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ABSTRACT 
The problem of maximizing diversity deals with selecting a set of elements from some 
larger collection such that the selected elements exhibit the greatest variety of characteristics. 
A new model is proposed in which the concept of diversity is quantifiable and measurable. 
A quadratic zero-one model is formulated for diversity maximization. Based upon the 
formulation, it is shown that the maximum diversity problem is NP-hard. 'Tho equivalent 
linear integer programs are then presented that offer progressively greater computational 
efficiency. Another formulation is also introduced which involves a different diversity 
objective. An example is given to illustrate how additional considerations can be incorpo- 
rated into the maximum diversity model. 

Subject Areas: Discnk hgmmming, Linear Rvgmmming, and Mathematical hgmmming.  

INTRODUCTION 

Consider a set of elements (e.g., a group of residents in a small town) and some 
of their attributes (e.g., gender, age, and religion). For every element in the set, 
each of its attributes can be in one of several possible states (e.g., male or female; 
young, middle-aged, or old; Christian, Catholic, Mormon, or Buddhist). The maximum 
diversity problem is to select a predetermined or bounded number of elements from 
the set encompassing the greatest variety of attributes states. 

The problem of maximizing diversity arises in a wide range of real-world settings. 
For instance, a pollster desires to survey a representative sample of individuals 
possessing a wide spectnun of characteristics. Currently, many colleges and universi- 
ties, in formulating their admissions policies, go beyond test score and class rank 
and also consider other factors in search of a diverse student body [3] [38]. In the 
recent U.S. immigration reform, Congress was concerned about promoting the 
ethnic diversity among the immigrants [33]. In market planning it is frequently 
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desirable to maximize the number and diversity of the strengths in a brand’s profile 
[26]. Other contexts to which the maximum diversity problem may be applicable 
include plant breeding [37], social problems [40], ecological preservation [35] [44], 
product design [2] [46], workforce management [43], curriculum design El] [24], 
and genetic resource management [ 141. Diversity maximization is also an important 
issue in the following areas: accounting and auditing, chemical experimentation, 
experimental design, medical research, geological exploration, portfolio selection, 
and structural engineering [13] [19]. 

Despite its fundamental importance, the maximum diversity problem is largely 
unexplored in the literature; research on maximizing diversity and related subjects 
has been sparse. This paper aims to provide a new model wherein the concept of 
diversity can be quantified and measured. Several integer programming formulations 
will be proposed for determining the most diverse set of elements from some larger 
collection. Additionally, an example will be presented to illustrate the application 
of the maximum diversity model. 

EXISTING WORK 

In recent years, diversity analysis has been utilized in empirical studies in economics 
as well as in other major functional areas of business, that is, accounting, finance, 
marketing, and production [25] [34] [45]. Typically, an entropy-based index is 
computed and used to compare the degrees of diversification of several systems 
with respect to a variable of interest (e.g., income distribution), or to examine the 
change in the degree of diversification of a system over a period of time. In most 
cases, the analysis is descriptive in nature. No comprehensive methodology or unifying 
model has been described that includes diversity maximization as a general objective. 

In a sense, statistical clustering [21] offers a limited approach to maximizing 
diversity since, after identifying a set of clusters, a form of diversity is created by 
selecting elements from different clusters. However, this approach depends heavily 
on both the criteria for establishing the desirability of cluster membership and the 
methodology for taking account of such criteria. It also depends on the rules for 
selecting elements from various clusters and requires differentiating within cluster 
diversity from across cluster diversity. To date, no rigorously defined criterion or 
methodology addressing the issue of maximum diversity has been proposed. 

Perhaps the first paper to characterize diversity maximization as a specific goal 
is that of Glover, Hersh, and McMillan 1161. In this study, a framework for measuring 
the diversity of a group of items is identified and integrated with a heuristic marginal 
value approach to find an approximate solution to the maximum diversity problem. 
Although the approach reportedly outperforms a clustering-based technique in a class 
of plant breeding programs [39], it suffers from some limitations. For instance, the 
solution obtained is not necessarily optimal. Further, no flexibility is built in to 
accommodate the needs of imposing bounds on the number of occurrences of specified 
attribute states. 

More recently, Glover [ 131 suggested a network-related formulation (netform) 
model of the maximum diversity problem addressed in [16]. The netform is a 
generalized network which introduces a visual component that provides fuller 
insight into the structure of the maximum diversity problem. The netform is also 
susceptible to being exploited by tabu search methodology [ 111 [22]. 
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In what follows, we demonstrate how the concept of diversity can be defined 
and measured explicitly in a new model by formulating a zero-one integer program. 

