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There is an appeal to methods like simulated annealing and
threshold acceptance that operate by imposing a monotoni-
cally declining ceiling on objective function levels or degrees
of disimprovement (treated probabilistically or deterministi-
cally). An alternative framework, embodied in tabu search,
instead advocates a nonmonotonic form of control, keyed not
only to the objective function but to other elements such as
values of variables, direction of search, and levels of feasibility
and infeasibility. This creates a more flexibie search behavior
and joins naturally with the use of memory-based strategies
that are the hallmark of tabu search approaches. Embodied
particularly in the strategic oscillation component of tabu
search, this nonmonotonic control has been shown in a variety
of studies to yield outcomes superior to those of simulated
annealing and threshold acceptance. The question arises
whether such an approach offers a sufficiently rich source of
search trajectories to be relied upon as a primary guidance
mechanism, with greatly reduced reliance on forms of memory
customarily used in tabu search. To provide an easily imple-
mented method of this type we propose a tabu thresholding
approach, which joins prescriptions of strategic oscillation with
a candidate list procedure derived from network optimization
studies. The candidate list and tabu search philosophies are
mutually reinforcing, and the computational advantages con-
tributed by these elements, documented by studies cited in this
paper, motivate a closer look at combining them. The result
yields a method with a significant potential for variation and an
ability to take advantage of special structure.

The basic ideas for solving optimization problems explored
in this paper originate from two sources. The first source
consists of simple but fundamental ideas from tabu search.
The second consists of candidate list strategies proposed for
network optimization procedures. These two sources con-
tain strongly reinforcing elements that combine to produce
a class of procedures we call tabu thresholding methods.

As a basis for our development, we express the mathe-
matical optimization problem in the form

(P) Minimize c(x)
x € X ¢ R

The function ¢(x) may be linear or nonlinear, and the
condition x € X summarizes constraints on the vector x
such as embodied in linear or nonlinear inequalities, in-

Subject classifications: Tabu search.

cluding discrete restrictions (as where some components of
x are required to take integer values).

The tabu thresholding methods we propose for (P) share
a number of features in common with more complex forms
of tabu search, but rely to a significantly reduced degree on
the incorporation of memory structures. They specifically
embody the principle of aggressively exploring the search
space in a nonmonotonic way. The motivation for using a
nonmonotonic search strategy, in contrast to relying on a
undirectionally modified “temperature” parameter as in
simulated annealing, derives from the following observa-
tion (Glover!'®)).

... the human fashion of converging upon a target is
to proceed not so much by continuity as by thresh-
olds. Upon reaching a destination that provides a
potential “home base” (local optimum), a human
maintains a certain threshold—not a progressively
vanishing probability—for wandering in the vicinity
of that base. Consequently, a higher chance is main-
tained of intersecting a path that leads in a new
improving direction.

Moreover, if time passes and no improvement is
encountered, the human threshold for wandering is
likely to be increased, the reverse of what happens to
the probability of accepting a nonimproving move in
simulated annealing over time. On the chance that
humans may be better equipped for dealing with
combinatorial complexity than particles wandering
about in a material, it may be worth investigating
whether an “adaptive threshold” strategy would
prove a useful alternative to the strategy of simulated
annealing.

This observation is extended by noting the relevance of one
of the basic components of tabu search, the strategic oscilla-
tion approach (Glover!*®!), which seeks improved outcomes
by

...creating a search pattern that resembles a series of
pendulum swings... inducing oscillations around
“ideal” values of various parameters (including the
objective function value and measures of infeasibil-

ity)...
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During the past several years, a number of implementa-
tions of the strategic oscillation component of tabu search
have demonstrated the effectiveness of this nonmonotonic
type of guidance. A summary of such applications appears
in Table L. Each of these applications includes comparisons
that establish performance results superior to those of ear-
lier studies for the problems examined. Such comparisons
are particularly interesting in the case where the objective
function is used as the element of control (Osman®?; Os-
man and Christofides!**]; Verdejo, Cunquero and Sarlil®™).
In these applications the outcomes are shown to dominate
those of simulated annealing, which bases its control on the
same parameter. (Several of the studies using different
parameters for strategic oscillation—in particular, those for
quadratic assignment, vehicle routing, data integrity, mixed
fleet VRP, graph partitioning, time deadline VRP, the P-
median Problem and Traveling Purchaser Problem—also
include comparisons to results of simulated annealing, or
to other studies reporting such results, and likewise yield
solutions of higher quality.) In addition, a new proposal of
a non-monotonic thresholding method keyed to objective
function levels, but using a deterministic guidance rule,
has recently been reported by Hu, Kahng, and Tsau®® to
produce outcomes superior to those of the monotonic
“threshold accepting’” approach of Dueck and Scheurer %)
These results motivate a closer look at forms of strategic
oscillation that are primarily based on controlling search by
reference to the objective function. Acknowledging that
other control elements may be more effective in some
contexts (as suggested by the applications cited in Table I),
the creation of guidance rules based on the objective func-
tion is particularly straightforward and therefore appealing.
Nonmonotonic guidance effects can be accomplished ei-
ther deterministically or probabilistically, and in the follow-

ing development we specifically invoke elements of proba-

~ bilistic tabu search, which use controlled randomization to

fulfill certain functions otherwise provided by memory. By
this orientation, probabilities are designed to reflect evalua-
tions of attractiveness, dominantly weighted over near best
intervals, and additional control is exerted in the choice of
the subsets of moves from which these intervals are drawn.
These linked processes create an implicit tabu threshold
effect that emulates the interplay of tabu restrictions and
aspiration criteria in TS procedures that are designed in-
stead to rely more fully on memory.

1. Preliminaries—Strategic Oscillation
To set the stage for the main considerations that follow, it is
useful to sketch the ideas of strategic oscillation more fully.
Strategic oscillation may be viewed as composed of two
interacting sets of decisions, one at a macro level and one at
a micro level. These decisions are depicted in Table II.

We discuss these two types of decisions in sequence.

1.1. Macro level decisions

The oscillation guidance function of the first macro level
decision corresponds to the element controlled, as listed in
the middle column for the applications cited in Table L
(More precisely, the function provides a measure of this
element that permits control to be established.) In the
second decision at the macro level, a variety of target levels
are possible, and their form is often determined by the
problem setting. For example, in an alternating process of
adding or deleting edges in a graph, the target can be the
stage at which the current set of edges creates a spanning
tree. Similarly in a process of assigning (and “‘unassigning’)
jobs to machines, the target can be the stage at which a

TableI. Guidance by Strategic Oscillation

Application Element Controlled Reference
Quadratic Assignment Tabu Restrictions Battiti and Tecchiolli®?!
Transportation Infeasibility Penalties Cao and Uebe!”!
Operation Timetables Penalty Measures Costal*!
Multidimensional Knapsack Infeasibility Depth Freville and Plateaul'!!
Vehicle Routing Nodes and Infeasibility Gendreau, Hertz and Laportel'?!

Employee Scheduling Number of Employees
Network Design Platform (node) assignment
Data Integrity Verification Infeasibility
Multilevel GAP Assignments /Infeasibility
Classroom Scheduling Assignments /Infeasibility
Vehicle Routing Objective Function
Capacitated Clustering Objective Function

Mixed Fleet VRP Vehicles and Infeasibility
Delivery Systems Penalty Measures

Graph Partitioning Partitioned Nodes

Time Deadline VRP Infeasibility

Graph Design Objective Function
P-Median Problem Values of P

Traveling Purchaser Problem Markets

Glover and McMillan?!!
Glover, Lee and Ryan?”!
Kelly, Golden and Assad®!
Laguna et al.®?
Mooney and Rardinl*®!
Osman!*’!

Osman and Christofides
Osman and Salhit®!
Rochat and Semet!*”]
Rolland, Pirkul and Glover!*®
Thangiah et al.5*!

Verdejo, Cunquero and Sarli®>!
Vosstl

Vosst”]

[44]
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Table II.  Strategic Oscillation Decisions

Macro level decisions
1. Select an oscillation guidance function.
2. Choose a target level for the function.
3. Choose a pattern of oscillation.
Micro level decisions
1. Choose a target rate of change
(for moving toward or away from the target level).
2. Choose a target band of change.
3. Identify aspiration criteria to override
target restrictions.

complete assignment is achieved. Each of these can be
interpreted as special cases of the situation where the target
constitutes a boundary of feasibility, approached from in-
side or outside. In some instances, the target may appropri-
ately be adaptive, as by representing the average number
of employees on duty in a set of best workforce schedules
(Glover and McMillan!?!). Such a target gives a baseline for
inducing variations in the search, and does not necessarily
represent an ideal to be achieved.

The pattern of oscillation at a macro level deals with
features such as the depth by which the search goes beyond
the target in a given direction, and more generally the way
in which the depth varies over time. An example of a
simple type of oscillation is shown in Figure 1, where the
search begins by approaching the target “‘from above” and
then oscillates with a constant amplitude thereafter.

