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Scope and Purpose- Neural networks come in a variety of forms and are "trained" by a variety of strategies. 
With a few exceptions, these forms and training processes have not produced strongly competitive 
approaches for optimization problems. when compared to latest methods that have evolved within the 
optimization field. 

This paper proposes a different type of neural network conception based on "ghost image processes", 
The fundamental idea is to use two reinforcing types of mappings, one operating on trial solutions and 
one operating on idealized problem representations or target structures (called ghost images). This gives 
a natural basis for integrating the design and training functions, and provides an effective way to handle 
a variety of optimization problems that were previously not well suited to be treated by neural networks. 
The ghost image processes are able to incorporate specialized components to exploit problem structures 
in specific optimization domains. and to integrate classical optimization and search methods as part of 
this process. Examples show how ghost image processes can take advantage of optimization problems 
with diverse characteristics, and preliminary computational tests are reported for multidimensional 
knapsack problems that demonstrate the promise of these processes. 

Abstract-We identify processes for structuring neural networks by reference to two classes of interacting 
mapping~ one generating provisional outcomes ("trial solutions") and the other generating idealized 
representations. which we call ghost images. These mappings create an evolution both of the provisional 
outcomes and ghost images, which in turn influence a parallel evolution of the mappings themselves. 

The ghost image models may be conceived as a generalization of the self-organizing neural network 
models of Kohonen. Alternatively, they may be viewed as a generalization of certain relaxation/restriction 
procedures of mathematical optimization. Hence indirectly they also generalize aspects of penalty based 
neural models. such as those proposed by Hopfield and Tank. Both avenues or generalization are "context 
free". without reliance on specialized theory. such as models of perception or mathematical duality. 

From a neural network standpoint. the ghost image framework makes it possible to extend previous 
Kohonen-based optimization approaches to incorporate components beyond a visually oriented frame of 
reference. This added level of abstraction yields a basis ror solving optimization problems expressed entirely 
in symbolic ("non-visual") mathematical fonnulations. At the same time it allows penalty function ideas 
in neural networks to be extended to encompass other concepts springing from a mathematical optimization 
perspective. including parametric deformations and surrogate contractions. 

This paper demonstrates the efficacy of ghost image processes as a roundation ror creating ~ew 
optimization approaches by providing specific examples or such methods for covering, packing. generahzed 
covering. fixed charge and multidimensional knapsack problems. Preliminary computational results ror 
multidimensional knapsack problems are also presented. 

1. INTRODUCTION 

As a preliminary to characterizing the ideas of this paper more formally, we describe the orientation 
that lies behind them, Our approach is founded on the postulate that effective strategies for problem 
solving derive from the existence of fundamental idealized structures (ghost images), which operate 
as representational frameworks or target configurations. These structures begin in a state of 
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"imprecise adjustment" that becomes progressively more refined, and serve as a basis for interrelating 
and evaluating data as a way of achieving intelligent, coordinated response. 

Accompanying these special structures is a set of mechanisms (mappings) for establishing new 
outcomes, such as inferences, behavior patterns and solutions, from the relation of current data 
and outcomes to the idealized structures. Also included are mechanisms that operate on these same 
components to produce the successively refined instances of the idealized structure. (At root the 
two types of mechanisms may be the same-i.e., members of a common pool capable of performing 
either function-but it is convenient to think of them as different.) Finally, there are processes that 
allow both types of transforming mechanisms to alter their form. This may be a consequence of 
preprogrammed evolution, perhaps guided probabilistically, or of applying the mechanisms in 
different basic combinations. 

The ghost image terminology, which refers to the idealized structures that provide the raw material 
of these processes, is intended to convey a link to visually oriented models, and at the same time 
to suggest a more abstract frame of reference. We draw on the analogy suggested by popular 
nomenclature, where a ghost image refers to an aura, or halo, describing a distorted boundary 
which one seeks to bring into conformity with a figure to which it presumably corresponds. In our 
approach, the distortion of the ghost image is not a defect but a purposeful displacement. The 
underlying "true image" is not known, but rather is established by the succession of trial images 
(solutions) that are adjusted in coordinated association with the ghost images. 

The ghost image representations are inherently fluid, able to assume many different forms. In 
various stages of evolution, members of a given class can embody relationships very different from 
those at other stages. (By this fluidity, a small number of classes can account for a wide range of 
functions.) We postulate that such processes underlie the creation not only of responses (i.e., 
solutions-emphasizing a problem solving focus), but also of additional processes. That is, the 
basic images and transformation mechanisms are recursively linked, leading to more advanced 
images and mechanisms that may be invoked to handle situations of increasing complexity. 

In our application of this framework we do not confine ourselves to manipulating the most 
fundamental images and mappings, but are willing to incorporate more refined elements that may 
offer a chance to produce better outcomes. (High level processes, once generated, are considered 
legitimate raw magerial for producing additional processes and associated outcomes, without 
reverting to a building-block stage. The important issue is whether the framework for interrelating 
and exploiting these processes leads to fruitful consequences.) 

In contrast with some neural network researchers, we avoid postulating a specific physical 
("hardware") organiza.lion in which to embody our hypotheses, but wait for discoveries in areas 
such as neurobiology to suggest useful schemes at this level. We do not have to wait, of course, to 
design our own procedure to achieve the functions postulated. From this standpoint, we offer these 
ideas as a basis for generating new approaches to problem solving. Detailed illustrations provided 
in later sections show the relevance of our framework for achieving these goals, and preliminary 
computational results are also reported that suggest the promise for practical applications. 

2. AN OPTiMIZATION FRAME OF REFERENCE 

We are concerned in this paper with the solution of mathematical optimization problems, 
especially but not exclusively from the domain of combinatorial optimization, which may be 
expressed broadly in the following form. 

Minimize fix) 

subject to 

xeX!:;R" 

The function f(x) may be linear or nonlinear, and the condition x E X that defines feasible x 
vectors may include constraints ranging from inequalities (such as g(x)";O) to discrete restrictions 
(such as requiring specified components of x to assume integer values). 

We adopt a perspective that emphasizes a neural network orientation toward solving these 
problems, introducing a type of solution framework into neural networks that previously has been 
lacking. Our approach has a kinship to the models of Kohonen [1], and can be viewed as a 
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generalization ofthem. Alternately, it can be viewed as a generalization of certain relaxation/restriction 
procedures of mathematical optimization, and in this sense our approach also extends features of 
penalty function approaches, as represented by the models of Hopfield and Tank [2]. 

In the neural network context, one of the primary contributions of the proposed framework is 
to provide a means of introducing structures that go beyond the topologically oriented foundations 
of Kohonen models and their analogs, as they are currently applied to certain limited classes of 
optimization problems. The ghost image structures are interrelated by a pair of abstract convoluted 
mappings, while the mapping in the Kohonen model is one way and specialized. Likewise these 
structures allow penalty function concepts to be expanded to include notions that we refer to as 
problem deformation and surrogate contraction. The coordination of their underlying mappings 
leads to new types of neural network procedures for solving optimization problems, and permits 
a useful continuity with a variety of previous models, giving a simple way to describe them in a 
broader con tex t. 

3. THE GHOST IMAGE FORMULATION FOR OPTIMIZATION 

To develop our approach, consider a coded information structure §, called a ghost image, related 
to x E X in the following manner. We posit the existence of mappings M x and M§ that generate 
new trial vectors x and ghost images §, denoted x' and §', by the association 

Mx(§, x)=x' 

M§(§, x') = §'. 

More precisely, if i represents an iteration index, then the mappings embody the recursive 
relationships 

MX[§(/), xli)] =x(i + 1) 

M§[§(i), x(i+ 1)] =§(i + 1). 

(The index i then increments by 1 and the process repeats.) 
We first provide principles that describe the nature of these relationships, and then in following 

sections provide specific examples to further clarify their operation. (The reader may find if 
convenient to skim the principles on first examination, proceeding more directly to the examples, 
and particularly the material beginning in Section 5, to get a sense of where the principles may lead.) 

Principle I. The ghost image provides an implicit "outline" (or "shadow") of an idealized structure 
or target solution, which is progressively adapted to x (and which x is progressively induced to 
approach via the mapping Mx). From the standpoint of a neural network conceptualization, the 
ghost image is a collection of neurons interrelated by a special structure or set of conditions. 
Alternatively, the ghost image may represent an idealized problem representation (from which an 
idealized solution may implicitly derive). In this case, the target for x is inherent in the structure 
of the problem itself. 

Principle 2. The ghost image may not embody a perfect representation of desired solution or 
problem characteristics. The recursive application of the mappings is designed to compensate for 
imperfection, amending § so that its idealized form moves progressively closer to the "reality" of 
the current problem structure. Nevertheless, it is important that § initially expresses a collection 
of idealized properties as faithfully as possible. 

Principle 3. The ghost image generally embodies some of the constraining conditions represented 
by XE X, but possibly not all. (This provides a connection to mathematical relaxations as elaborated 
subsequently.) 