MATHEMATICAL FORMULATION 

We will begin with a rudimentary formulation of the maximum diversity problem 
that will subsequently be refined and elaborated. Consider a set of elements and let: 

n = total number of elements in the set, 
rn = number of elements to be selected, 
r = number of relevant attributes each element possesses, and 
sik = state or value of attribute k of element i. 

Although the definition of sik as a state indicator suggests that it takes on integer 
values, in many practical applications it is useful to allow attribute states to take 
on real values, that is, sike R, and to normalize them. In order for the maximum 
diversity problem to be meaningful, we assume that n2m22. Given a subset of two 
elements i and j with respective vectors of attribute states (sil, si2, ... , sir) and (sil, 
si2, ... , sir), the diversity of the subset may be defined as a normed distance between 
i and j. In location theory and numerical taxonomy, several distance measures have 
been used [6]. Depending on the areas of application, one measure may be pre- 
ferred to others [28] .  For example, by a Euclidean distance measure we have, 

r 

d . .  ‘I = [C(sik - sjk)*IM. (1) 
k= 1 

From this, we may measure the diversity of a selected set of elements as the 
sum of the Euclidean distances between each distinct pair of elements, that is, 

n-1 n n-1 n r 

Let xi=l  if element i is selected and 0 otherwise, i-1, 2, ..., n. The maximum 
diversity problem can then be formulated as the following quadratic zero-one 
integer program. 

Formulation (Fl) 
n-1 n 

Maximize Z = C C diFixj, 
i = l  j = i + l  

subject to 
n 

E x i  = m ,  
i= 1 

x i = O o r l , l I i I n .  
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Some observations about (Fl) are in order. Clearly, the problem is trivial if 
n2m=2. One simply chooses elements p and q from the set with p<q such that 
d$d? i-1, 2, ... , n-1; j - i + l ,  i+2, ... , n. Nevertheless, the general maximum 
diversity problem is intractable [S] in that it is unlikely to find any algorithm which 
guarantees that an optimal solution can be obtained (and verified to be optimal) 
within a reasonable amount of computer time. The following result characterizes 
the nature of the maximum diversity problem (see Appendix for the proof of the 
theorem). 

Theorem. Problem (Fl) is NP-hard, both with and without restricting the 
dii coefficients to non-negative values. 

We note that (Fl) can easily be modified to compel the number of elements 
selected to lie between upper and lower bounds. If all d$O, such a variant is 
irrelevant here since an optimal solution will always result by selecting C!=lxi to 
equal its upper bound. However, we will subsequently note that the potential value 
of introducing additional constraints and, in this case, the use of lower and upper 
bounds on the range of Z:=lxi can be appropriate. 

EQUIVALENT LINEAR INTEGER PROGRAMMING MODELS 

Accepting that the best possible methods may have to settle for finding solutions 
with no assurance of optimality, we note that the nonlinearity of (F1) is inconvenient 
for most existing integer programming approaches. Although several quadratic 
algorithms have been devised [31] [32] [41] [42], they have not undergone the 
intensive refinements of linear zero-one methods, nor have they found widespread 
use in real-world applications. 

Methods for converting zero-one polynomial models into equivalent zero-one 
linear models are well known in the literature. For example, using the approach of 
Glover and Woolsey [20], (Fl) can be transformed into the following linear mixed 
integer program. 

Formulation (F2) 
n-1 n 

Maximize2 = c di/uii, 

subject to 
n 

-xi + y i i  S O ,  1 I i < j . 5  n, 

-xi + yii SO, 1 S i < j 5 n,  
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y i i 2 0 , 1 5 i < j I n ,  (5)  

xi=Oor 1 , l S i S n .  (6) 

Observe that in (F2) yiiIl will result, i=l ,  2, ..., n-1; j=i+l ,  i+2, ... , n, and 
the yii variables will automatically receive zero-one values whenever the xi vari- 
ables are assigned such values. Moreover, we note that constraints (2) through (5) 
also validly model yii as the product of xi and xi in the case where one of xi and xi 
is continuous, relaxing the integer requirement on this variable in (6). - 

We can improve further on (F2) using the results of Glover [9]. Let Li and Ui 
be, respectively, lower and upper bounds on the quantity Zy,,i+ldi.j; for example, 
Li=Zy!i+l min(0, dg) and Ui=Zy-i+l max(0, dg). Then the method of [9] yields the 
following formulation equivalent to (Fl). 