The pattern in Figure 1 is shown as a broken line rather
than a smooth curve, to indicate that the search may not
flow continuously from one level to the next, but may
remain for a period at a given level. The diagram is sugges-
tive rather than precise, since in reality there are no vertical
lines, i.e., the guidance function does not change its value
in zero time. Also, the dashed line for the target level
should be interpreted as spanning an interval (as conveyed
by using the term target level rather than target value).
Similarly, each of the segments of the oscillation curve may
be conceived as having a “‘thickness” or “breadth” that
spans a region within which particular values lie.
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Agure 1. Simple uniform oscillation.
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Patterned Qucillation (Inteasification)

Agwe 2. Patterned oscillation (intensification).

Intensification: A type of oscillation pattern often em-
ployed in short term tabu search strategies adopts an ag-
gressive approach to the target, in some cases slowing the
rate of approach and spending additional time at levels
that lie in the near vicinity of the target. When accompa-
nied by a policy of closely hugging the target level once it
is attained, the pattern is an instance of an intensification
strategy. Such a pattern is shown in Figure 2.

In both Figures 1 and 2 the oscillations that occur above
and below the target may be replaced by oscillations on a
single side of the target. Over a longer duration, for exam-
ple, the pattern may predominantly focus on one side and
then the other, or may alternate periods of such a one-sided
focus with periods of a more balanced focus.

Patterns that represent intensification strategies gener-
ally benefit by introducing some variation over the near to
intermediate term. Figure 2 contains a modest degree of
variation in its pattern, and other simple types of variation,
still predominantly hugging the target level (and hence
qualifying as intensification strategies), are shown in Fig-
ures 3 and 4. Evidently, intensification patterns with greater
degrees of variability can easily be created (as by using
pseudo randomization to sequence their components).

In general, intensification in tabu search refers to focus-
ing the search more strongly on attractive regions, and
typically takes one of two forms, based on recording and
grouping sets of good solutions: (1) moving directly from a
current solution to a good solution from the recorded set

targel level —Lrn—Lrl_ U Lrl
Pmd&dlkm&dlmm)

Agure 3. Patterned oscillation (varied intensification).
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Agure 4. Patterned oscillation (varied intensification).

(which may include unvisited neighbors of other solutions
previously visited); (2) modifying choice criteria to favor
the inclusion of attributes of good solutions from a selected
group. Variability is sometimes introduced by creating a
group for this second approach whose elements are drawn
from different solution clusters. The type of intensification
illustrated in the preceding diagrams is a simple form that
does not make recourse to memory, except to keep track of
the current phase of a pattern being executed. Neverthe-
less, it embodies the idea of focusing on a region judged to
be strategically important.

Intensification processes that alter choice rules to encour-
age the incorporation of particular attributes—or at the
extreme, that lock such attributes into the solution for a
period—can be viewed as designs for exploiting strongly
determined and consistent variables. A strongly determined
variable is one that cannot change its value in a given high
quality solution without seriously degrading quality or
feasibility, while a consistent variable is one that frequently
takes on a specific value (or a highly restricted range of
values) in good solutions. The development of useful mea-
sures of “strength’” and “consistency” is critical to exploit-
ing these notions, particularly by accounting for tradeoffs
determined by context. However, straightforward uses of
frequency-based memory for keeping track of consistency,
sometimes weighted by elements of quality and influence,
have produced methods with very good performance out-
comes (e.g., Farvolden, Crainic and Gendreaul®); Laguna et
al.B8); Woodruff and Rockel®; Porto and Ribeirol*1).

These kinds of approaches are also beginning to find
favor in other settings. For example, strategies introduced
in genetic algorithms for sequencing problems, which use
special forms of “crossover” to assure offspring will receive
attributes shared by good parents, constitute a type of
intensification based on consistency (Muhlenbein!*’l; Whit-
ley, Starkweather and Fuquay.®!) Extensions of such pro-
cedures based on identifying elements that qualify as con-
sistent and strongly determined according to broader crite-
ria, and making direct use of memory functions to establish
this identification, provide an interesting area for investiga-
tion.

Diversification: Longer term processes, following the type
of progression customarily found beneficial in tabu search,
incorporate diversification strategies into the oscillation

pattern. In the present setting this translates into periodi-
cally creating more pronounced departures from the target
level (as when gains from the search begin to diminish).

Extreme forms of diversification are illustrated by restart
methods. Diversification sometimes is confused with
randomization, but these processes embody somewhat dif-
ferent concepts and have demonstrably different conse-
quences. The popular use of random restarting, for exam-
ple, generally proves inferior to restarting that incorporates
more systematic principles of diversification. In addition,
diversification procedures that drive the search into new
regions on a path that leads directly from the current
region often provide advantages over restarting (see, e.g.,
Barnes-and Lagunal'l; Battiti and Techiolli®’; Kelly et al.’%};
Hubscher and Glover?®®); Woodruff!**).

When oscillation is based on constructive and destruc-
tive processes, the repeated application of constructive
phases (rather than moving to intermediate levels using
destructive moves) similarly embodies an extreme type of
oscillation that is analogous to a restart method. In this
instance the restart point is always the same (i.e., a null
state) instead of consisting of different initial solutions, and
hence it is important to use choice rule variations to assure
appropriate diversification, as discussed later. (The “‘greedy
randomized” procedure of GRASP illustrates an approach
based on such repeated constructions; see, e.g., Feo, Venka-
traman and Bard®!).

A connection can also be observed between an extreme
version of strategic oscillation—in this case a relaxed ver-
sion—and the class of procedures known as perturbation
approaches (Glover!'®). An example is the “large-step sim-
ulated annealing” method (Martin, Otto and Felton®’)),
that tries to drive an SA procedure out of local optimality
by propelling the solution a greater distance than usual
from its current location. Perturbation methods may be
viewed as loosely structured procedures for inducing oscil-
lation, without reference to intensification and diversifica-
tion and their associated implementation strategies. Simi-
larly, perturbation methods are not designed to exploit
tradeoffs created by parametric variations in elements such
as different types of infeasibility, measures of displacement
from different sides of boundaries, etc. Nevertheless, at a
first level of approximation, perturbation methods seek
goals similar to those pursued by strategic oscillation.

The trajectory followed by strategic oscillation is imper-
fectly depicted in the figures of the preceding diagrams,
insofar as the search path will not generally conform to
precisely staged levels of a functional, but more usually
will lie in regions with partial overlaps. (This feature is
taken into account in the micro level decisions, examined in
the next subsection.) Further, in customary approaches
where diversification: phases are linked with phases of
intensification, the illustrated patterns of hovering about
the target level are sometimes accompanied by hovering as
well at other levels, in order to exploit a notion called the
Proximate Optimality Principle (POP). According to this
notion, good solutions at one level can often be found close
to good solutions at an adjacent level. (e.g., only a modest
number of steps will be required to reach good solutions at



one level from those at another.) This condition of course
depends on defining levels—and ways for moving within
them-—appropriately for given problem structures.

The challenge is to identify oscillation parameters and
levels that will cause this potential relationship to become
manifest. In strategies for applying the POP notion, the
transition from one level to another normally is launched
from a chosen high quality solution, rather than from the
last solution generated before the transition is made (repre-
senting another feature difficult to capture in the preceding
diagrams).

Path Relinking: The POP notion motivates the tabu search
strategy called path relinking, which provides an important
means for enhancing the outcomes of strategic oscillation. It
also gives a further means for exploring the solution space
more effectively than by recourse to approaches such as
random restarting. In brief, path relinking keeps track of
elite solutions generated during the search, and selects
subsets of these solutions to serve as reference solutions. The
procedure then generates paths in neighborhood space,
starting from selected members of the reference solutions,
and following a trajectory guided by the other reference
solutions. New solutions are generated by choosing best
moves subject to the influence of this guidance, making use
of TS aspiration criteria to pursue exceptional alternatives
that qualify as sufficiently attractive. The trajectories can
extend beyond the region of the reference solutions, and
the best solutions encountered are used as a basis for
launching new searches by customary heuristic processes.

The path relinking approach gives a way to refine strate-
gic oscillation by choosing reference solutions that consti-
tute elite solutions from different levels, using them to
determine new trajectories that pass through the target
level, Elite solutions from the target level itself likewise
provide a basis for path relinking processes to launch new
searches at this level. (See Glover!'! for further details.)

The POP notion implies a form of connectivity for the
search space that may be usefully exploited by this ap-
proach. That is, path relinking trajectories guided by elite
solutions, whether deterministically or probabilistically, are
likely to go through regions where new elite solutions
reside, provided appropriate neighborhood definitions are
used. The result is a type of focused diversification that is
more effective than “sampling.” Evidence of such a topol-
ogy in optimization problems is provided by findings from
Moscato®®! and Nowicki and Smutnicki.[*?!