Principle 4. The ghost image often yields a finer grid of solution alternatives than x. In the case 
Where § is manifested as a form of target solution, the vector § may be of a larger dimension than 
x (with a many-to-one association between components of § and components of x). Alternatively, 
values permitted to components of § may be a superset of those permitted to components of x (by 
the restriction x E X). In the case where § is a form of problem representation, the solution vectors 
for this problem likewise may satisfy the properties of increased dimensionality or admissible 
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assignment. (Ghost image processes may be integrated with mathematical layering strategies, for 
example, to operate on mUltiple copies of selected variables.) 

Principle 5. The expanded dimension (or range of value assignments) of § relative to x is subject 
to management by a process that alters §'s dimension adaptively, rather than adhering to a fixed 
grid or value set. 

Principle 6. As an adjunct of Principles 3, 4 and 5, the trial solutions xli) generated by progressive 
mappings may not belong to X, but to corresponding sets Xli) that may be larger than (or inexact 
approximations 01) X. One ofthe control features of the process is to assure that these sets ultimately 
lie within X. 

Principle 7. The mappings Mx and M§ are evolutionary and time dependant, hence may be 
represented more accurately as Mx=Mx(i) and M§=M§(i). In the context of a Boltzmann (or 
simulated annealing) evolution, the form of these mappings is given by Mx[tx(i)] and M§[t§(I)], 
where tx(i) and I§(i) are "temperature" parameters. In a tabu search evolution, the form is instead 
given by Mx[Hx(J)] and M§[H§(i)], where Hx(i) and H§(i) are "history vectors" associated with 
the process. (For relevant background on simulated annealing and tabu search, see Johnson el al. 
[3] and Glover and Laguna [4], respectively.) 

The inclusion of historY in a neural network process (in the manner prescribed by tabu search) 
introduces a form of memory that does not come from the neural network itself. It may derive 
from some form of "external" neural network process, which interrelates and aids the performance 
of other neural network processes, or may represent a non-associative type of memory. (Such a 
use of history may be viewed as an operation designed to "change the rules of change".) The 
relevance of this additional memory as an extension of the customary neural network structure is 
an important implication of the neural network studies using tabu search be de Werra and Hertz 
[5] and by Chakrapani and Skorin-Kapov [6]. 

Principle 8. It is generally appropriate to introduce a more restrictive, and computationallly more 
expensive, mapping M x* that produces trial solutions x* belonging to X. (A guarantee of feasibility 
may require some constraints to be incorporated as penalty terms in the objective function, thus 
enabling the condition x E X to be satisfied by a computationally tractable procedure.) Outcomes 
from this mapping may be incorporated into the updating of the other mappings. 

PrinCiple 9. A basic feature of ghost image processes is a policy of "narrowed focus and incremental 
change". In particular, the mapping Mx is typically structured to take special account of a subvector 
y(/) of xli) in transforming xli) into x(i+ I). Correspondingly, x(i+ I) generally differs from X(I) only 
in the components representing the transformation from y(i) to y(i + 1 Hor in components immediately 
affected by this transformation). The mapping Mx may therefore be viewed as consisting of two 
parts, first choosing the subvector y(1) of xli). and then producing x(i + I) from a conjunction of 
y(i) and the ghost image §(i). Alternately, we may view the choice process and the mapping process 
as separate, producing a procedure that may be characterized as follows. 

Step 0 (Initialization). Set i = 1. 
Step 1 (Choice). Choose a subvector y(i) of xli). 
Step 1 (Map). Identify 

x(i+ I) = MX[§(i), x(i), y(i)] 
§(i+ I)=M§[§(i), x(i+ I)] 

Step 3 Increment i: = i + I and return to Step I (or terminate by a cutoff rule). 

Including y(i) as an additional argument of Mx, in spite of the fact that y(i) already is included in 
x(i), indicates that this component is treated in a "preferential" manner by the mapping. Analogous 
to the focus on y(i) within x(i), there typically is a corresponding subvector of § which chiefty 
determines the change from §(i) to §Ii + I). Likewise, y(i + I) typically takes a role in M§ resembling 
the role adopted by y(i) in Mx. (We do not bother to introduce additional notation to depict this.) 
The choice of y(i) will affect the form of the mapping Mx, as is implicit in the more general 
formulation where this mapping is conceived to include the choice of y(i) rather than being treated 
separately. (In simpler cases a rule may be employed that causes y to cycle through components 
of x in fixed order. This type of approach appears in limited instances in the literature, but we will 
argue that other choices are preferable.) 
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Although important, Principle 9 is also "dangerous" if interpreted too narowly or applied in 
isolation from other considerations. We will see instances, for example, where Mx or M§ may be 
interpreted as a series of steps, each of which follows the general dictum of this principle, but 
which in combination produce change on a more global scale. A useful adjunct to this principle 
is provided by Principle 10, and critical amendments are offered by Principles 11, 12 and 13. 

Principle 10. As in all neural network approaches, parallelism is a pervasive feature. This is 
manifested in ghost image processes in two ways. First, the restricted focus advocated by Principle 
9 may be designed to allow independent treatment of multiple segments of a ghost image 
simultaneously. Second, a collection of separate ghost image processes may be conducted in parallel. 
This second type of parallelism is relevant both in tabu search and simulated annealing evolutions. 
Different parameters (embodied in cooling schedules in the case of SA) can yield different outcomes, 
giving parallelism a chance to contribute to greater efficiency. A parallel approach is additionally 
important in tabu search evolutions, where the history ofthe processes becomes an active determinant 
of future trajectories. In this case, parallelism creates an expanded historical frame of reference, 
permitting the history of each process to be exploited by the whole. 

Principle II. An important counterbalance to Principle 9 is the stipulation that change must 
not merely be focused and incremental, but must also be "influential and essential". That is, a 
preferred form of change normally induces a nontrivial stuctural difference (from alternatives 
available) and involves a subset of options that represent higher degrees of criticality for reaching 
specified goals. Here, the meaning of "structural difference" is related to that of information content, 
particularly concerning the relative magnitudes of present and future change (where the depth of 
the path to a future goal is preferably to be reduced). If certain elements are candidates to change 
location, for example, then choices should be favored that cause the resulting configuration to yield 
useful information about future options, and that help to close the gap between the present state 
and an anticipated terminal state. Further, if a subset of elements can be identified as critical, 
driving the behavior of others, or requiring a change in at least one of its members (while it is 
uncertain that this necessity applies to a larger or different subset), then such a subset should be 
a focus for choice. The significance of the influence concept, and of identifying spheres of influence, 
is discussed in Glover and Laguna [4]. Neural network literature generally acknowledges the merit 
of incremental and progressive change, and in some cases provides for change that is not incremental, 
but often overlooks the importance of the notions underlying this amending principle. Without 
them, the efficacy of adaptive procedures can become greatly reduced. (It is to be acknowledged 
that a neural network training/learning algorithm is not equivalent to the neural model, and our 
comments here apply more specifically to such training aspects. In the ghost image processes the 
model and its evolution are intimately linked.) 

Principle 12. The use of a narrow focus advocated in Principle 9 can be defeating (barring a 
fortunate predetermination of x and §), unless a way is provided to create new elements (e.g., 
variables) out of existing ones. Certain problem structures can be analysed effectively only if 
composite elements are generated, and changes in these elements are monitored together with 
changes in the basic elements defining these problems (such as an initial set of problem variables 
and constraints). While the issue of dimensionality raised in Principle 4 bears on this matter, we 
refer more specifically here to the notion of generating new elements that involve "functional 
aggregates" of others. Thus, the issue is analogous to the creation of new attributes for the 
attribute-encoded memory structure of tabu search. It also relates to the concept of chunking in 
psychology (as where a chess master sees entire configurations as single units), or alternately may 
be viewed as creating a "vocabulary" (where certain words can summarize concepts that otherwise 
may require sentences or pages to express). 

A useful illustration of this idea is given by a basis representation in the simplex method. In this 
case a restricted focus on changing the value of a single (nonbasic) variable has the effect of 
simultaneously changing the values of many other (basic) variables. In the present problem solving 
context, the special type of linking involved in generating useful vocabularies can begin from 
foundations of correlation and clustering, but clearly are broader. This issue is crucial to permitting 
the restricted focus notion of Principle 9 to apply with full effectiveness. It also constitutes a 
significant open research area for those interested in allowing AI mechanisms to approximate 
human intelligence. 
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Principle 13. Conditions encountered at certain boundaries or thresholds may induce M§ or Mx 
to invoke a component that more radically changes the structure of § or x than by the incremental 
change element of Principle 9. This corresponds to invoking what is called a diversification step 
in tabu search terminology. Generally, a determining element in defining the conditions that activate 
such a diversification step is a memory that exploits history. Instead of an evolution by which x 
and § are progressively attracted toward a mutually harmonious state, the diversification operates 
as a form of controlled repulsion. (The word "controlled" is an essential qualification. Wildly 
random steps generally are not an aspect of intelligent behavior. Even repulsion is channeled.) 

Conditions that trigger such departures signal a return to a preceding state, although the inclusion 
of history means that the state is not treated by M§ in the same way as on a previous visit, hence 
altering the course of subsequent evolution. (The attraction mechanism that causes a return to a 
preceding state, or more generally causes the recovery of certain attributes of that state, is called 
intensification in tabu search terminology.) 