Formulation (F3) 

n-1 

Maximize Z = C wi 
i- 1 

subject to 
n 

E x i  = m, 
i- 1 

-ufii + wi I 0 , l  I i I n - 1, 

n 

- C d i f j  + Li(l - x i )  + wi I 0, 1 I i I n - 1, 
j- i+ 1 

xi = 0 or 1, 1 I i I n. 

Compared to the n(n- 1112 new variables and 3n(n- 1)/2 new inequalities intro- 
duced in (F2), there are only n-1 new variables and 2(n-l) new inequalities in 
(F3). Consequently, the continuous linear programming relaxation of (F3) can be 
solved more efficiently than (F2). It should be pointed out, however, that (F3) does 
not yield an LP formulation as restrictive as (F2). 

For the purpose of computer implementation, the preceding formulation can 
be improved using the observation of [lo] by introducing a nonnegative slack 
variable ui in the first wi inequality to give wi=Ufii-ui. Then the inequality 
- Upi+wi10 can be replaced by ui20 and wi can be replaced throughout the remainder 
of the formulation by Uixi-ui. The effect is to yield (n- 1) inequalities together with 
the nonnegativity condition for up (Corresponding observations apply to introducing 
a slack variable for the other inequality involving wP) The formulation by Kettani 
and Oral [27], which claims to improve the results of [9], in fact requires twice as 
many inequalities as required in our formulation. 
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The following gives an additional diversity model based on a goal of maxi- 
mizing the minimum separation among the elements selected. 

MAXIMIN DIVERSITY MODEL 

Formulation (F4) 
Maximize 2 - w, 

subject to 
n 

E x i  = m, 
i= 1 

(M-dV)yV+w<M, 1 I i < j S n ,  

xi+xj -yV5 1, 1 I i < j I n ,  

-xi + y V 5  0 , l  5 i < j I  n, 

-x. + y.. 50, 1 I i < j I n, J V 

y V 2 0 , 1  I i < j S n ,  

xi=Oor 1, 1 5  i l  n. 

While w is unrestricted in sign in the above formulation, the constraint w20 
may be included to facilitate the solution of (F4) if dV20, i-1, 2, ... , n-1; j=i+l, 
i+2, ... , n, since this is a maximization problem. Furthermore, the objective of (F4) 
can incorporate tie breaking by seeking to maximize MW+E~Z~Z;=~+ ldvyi,, where, 
as before, M is an extremely large positive number. This hybrid model incorporating 
both “maximin” and “maxisum” goals has proven to be useful in linear programming 
approaches to discriminant analysis [12] [17]. We anticipate that such an objective 
will also be important for a variety of other applications. However, it creates a more 
difficult optimization problem to wrestle with. As a result, specialized methods 
such as those discussed in 1151 and [18] are desirable. 

We note that all of the preceding formulations can be accompanied by additional 
constraints, such as resource limitations restricting combinations of elements that 
can be selected together, and input or output requirements compelling certain sub- 
classes of elements to be represented in the set constructed. This type of elaboration 
can be used to assure that the diversified collection will include elements from 
clusters generated in advance. Thus, our formulations permit cluster-based approaches 
to be embedded within a broader framework. 

For the sake of concreteness, an example in Plane and McMillan [36] is 
adapted and illustrated. We use the simplest (most direct) form of this model, (FQ), 
and then show how additional relevant constraints can be introduced to address 
particular concerns. 
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AN ILLUSTRATIVE EXAMPLE 

Suppose the president of a state university has been given a list of ten names by 
the governor of the state. From this list, the president has been asked to select five 
people to serve as the university’s governing regents for the next year. The infor- 
mation about the ten nominees has been summarized in Table 1 with respect to six 
attributes: gender, race, geographical region, education, occupation, and political 
party affiliation. The goal is to have a diverse board of regents with the attributes 
states exhibiting the greatest variety. 

In order to subject the problem to the application of the maximum diversity 
model, we need to compute the between-nominee distances. For each of the six 
attributes, we assign a positive integer to each of the possible states representing 
the amount, degree, or category associated with the state with respect to the attrib- 
ute. This is accomplished by utilizing the coding scheme given in Table 2, and the 
results are displayed in Table 3. The distance between each distinct pair of nomi- 
nees is then computed using the formula in (1). For example, the Euclidean distance 
between Baum and Inman is d29=[(l-1)2+(1-1)2+(1-1)2+(4-3)2+(3-3)2 
+(2-1)2]1h-1.4142. The symmetric distance matrix is shown in Table 4. 