1.2. Micro level decisions.

The decision of selecting a target rate of change for strate-
gic oscillation is placed at a micro level because it evidently
involves variability of a particularly local form. This type of
variability is particularly relevant when tabu search mem-
ory structures are set aside, since then it becomes necessary
to provide a means of avoiding cycling, i.e., preventing the
search from endlessly (and exclusively) revisiting a particu-
lar set of solutions. Figure 5 illustrates three alternative
rates of change, ranging from mildly to moderately aggres-
sive, where the current direction is one of “’descent.” Again
the changes are shown as broken lines, to suggest they do

Glover

.
1 0] &
“{Micto Level)

Figure 6. Target rates of change (micro level).

not always proceed smoothly or uniformly. The issue of
using target rates as a component of search strategy may
seem evident, but its significance is often overlooked. (For
example, in simulated annealing, all improving moves are
considered of equal status.)

When the parameter of oscillation is related to values of
the objective function, tabu search normally prescribes ag-
gressive changes, seeking the greatest improvement or least
disimprovement possible (in a steepest descent, mildest
ascent orientation: see, e.g., Hansen!®® and Hansen and
Jaumard®*). Such an approach applies chiefly to intensifi-
cation phases and may be tempered or even reversed in
diversification phases. More precisely, the notion of seeking
aggressive (best or near best) changes is qualified in tabu
search by specifying that the meaning of best varies in
different settings and search phases, where rates of change
constitute one of the components of this varying specifica-
tion. This may be viewed as constituting another level of
oscillation, which likewise is applied adaptively rather than
subjected to monotonic control.

Accompanying the target rate of change is the micro
level decision of choosing a target band of change, which
sets boundaries on deviations from the target rate. The
lines of the preceding diagrams, as noted earlier, should be
interpreted as having a certain breadth (so that the lower
limit of one segment may overlap with the upper limit of
the next), and the target band of change is introduced to
control this breadth.

Targeted rates and bands are not determined indepen-
dently of knowledge about accessible solutions, but are
based on exploring the current neighborhood to determine
the possibilities available (hence bending the curves of
Figure 5 by a factor determined from these possibilities).
The meaning of this will be clarified in later discussions of
candidate list strategies.

Finally, aspiration criteria at the micro level permit the
controls previously indicated to be abandoned if a suffi-
ciently attractive alternative emerges, such as a move that
leads to a new best solution, or to a solution that is the best
one encountered at the current oscillation level.

A template for strategic oscillation is given in the ap-
pendix for readers interested in additional details of this
approach. In the next section, we begin by presenting a
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simple instance of this scheme in which the decisions about
targets and levels are handled implicitly, using the objec-
five function as the element of guidance.

2, The Method in Overview
The skeletal form of a tabu thresholding method in the
context pursued here is easy to describe, and we state it
first in overview without considering details of its compo-
nent steps. The method may be viewed as consisting of two
alternating phases, an Improving Phase and a Mixed Phase.
The Improving Phase allows only improving moves, and
terminates with a local optimum, while the Mixed Phase
accepts both non-improving and improving moves.
Choices of moves in the two phases are governed by
employing candidate list strategies to isolate subsets of
moves to be examined at each iteration, and by a probabilis-
tic best criterion. (The meaning of this criterion, which also
has a deterministic counterpart, is explained in Section 5.)
The thresholding effect of the choice criterion is further
influenced by a tabu timing parameter t which determines
the number of iterations of the Mixed Phase, analogous to
maintaining a tenure for tabu status in a more advanced
system. Control over t is exerted by selecting lower and
upper bounds, L and U, between which t is permitted to
vary randomly, or according to a selected distribution.
The form of the method is given as follows, starting from
some initially constructed solution and retaining the best
solution found throughout its operation.

Simple Tabu Thresholding Procedure in Overview
Improving Phase

(a) Generate a subset S of currently available moves, and
let S* be the set of improving moves in S. (If S* is
empty and S does not consist of all available moves,
expand S by adjoining new subsets of moves until
either S* is nonempty or all moves are included in S.)

(b) If S* is nonempty, choose a probabilistic best move
from S* to generate a new solution, and return to (a).

(c) If S* is empty, terminate the Improving Phase with a
locally optimal solution.

Mixed Phase

(a) Select a tabu timing parameter t (randomly or pseudo
randomly) between lower and upper bounds L and
U.

(b) Generate a subset S of currently available moves, and
select a probabilistic best move from S to generate a
new solution.

(c) Continue step (b) for t iterations, or until an aspira-
tion criterion is satisfied, and then return to the
Improving Phase.

Termination of the foregoing procedure occurs after a
selected total number of iterations. The set S in these
phases may consist of all available moves in the case of
small problems, or where the moves can be generated and
evaluated with low computational expense. In general,
however, S will be selected by a candidate list strategy, as

subsequently described, to assure that relevant (and differ-
ent) subsets of moves are examined, in changing sequences.

The Mixed Phase may be expressed in a format that is
more nearly symmetric to that of the Improving Phase, by
identifying a subset S* of S that consists of moves satisfy-
ing a specified level of quality. However, the determination
of 5* can be implicit in the rules of the candidate list
strategy for selecting S, and further can be controlled by the
probabilistic best criterion, which itself is biased to favor
choices from an elite subset of moves. We introduce $* as
distinct from S in the Improving Phase to emphasize the
special role of improving moves in that phase.

As noted, this overview procedure is a direct embodi-
ment of the strategic oscillation approach, keying on the
movement of the objective function rather than that of
other functionals that combine cost and feasibility, or dis-
tances from boundaries or stages of construction. In spite of
this narrowed focus, it will become apparent that a signifi-
cant range of strategic possibilities present themselves for
consideration, drawing on associated ideas from the tabu
search framework.

As a prelude to ideas presented later, we observe that
the method offers immediate strategic variability by per-
mitting the Improving Phase to terminate at various levels
other than a local optimum, passing directly to the Mixed
Phase at each such point. In this instance, the Improving
Phase need not rigidly adhere to a policy of expanding S to
include all moves, when no improving moves can be found,
and we subsequently give guidelines for alternative poli-
cies. At an extreme, by suitably controlling nonimproving
moves, the method can operate entirely in the Mixed Phase,
or alternately, the Improving Phase can be given a more
dominant role and the Mixed Phase can be replaced by a
Nonimproving Phase.

Temporarily disregarding these supplementary consider-
ations, the simple tabu thresholding approach we have
outlined is governed by three critical features: determining
the subset S of candidate moves to be considered, defining
the probabilistic best criterion for choosing among them,
and selecting the bounds L and U that affect the duration
of the Mixed Phase. We now turn to examining these
features in detail.

3. Candidate List Strategies

Studies of linear and continuous optimization problems
sometimes contain useful implications for solving nonlin-
ear and discrete optimization problems. An instance of this
is an investigation of linear network optimization ap-
proaches for selecting pivot moves in basis exchange algo-
rithms (Glover et all')). Two findings emerged that are
relevant for our present purposes: first, a best evaluation
rule, which always selects a move with the highest evalua-
tion, produced the fewest total pivot steps (from a wide
range of procedures examined); and second, a straightfor-
ward candidate list strategy proved notably superior in
overall efficiency for problems of practical size (in spite of
requiring more iterations). The first finding was consistent
with outcomes of other related studies. The second finding,
however, was contrary to the accepted folklore of the time.



The candidate list strategy underlying that second finding
provides the starting point for our present concerns.

The basis of the network candidate list strategy was to
subdivide the moves to be examined into subsets, one
associated with each node of the network. To characterize
the method in terms that provide insights into its general
nature, we introduce some notation that will also be useful
in the subsequent development. Let MOVE _SET(x) denote
the set of all moves associated with a given solution x. An
element in MOVE _SET(x), which we denote by MOVE(x),
transforms x into a new solution. For example, in the
network setting, MOVE(x) can represent a pivot move that
generates a new basic solution from the current one. Each
such move has an evaluation, denoted EVALUATION
(MOVE(x)), which identifies its attractiveness for selection.
(A higher evaluation corresponds to a ““more attractive”
alternative. Thus, if a move is evaluated by reference to the
change in c(x), the negative of this change provides the
evaluation for a minimization objective.)

For any arbitrary subset of moves in MOVE_SET(x),
denoted MOVE_SUBSET(x), define BEST(MOVE_SUB-
SET(x)) to be the set of best moves in MOVE_SUBSET(x)
(those that share the highest evaluation in this subset). The
first finding of the network study previously cited can be
expressed as saying that fewest total iterations resuited by
choosing a move that belongs to BEST(MOVE _SET(x)).

To create a candidate list, divide MOVE_SET(x) into
indexed subsets: MOVE_SUBSET(1, x), MOVE_SUB-
SET(2,x), ..., MOVE_SUBSET(m, x). For the network prob-
lem MOVE_SUBSET(, x) identifies all moves associated
with a given node i € M = (1,2,...,m); specifically, all
pivot moves that introduce one of the arcs meeting node i
into the network basis.