Large-step behavior that launches a process onto a significantly different track is again a form 
of change not normally endorsed by neural networks. The element of history to determine conditions 
of repulsion, and channels for it to follow, implies a time dependent feedback loop whose circuitry 
in ordinary neural networks is undoubtedly subtle (if not alarmingly complex), and is not likely 
to be "discovered" by normal methods of training. Rather than wait for the invention of neural 
network circuitry to achieve this effect (or for neurobiologists to discover relevant brain structure 
not envisioned in present models), we recognize the importance of the effect and incorporate it 
directly. 

4. LINKS TO PREVIOUS NEURAL NETWORK PROCESSES 

Before showing how ghost image processes may be applied to solve a range of more general 
discrete optimization problems, we first indicate special instances of neural network procedures 
that fall within the preceding framework. These instances arise chiefly by adapting Kohonen types 
of models to treat graph problems, motivated by the visual image component of graphs (for which 
the visual orientation of Kohonen neural network models assumes a natural relevance). As noted 
earlier, our use of the ghost image terminology is intended to suggest an additional level of 
abstraction, in which visual linkages may usefully he viewed as a subset of broader construction~ 
not definable by visual concepts as currently conceived. 

We will superimpose the ghost image terminology on our description of earlier processes in order 
to allow observations for extending (and improving) these processes within the present framework. 
Thus, for example, we will spead of a "ghost image point," or simply an "image point," instead of 
referring to a "neuron" (which in this case is the corresponding neural network counterpart). 

4.1. Ring (closed curve) neural network models for TSPs 

From the standpoint of visualization, a ring has a form that naturally embodies the notion of a 
traveling salesman tour, prompting researchers to apply the visual model of Kohonen to this setting. 
(See, e.g. Angeniol et al. [7]; Durbin and Wilshaw [8]; EI Ghaziri [9]; Geraci et al. [10].) On a 
higher conceptual level, a ring may be conceived to express the sequential order constraints of a 
tour construction, and by this means has the useful feature of automatically satisfying the condition 
x e X applicable to a TSP formulation. More particularly, from our present orientation, a ring that 
begins in approximately circular form is an idealized tour, since a circle is an optimal closed curve 
in Euclidean space (of minimum length relative 10 the area enclosed). 

This ideal property of course is disturbed least if the ring is perturbed to the least degree necessary 
to allow il to map onto the data points required to compensate the tour. Thus the ghost image 
Principle 9 directly endorses the relevance of the Kohonen dictum (derived empirically) that "visual 
neurons" -in this case elements of the ring- should be assigned to objects closest to them in the 
visual field. In the Kohonen-based approaches to TSPs, this has led to the strategy of very gradually 
adjusting the "closest to" relationship, by progressively moving the ring countours to fit the data 
points, with the outcome of producing a tour that is a reasonably good (and in some cases very 
good) candidate for a TSP tour. 

Conceiving such a strategy within the framework of a ghost image process, there are a number 
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of possible mappings M x to generate trial solutions x(i), and mappings M§ to produce adjusted 
images §(i), for this problem. This allows us at once to go beyond the neural network methods 
guided by the Kohonen model. Such methods produce a form of Mx which creates xli) by mapping 
each data point onto the element of the ring closest to it. The mapping is a "degenerate" instance 
of Mx, since it yields x(i+ I) = Mx[§(i)], without reference to xli) as an argument of Mx. 

Until more advanced algorithmic stages are reached, this mapping creates ambiguity in the tour; 
i.e., different points may map onto the same element of the ring. To compensate for this, the ring 
is allowed to have more elements (image points) than data points, which may be conceived as an 
application of Principle 4. This encourages a differentiation that more readily "breaks ties" in such 
assignments, and also facilitates the gradual adjustment feature of Principle 9. The process is 
initialized by a ring that is somewhat loosely located within the general region ofthe data points. 

Conjecture J. Advantages may be gained (applying the ghost image Principle 2) by starting from 
a closed curve (circle or ellipse, etc.) that is adapted to the data points, e.g., that has a center located 
at a center of gravity (or foci located at clustered centers of gravity), or externally molds approximately 
to the convex hull. (The validity of this conjecture and others to be offered is readily testable.) 

Conjecture 2. A useful option (again motivated by Principle 2) is to begin with not one but a 
collection of rings as a ghost image, where each is designed either to circumscribe a cluster or to 
thread through a clustered layer. Ultimately each ring will break to connect to another. 

Conjecture 3. Additional gains may be derived from the explicit mapping orientation of the 
present framework by introducing more refined alternatives for Mx. Specifically, a mathematical 
semi-assignment model can be introduced that assigns each data point to exactly one image point 
of the ring, while allowing each image point to receive at most one data point, to minimize the 
sum of assigned distances (or of distances raised to a power). 

We note that the semi-assignment solution of Conjecture 3, or a simpler heuristic approximation 
to it, eliminates the ambiguity of assignments in the Kohonen-derived approaches, and further 
provides a feasible TSP trial solution (in fully dense graphs) by considering the ordering of the 
data points induced by the mapping. Such a mapping can also be used in a concentric ring 
construction, with an added rule for breaking and joining rings. In the more computationally 
expansive form of obtaining an optimal (as opposed to heuristic) solution of the mathematical 
semi-assignment problem, this may provide a basis for the Mx· mapping of Principle 8, applied 
periodically. 

The indicated framework provides additional links to (and extensions of) previous Kohonen-based 
ring models by reference to the approaches ofEI Ghaziri [9] and Geraci el a1. [10]. These procedures 
may be interpreted in the present context as an attempt to coordinate the Mx and M§ mappings 
by the 'narrowed focus and incremental change" format of Principle 9, employing a rule that selects 
a subvector of variables representing alternative assignment possibilities for a single data point, 
and then makes a unique assignment for that point alone. This is done by a Boltzmann type of 
approach in the procedures cited, although it also can be done by genetic algorithm or tabul search 
strategies. Control is established by operating on each data point in a fixed sequential order, and 
then repeating the process until convergence is established. 

Conjecture 4. In contrast to examining data points (and associated subvectors) in fixed order, 
improvements may result by applying adaptive selection rules based on current proximities of data 
points to image points. This conjecture is based both on findings from tabu search and from the 
observation of Conjecture 5, indicated subsequently. 

It is to be noted that the gradual adjustment feature of Principle 9, which is fundamental to 
many neural network processes (and also to many mathematical optimization processes, such as 
"single variable and adjacent value branching" in branch and bound), may seem to support the 
notion of 8 slowly cooling temperature, and hence may be responsible for the widespread tendency 
to apply Boltzmann procedures in conjunction with neural networks. However, the potential 
relevance of introducing a temperature parameter, and of cooling it slowly, can be interpreted as 
a derivative implication (not necessarily valid) of a more general Proximate Optimality Principle 
(POP), which says that good solutions at one stage (defined by criteria more complex than 
temperature) are generally close to good solutions at an adjacent stage. (See, e.g., Glover et a1. 
[11].) The POP notion in fact directly motivates Principles 4, 5 and 9, and also bears on the 
relevance of Principles 10-13. 
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If the POP notion is operable in general systems in nature, and is not merely a principle of 
abstract combinatoric systems, then it will be applicable to behavior and organization of the visual 
cortex in the brain. If so, it provides a direct physical rationale for Kohonen's empirical observations. 
It further suggests the merit of a more refined definition of stage than embodied in a temperature 
parameter, and of a more refined definition of "close to" than embodied in Euclidean distance. 
These definitions necessarily must be implicit in the mappings Mx and M§ (and can serve to 
motivate their construction in specific settings). Hence the use of a\lernative mappings and of rules 
for progressively amending them over time provide a basis for testing the relevance of the pop 
conception. 

Conjecture 5. The notion of adaptive dimensionality expressed in Principle 5 offers gains through 
a strategy of refining a ghost image by a mapping M§ that is not limited to relocating its points 
(in the neural network "TSP ring" approaches). Rather, the mapping may additionally alter the 
ghost image (ring) dimension to introduce new image points. Specifically, by considering trial points 
on the line segment joining two existing image points, and introducing a trial point as a new image 
point if it lies closer to a member of a set S of nearby data points than the two parents, the method 
may be expected to perform more effectively than the neural network approaches in the literature. 
Indeed, it is possible to specify a means of doing this (employing an approxpirate definition of S) 
that never alters the assignment of an image point to a data point, once made, and that produces 
a tour in the Euclidean plane with no crossings. 

4.2. Vehicle routing (multiple salesman) problems 

A first departure from the simple visual orientation that underlies the adaptation of Kohonen 
neural networks models to TSPs occurs in the approach proposed by EI Ghaziri [12] for the VRP 
problem. Briefly summarized, the VRP problem requires the creation of multiple TSP tours, each 
initiated from a common depot. The data points represent cities, each with a specified demand 
(quantity of some item) to be collected by a vehicle traveling the route to which that city is assigned. 
Each route can contain only a collection of cities whose combined demands do not exceed the 
carrying capacity of the vehicle that will travel the route. The EI Ghaziri approach to the VRP 
problem can be conveniently expressed in the ghost image framework as follows. 