With all the between-nominee distances on hand, the problem of determining 
the most diverse governing board of regents can be formulated as the following 
mixed linear integer program based upon (F2). 

subject to 

x1 + x2 + ... + Xl0 = 5,  
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Table 1: Information about nominees and their relevant attributes. 

Number Name Gender Race Region Education Occupation Political 

1 Adams Female White West Somecollege Middle Democratic 
2 Baum Male White East College Middle Nonpartisan 
3 Cain Male Black West High school Lower middle Republican 
4 Dunn Female Black Central Elementary Lower middle Democratic 

5 Evans Female White Central College upper Nonpartisan 
6 Frey Male Black East College Middle Nonpartisan 
7 Gill Male White West Some college Upper Republican 
8 Huss Male White Central Highschool Lower Democratic 
9 Inman Male White East Somecollege Middle Republican 

10 Jones Female Black East College Upper Democratic 

school 

Table 2: Coding scheme. 

State and Index 

Attribute 1 2 3 4 

Gender Male Female 
Race White Black 
Region East Central West 
Education Elementary school High school Some college College 

Political Republican Nonpartisan Democratic 
Occupation Lower Lower middle Middle Upper 

Table 3: Coded data. 

Number Name Gender Race Region Education Occupation Political 

1 Adams 2 1 3 3 3 3 
2 Baum 1 1 1 4 3 2 
3 Cain 1 2 3 2 2 1 
4 Dunn 2 2 2 1 2 3 
5 Evans 2 1 2 4 4 2 
6 Frey 1 2 1 4 3 2 
7 Gill 1 1 3 3 4 1 
8 Huss 1 1 2 2 1 3 
9 Inman 1 1 1 3 3 1 