One more ingredient is needed to specify the method: an
acceptance criterion that determines whether a given move
under consideration is acceptable to be chosen. For this we
require no added notation, but merely stipulate that a
move is acceptable or unacceptable. In the network context,
a move is acceptable if it is an improving move; ie., if
EVALUATION(MOVE(x)) indicates that the move will yield
an improved solution (under conditions of nondegeneracy).

The subsets MOVE_SUBSET(, x) for i € M operate as
candidate lists of moves to be examined, because the proce-
dure seeks a best move from each such subset, considered
in turn, as a candidate for selection, rather than seeking a
best move over the complete collection of moves in
MOVE_SET(x). Strictly speaking, once a move from a
given MOVE_SUBSET(, x) has been selected and exe-
cuted, the structure of moves in other subsets may be
changed. However, the moves typically can be identified
by reference to component attributes (or “associations”)
that permit the subset classifications to remain applicable.

With these preliminaries, the method may be described
as follows. .

Candidate List Strategy (CLS)

Step 0. (Initialization.) Start with the set REJECTED empty
and set i := 0 (to anticipate examination of the first
subset).
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Step 1.(Choose a candidate move from the current subset.)
Increment i by setting i:=1i+ 1. (If i becomes
greater than m, set i:= 1.) Select CANDIDATE _
MOVE to be a move that is a member of BEST
(MOVE_SUBSET(, x)).
Step 2. (Execute the move or proceed to the next subset.)
2A. If CANDIDATE_MOVE is acceptable: Execute the
move to produce a new solution. Then reset RE-
JECTED to be empty and return to Step 1.

2B. If CANDIDATE_MOVE is unacceptable: Add i to
REJECTED. If REJECTED = M, stop (all subsets have
been examined and none have acceptable candidate
moves). Otherwise, return to Step 1.

The success of this simple strategy soon led to a number
of variations. It was observed, for example, that defining
MOVE_SUBSET(j, x) relative to nodes of the network could
cause these sets to vary somewhat in size (in non-dense
networks), thus making them ““unequally representative.”
Improvements were gained by redefining these sets to refer
to equal sized blocks of moves (in this case, blocks of arcs,
since each nonbasic arc defines a move). This change also
made it possible to choose the number of subsets m as a
parameter, rather than compelling it to equal the number of
nodes. Good values for m in the network setting were
found to range robustly over an interval from 40 to 120,
although it appeared to be better to put each successive
block of m “‘adjacent’” arcs into m different subsets (Glover
et al,'” Mulvey!*!)). In each instance, it also appeared
preferable to retain the policy of examining all subsets
before returning to the first. Extended variations of this
basic candidate list strategy will be discussed later.

4. Tabu 3earch

A notion that is complementary to the candidate list ideas,
and that provides a foundation for applying them more
broadly, emerged in the late 1960’s and early 1970’s with
the following stipulation. In order to solve problems from
the domain of general discrete optimization (as contrasted
to the domain of linear optimization, exemplified by net-
works) it is unnecessary to base acceptance of a move on
the ability to create an improvement. Rather, measures of
improvement may be allowed to fluctuate by introducing
controls to prevent reversals of certain changes induced by
the moves, such as increments in reference equation values,
variable augmentation indexes and edge extensions (see
e.g., Glover!!>14),

The approaches that embodied this notion shared an
element in common with the candidate list approaches: an
aggressive strategy of seeking the best move at each step
from a restricted (and dynamically updated) class of ad-
missible alternatives. The provision that measures of im-
provement could fluctuate in the presence of such controls
was later elaborated and adapted, by introducing special
forms of flexible memory, to create the class of methods
now known as tabu search methods.

For the approach of this paper, we limit attention to only
a few of the basic elements of tabu search, as follows. Let
TABU(x) denote a subset of moves in MOVE__SET(x) that
are rendered tabu, i.e., that are currently forbidden to be
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chosen. (The usual memory based criteria for composing
TABU(x) will be disregarded for our present purposes.) Let
ASPIRE(x) identify a subset whose evaluations are suffi-
ciently attractive (or whose attributes are sufficiently fa-
vored) to permit them to be chosen in spite of their tabu
classification. Finally, let TABU*(x) be the set of strictly
tabu moves, given by TABU*(x) = TABU(x) — ASPIRE(x).

There are three customary ways of handling tabu condi-
tions.

(1) Explicit tabu restrictions: Let TRIAL _SET(x) denote a
set of moves currently being examined to yield a candidate
move (such as a collection of one or more of the subsets
MOVE _SUBSET(, x)). Then consideration of TRIAL_SET
(x) is restricted to allow moves to be selected only from the
set

ADMISSIBLE(TRIAL_SET(x))
= TRIAL_SET(x) — TABU*(x).

(2) Tabu penalties and incentives: The evaluation of a given
move is modified according to whether the move is tabu or
satisfies current aspiration criteria. We express this modifi-
cation as the outcome of creating associated penalty and
incentive values, PENALTY(MOVE(x)) and INCENTIVE
(MOVE(x)), where the penalty value is positive if MOVE(x)
belongs to TABU(x) and the incentive value is positive if
MOVE(x) belongs to ASPIRE(x). Then EVALUATION
(MOVE(x)) is replaced by

TABU_EVALUATION(MOVE(x))
= EVALUATION(MOVE(x))
— PENALTY(MOVE(x))
+ INCENTIVE (MOVE(x))

Penalties and incentives in general reflect degrees of being
tabu or of satisfying aspiration criteria, and may be incor-
porated other than by adding and subtracting explicit asso-
ciated terms. (For example, they are often integrated to
allow an incentive to exceed an associated penalty only
under restricted conditions.)

(3) Probabilities governing selection: Probabilities are as-
signed as a function of TABU_EVALUATION(MOVE(x)),
as identified in (2), so that moves with higher tabu evalua-
tions receive higher probabilities of being selected. Gener-
ally, higher evaluations are disproportionately favored over
lower ones. The probabilities sum to 1 over TRIAL _SET(x)
(the set of moves currently considered), so that a candidate
move is identified at each application.

It may be noted that the probabilities of (3) are not
‘“acceptance” probabilities in the sense employed in Monte
Carlo or simulated annealing processes, since they always
select a candidate move. Moreover, where more than one
candidate is generated, and none meet the current accep-
tance standard, a final choice again may be made by (3).
We simplify this in our present development so that posi-
tive probabilities are given only to acceptable alternatives,
making a secondary acceptance criterion unnecessary (ex-
cept where this criterion is simply a requirement for im-
provement).

The tabu controls embodied in the three preceding in-
stances have the following immediate goals: to avoid cy-

cling, to provide flexibility to pursue the search aggres-
sively, and to introduce a basic form of diversity into the
search. We will refer to a solution trajectory generated by
these principles as a tabu path, or T-path.

5. A Tabu Thresholding Procedure

In order to design a simple procedure that does not rely on
memory to create a T-path, we start from the premise that
such a path should adaptively determine its trajectory by
reference to the regions it passes through. Thus, instead of
obeying an externally imposed guidance criterion, such as
a monotonically changing temperature, we seek to rein-
force the tabu search strategy of favoring behavior that is
sensitive to the current search state, accepting (or inducing)
fluctuations while seeking best moves within the limita-
tions imposed. Evidently, this must frequently exclude
some subset of the most attractive moves (evaluated with-
out reference to memory), because repeated selection of
such moves otherwise may result in repeating the same
solutions.

A basic tenet of probabilistic tabu search is that random-
ization, if strategically applied, can be used to perform
certain problem-solving functions of memory (Glover!!”)).
In the present context, the probabilistic TS orientation sug-
gests that choosing moves by reference to probabilities
based on their evaluations (attaching high probabilities for
selecting those that are near best) will cause the length of
the path between duplicated solutions to grow, and this
will provide the opportunity to find additional improved
solutions, as with nonprobabilistic TS methods. By this
same orientation, we are motivated to inject a probabilistic
element into the manner of choosing move subsets in a
candidate list approach, to create a reinforcing effect that
leads to more varied selections.

As noted in the overview of the method described in
Section 1, we seek to achieve these goals by dividing the
solution process into two phases, an Improving Phase and a
Mixed Phase. During the Improving Phase we employ the
Candidate List Strategy (CLS) in exactly the form specified
in Section 2, except for the introduction of a special proce-
dure for scanning M; i.e., for identifying a sequence for
examining the subsets MOVE _SUBSET(, x), i € M. Once a
local optimum is reached by this phase, the Mixed Phase is
activated, again applying CLS by reference to an approach
for scanning M, in this case a variant of the strategy used in
the Improving Phase. The two phases are alternated, retain-
ing the best solution obtained, until a selected cutoff point
is reached for termination.

The resulting method will first be sketched in an outline
form similar to that of the overview method of Section 2,
after which its components will be explained.

Tabu Thresholding Procedure (Specialized)
Improving Phase.