Initially, § consists of a collection of r rings, where r is the number of routes to be created. The 
starting location of these rings is not considered of great importance. (However, as an analog of 
Conjecture I, it seems reasonable to hypothesize that careful testing will discover a different 
viewpoint is warranted. Specifically, from this perspective, better results appear likely by an 
initialization that generates r clusters of points, based on distance and capacity, and locates each 
initial ring as a distorted circle centered on the cluster center but given a tail that connects to the 
depot) As in the "TSP ring" approach, data points (cities) are examined in fixed sequential order. 
(Again, asa counterpart of Conjectures 3 and 5, a superior choice strategy is anticipated to exist.) 

The new element introduced by EI Ghaziri is that the rings are no longer simple geometric or 
visual models, but contain components corresponding to the capacities of the tours (the associated 
vehicles) and to the "current weight" of a ring. The weight may be interpreted in the present setting 
as the result of the mapping Mx, which creates a trial solution assignment of data points of image 
points of the rings. A ring thus receives a weight equal to the sum of the demands of data points 
mapped onto it by Mx. This mapping likewise is a greedy one-at-a-time function, but instead of 
assigning the currently considered data point based only on its distance to image points, the 
evaluation includes reference to the current weights of the rings. Infeasible weight assignments are 
given lower probabilities of selection than feasible ones (using a ratio function). 

The interpretation of this approach in the ghost image framework invites consideration of more 
general possibilities for the mapping M x. ]n particular, the type of mapping embodied in a generalized 
network assignment model seems usefully relevant. Although theoretically NP hard, generalized 
assignment models have been treated very effectivelY by heuristics (see, e.g., Laguna el al. [13]~ and 
yield solutions respecting capacity limitations as well as distance (cost) considerations. A generalized 
assignment solution can be the basis for generating feasible VRP solutions, and hence can operate 
in the role of Mx*. In addition, such a solution may provide a basis for an improved determination 
of the M§ mapping. 
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S. NEW GHOST IMAGE PROCESSES 

We now consider how ghost image processes can be used to characterize methods that are 
fundamentally different from those previously described. The first class of these methods we consider 
is based on creating an idealized representation of problem structures by a strategy of parametric 
deformation. We refer to two basic kinds of parametric deformation processes: closed and open. 
A closed process has clearly specified (natural) points of origin and termination, while an open 
process lacks this feature. 

5.!. Closed parametric deformations 

The strategy of the closed deformation processes begins by modifying the problem parameters 
in a way that permits an optimal or near optimal solution to be readily determined. This idealized 
parameterization constitutes the initial ghost image § in this class of approaches. Progressive 
modification produced by the mapping M§ gradually transforms the idealized parameter values 
into the actual parameter values for the problem to be solved. At each step, the mapping Mx 
produces a solution which is near optimal for the problem encoded in §, and this solution becomes 
a basis for progressing to a new § and trial solution at the next stage. 

We clarify the process by a series of examples that provide a more complete frame of reference. 
5.1 .1. Covering problem. We define the covering problem notationally by 

Minimize cx 

subject to 

Ax~e 

x is 0-1 (a vector of zero-one variables) 

where, for this formulation, we assume e is a column vector of Is, and each column of A is a vector 
of Os and Is. The vector c is assumed nonnegative. 

There are several ways to create closed parametric deformations for this problem. Let PIA) denote 
the problem for a specified matrix A. 

Deformalion I. Replace A by a matrix A' consisting of all Is (i.e., each column of A' is e). An 
optimal solution to the deformed (idealized) problem PIA') results by setting xI = 1 for the component 
XI of x such that the component ci of c is minimum. Now the matrix A' is gradually 
transformed to become closer to A. A simple way to do this is to dellne 

A"-A'+A<A-A') 

where). is a scalar weight chosen to make A" marginally different from A' ().= I yields A" = A). 
e.g., ). May be computed (approximately) to be the least positive value such that a current locally 
optimal solution to PIA') is not locally optimal for PIA"). (The meaning of "locally optimal" depends 
on the mapping Mx. For example, Mx may successively change the value of chosen variables from 
o to I, or may swap the 0- 1 value assignment of chosen variables, in moving from the current x 
for PIA') to the new x for P(A").) Then A" is redefined to be A' and the process repeats. 

The problem PIA') at a given interation i is in fact the ghost image §II). The definition of A" as 
a function of A' and ). (whose chosen value may depend on the solution to PIA') as indicated), 
identifies the mapping §(i+ 1) = M§[§(I), xli + I)]. In this case xli + 1) represents the trial solution 
generated for §(I), hence PIA'), by the mapping xli + 1)= Mx[§(i), x(i)]. 

Deformalion II. This is the same as Deformation I, except that only subsets of columns of A' are 
changed to create A' . (An extreme version of Deformation II changes exactly one column of A' 
and selects ).'" 1; hence immediately updating this column to be a column of A. This resembles the 
pattern of a dynamic programming approach that recursively introduces one new variable at each 
stage.) 

Additional Deformations. "Disctete" parameterizations may be used where the transformation of 
A' to A" consists of identifying selected elements Ai} of A' and assigning these clements the value 
A'i" For example, the transformation may choose a row of A' and update all elements of this row 
to the form of A. This is the "dual" of the extreme version of Deformation 11. It resembles a 
successive restriction approach as sometimes used in math programming, which repeatedly imposes 

CIOA 21 :1-8 
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a single new constraint upon resolving the problem containing previously imposed consraints. An 
approach that selects subsets of row or column elements to undergo change creates other types of 
strategies. Parameterizations of c and e of course arc also possible. 

5.1.2. Packing problem. We define the packing problem to be 

Maximize ex 

subject to 

Ax';;e 

xisO-1 

where A, c and e are as identified for the covering problem. An idealized starting point for this 
problem may be created either by setting all entries of A' to I, as for the covering problem, or 
instead by setting all entries to O. (This latter approach has a counterpart for the covering problem 
only if we allow e to be parameterized along with A.) In either case, an initial optimal startin! 
solution is immediately identifiable. 

The complementary directionality of moving toward A from an "all 0" or an "all I" start invites 
consideration of the strategic oscillation approach as applied in tabu search. In a restricted form, 
strategic oscillation may be applied by reference only to one of these selected starting points. For 
examle, from either start, after a series of parameter changes that ultimately results in A' = A, the 
direction of these changes may be reversed to moe back toward the starting point. Such changes 
are repeated for a chosen number of steps, then the direction is again reversed to allow the process 
to return to A. Choosing good steps in each direction makes it possible to visit previous levels 
from different vantage points, generating different solutions, than coming from the opposite direction. 
(Non-duplication of solutions can be reinforced by other elements of tabu search.) Such an approach 
is applicable to the previously indicated parameterization of the covering problem as well. 

In the more general case, strategic oscillation can be allowed to "cross the line" between the two 
approaches defined by the "all 0" and "all I" starting points. Specifically, upon reaching A from 
the "all I" direction, the method can proceed in the "all 0" direction, rather than reversing to return 
toward the "all I" start. The distance that A' is permitted to recede from A, once attained, may 
not need to be large if empirical evidence from tabu search applications in other sellings carries 
over to the processes described here. 

5.1.3. Multidimensional knapsack problems. Multidimensional knapsack problems constitute a 
generalization of packing problems, formulated as follows. 

Maximize ex 

subject to 
Ax';;b 

xisO-1 

Here A is a general nonnegative matrix and b is a nonnegative vector. Typically we assume a1l 
data elements are integers. As before, c is nonnegative. (Other versions of the problem a1l0w 
bounded integer variables, or imitate the covering formulation using a minimization objective and 
Ax~b.) 

Although it can be appropriate to parameterize both band c (as well as A) for this problem, it 
also remains reasonable to consider simple parameterizations that affect only A, as an extension 
of the two types of parameterization approaches discussed for packing problems. Specifica1ly, in 
the first approach, start with each column of A' equal to b (which we may assume has all components 
at least as large as those of the corresponding column of A, else the column may be dropped). An 
optimal solution to the resulting problem P(A') is given by selling x)= 1 for the largest e). (The 
progressive transformation based on AN=A'+2(A-A') can then be used, for example.) In the 
second approach, define the initial A' to be all 0 (again permilling the same form of progreSSiVe 
transformation). In both cases, strategic oscillation can be applied exactly as indicated for the 
packing problem. 

For the present problem, where some elements of A' must move farther than others to reach A, 
it may be appropriate to use a mapping to create AN that employs different w values for different 
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entires of A, allowing larger distances between A' and A to be covered more slowly than smaller 
ones. Such an approach should be accompanied by normalizing the constraints (e.g., dividing the 
row i by bl or by the sum of the AI} values of j, etc.). 

5.1.4. Graph problems. Ideas similar to the preceding can be used to define closed parametric 
deformations for ghost image processes applied to a variety of graph problems. For example, 
weights and/or connectivity matrices in graph partitioning, matching, TSPs, etc., can be progressively 
amended by analogous procedures. (This can further be done in complementary ways, as by 
proceeding from large-to-small and from small-to-large, or from dense-to-sparse and from 
sparse-to-dense, etc.) Identifying deformations with special features, or demonstrating that one type 
is more valuable than another, is a topic that has some appeal. 

