-

tration, Campus Box 419, University of Colorado at Boulder, Boulder, Colorado

80309-0419

E-mail address: fred.glover@colorado.edu

Mathematics Department, Campus Box 170, University of Colorado at Denver,

Post Office Box 173364, Denver, Colorado 80217-3364

E-mail address: mparker@carbon.cudenver.edu

Mathematics Department, Campus Box 170, University of Colorado at Denver,

Post Office Box 173364, Denver, Colorado 80217-3364

Current address: US WEST Technologies, 4001 Discovery Drive, Boulder, Colorado 80303
E-mail address: jryan@uswat.uswest.com

COLORING BY TABU BRANCH AND BOUND 23

Problem Clique Soln. Time Optimal DANGER Best Known

Low. Bound

le450 15a 15 16 18.65 N 17 15

le450 15b 15 15 29.72 Y 16 15

le450 15c 15 23 (3600.00) N 23 15

le450 15d 15 23 (3600.00) N 23 15

mulsol.i.1 49 49 0.33 Y 49 49

mulsol.i.2 31 31 0.29 Y 31 31

mulsol.i.3 31 31 0.26 Y 31 31

mulsol.i.4 31 31 0.25 Y 31 31

mulsol.i.5 31 31 0.31 Y 31 31

zeroin.i.1 49 49 0.37 Y 49 49

zeroin.i.2 30 30 0.32 Y 30 30

zeroin.i.3 30 30 0.34 Y 30 30

school1 14 29 94.83 N 29 14

school1 nsh 12 26 32.63 N 26 14

R125.1 5 5 0.38 Y 5 5

R125.1c 44 46 0.97 Y 46 46

R125.5 33 36 0.70 Y 37 36

R250.1 8 8 0.25 Y 8 8

R250.1c 55 65 48.54 N 65 64

R250.5 64 66 61.67 N 67 65

DSJR500.1 12 12 0.48 Y 12 12

DSJR500.1c 65 87 (3600.00) U 87 85

DSJR500.5 108 126 413.21 U 129 124

R1000.1 18 20 1.71 Y 20 20

R1000.1c 67 105 (3600.00) U 105 67

R1000.5 191 248 (3600.00) U 251 191

DSJC125.5 9 20 160.31 N 22 9

DSJC250.5 10 35 (3600.00) N 37 15

DSJC500.5 11 65 (3600.00) N 65 25

flat300 20 0 9 39 (3600.00) N 41 20

flat300 26 0 9 41 (3600.00) N 42 26

flat300 28 0 10 41 (3600.00) N 42 28
Table 4. Results for TBB with d∗ on a subset of the DIMACS

test bed