10 Jones 2 2 1 4 4 3 
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Table 4: Distance matrix. 

1 2 3 4 5 6 7 8 9 10 
~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

.oooo 
2.6458 
2.8284 
2.6458 
2 . m  
2.8284 
2.4495 
2.6458 
3.oooo 
2.6458 

~~~ 

2.6458 
.m 

3.3166 
3.7417 
1.7321 
1 .m 
2.6458 
3.1623 
1.4 142 
2.oooo 

~~ 

2.8284 
3.3166 
.oooo 

2.6458 
3.4641 
3.1623 
2.4495 
2.6458 
2.6458 
4.1231 

2.6458 
3.7417 
2.6458 

.0000 
3.8730 
3.6056 
3.8730 
2.0000 
3.4641 
3.7417 

2.oooo 
1.7321 
3.4641 
3.8730 
.0000 

2.0000 
2.0000 
3.8730 
2.2361 
1.7321 

2.8284 
1 .oooo 
3.1623 
3.6056 
2.oooo 
.oooo 

2.8284 
3.3166 
1.7321 
1.7321 

2.4495 
2.6458 
2.4495 
3.8730 
2.0000 
2.8284 

.0000 
3.8730 
2.2361 
3.3166 

2.6458 
3.1623 
2.6458 
2.0000 
3.8730 
3.3166 
3.8730 
.woo 

3.1623 
4.oooo 

3.0000 
1.4142 
2.6458 
3.4641 
2.2361 
1.7321 
2.2361 
3.1623 
.0000 

2.8284 

2.6458 
2.0000 
4.1231 
3.7417 
1.7321 
1.7321 
3.3166 
4.0000 
2.8284 
.moo 

Because this example problem, which is called (P), is quite small, we may use 
a standard zero-one optimization procedure to solve it with a good chance of 
obtaining a verified optimal solution. We have done this to obtain an optimal 
solution given by (x;,  x i ,  x i ,  x i ,  x; ,  x i ,  x;, x i ,  x;, X ; ~ ) = ( O ,  0, 1, 1, 0, 0, 1, 1, 0, 1) 
with a total diversity of Z*=32.6685. In other words, to maximize the diversity of 
the governing board, the president should select Cain, Dunn, Gill, HUSS, and Jones 
as the university's regents. If it is desirable to choose at least one middle-class 
person, the constraint xl+x2+x6+x921 may be added to (P). The solution to this 
problem shows that the following five people will serve as the governing regents 
for the next year with a total diversity of Z*=32.4952: Dunn, Gill, HUSS, Inman, 
and Jones. If, alternatively, it is required that no more than two regents be Democrats 
or Republicans, the constraints xl+x4+n8++2 and x3+x7+x912 may be included 
in (P). The solution in this case shows that the board will consist of Baum, Dunn, 
Gill, HUSS, and Jones and the total diversity becomes Z*=32.3541. Other modeling 
considerations can be accommodated in a similar way. 

ATTRIBUTE CHARACTERISTICS 

We have developed several integer programming formulations for the maximum 
diversity problem, and have also provided an example to illustrate the application 
of the model. However, an issue pertaining to attribute characteristics deserves 
further elaboration. 

We have assumed in the above illustration that all of the six attributes are of 
equal importance to the president of the state university in the decision-making 
process. In case the president is more concerned about gender than the other five 
attributes, the state indexes for male and female in the coding scheme can be 
changed from 1 and 2 to 1 and 3 or 1 and 5 ,  respectively. This will magnify the 
distance between any two nominees along the dimension of gender; this will in 
turn make the attribute of gender a more influential factor in determining the most 
diverse governing board of regents for the next year. 
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In the previous example, although it seems trivial to quantify the various states 
of each attribute, there are many attributes in real life that are nonmetric in nature. 
These include, among others, religion, ethnicity, hobby, color, and shape. In order 
to deal with diversity problems involving these kinds of qualitative characteristics, 
a special approach needs to be taken to quantify the states. Taking the previous 
illustration as an example, it was implicitly assumed that the attribute of political 
party affiliation can be measured on a scale of 1 to 3 depending on a person’s 
attitude toward social change and/or reform. Suppose the president agrees that the 
Democrats are traditionally more liberal, the Republicans tend to be more conservative, 
and the nonpartisans are generally considered to be moderate. As a result, in the 
coding scheme, the numbers 1, 2, and 3 are assigned to the states Republican, 
nonpartisan, and Democratic, respectively, according to the degree of conservativeness. 
The same line of argument can be applied to other nonmetric traits. However, it is 
important that the decision maker’s judgment and preference be properly reflected 
in the coding scheme. 

CONCLUSION 

In this exploratory study of the maximum diversity problem, a new approach to 
measuring diversity is proposed. A quadratic zero-one model is formulated to 
maximize diversity, which is proven to be NP-hard. In order to solve the problem 
more effectively, we transform the nonlinear integer program into two equivalent 
formulations of progressively greater efficiency. Moreover, another formulation 
based upon a different diversity objective is presented. We conclude with an example 
illustrating the application of the maximum diversity model. 

We have demonstrated the trade-offs in efficiency versus the ability to encompass 
more complex goals in maximizing diversity. Since many fewer variables are used 
in (F3) than in (E), this is a significant improvement with respect to computational 
efficiency. However, (F2) underlies the more complex objective of (F4). Moreover, 
each of the maximum diversity formulations is very flexible in allowing a decision 
maker to incorporate a wide range of additional considerations, as illustrated by 
the supplementary constraints introduced in the example discussed previously. 
Also, the coding scheme can be easily modified to reflect the decision maker’s 
preference as well as value judgment. 

The treatment of the maximum diversity problem described in this paper 
suggests an approach to another class of problems in which the objective is to 