5.2. Open parametric deformations 

We now consider a type of parametric deformation for which no "natural" ending point is 
identifiable in advance. The exploitable characteristic of these deformations is an ability to specify 
a range of parameters that is assured to include an optimal set of values. This corresponds to 
identifying a range of ghost images, consisting of problem representations derived from these 
parameters. More precisely, for the classes of problems we consider, there exists a specifiable 
mapping M x* (from Principle 8), which is a function of the ghost image § alone, yielding a trial 
solution x· = M x*(§) such that x* not only belongs to X but is optimal for the problem of interest 
(when § is suitably chosen). There are no "evidently correct" mappings M§ for updating 
§(i+ 1) = M§[§(i), x(i+ I)J, but updating guidelines may be determined by reference to local 
information. Again, to make the ideas clear, we proceed by example. 

5.2.!. Fixed charge problem. The fixed charge problem, which has many well known applications 
in mathematical optimization, may be formulated as follows. 

FC: Minimize cs+dy 

subject to 

Ax=b 

x;;. 0 

yisO-1 

Xj:!!;, UJyJforeachjeJ 

Here J is the common index set for components of x and y, x is a vector of continuous variables, 
d is a vector of nonnegative "fixed charges", and U=(UJ) is an upper bound vector where x:!!;,U 
is directly or indirectly implied by Ax=b and x;;'O. (x", U is also redundantly a consequence of 
XI:!!;, UJYj for jeJ.) The implication of the formulation is that xJ>O compels YJ= I (to satisfy 
xJ:!!;, UjYJ)' hence a positive valued xJ incurs the fixed charge dJ as well as a linear ("variable") cost 
cl' Not all variables xJ may incur fixed charges, which corresponds to allowing dJ=O (and the 
variable YJ effectively may be dropped). 

A straightforward nonlinear programming formulation is given by 

NFC: Minimize [cx+D(x): Ax=b, x;;'O] 

where D(x) is the nonlinear function D(x) = L (df xJ>O). NFC and its objective function cx+D(x) 
playa useful role in the following development. 

A least cost continuous solution to FC, where the YJ variables may take any value from 0 to I, 
evidently yields Yj=xiUj (the smallest possible value for YJ)' This motivates the classic approach 
of solving a relaxation of the fixed charge problem as a continuous linear program (LP), which 
introduces a substitution of variables to eliminate the Y variables and give each Xj a cost of cJ+ dj / U J' 

There also evidently must exist some adjusted vector d* which may replace d, with the effect 
that an optimal LP solution to the altered problem will be an optimal mixed-integer solution for 
the original problem (that is, each Yj will receive an optimal integer value). Specifically. if Y* 
represents an optimal 0-1 vector y, it suffices to choose dj "large" if Y; = O. (A range of values for 
d' will work, and of course the LP objective function value will require adjustment to match the 
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correct value for the fixed charge problem, where the latter is given directly by ex + D(x) of the 
NFC formulation. The same observation shows an optimal d" exists for any mixed 0-1 ILP problem, 
by allowing dj to be selected sufficiently negative if yj = I.) 

Consequently, we are motivated to create an open parametric deformation strategy for the fixed 
charge problem by manipulating a vector d" in place of d, with the aspiration of eventually obtaining 
a d" that is optimal. Considering again the form of the LP relaxation, which drops the y variables 
and replaces ci by cl+d;/U j> we can achieve the same result by replacing Vj with a value Dj> that 
is, giving xI a coefficient of cj+d;fvl , and then manipulate vI instead. A guideline for changing vJ 

is the knowledge that a stronger LP relaxation will result if vI is assigned an optimal value for Xj 

in a fixed charge solution. Thus, for this purpose, we define the parameterized (ghost image) 
relaxation based on v by 

FC(v): Minimize [(c+d/v)x: Ax=b, x;;'O] 

By convention we define the vector d/v to have components d/v,. The form of our method is then 
as follows, noting that the determination of§ [the representation FC(v)] corresponds to identifying v. 

5.2.2. Outline of a fixed charge solution method. 

Step 0 (Create an initial §). Set v = U. 
Step 1 (Apply Mx). Solve the LP problem FC(v), yielding a solution x'. 
Step 2 (Apply Mx"). Starting from x', obtain an improved solution x". 
Step 3 (Apply M§). Update v as a function of its current value and x' or x*. Then 
return to Step I. 

The process is terminated after running for a selected number of iterations. To fully characterize 
the method, we must identify Mx* for Step 2 and M§ for Step 3. 

First we consider M§, the update of v. Let). denote a scalar that may take values in the interval 
from 0 to I, and let vi denote the new value of v, to be determined in Step 3. (vi will depend on xj 
from Step I, as M§ is a function of x as well as §.) We examine two simple cases. 

5.2.3. Determining M§ (update of v'). 
Case I . vj=)'Uj+(l-l)xj. 

Here, smaller values of), shift vj closer to the LP solution value xi last obtained. Setting)."O yields 
vj=xj. This causes d;fv} to be "infinity" if xj=O, hence compelling any variable that equals 0 in 
the LP solution to FC(v) also to equal 0 in the solution to FC(v') (when v' becomes the new v on 
the next iteration). A convergence strategy may therefore reasonably begin with), in the vicinity 
of I and gradually reduce it to O. If the changes in ). are monotonic, this is analogous to applying 
a simulated annealing cooling strategy. Alternately, the changes can be patterned to emulate a 
strategic oscillation approach by manipulating ). to move in both directions around "good" valUes 
encountered during the process. 

Case 2. vj=).v,+(I-).)xi. 
In this instance, vJ is reassigned the value vj after each update, and the process is a form of 
exponential smoothing, modified by the manipulation of ).. The comments about). in Case I also 
are relevant to this manipulation. 

An immediate option for these two cases is to replace xi in the determination of vi by the 
improved trial solution value generated from M x*. Before examining the form of M )C", we fin! 
note how the preceding updates of vi can be improved. . . 

A limitation of the rules for updating vj in Cases 1 and 2 is a tendency to reinforce charactenstlcs 
of each succeeding x' too strongly. A probabilistic variant less subject to this limitation is to select 
the new vJ from a distribution with mean equal to the value for vi specified above, gradually 
diminishing the variance. A somewhat stronger approach, however, is to adopt a diversification 
strategy (again motivated by ideas from tabu search). When the trial solutions cease to shoW 
variation, a diversification step may be introduced with the goal of countering the infl'uence of the 
last v' and x'. We accomplish this by adding a Step 3A as an adjunct to Step 3 in the Outline 
Method. The purpose of this step is to encourage the xi whose values are 0 to become positive, 
while decreasing the incentive for positive xi to remain positive. (It is probably not prudent to push 
them too strongly toward 0.) 
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Step 3A (Diversifying M§). When x' adopts a repeating pattern, reassign each vi the 
value: 

0.7Uj if xj=O 

O.3Uj if xj>O. 
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The foregoing evidently represents a very simple form for Step 3A. A more sophisticated version 
would make fuller reference to the value of xj in determining vi. Diversification based on a tabu 
search orientation would further incorporate history to induce v' vectors generated on different 
executions of Step 3A to differ significantly from each other (as by a rule approximating the criterion 
of maximizing the minimum distance from previous vectors, where each vi is given dichotomous 
values such as indicated above.) 

Finally, we consider the mapping M x" of Step 2, whose goal is to obtain a trial solution x" 
better than x'. We achieve this in two phases. Determining Mx" (identifying an improved trial 
solution x*). 

Phase 1. By reference to x' from Step I, identify the LP problem: 

FC(x'): Minimize (c'x: Ax=b, x;;.O) 

where ci=Cj if xj>O, and cj is "large" if xi=O. Let x* be an optimal LP solution to FC(x') and 
identify its "true FC value" cx" + D(x") [always as good or better than d + D(x')]. 

Phase 2. Consider the LP optimal basis representation yielding x*, but restore the current 
objective function in this representation to the form appropriate to FC, replacing c' by the original 
c and adding the nonlinear component D(x): 

NFC(x*): Mimimize (co+rx+D(x): Rx=f, x;;'O) 

Here CO + rx is the result of expressing ex in the form determined by the current basis representation 
of x*, where CO is a constant, and r is the reduced cost vector for this representation. The assignment 
x=x* is the current basic solution implicit in the form of Rx = f (hence f identifies the values of 
all basic components of x", while rx* =0 and CO = ex"). This problem is equivalent to FC and NFC. 

(2A). Consider the primal feasible pivot steps that introduce non basic Xj variables (currently 
0) into the basis, each causing an associated x. to leave the basis. Let Zj' be the LP objective change 
for the pivot (equal to rjxt/R('j), if x is indexed so that x: = f. for all basic variables x.). Then 
the pivot that exchanges Xj and x. changes the true objective value for NFC by adding the amount 
zj.+dj-d •. (Exception for primal degeneracy: if more than one x. is driven to 0, subtract d. for 
each; while if x: = 0, the total change is 0.) 

(28). Select and perform a pivot that yields a best (negative) improving change, as identified 
in (2A). Designate the resulting solution to be the new x*, and then repeat Phase 2 until no 
improving pivots remain. 

The application of M x* in this two phased approach, while based on a sequence of "small" 
(single exchange) pivot steps, can make a significant overall difference in the quality of trial solutions 
generated, by contrast to the initial LP solution step embodied in Mx of Step 1. Still better trial 

, solutions can be obtained by extending M x* to incorporate a tabu search component in (2B), 
permitting the process to continue when no improving pivots are found (e.g., using simple tabu 
lists governing entry into and departure from the basis). For large problems, the number of pivot 
options to evaluate may usefully be reduced by means of candidate lists. 