(a) Apply CLS by a Block-Random Order Scan of M,
accepting a candidate move if it is improving.
(b) Terminate with a local optimum.
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Mixed Phase.

(a) Select the tabu timing parameter t randomly or
pseudo randomly between L and U.

(b) Apply CLS by a Full-Random Order Scan of M,
automatically accepting a candidate move generated
for each given i € M examined.

(c) Continue for t iterations, or until an aspiration crite-
rion is satisfied, and then return to the Improving
Phase.

The bounds L and U in the Mixed Phase can be set to
values customarily used to bound tabu list sizes in stan-
dard tabu search applications. For example, setting L and U
to bracket a simple function of the problem dimension, or
in some instances setting L and U to constants, may be
expected to suffice for many problems in the short term.
(The same types of rules used to set tabu tenures in tabu
search may give reasonable guidelines for the magnitude of
these values.) Control of L and U over the longer term will
be discussed later.

In the most direct case, the aspiration criterion for allow-
ing early termination of the Mixed Phase can consist of
seeking a solution better than the best previously found. It
is to be noted that the Improving Phase may perform no
iterations after leaving the Mixed Phase (i.e., the Mixed
Phase may terminate with a local optimum, in which case
it will be executed again).

We will specify two levels of implementing the method.

Level 0. Select a candidate by reference to BEST
(MOVE_SET(j, x)), as specified in CLS.

Level 1.Select a candidate by replacing BEST with
PROBABILISTIC _BEST.

Level 0 is a simplified form of the method that is rele-
vant only for large problems.

We include it because it is fast and because it can be
viewed as a component of the approach at the next level.
The determination of PROBABILISTIC_BEST, which pro-
vides an explicit definition for the probabilistic best criterion
discussed in Section 1, lies at the heart of the Level 1
procedure. We consider the two levels of implementation
as follows.

Level 0 and Scanning M

The Level 0 version of the method operates precisely as the
original CLS except for the procedures used to scan M. The
method is completely determined by identifying the form
of these procedures. In the original CLS and its variants, all
scanning processes involve sampling without replacement;
i.e., randomization is constrained to examine all elements
of a set, in contrast to performing sampling that may revisit
some elements before scanning others. (Strategies for revis-
iting elements with tabu search are allowed only by re-
stricting the frequencies of such visits.) One way to apply
the CLS prescription for scanning the indexes of M, i.e., for
examining their associated subsets MOVE_SUBSET(, x),
i €M, is to start completely fresh after each full scan, to
examine the elements in a new order. This approach has
the shortcoming that some subsets can become reexamined
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in close succession and others only after a long delay. We
deem it preferable for each subset to be re-examined ap-
proximately m iterations after its previous examination,
This leads to the following stipulation for the examination
sequence of the Improving Phase.

Block-Random Order Scan: Divide M into successive
blocks, each containing a small number of indexes relative
to m (e.g., Min(m,5) if m < 100, and otherwise no more
than m/20). As a given block is encountered, reorder its
elements randomly before examining them, thus changing
the sequence of this portion of M. The index i of the CLS
strategy thus identifies positions in M, rather than elements
of M.

Unless the number of elements in a block divides m,
which can be countered by varying the block sizes, the
block-random order scan permits the resequenced elements
gradually to migrate. On any two successive scans of M,
however, a given element will be scanned approximately m
moves after its previous scan.

The scanning procedure for the Mixed Phase is similar,
and determines the initial conditions for the scan of the
next Improving Phase.

Full-Random Order Scan: A full-random order scan corre-
sponds approximately to selecting a block of size m; all
elements are potentially re-ordered. (Once a local optimum
is reached, such a re-ordering of M is conceived appropri-
ate.) The simplest version of this scan is to randomly
re-order M, subject to placing the last element that yielded
an improving move in the Improving Phase at the end of
M, and then scan the elements in succession. If t > m, the
process reverts to a block-random order scan after all of M
is examined.

This scan is resumed in the subsequent Improving Phase
at the point where it is discontinued in the Mixed Phase. A
preferable size for MOVE_SUBSET(, x) in the Improving
Phase may not be ideal for the Mixed Phase, and in general
several such subsets may be combined at each iteration of
the Mixed Phase as if they composed a single subset, for
the purpose of selecting a current move. If the value m — t
is large, time may be saved by randomly extracting and
re-ordering only the sets actually selected from M during
the Mixed Phase, without randomly re-ordering all of M.

The combined effect of randomization and non-replace-
ment sampling in the preceding scanning processes approx-
imates the imposition of using tabu restrictions recency-
based memory. The use of the block-random order scan in
the Improving Phase (and in the Mixed Phase, once all
elements of M have been examined), succeeds in prevent-
ing the selection of moves from sets recently examined,
starting from each new local optimum. This will not neces-
sarily prevent reversals. However, randomization makes it
unlikely to generate a sequence consisting of moves that
invariably correspond to reversals of previous moves, and
hence acts as a substitute for memory in approximating the
desired effect. If moves can be efficiently isolated and
reassigned upon the initiation of the full-random order
scan, the composition of moves within subsets also may be
randomly changed.

The rudimentary Level 0 version of the method is now
fully specified. The indicated rules for scanning M produce
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a candidate move at each iteration, identified as an element
of BEST(MOVE_SUBSET(, x)), exactly as in the original
CLS. We next describe the criterion that replaces the use of
BEST with PROBABILISTIC_BEST, to provide the Level 1
version of the procedure.

Level 1 (Probablistic Candidate Selection)

The function PROBABILISTIC_BEST, represented nota-
tionally as a set containing the proposed candidate, is
created as follows. A subset of r best (highest evaluation)
moves is extracted from MOVE_SUBSET(, x) (e.g., for
r = 10 or r = 20). The current evaluations of these moves
are then used a second time to generate probabilities for
their selection. A small probability may be retained for
choosing an element outside this set.

A method that finds r best elements from a set in
significantly less time than classical methods (or alterna-
tively, that finds “approximately” r best elements to a
desired level of approximation) is given in Glover and
Tseng.?2]

Selecting a Candidate

Once a set R of r best moves has been identified, a simple
way to determine the probabilities for selecting an element
from this set is as follows. Let R_MIN equal the smallest
evaluation over R, and create a normalized evaluation.

NORM(MOVE(x)) = EVALUATION(MOVE(x))
+ € — R_MIN,

where € is given a value representing a “meaningful sepa-
ration” between different evaluations (or is determined by
more refined scaling considerations). Further, let
NORM_SUM denote the sum of the normed evaluations
over R. Then we may specify the probability for choosing a
given MOVE(x) to be

PROBABILITY(MOVE(x))
= NORM(MOVE(x)) /NORM_SUM

Note that the evaluation function itself may be modified
(as by raising a simple function to different power) to
accentuate or diminish the differences among its assigned
values, and thus to produce different probability distribu-
tions.

In the Mixed Phase, a candidate move selected by this
probabilistic criterion is automatically deemed acceptable
for selection. Automatic acceptance also results for the
Improving Phase, since only improving moves are allowed
to compose the alternations considered. A special case
occurs for the transition from the Improving Phase to the
Mixed Phase, since the final step of the Improving Phase
performs no moves but simply verifies the current solution
is locally optimal. To avoid wasting the effort of the scan-
ning operation of this step, an option is to retain a few best
moves (e.g., the best from each of the r most recently
examined MOVE_SUBSET’s), and to use these to select a
move by the PROBABILISTIC _BEST criterion, thus giving
a “first move” to initiate the Mixed Phase.

By the preceding stipulations, the Level 1 version of the
method also is fully specified.

6. implementation Congsiderations and Enhancements

We examine ways to enhance the tabu thresholding method
that maintain the feature of convenient implementation,
considering the dimensions of efficiency and solution qual-

ity.

6.1. Efficiency Enhancements

Three straightforward approaches to accelerate the method
invite consideration. First, and simplest, the method may
examine a self-adjusting fraction f of the elements of M to
seek an improving move in the Improving Phase. The
value of f increases by steps to 1 (through a sequence such
as .3,.5,1) as the current objective function value falls
within intervals progressively closer to the best value found
or projected. This approach is relevant for problems involv-
ing large numbers of moves, and where improving paths
are not typically “long and narrow.” A learning procedure
such as target analysis (Laguna and Glover®®®) can be used
to determine how to set f as a function of other parameters.

The idea behind this approach is more generally to
permit the method to stop short of achieving (or verifying)
local optimality under conditions where a local optimum is
not likely to be particularly attractive relative to an aspira-
tion level (e.g., established by the best solution found).
Factors allowing early termination of the search for an
improving move include: the quality and distribution of
moves examined during the scanning process, the distance
of the current objective function value from the aspiration
level, numbers of improving moves seen in recent itera-
tions (and identities of better ones). The latter elements
introduce memory considerations and lead to the issue of
more refined candidate list strategies, discussed later.