minimize diversity. For example, we may seek minimum diversity when compliance 
to specifications is of paramount importance, such as in precision industries. In 
experimental design, the degree of homogeneity within a population or between 
experimental and control populations may be enhanced through the minimization 
of diversity. Another potential application of the concept of minimum diversity is 
in group technology [7], where parts are classified into families with similar char- 
acteristics and processed in various cells to increase production efficiency. We note 
that most of the results for diversity maximization presented in this work may be 
modified and applied to diversity minimization. This problem is discussed further 
in [30]. 
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Figure 1: A graphical representation of a maximum diversity problem. 
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In survey design, it is often desirable to draw a representative sample to ensure 
more reliable results [5]. The concept of representivity is particularly important in 
statistical stratified sampling [4] [29]. Although diversity plausibly has the conno- 
tation of representivity, diversification does not necessarily imply representation, 
and vice versa. Generally, maximum diversity and maximum representivity may 
not be achieved simultaneously, as evidenced by the decrease in total diversity in 
the illustrative example when the additional consideration of representivity by 
middle-class people was to be accommodated. We conjecture that the issue of 
representivity can be better addressed by (F4) due to the criterion of “maximin” 
distance used in the model. To see this, we treat an element possessing r attributes 
as a point in the r-dimensional space and consider the maximum diversity problem 
in Figure 1, where n-9, m-5, r-2, sll=l, s12=3, ~ ~ ~ 2 2 ,  sZ2=3, etc. Based on (Fl) 
(and hence (F2) and (F3)), the maximally diverse subset of points can be any of 
the following: (1, 2, 3, 7, 9}, 11, 3, 4, 7, 9},  (1 ,  3, 6, 7, 9}, and ( 1 ,  3, 7, 8, 91. 
However, based on (F4), the subset in which the minimum between-element diversity 
is maximized is { 1, 3, 5 , 7 , 9 ] .  In this instance, the maximin subset appears to be 
more representative than the maxisum subset. 

This type of representivity can be achieved at a more refined level by establishing 
a hierarchy of objectives, as proposed in [18], to progressively maximize the 
second smallest distance, then the third smallest distance, and so on, in a strictly 
preemptive order. Such a hierarchical approach can be created out of combinations 
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of the maxisum and maximin objectives, and the consequences of such variants for 
creating different forms of diversity (that embody different aspects of representivity) 
provide an inviting realm for future study. [Received: September 28, 1992. Accepted 
August 18, 1993.1 
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APPENDIX 

Proof of Theorem 

We will prove the theorem by showing that the clique problem [23], which is 
NP-complete 181, is reducible to (Fl). It is sufficient to consider the case where 
the dii coefficients are restricted to be non-negative since this is the most limiting 
situation. We begin with stating the clique problem. 

Clique Problem: Given a graph G=(V, E)  and a positive integer KIIV, 
does G contain a clique of size K or more, that is, a subset V' of V with 
1V12K such that every two vertices in V' are joined by an edge in E? 
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Given any instance of the clique problem, we construct the following instance 
of (Fl) in which n2m23 and d>O: 

dii E [O, d], i = 1,2, ..., n - l ; j =  i+l, i+2, ..., n 

[1,2, ..., n] -V, 
{ ( i , ~ ]  E V x V"1-i < j and dii = d} = E, 

m = K.  

Obviously, K-mln-IU or K l I q .  We will show that the clique problem has a 
solution if and only if there exists a feasible solution to (Fl) with a total diversity 
of dm(m- 1)/2. 

Suppose there exists a feasible solution ( x l ,  x2, ... , xn) to (Fl) for which the 
total diversity is d,(rn-1)/2. Let V'=[ibi=l, 1Si ln )  and E'=[( i ,~)EV'xV' l i< j ) .  Since 
Cy=,xi=m and x i € { O ,  1), i=l, 2, ..., n, we have lV'l=m and IE'l=m(m-1)/2. Thus 
V' is a subset of V and IV'l-m-K or  (V'J2K. Moreover, dm(m-1)/2= Cyli 
C;++ I d i ~ ~ j 3 C ' ( i j ) , s d i ~ ~ x j = Z ~ i  J3E J3,Ed=qE'l=dm(m- 1)/2 or dm(m- 1)/2= 
C(iJIEE'diildm(m- 1)/2. This implies that Z(ij)EEdij=dm(m- 1)/2 or, equivalently, 
dU=d for all ( i j ] E E ' .  Hence, E' is a subset of E. As G'-(V', I?), the induced 
subgraph of Von V', is a complete graph, V' is a clique contained in V. Therefore, 
the clique problem has a solution. 

Conversely, suppose the clique problem has a solution, that is, there exists a 
subset V' of V with IV'(2K such that every two vertices in V' are joined by an edge 
in E. Let V' be a subset of V' with IV"l=K and E"=[ ( i , ~ ] € E l i ,  jc: V ' ] .  We see that 
~E"~=~V"~(~V"l-  1)/2=K(K-1)/2 and G''=(V", I?') is a complete subgraph of G. Con- 
sider (xl, x2, ... , x,J with xi=l if i c  V" and 0 otherwise. Note that Z$Ixi=Zi, v,xi= 
ZiEvl=lV"l=K=m or E:=lxi=m, which implies that (x l ,  x2, ..., xn) is a feasible 
solution to  ( F l ) .  Furthermore, C y = - ~ C ~ = i + l d ~ ~ ~ ~ i C ( i , 3 E E " d i ~ i x i = Z ( i j ) , s , d i i =  
C( i j )E E..d=4E"l=dK(K- 1)/2=drn(m- 1)/2 or " y ~ ~ ~ ~ = i + l d ~ l X i = d m ( m -  1)/2. There- 
fore, there exists a feasible solution to (Fl) for which the total diversity is exactly 
dm(m- 1)/2. 

Given any instance of the clique problem, the instance of (Fl) can be con- 
structed in polynomial time. We then conclude that the problem of (Fl) is NP-hard. 
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