5.2.4. General mixed 0-1 ILP problems. We formulate the general mixed 0-1 ILP problem as 

Minimize ex+dy 

subject to 

Ax+By=b 

x;;. 0 

yisO-1 

As previously noted, there exists a d" that causes an optimal LP solution with d* replacing d to 
be optimal for the 0-1 ILP problem. The ideas for manipulating the objective function and generating 
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improved solutions in the context of the fixed charge problem can be extended to this present more 
general problem, making additional use of LP postoptimality information in determining parameter 
updates, and using integer feasibility measures in pivoting processes. (A fuller discussion of such 
an approach for the mixed 0-1 ILP problem will be given elsewhere.) 

6. GHOST IMAGE PROCESSES AND MATHEMATICAL DUALITY METHODS 

Ghost image methods give a framework that similarly encompasses a variety of mathematical 
duality methods, particularly those constituting relaxation/restriction approaches in discrete 
optimization. Lagrangean and surrogate constraint relaxation methods are notable examples. In 
this case, Mx represents a mapping that generates a trial solution for a primal problem, while M§ 
represents a mapping that updates the dual problem (as by subgradient optimization). 

Beyond the convenience of providing a common notational and descriptive foundation that tinks 
such procedures to others of a substantially different nature, the ghost image framework prompts 
the formulation of alternative ways to exploit mathematical duality concepts. The following identifies 
a new discrete optimization procedure based on ghost image principles that take advantage 01 
surrogate constraint relaxations. The procedure, which we call a "surrogate contraction" method, 
is specifically designed for solving classes of 0-1 covering. packing and multidimensional knapsach 
problems. 

6.1. A surrogate contraction approach 

We will locus on the following two classes of problems, defined relative to a nonnegative matrix 
A, and nonnegative vectors band c. 

(GC) Minimize cx 

subject to 

Ax;?;b 

xisO-1 

(MK) Maximize cx 

subject to 

Ax,.;b 

xisO-1 

The problem (GC) is a generalized covering problem and the problem (MK) is the multidimensional 
knapsack problem previously discussed. The method we now describe applies to surrogate constraint 
procedure to both problems using mappings M x and M§ that are nested. 

A surrogate constraint (Glover [14]) consists of a nonnegative linear combination of the original 
problem constraints. Let w denote a nonnegative row vector, and define aO=wA and bO=wb. Then 
a surrogate constraint for each of the foregoing problems may be expressed respectively as 

aOx;?;bo and aOx";bo. 

These surrogate constraints give rise to associated surrogate problems (S·GC) and (S·MK) which 
are relaxations of the original problems (GC) and (MK): 

(S-GC) Minimize cx 

subject to 

aOx;?;bo 

xisO-I 

(S-MK) Maximizecx 

subject to 

aOx";bo 

xisO-I 

The method we propose to exploit the surrogate problems (S·GC) and (S·MK) may be viewed 
as a two level ghost image process. A surrogate constraint heuristic generates solutions at the first 
level, while a "higher level" process operates as a targeting mechanism to guide the process within 
it. We describe the lower level process first. 
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6.2. An embedded surrogate constraint method 

The surrogate problems (S-GC) and (S-MK) provide the representations that correspond to the 
ghost image § at the first level. The mapping M§ to create the surrogate problem does so in two 
steps, first by disposing of direct implications and redundancies in the parent problem constraints, 
and then by generating w to define the associated surrogate constraint. The mapping Mx then 
produces a trial solution based on the surrogate problem. 

Trial solutions are generated incrementally, applying Mx to assign a value to one component 
Xj of x at a time. As soon as an assignment occurs, M§ is immediately reapplied to generate the 
next surrogate problem. An overview of this procedure is as follows. 

6.2. I. Outline of the embedded surrogate method (single pass) 
Step O. Introduce the link to incorporate information from the higher level process 

(after the first pass). 
Step t. Apply M§ to generate the current representation: 

tA. Update the problem: drop currently redundant constraints and eliminate 
variables with implicitly assigned values. (If all variables are assigned 
values, terminate.) 

I B. Create the current surrogate constraint and associated surrogate problem. 
Step 3. Apply Mx to augment the current trial solution. By reference to the surrogate 

problem, select an unassigned Xj and set Xj= 1. Return to Step 1. 

The components of the procedure that provide the explicit forms of M§ and Mx will now be 
elaborated. 

6.2.2. Current problem representation. The operations of Step IA are performed on a current 
problem representation that is progressively being reduced, not only in Step I but also in Step 2 
as a result of selecting an unassigned Xj and setting Xj= 1. To represent the current problem form 
at each of these steps, it is convenient to draw on summation notation. Let JA denote the index 
set of variables currently assigned values, and let JV denote the complementary index set of variables 
without assigned values. Let xj denote the value assigned to Xj for jeJA, and let NR denote the 
index set ofnonredundant constraints. Then the relation between the original matrix representation 
and the current (updated) summation representation is as follows. 

Original Matrix 

Representation 

ex 

Ax 

b 

The constants e' and bj are given by 

Current Summation 

Representation 

I (cjXijeJU)+c' 

I (a'jXj:jeJV),ie NR 

bj,ieNR 

c' = I (Cjxj: j e JA) 

bj=b,-I (a'r!: jeJA). 

The Current Summation Representation also corresponds to the original summation representation 
when all variables are unassigned and NR represents the index set of all constraints. Then JV is 
the index set of all components of x, JA is empty, and bj=b" c' =0. 

6.2.3. Applying M§: implementing Step IA. The updating operations of Step IA identify redundant 
constraints and determine implied values for problem variables by well known (and apparent) 
relationships, shown in the following table. 

Redundant constraint 

Implied ror jeJU; 
;:(;=1: 

Problem (OC) 

bj:S:;O 

rial,,: heJU-jl<bj 
(or some j e NC 

Problem (MK) 

(lIJ>b; 
(or some i e NC 
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In addition, xj=O is implied for all jeJU in (GC) if the assignment x,=xj for jeJA is feasible. 
For (GC) this is equivalent to stipulating all constraints are redundant. Although more advanced 
criteria based on dominance considerations and cutting plane analysis are also relevant, we will 
restrict attention to the preceding simple rules. (These can be executed with particular efficiency 
by organizing the non-zero a" coefficients in pre-sorted ascending or descending order for each i.) 

6.2.4. Applying M§: implementing Step lB. To create a surrogate constraint for Step IB, we will 
focus on a class of approaches called normalization methods, where each component w, of the 
vector w is produced as a function of the coefficients of the ith constraint. A rudimentary example 
of such a normalization is 

w,= Ifbi (N-O) 

where i e NR. Redundant constraints, not present, may be imagined to receive a weight w,=O, 
(N-O) has dominated implementations of surrogate constraint normalizations in the literature, 
perhaps because of its appealing simplicity. (Some implementations seek greater simplicity by using 
(N-O) only in reference to the original problem data, i.e., taking b=bi, without Updating.) 

We alternatively suggest normalizations for (GC) and (MK) given by 

w,=(lfu,)' (N-GC) 

w,=(U';(bi)2)p (N-MK) 

The exponent p satisfies p;;' 1 and the quantity u, is defined by 

14,= L (a,; jeJU). 

Although (N-GC) and (N-MK) appear "nonsymmetric," in fact they correspond to first redefining 
u, relative to the modified form of constraint i after applying the normalization (N -0), and then 
respectively dividing and mUltiplying the modified constraint by this u, raised to the power p. The 
exponent p is introduced to permit stronger differentiation of situations where one constraint may 
implicitly dominate or "almost dominate" another (a differentiation accentuated by larger values 
of p~ 

Many other normalizations are possible, but we have chosen these because they are straightforward 
and satisfy a special (highly natural) condition by which the values for w, depend on the ai, coefficients 
for je LU. We require this condition to be satisfied by any normalization used with the procedure 
we propose. 

6.2.5. Applying Mx: implementing Step 2. The choice of an x, to be assigned a value of I in Step 
2 can take advantage of the surrogate constraint representation by dividing Step 2 into two parts, 
as follows. 

2A. Generate a trial solution xj=xJ, jeJU, for the current surrogate problem. 
2B. Select j = jO e JU by the following ratio criterion: 

(S-Gq j* = Argmin(cJlaJ: j e JU and xJ = I) 

(S-MK) j*=Argmax(c;/aJ:j eJU andxJ= I) 

Then set xr= I, transferring r from JU to JA. 

Step 2A is often disregarded in surrogate constraint heuristics by instead applying Step 2B 
without reference to xu. This causes jO to be selected by the same rule as used in a "greedy knapsack 
heuristic." However, the surrogate constraint literature identifies knapsack heuristics better than 
the greedy one, and the inclusion of Step 2A seems preferable. Additional reasons for including 
Step 2A in the present context will soon be evident. 

Most of the ideas presented to this point constitute special instances of those proposed for 
broader surrogate constraint applications (Glover [14, IS]). (An example of a popular instance is 
the heuristic of Chvatal [16] for covering problems, which results by applying (N-O) together with 
the abbreviated Step 2 that disresgards Step 2A.) We now show how the interpretation of these 
ideas within the ghost image framework leads to a more advanced procedure. 