The second approach for accelerating the method, which
is often effective in tabu search implementations, consists
of subdividing the moves into the set of those whose
evaluations change after executing a specified move and
the set of those whose evaluations do_not change (Barnes
and Lagunall; Hertz and de Werra®]). The second set
generally is much larger than the first. By recording move
evaluations, and by updating only the relatively small
number that change, efficiency can often be significantly
increased. (This likewise involves some concession to the
inclusion of memory, but it is memory of a very simple
kind.)

Such an approach, when conditions exist that permit it to
apply, will normally enable MOVE__SUBSET(, x) to con-
tain a somewhat larger number of elements then would
otherwise be possible. This will reduce the total number of
such subsets (sometimes to 1), and cause the PROBABILIS-
TIC _BEST criterion of Level 1 to gain increased impor-
tance relative to the manner of scanning M.

This second approach also can give the basis for a paral-
lel computation strategy. Specifically, moves are allocated
to the subsets so that some collection of these subsets
satisfies a noninterference property, which stipulates that
moves of one member of the collection can be executed
without affecting the moves (or evatuations) of other mem-
bers. Then each member of .the collection is processed in
parallel for a chosen number of iterations, whereon the
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moves are re-allocated, or the collection otherwise is rede-
fined, and the process repeats.

The third type of acceleration occurs by a screening
approach, using a partial evaluation process to isolate po-
tentially attractive moves before applying a full evaluation.
Moves often contain identifiable components that must
have an attractive evaluation if the complete move is to
qualify as good. In graph problems, for example, moves
that add and drop multiple pairs of edges generally can be
screened into promising and less promising sets according
to whether the first pair of edges added and dropped
yields an improving evaluation. If the multiple pairs that
define a given class of moves range over all combinations
of component pairs, then consideration can be limited dur-
ing an Improving Phase to moves with improving first pairs.
This type of screening has been used effectively in a local
descent process by JohnsonP!! and can be extended by
requiring that the combined evaluation of the first two
pairs must be improving, and so on.

In the more general setting of the Mixed Phase, where
good moves may not be improving, we undertake to select
moves that contain at least one good component—ie., a
éomponent which, if not improving, is disimproving only
to a limited degree. Generating thresholds to identify limits
of this type, and thereby to screen moves by partial evalua-
tions, can reduce the total time to examine moves from a
polynomial time function to a linear time or even constant
time function.

6.2. Solution Quality Enhancements

For difficult problems, it is appropriate to seek improved
solutions by a tabu search principle applicable to the longer
term. The basis of this principle is to organize moves into
classes according to their ability to induce different kinds
or degrees of change in the current solution, or in values of
selected functions associated with the solution. In our pre-
sent approach we exploit this organization by assigning
members of a given class to a particular candidate list
subset. A rule is then imposed that requires such subsets to
be periodically selected as the source of candidate moves,
particularly upon encountering transition conditions such
as local optimality.

Motivation for applying this concept is provided by the
following observation. Under normal circumstances, high
evaluations will rarely be accorded to high influence moves,
such as those that create large changes in the objective
function or constraints (e.g., edge exchanges where one or
more edges have a large weight). Nevertheless, high influ-
ence moves can be essential to trajectories that lead to
improved solutions. This observation is commonly imple-
mented in one of two ways: by giving preference to a high
influence move whenever its evaluation lies acceptably
close to the best evaluations of other moves (e.g., bounded
by a requirement for improvement), and by periodically
restricting consideration to high influence moves during a
succession of iterations when no admissible moves are
improving.

To provide a concrete illustration of a way to exploit this
idea in the tabu thresholding method, we create move
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subsets of the form MOVE_SUBSET(, x), i € M*, where
M* is an index set for one or more specific classes of high
influence moves. Elements in the new subsets may dupli-
cate elements found in original subsets, or may be based on
different neighborhood structures that generate uncommon
changes. When moves of a given class are collected in the
same MOVE _SUBSET(, x), the operation of CLS magnifies
the likelihood that at least one will be selected. In addition,
during the Mixed Phase, elements of M* can be compelled
to be included among the t elements selected from M.

To achieve this effect in a more tightly structured way,
we suggest that MOVE_SUBSET(, x) should be consti-
tuted to contain moves of generally higher (or no lower)
influence than MOVE _SUBSET( + 1,x), foralli < m. Then
M is partitioned to subdivide these consecutively ordered
subsets into a small number of groups (e.g., 2 to 4), to
permit the method to focus on higher influence moves
hierarchically. In particular, the Improvement Phase pro-
vides a basis for a staged process that operates on each
group in turn as if it comprised all of M. By this design, the
process cycles through elements from a given group until
no improvement is possible, and then progresses to cycle
through elements from the next group, ultimately return-
ing to the first group after visiting the last. When none of
the groups yield an improvement a local optimum is
reached. The block-random order scan operates to change
the order of elements within a group, but is not permitted
to cross boundaries between groups and thereby change
their compositions. During the Mixed Phase this process
can consist of modifying the full-random order scan to give
a probabilistic bias to favor the elements of M associated
with higher influence moves. Again, the effect is to reorder
elements within groups, but not to alter the composition of
the groups themselves.

General tabu search methods typically incorporate fre-
quency-based memory to isolate uncommonly selected al-
ternatives as candidates for appropriate high influence
moves (Skorin-Kapov and Vakharia®'}; Tailliard®®); Laguna
and GloverP). Provided features of such moves can be
identified in advance, improved strategies undoubtedly
may be formulated without reliance on memory. We ac-
knowledge that a concession to a simple counting record
can be useful to induce elements of M that are rarely or
never chosen to be selected periodically, especially in the
Mixed Phase.

7. Variations

Two primary variations of the tabu thresholding method
likewise deserve consideration as a supplement to the alter-
natives for enhancing efficiency and solution quality. The
first variation involves replacing the Mixed Phase by a
Non-Improving or Disimproving Phase (depending upon
whether improvement is interpreted as “‘better than” or “at
least as good” in the Improving Phase). Such a change is
analogous to increasing the strength of tabu restrictions,
and accordingly may be expected to result in smaller pre-
ferred values for L and U than in the Mixed Phase. Recent
theoretical results by Ryan!*®" identify values for U in
various combinatorial problem settings that assure a path
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to an optimal solution will exist, and may provide useful
guidelines in the present context. .

A progressive restriction approach can maintain L = 0
and slowly decrease U from a large value to 0. This exerts
an indirect influence on the objective function variation, by
controlling numbers of steps of nonimprovement (employ-
ing a tabu search type of restriction). To induce greater
diversification, L and U periodically may be boosted to
larger than customary values over the longer term.

The second chief variation is to modify the definition
of the function PROBABILISTIC__BEST, providing an op-
portunity to encompass additional considerations in the
determination of probabilities for selecting candidates. Dif-
ferences in the evaluations used to generate these probabili-
ties can be accentuated or attenuated by raising NORM
(MOVE(x)) to a nonnegative power p, where accentuation
occurs for p greater than 1 and attenuation occurs for p less
than 1. (The value p = 0 yields complete randomization
without regard for the evaluations.) Such norms are re-
placed by their new values before computing NORM_
SUM. Allowing p to assume changing values, or progres-
sively incrementing p from 0 to larger values, offers a way
to compound this form of variation.

Again to provide a concrete example of relevant alterna-
tives, the definition of PROBABILISTIC_BEST may be
shifted differently in this variation by redefining

NORM(MOVE(X))
= MAX + € -~ MEAN
~ [EVALUATION(MOVE(X)) — MEAN|

where MAX and MEAN are the maximum and mean
evaluations over the set of candidate moves, and ¢ is given
as in the previous definition of NORM(MOVE(X)). Use of
this alternative norm assigns higher probabilities to select-
ing evaluations closer to the mean, and hence pulls away
from selecting the types of moves chosen under the original
definition. However, the altered probabilities retain an ele-
ment of aggressiveness, since they likewise are defined
over a set of near best elements, and are restricted to
improving moves during an Improving Phase. Such a mod-
ified probabilistic best criterion is appropriate for a longer
term diversification strategy, periodically invoking the
changed norm to introduce moves less frequently selected,
without abandoning the quest for an aggressive search
path.

8. More General Candidate Lists

The form of candidate list structure considered in the
preceding sections is not appropriate for all types of prob-
lems. Other forms can be particularly relevant in cases
where moves cannot be conveniently partitioned into sub-
sets. An approach that preserves the orientation of the
method previously described is the abc candidate list strat-
egy, where the symbols a, b, and ¢ refer to parameters for
which a < c. In this approach, the move to be selected at
each iteration is determined by generating at least a and at
most ¢ elements, stopping before reaching ¢ elements if the
b best elements generated satisfy a chosen aspiration condi-
tion. For example, during an Improving Phase, the aspira-

tion condition may require that b of the moves generated
are improving moves (possibly balancing the value of b
with a desired level of improvement), where all improving
moves qualify as candidates if the process reaches ¢ ele-
ments without satisfying the requirement. To accord with
earlier stipulations, we allow ¢ to be the number of all
moves in an Improving Phase, or a specified fraction f of
these moves. (The factors for determining f, and hence c,
can include the aspiration condition that gauges the quality
of the b best moves currently generated.) Values of the
parameters a, b, and c typically will be smaller in the
Mixed Phase than in the Improving Phase, and the aspira-
tion condition associated with b then will be less stringent.