6.2.6. The higher level process. In the ghost image framework, the Embedded Surrogate Method 
also may be viewed simply as a single application of a "higher" or Master M x, since it generates 
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a single completed trial solution. We are prompted accordingly to pair this Mx with a corresponding 
Master M§. 

To characterize the larger method, we also draw on the ghost image ideas in another way. Recall 
that an image § caD refer not only to a problem representation (as embodied in the surrogate 
problems) but also to a solution vector that targets the evolution of the current solution. In the 
present setting, these two notions may be conveniently combined. Denote the completed trial 
solution obtained by an application of the Embedded Surrogate Method as x". Then x· will be 
used in the next application of the embedded procedure to modify the normalization that creates 
the surrogate constraint, implicitly targeting the current solution to reinforce or attenuate freatures 
of x" while simultaneously adjusting the current surrogate problem. (The higher level M§ draws 
on x" to restructure the lower level M§). The organization ofthis process may be described as fOllows. 

6.2.7. Outline of the higher process. 

Step Ht. (Master M§), At each successive iteration (after the first), employ the 
previously generated solution x" to be a target for modifying the surrogate constraint 
problems of the Embedded Method. 
Step H2. (Master Mx). Apply the Embedded Method to create a new trial solution 
and return to Step H I. To complete the specification of this solution process, we 
identify the method by which x" is made to influence the surrogate constraint problems. 

6.2.8. A surrogate contraction approach. We propose to exploit successive x" solutions by 
contracting the domain over which the normalization is determined. Let JU(x") denote the subset 
of JU defined by 

JU(X")=UEJU: x}=I). 

That is, JU(x") is the index set of unassigned XI in the current pass of the Embedded Method that 
received values of I in the solution x" of the preceding pass. We conjecture that restricting 
consideration of unassigned variables to those with index in JU(x") will have a special impact on 
a surrogate constraint generated by reference to the normalizations (N-GC) and (N-M K). As 3 

basis for this conjecture, note that the contraction achieves the same result as if the variables with 
xj = 1 were the only variables in the problem. If x" is optimal, the contraction appears appropriate 
("makes sense"), which if x" is not optimal, the resulting normalization should drive the solution 
elsewhere. This latter effect depends partly on the fact that constraints that are more nearly binding 
when x=x" will tend to receive relatively larger weights under the contracted normalization than 
under the original. (The conjecture evidently is somewhat imprecise, and later we will indicate 
refinements of the normalization that influence its validity.) 

To implement the contraction, we modify the form of the normalization in the Embedded Method 
by defining 

"7 = r (a,j: j E JU(x"). 

Correspondingly, we let w7 denote the form of w, when "'/ replaces ", in (N-GC) and (N·MK), and 
call the resulting new normalizations (N.GC: x") and (N-MK: x"). There are three chief ways to 
exploit the normalizations (N-GC: x") and (N-MK: x"). We identify these as follows. 

6.2.9. Static surrogate contraction. This is the most straightforward embodiment of the surrogate 
contraction approach. The rule is simply to apply the Embedded Method using (N-GC: x·) or 
(N·MK: x") at each execution of Step 1B in place of (N-GC) or (N-MK). When a given pass of the 
Embedded Method terminates, the next pass is initiated using the previous x". (The Higher Level 
Process stops either after a chosen number of steps or when x' begins to follow a cyclic pattern.) 

6.2.10. Ex tended surrogate contraction. The use of x· in the static approach may be seen to 
resemble the incorporation of a single period short term memory in tabu search. (Although no 
strict tabu exists that prevents x" from being immediately regenerated, our conjecture about the 
effect os x" in the new normalizations suggests such a tabu typically will be observed.) Consequently, 
it becomes natural to extend the contraction approach by introducing a tabu·related memory that 
makes it possible to incorporate the influence of multiple previous solutions simultaneously. 

To accomplish this, let X(t) denote the set of solutions x" generated on the t preceding passes 
of the Embedded Method. We permit t to operate as a short term "tabu list size" by assigning t 

!lOR 21 :,.C 
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a small value, from an interval such as from I to 5, and then periodically altering t in Step 1 of 
the Higher Level Process. Associated with each t is an extended normalization identified by setting 

Wi = L [wi': x" e X(t)]. 

(Instead of defining Wi by a simple sum, the wi' values can be weighted, as in reference to the 
associated ex" values.) By the tabu search orientation, in addition to encompassing the short term 
effects by reference to this definition of WI' the set X(t) periodically can be replaced over the longer 
term by small subsets of best solutions. By selecting the subsets to differ from each other (using 
standard TS criteria), the process fulfills both an intensification and a diversification Cunction. 

6.2.11. Adaptive surrogate contraction. The relevance of (N-GC: x") and (N-MK: x") Cor shaping 
the new solution will gradually diminish as the number of variables xl assigned values increases. 
As the associated index set JA grows, there is a growing likelihood that the currently generated 
solution x' will diverge Crom x". Under these conditions, the use of x" to guide the creation oC 
surrogate constraints by the normalizations (N-GC: xj and (N-MK: x") becomes less meaningful. 

To compensate for this effect, we diminish the reliance on x" by replacing LU(xj with a different 
subset of LU to define the normalizations. We propose to do this adaptivcly as part of the process 
of generating a trial solution for the surrogate problem in Step 2A of the Embedded Method. 

A heuristic trial solution xO generated for the surrogate problem can easily be extended to provide 
a feasible solution for the original problem. For (GC), it suffices to augment x· by successively 
choosing additinal variables to set to 1 by the criterion oC Step 2B (disregarding reference to XO in 
that criterion). For (MK), x· instead can be successively reduced, choosing variables such that 
xJ = 1 and setting them to 0, selecting indexes Cor such variables by the rule that assigns 
j·=Argmin(ciaJ: jeJU and xJ= I). (This is the criterion for setting variables to 1 Cor (GC), but 
we use it here to set variables to 0 for (MK).) The augmentation Cor (GC) or reduction for (MK) 
stops when feasibility is achieved. 

In an adaptive approach, such an extended trial solution x· can then be used to replace x' to 
generate a new surrogate constraint. More precisely, we replace LU(x") by LU(x·), thus creating 
the associated normalization (N-GC: x·) or (N-MK: x·). The resulting surrogate constraint will 
induce the process to generate new solutions that depart from XO (appropriately, since XO has now 
been generated and can be included among candidates ror the best solution). In summary, when 
x· begins to diverge from x" (or at any point after a specified number of variables have been assigned 
values), we add the following Step 2A· to complement Step 2A of the Embedded Method. 

Step 2A *. Extend the surrogate constraint trial solution XO to be feasible for the 
original problem. Create the associated normalization (N-GC: XO) or (N-MK: xo) to 
generate the new surrogate constraint problem on the next interation. 

With the inclusion of Step 2A*, Steps 2A and 2A· can be iterated. That is, by returning at once 
to Step 2A, the surrogate constraint based on XO can be used to produce a new XO (and still another 
new surrogate constraint at Step 2A *). (The Extended Surrogate Contraction approach also can 
be applied to influence this iterative implementation.) 

The Adaptive Surrogate Contraction process likewise can be executed on the initial pass oC the 
Embedded Method, before a solution x" has been determined. Without iterative application of 
Steps 2A and 2A·, it represents a single pass (non-iterative) constructive heuristic that may be 
compared to other constructive heuristics ror covering and multidimensional knapsack problems. 
such as proposed by Chvatal [16], Senju and Toyoda [17], and Toyoda [18]. The inclusion oCan 
iterated component represents a miniaturization of the recursive aspect that results when the 
Embedded Method is incorporated into the Higher Level Process. 

For convenient reference, we put the full procedure together in one place as follows. 
6.2.12. Complete surrogate contraction method 

The higher process 
Step HI (master M§) . At each successive iteration (after the first~ designate the last solution:J 

generated in the Embedded Method to be the solution x", which will be incorporated to create 
surrogate contractions mOdiCying the surrogate constraint problems or the Embedded Method. 
(Optionally employ extended surrogage contractions by reference to the set X(t) of t previous x' 
solutions.) 
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Step H2 (master Mx). Apply the following procedure to create a new trial solution. 
Embedded Method 

Step 1. Apply M§ to generate the current representation: 
lA. Update the problem: drop currently redundant constraints and eliminate variables 
with implicitly assigned values. The values of currently assigned variables are denoted 
by XI' j eJA. If all variables are assigned values, go to Step 3. 
1 B. Create the current surrogate constraint and associated surrogate problem (S-CG) 
or (S-MK). Use the normalization (N-GC) or (N-MK) on the first pass, and (N-GC: x") 
or (N-MK: x") on subsequent passes. 
Step 2. Apply Mx to augment the current trial solution: by reference to the surrogate 
problem, select an unassigned Xj' jeJU, and set Xj= 1 as follows. 
2A. Generate a trial solution Xj=xJ, jeJU, for the current surrogate problem. 
2A *. (Optional Adaptive Contraction) Extend the surrogate constraint trial solution 
XO to be feasible for the original problem, and check it as a candidate for the best 
solution found. Create the associated normalization (N-GC: xo) or (N-MK: xo) to 
generate the new surrogate constraint and surrogate problem on the next iteration. 
(If Step 2A' is executed, Steps 2A and 2A * may be iterated, carrying forward the 
best XO to 2B.) 
2B. Select j= j* eJU by the following ratio criterion: 

(S-GC) 

(S-MK) 

j*=Argmin(cj/aJ:jeJU andxJ= I) 

j* = Argmax(c/aJ:j eJU andxJ= 1) 

Then set xl = 1, transferring j* from JV to JA, and return to Step 1. 
Step 3. Check the current completed trial solution x' as a candidate for the best 
solution found. Terminate the Embedded Method to return to Step HI of the Higher 
Process. (The complete method terminates after a chosen number of iterations, or 
when the x' solution begin to cycle in the simpler variants.) 
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From an empirical standpoint, the complete procedure invites comparison with other surrogate 
constraint procedures for the problems (GC) and (MK), as developed by Gavish and Pirkul [19] 
and Freville and Plateau [20]. 