When the problem and neighborhood structure permit,
an abc candidate list strategy can be advantageously super-
imposed on the type of candidate list strategy that parti-
tions moves into subsets. A benefit of retaining the
MOVE_SUBSET structure within such an implementation
is the ability to assure that fundamentally different move
possibilities are examined in a successively exhaustive
manner. In an implementation based on move influence,
such a structure alternately can assure that moves of cer-
tain classes are examined accordingly to preferred se-
quences or frequency of selection.

. As a final consideration in the construction of candidate
lists, an elite element strategy can be applied by combining
ideas from Mulvey*!) and Frendewey and Glover.'] The
basic theme is to periodically expend increased effort to
generate a set of preferred moves, which then provides a
source for selecting candidate moves during interim itera-
tions. During the stage of increased effort, this type of
method constructs a master candidate list composed of best
members identified by examining all, or a large subset, of
the moves available (as by applying an abc approach with
large values of a and c). In the settings where special
instances of this method have been implemented, reference
is made to subsets of the form MOVE_SUBSET(, x), select-
ing at most one move from any given subset, to create a
master list that consists of at most 20 to 40 of the best such
moves overall. A reasonable alternative is to select multiple
moves from a given subset, e.g., up to 40/m, if m is not
large. At each iteration, a best member is chosen from the
master list until the highest evaluation falls below a chosen
threshold (e.g., MIN + (MAX — MIN)/4, where MIN and
MAX refer to evaluations of elements admitted to the
master list during the step when it was most recently
constructed). Then the master list is rebuilt and the process
repeats.

In the tabu thresholding approach, such a master list can
be the source of the r best candidates of a Level 1 approach.
Block-random and full-random order scanning become ir-
relevant in this case, since a large number of the
MOVE_SUBSETs will be scanned to construct the master
list. Instead, the same screening used in the Level 1 ap-
proach can introduce probabilistic variation into the con-
struction of the master list. In particular, a candidate to
include on the master list can be selected probabilistically
from each MOVE _SUBSET(], x) by reference to the several
best elements of this subset. With these provisions, the
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procedure continues to operate as specified by the general
description in Section 2.

9. Parallel Processing Applications

The tabu thresholding approach is particularly relevant for
parallel processing implementations. The notion of influen-
tial moves discussed in Section 6.2 motivates a staged
parallel process that starts by constructing solutions out of
higher influence elements (e.g., with larger cost, feasibility
or interdependency effects) and then gradually introducing
elements of lesser influence. Hierarchies of this type may
be defined relative to nodes or edges in a graph, jobs or
machines in a schedule, variables or constraints in a mathe-
matical program, and so forth. The process effectively pro-
ceeds from a coarse grain level to a fine grain level, where
elements introduced at later stages permit refinement of
outcomes at earlier stages.

The tabu thresholding approach can be organized natu-
rally for parallel processing to permit each such stage to be
run asynchronously, i.e., without being interrupted for co-
ordination. The aggressive search orientation of the ap-
proach is conducive to generating a number of good solu-
tions early in the execution of each process, thus making it
reasonable to establish a common time point to end the
processes executed during a given stage and to establish
conditions for the stage to follow. Although a chance to do
better may result by running a stage longer, it is likely to
be sufficient during earlier stages to allot only enough time
to obtain a few good local optima. Later stages may run for
progressively increasing durations to uncover refinements
made possible by the new elements they introduce. Thus,
upon establishing hierarchies of decreasing influence, the
process may operate as follows:

Parellel Processing by Descending Influence Level

Step 1. Initiate q parallel solution streams, incorporating
elements at the highest influence level.

In each solution stream, retain up to the p best local
optima encountered during the period allotted to
the current stage.

At the end of the stage, coordinate by selecting the
q best solutions from the union of solutions re-
tained by the separate streams.

Assign one of the selected solutions to each proces-
sor (allowing duplications if the union of solutions
does not contain q distinct members). Add the new
elements to be considered at the next lower influ-
ence level, and return to Step 2 for the next stage,
until all stages are completed.

Step 2.

Step 3.

Step 4.

During the final stage of the foregoing process, each
stream simply saves its single best solution. The definition
of stage may be broadened so that instead of terminating
after all elements are incorporated, the method continues to
execute some number of additional stages while operating
on the full set of elements. (At the extreme, all elements
may be introduced at the beginning, disregarding differ-
ences in influence levels.) Efficiency gains may be expected
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by culling out elements that have not been incorporated in
any of the good solutions previously encountered, pro-
vided these elements have been available for incorporation
for some minimum number of stages.

We suggest such a process be applied relative to differ-
ent measures of influence, to determine which ones are
heuristically more effective. Influence measures can be inte-
grated with a standard measure of attractiveness, to give a
composite measures representing a ““bang for buck” crite-
rion. More broadly, conditional measures of influence are
relevant to staging the parallel process, where the preferred
new elements to introduce at each stage depend on the
composition of the best solutions thus far generated. For
example, a small collection of new elements may be added
to yield the best local extension of a current solution. This
provides an option of operating each solution stream with
its own preferred set of elements, where best candidate
solutions to initiate the subsequent stage carry with them
their own, progressively enlarging, element pools.

The probabilistic aspect of the tabu thresholding proce-
dure contributes to the assurance that solutions from differ-
ent streams will be different. These differences can be
further accentuated by selecting solutions to be carried
forward from one stage to the next according to criteria for
identifying diverse subsets of good solutions (Glover('®}).

The exploitation of parallel processing by reference to
stages based on influence measures also can be achieved by
a parametric variant of the preceding approach. Beginning
with a full set of elements, the approach alternately can be
applied to create stages by an operation of parameterizing
problem coefficients such as costs or capacities. This creates
hierarchical differences that gradually become more refined
at successive levels, until the coefficients ultimately receive
their true values. The idea again is to proceed in descend-
ing levels of influence, from coarse grain to fine grain
considerations.

The notion of staging solution processes relative to mea-
sures of influence, and embedding these stages in a parallel
processing approach, is anticipated to accomplish more
than the customary goal of accelerating solution time. If
this form of exploiting influence measures is strategically
sound, the outcome should also lead to generating solu-
tions of superior quality.

Appendix: Further Connections to Strategic Oscillation

To put the observations of this paper in broader perspec-
tive, we identify a specific template for strategic oscillation
that embraces the tabu thresholding procedure of Section 3,
and show how the thresholding procedure arises from this
template. We also subsequently indicate a simple memory
structure for implementing strategic oscillation in some
common types of problems.

We begin with a goal function g(x) related to (and possi-
bly the same as) the objective function c(x). We also make
use of an oscillation function 6(x), together with control
limits o and B, with the purpose of choosing moves to
minimize the goal g(x) while maintaining a < 6(x) < B.
The control limits o and B are parameters that are adjusted
to produce oscillations in 6(x), subject to the tolerance
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— «. The oscillation is considered to have a positive
(neqative) direction duripg a sequence of steps in which a
anc;l Jor B periodically increases (decreases), and neither of
them decreases (increases).

The oscillation function 6(x) may represent a variety of
elements, according to the focus of strategic control. For
example, 8(x) can be a feasibility /infeasibility measure
that indicates how far inside or outside the feasible region
« lies, taking different signs on different sides of the feasi-
bility boundary. Different types of feasibility, such as those
relative to integer requirements and inequality require-
ments, can be normalized and combined by adaptively
chosen weights, but they also may be treated “‘separately”;
ie., 6(x) can be a vector valued function and a and B
vector parameters. (This applies as well to situations where
9(x) may measure a stage of construction.) Strictly speak-
ing, 6(x) is not simply a function of x, but also of the
current neighborhood of moves available from x. In tabu
search, this means that 6(x) implicitly depends on search
history.

The goal function g(x), and the moves that seek to
minimize it, are designed to take account of the current
state and direction of oscillation (the bounds on 6(x) and
their direction of change). For example, depending on
whether x is currently feasible, and whether the search is
moving toward or away from a feasibility boundary, it is
natural to employ different penalty or inducement mea-
sures to evaluate candidate moves. The parameters o and
B need not be treated as rigid bounds on 6(x), but can be
considered as target values for such bounds. The respon-
sive control provided by such measures gives the search
process a vitality that often is lacking in search without
such an oscillation component.

A template for strategic oscillation based on these ele-
ments may be characterized as follows. The method begins
by identifying the goal function g(x) and oscillation func-
tion 6(x), and by establishing initial values for the parame-
ters o and B, together with a chosen direction of oscilla-
tion.