6.2.13. Refinements. To give a more effective procedure, we conjecture that the definition of uj' 
for determining (N-GC: x") and (N-MK: x") should preferably be altered to impose the inHuence 
of x" less abruptly, allowing the "correct" form of the constraints, defined over the full set LU, to 
retain a degree of inHuence. (The incremental change notion in Principle 9 of the ghost image 
framework similarly suggests the relevance of imposing the surrogate contraction more gradually.) 
Thus, we suggest refining the definition of uj' to become 

u7 =A L (a,i jeLU(x"»+(I-).) L (a,i je LV) 

where A is a constant between 0 and 1. The value of ). determines the relative inHuence to be exerted 
by x"; i.e., A= 1 yields the previously indicated form of (N-GC: x") and (N-MK: x"), while smaller 
values of A give more inHuence to the coefficients over the full set LU, yielding (N-GC) and (N-MK) 
when A = O. From a diversification standpoint, larger values of A are likely to generate solutions 
that differ more significantly from each other (but may also induce cycling more quickly unless the 
Extended Surrogate Contraction is employed). 

7. PRELIMINARY COMPUTATIONAL EXPERIENCEt 

To test the relevance of the preceding ideas for developing computational algorithms, a simplified 
version of the ghost image procedure of Section 6.2 was applied to the multidimensional knapsack 
problem. The method incorporated the prescriptions of the first part of Section 6.2, but did not 

tThe computational testing in this section is due to F. Grange and G. Kochenberger, and summarizes initial findings or a 
collaborative study reported at the 1992 Joint National ORSA/TIMS Meetings, Orlando, FL. 
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include the extended or adaptive surrogate contractions, and also did not employ the refinements 
indicated at the end of the section. 

7.1. Problem generation 

Test problems were created for multidimensional knapsack models by sequentially generating 
objective function coefficients, constraint coefficients and knapsack capacities. Objective function 
coefficients were randomly sampled from an independent, uniform distribution over [0, I], producing 
an assignment of the form c)+- U[O, I]. 

To establish a partial correlation between the objective function and the constraint data, the 
constraint coefficients for a column were triangularly distributed over the interval [0, I] with 
mode equal to the sampled objective coefficient for the variable, thus yielding an assignment 
a/)+- Triangular [0, c), I]. 

For each test problem, a "tightness" specification was provided as a fraction of the total knapsack 
requirements of the variables. Given the requirement ail of variable j for knapsack i, the capacity 
bl of knapsack i was generated by the uniform distribution below: 

bl +- U[IOO-Tightness%, Tightness%] · I ail 
J 

For example, each knapsack constraint in a test problem with 60% "tightness" would have 
capacity uniformly distributed from 40 to 60% of the sum of its constraint coefficients. 

7.2. Test code 

The test code for the multiple-knapsack ghost image process (GIPl was written in Borland 
International object-oriented Turbo Pascal™ version 6.0 on a Zenith 256 microcomputer with an 
Intel 80286 CPU. The objective function, constraint and knapsack capacity data were stored in 
virtual array objects furnished in the Turbo Power Object l.On, library. 

Test problem generation followed the procedure given above and used Turbo Pascal's own 
pseudo-random number generator. The test code also wrote generated problems to ASCII files in 
MPS format for subsequent optimization by LINDOTh'. 

To provide a basis for comparison, the preliminary GIP code was tested against Senju and 
Toyoda's well known "drop" heuristic for multidimensional knapsack problems (Senju and Toyoda 
[17]~ Each test problem was solved by both methods, and timing, objective values and solution 
vectors were obtained. 

Twenty-five test problems were generated by the design of Section 7.1 with tightness measures 
ranging from 50 to 90% and with sizes (constraints x variables) consisting of (5 x 20), (10 x 20), 
(10 x SO), (20 x SO), and (20 x 100) (five problems in each size category). 

The GIP test code ranged from five to eleven times slower than the SeDjU aDd Toyoda heuristic, 
but obtained solutions whose quality uniformly dominated the quality of solutions obtained by 
this heuristic. The improvement in objective function values ranged from 7 to II %, which represents 
a substantial gain for this class of problems. Further study is required to test more sophisticated 
GIP implementations on wider ranges of problems and against additional alternative procedures. 
Nevertheless, this preliminary experimentation is an encouraging indication of the potential 
usefulness of the GIP approach. 

8. SUMMARY CONSIDERATIONS 

Ghost image processes that use even relatively simple parametric deformations offer a number 
of interesting options to test (e.g., relative to the manner of updating the parameter(s) we have 
identified by w, and choosing the precise forms of the accompanying Mx or Mx· mappings). As 
a first step, the simpler implementations also yield a reasonable point of departure for gaining 
insights into the relevance of ghost image strategies by comparison to other attempted uses of 
neural networks in optimization. 

The ghost image processes also create an opportunity to define new types of tabu search and 
simulated annealing methods, consisting of composite nested procedures. In particular, a TS or SA 
method can be used to define the transformations M x and M x· that generate trial solutions from 
the current § and x, and in addition can be used at a higher level to define the transformation of 



Optimization by ,hosl image processes 82t 

§ to its ultimate form. In the case of simulated annealing. a scalar parameter J. (as introduced in 
both the parametric deformation and surrogate contraction processes). can be treated as a form 
of temperature. where a stipulated number of subphases of SA are carried out for a given J. to 
generate the current x. This defines a form of temoperature that is a "data gradient" rather than 
an "energy gradient" (where the latter refers to objective function changes). Cooling schedules for 
this type of temperature may exhibit properties different from those applicable to a standard form 
of temperature. 

Within the tabu search framework, the goal is not to move;' monotonically from initial to final 
state. but to use an adaptive progression (as in the use of strategic oscillation in the closed deformation 
processes). It should be noted that the SA treatment of;' as a temperature must be additionally 
altered for the mappings that use more than a single;' parameter (as by adjusting selected columns 
or rows of a matrix. or selected elements of these columns and rows in the closed deformation 
processes). Tabu search, on the other hand. adapts to such situations without altering its basic 
structure. 

8.1. Further cOllnections with the principle of proximate optimality 

Underlying the preceding discussion is the assumption that the Proximate Optimality Principle 
is relevant to the ghost image processes in the parametric deformation approaches-as we have 
previously conjectured its relevance in other approaches. The stipulation that good solutions at 
one level are likely to be found close to good solutions at another leads to the goal of characterizing 
processes that can give worthwhile definitions of "level" and "close to" in an optimization selling. 
If indeed the POP notion has substance, then it offers a potential explanation for the success of 
various "narrowly focused and incremental" processes. in the spirit of Principle 9. Moreover. it 
suggests that greater success may be achieved if such processes adopt the explicit goal of obtaining 
good solutions relative to a given characterization of a "level" -rather than simply trusting to 
small and locally attractive moves to lead to desired consequences (with or without a randomizing 
components as in SA). The POP idea suggests that greater power will be achieved if not just the 
"final" solution but a set of best solutions is carried forward from one level to the next. Thus the 
POP provides a rationale that motivates observations contained in Principles 10-12. The ghost 
image processes provide a useful basis for testing the merit of this principle. and for identifying 
new forms in which it may be embodied. 

8.2: Concluding reflection 

It is probably inevitable that some AI proponents will be uncomfortable with allowing ghost 
image processes to use mappings M x and M§ that represent relatively advanced problem solving 
machinery (such as the simplex method). We prefer to believe that intelligence involves the ability 
to exploit sophisticated tools as well as primitive ones. Once a mapping M x or M§ has been created, 
and enters into a pool we are willing to make available to one group of intelligent processes 
(ourselves). there seems no reason to forbid access to other intelligent processors. or to aspiring 
models of such processors. 

This is not to say we should exclude consideration of more modest tools to discover what can 
be fabricated with them. Improvements in processes and model frameworks at a rudimentary level 
may translate into improvements at higher levels. If one of our goals is to discover good procedures 
for complex problems. however. it also seems relevant to equip our models with options that already 
inherit a bit of ingenuity before putting them to the test. (From some of the literature. one might 
infer that mathematical invention does not have a legitimate place in the exercise of intelligent 
thought.) 

We suggest the ambition of AI should not be limited to taking primitive components and making 
them work half decently. but also should include taking more advanced components and making 
them work even better. A worthwhile framework for modeling intelligent processes should have 
the ability to do both. 
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