Strategic Oscillation Tempiate

1. Select a move at each iteration by an evaluation that
seeks to minimize g(x) subject to a < 6(x) < B.

2. Repeat Step 1 for a chosen number of iterations (until a

~ criterion is satisfied to trigger a parameter change). Then
update a and B by increasing or decreasing both, ac-
cording to the current selected direction of oscillation.

3. Repeat Steps 1 and 2 for a chosen number of iterations
until a criterion is satisfied to trigger a direction or
tolerance change. Then reverse the direction and/or
modify the tolerance of the oscillation.

4. Repeat steps 1-4 until satisfying a termination condition
(such as an overall cut off limit).

In applying the foregoing process there is no need to
restrict consideration to a single g(x), 8(x) pair, and hence
the process may operate as a subroutine to a procedure that
selects and periodically updates g(x) and 6(x).

The tabu thresholding procedure is evidently a rudimen-
tary form of the strategic oscillation provided by this tem-
plate, effectively choosing g(x) = c(x). Control is exerted
through a () that is defined relative to the current state of
search. That is, 8(x) may be conceived simply as an indica-
tor function that takes the values 0 or 1 according to
whether the search is in an Improving Phase or a Mixed
Phase. (Hence 6(x) implicitly relies on history, as in cus-
tomary tabu search applications, though in this case with
no substantive recourse to memory.) The basis of strategic
control lies in the transition between these two phases and
in the associated processes for seeking moves to minimize
g(x) as detailed in the paper.

Tabu Memory for Strategic Oscillation

To complement the focus on processes that make negligible
recourse to memory, and to move from general to more
specific concerns, we conclude by describing a simple type
of memory for controlling strategic oscillation processes in
commonly encountered classes of optimization problems.
We refer specifically to problems where moves can be
interpreted as “adding” and “removing”’ elements from a
solution, which is represented by a zero-one vector, and
where each solution is classified as lying either “‘below,”
“above,” or “on’ a strategic oscillation boundary (which
corresponds to the target level of Section 2). For the class of
problems considered, we specify that the boundary is
reached from a solution below the boundary by progressively
adding elements to the solution (changing values from 0 to
1), and from a solution above the boundary by progressively
removing elements from the solution (changing values from
1 to 0). Further we stipulate that boundary solutions in-
clude all solutions necessary to be considered as candidates
for optimal solutions.

A common example of such problems occurs in graph
theory where the boundary corresponds to a state of com-
plete construction, which is reached by progressively
adding nodes or edges to a graph with too few elements, or
by progressively removing nodes or edges from a graph
with too many elements. A somewhat different type of
example (with a more complex boundary) is the multidi-
mensional knapsack problem, which has the property that
a feasible solution can be “extended” by progressively
setting variables equal to 1 until reaching a maximally
feasible solution (which becomes infeasible if additional
variables are set to 1), and an infeasible solution can be
“reduced” by progressively setting variables equal to 0
until reaching a minimally infeasible solution (which be-
comes feasible if additional variables are set to 0). The
boundary consists of maximally feasible solutions together
with feasible solutions reached in one step from minimally
infeasible solutions. (The maximally feasible solutions will
suffice if the process of crossing from infeasibility to feasi-
bility is accompanied by moving back to maximal feasibil-
ity before setting additional variables to 0.) Generalized
covering problems provide an example with analogous
feasibility properties, where the role of setting variables to
0 and 1 is reversed. It should be noted in each of these
instances that the choice rules for implementing strategic
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oscillation will customarily differ when approaching the
boundary from different directions, and also will appropri-
ately become more “judicious” in close proximity to the
boundary. These are important practical aspects that impart
an enriched heuristic component to the search.

A memory structure to take advantage of these problems
is as follows. We assume the oscillation process is two-
sided, i.e., that it operates by moving to and then crossing
the boundary from a given side, and then progresses for
some number of steps before turning around and similarly
approaching and crossing the boundary from the other
side. (Modifications of subsequent comments to apply to a
one-sided oscillation process will be apparent.)

Let x(k) denote the kth boundary solution generated
during this process, for k = 1,...,k*. The memory struc-
ture we employ maintains a record of the last t such
boundary solutions, i.e., the solutions where k* — (t — 1)
< k < k*. We further maintain a special record denoted
TABU that is the sum of these last t solutions. That is,
starting with TABU equal to the 0 vector, each time a new
x(k*) is identified, set

TABU = TABU + x(k*) — x(k* —t),

disregarding the term x(k* — t) if k* < t. (A circular list
can be used to record a selected number t, of the most
recent x(k) solutions, allowing t, to be the largest t value
considered relevant—as where a long term strategy of
periodically varying t is employed—and moving around
the circle to write each new solution x(k*) over the oldest
solution x(k* — t,) A simple offset pointer keeps track of
the location of x(k* - t).)

To specify the rule for controlling the oscillation with
this memory, we note the method has two turn-around
points, an upper turn-around point where the method
discontinues setting variables equal to 1 and prepares to set
them equal to 0, and a lower turn-around point where the
method discontinues setting variables equal to 0 and pre-
pares to set them equal to 1.

First consider the lower turn-around point. We seek to
impose the requirement that the first variable x; set equal
to 1 after reaching this point must not have received a
value of 1 in any of the previous t boundary solutions.
(Hence, if this requirement is satisfied the boundary solu-
tion generated next will be compelled to be different from
each of these t previous boundary solutions.) This condi-
tion is met by designating x; to be tabu, to forbid changing
it from 0 to 1, if TABU() > 0, where TABU(j) denotes the
jth component of TABU.

More generally, we undertake to assure as nearly as
possible that the first r variables x; set equal to 1 after
reaching the lower turn-around point will not be among
the tabu variables, for which TABU() > 0. This is accom-
plished by attaching a large penalty weight w to TABU()
—i.e. creating the product w - TABU(j), which equals 0 if
TABU(j) is 0 and equals a large value if TABU()) is positive.
The penalty value (product) is then subtracted from the
choice rule evaluation customarily used, where the maxi-
mum evaluation identifies a preferred variable to set equal
to 1. Once a boundary solution is reached the choice rule
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regains its normal form, even if r steps have not yet
occurred since the turn-around point.

The targeted number of variables to make tabu by this
process may be determined as follows. Begin with r = 1.
Then, after a chosen number of iterations (e.g., after k* has
increased by the amount 2t), set r = r + 1. Continue to
increment r after each such round of iterations until reach-
ing a desired limit. Then set r = 1 again and repeat. (In
general, the maximum value of r need not be large, and the
changes in r can follow a graduated oscillation schedule for
both increases and decreases.)

By contrast, the rule upon reaching the upper turn-
around point operates to restrict the choice of variables to
set equal to 0 so that the first r of these x; will be variables
with the largest values of TABU(j), while the remaining
variables are implicitly tabu during these r steps. (The
value of r for this upper turn-around point can differ from
that for the lower turn-around point, independent of
whether the turn-around points are chosen at different
distances from the boundary.) The rule is implemented by
creating an inducement to encourage setting a variable to 0,
rather than a penalty to discourage setting a variable to 1.
In particular, a large positive weight w again is used to
create the product w- TABU(), and this product is then
added to the customary evaluation, whose maximum value
in this case identifies an x; that is preferable to set to 0.

In the case where the oscillation strategy lingers at the
boundary by incorporating exchange moves (changing the
values of two variables simultaneously in opposite direc-
tions), the process can be further controlled by customary
forms of short term tabu search memory, as by employing
an array tabu_time(j) that records the most recent step, or
“time,” the variable x; changed its value. Such memory
can be used not only to prevent the exchanges from cy-
cling, but also to avoid reversing more than a desired
number of moves, from among those executed during the
first r steps after the last turn-around point.

Finally, intermediate and long term strategies can take
advantage of these same structures, using two or more
TABU arrays based on different choices of t. (A long term
TABU array can be maintained as the sum of all boundary
solutions encountered, or as an exponentially smoothed
sum, without having to keep a record of past boundary
solutions to update it.) Then a natural diversification strat-
egy consists of periodically shifting away from a “smaller
t” TABU array to a “larger t” array. Alternatively, the
arrays can be used in concert, giving each its own weight to
create penalty and inducement functions that combine the
influence of memories spanning different time intervals. In
such a combined approach, weights should be normalized
by dividing each by its associated t value. More precisely,
if TABU1 and TABU2 are two arrays based on t = t; and
t =t, > t;, and if w; and w, are weights to differentiate
the influence of the t, most recent boundary solutions from
the influence of the t, — t, solutions preceding, then TABU2
may appropriately receive a weight of z, = w,/(t; — t;)
while TABU1 correspondingly receives a weight of z,
wy/t) — z,.

The disposition of human problem solvers to combine
the influence of memories over varying horizons motivates
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a closer look at considerations of the form outlined. If the
puman disposition is worth emulating, we envision the
merit of exploring conditional and adaptive ways of inte-
grating time-differentiated memories within a search
framework.
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