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ABSTRACT

This paper provides new network relaxations and penalty calculations for 0-1 integer
programs with multiple choice constraints. The multiple choice problem, which may be
viewed as a 0-. problem with generalized upper bounding (GuB) restrictions, arises in a
variety of applications involving scheduling, location and assignment.

The value of network relaxations lies in their speed of solution (roughly two orders of
magnitude faster than Lp relaxations) and in their numerical accuracy. Nevertheless, Lp
relaxations are more restrictive than network relaxations; that is, they provide tighter lower
bounds. Hence the practical superiority of network relaxaticns appears to be chiefly for 1p
problems with no more than six or seven non-zeroes per column of the coefficient matrix.
Consequently, it is important to identify new network relaxations with benefits for special
structures and to derive stronge: lower bounds for network relaxations generally, thus
extending the range of problems network-based algorithms can so.ve advantageously.

The new relaxations of this paper are designed to have special benefits for multiple choice
problems with non-negative or non-positive coefficient matrices. The new penalties provide
stronger bounds for both the previous (more. géneral) and the new (more specialized)
relaxations. In addition, we derive penalties for the multiple choice sets that exhibit a special
additive property not available to Lp relaxations.

REsuME

Cet article préiente des nouvelles relaxations de réseaux et des calculs de pénalité pour
programmes en nombres entiers 0-1 avec contraintes de choix multiple. Le probléeme a choix
multiple, qui peut étre vu comme un probléme 0-1 avec restrictions de borne supérieure
généralisée (GuB), apparait dans une variété d’applications comportant séquencement,
situation et assignation.

La valeur des relaxations de réseaux repose dans leur vitesse de solution (en gros, plus
rapides que les relaxations Lp par deux ordres de grandeur) et dans leur précision
numérique. Niéammoins, les relaxations Lp sont plus restrictives que les relaxations de
réseaux; c'est-i-dire qu'elles fournissent des bornes inférieures plus serrées. Alors la
supériorité pratique des relaxations de réseaux semble étre limitée aux problémes n’ayant
pas plus que six ou sept entrées non nulles par colonne de la matrice des coefficients. En
conséquence, il est important d'identifier de nouvelles relaxations de réseaux tirant bénéfice
des structures s péciales et de dériver des bornes inférieures plus fortes pour les relaxations
de réseaux en général, étendant donc le domaine des problémes que les algorithmes basés
sur des réseauy:. peuvent résoudre avantageusement.

Les nouvelle: relaxations de cet article sont faites pour avoir des bénéfices spéciaux pour
les problémes 2 choix multiple avec matrices de coefficients non négatives ou non positives.
Les nouvelles ‘»énalités fournissent des bornes plus fortes & la fois pour les relaxations
précédentes (plus générales) et nouvelles (plus spécialisées). En plus, nous dérivons des
pénalités pour les ensembles a choix multiple qui exhibent une propriété additive spéciale
qui n’est pas disponible pour les relaxations Lp,
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1 PrOBLEM DEFINITION

This paper provides new network relaxations and branch and bound
penalties for 0-1 integer programs with multiple choice constraints. The
multiple choice problem arises in a variety of applications in scheduling,
location and assignmer.t.“%%!% Our penalty calculation results can also be
applied to other types of 1p problems, such as partitioning problems,'®
where it is possible to extract subsets of constraints of the multiple choice
form.

We write the 0-1 integer program with multiple choice constraints as
follows:

Minimize x, = 2, % (1)
J§N
subject to:

di< 2 apy<b i€M={l,..,m @)

JEN
2 ox=LkEK={l,..,17} (3)

JE€S
x€{0, 1} forj € N={1,..,n} (4)

where the sets Ji, k£ € K, form a partition of M. Any 0-1 integer program
can be expressed in this form by adding slack variables to the inequalities
x; < 1 tc create constraints of the form (3). However, we have segregated
(3) to give special emphasis to the multiple choice structure it represents.

Problem (1), (2), (4) (and hence (1), (2), (3), (4)) has been modelled as a
0-1 generalized network problem and as a 0-U pure network problem (for
varying values of U) in'' V. We will first summarize these formulations and
then provide additional “pure network” formulations for non-negative
coefficient matrices that take into account constraints (3). These new
formulations have advantages over the pure network formulation oft!?
when (3) is a non-trivial component of the 0-1 problem. Finally, we show
that all of these formulations can be exploited in a unified penalty-
calculation framework.

2 FORMULATIONS FOR GENERAL O-1 FROBLEMS

The material of this section is primarily from!' V. 1tisincluded to providea
foundat.on for the new formulations of the next section, and to permit a
statement of the main results of the final section that embraces both the
more general and more special formulations.

Generalized network formulation

The 0-1 generalized network formulation of (1), (2), (4) may be described
as follows. Note that (1), (2), (4) is already a 0-1 generalized network
problem if there are two (or at most two) non-zero a; coefficients for each
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variable x;. In this case each constraint of (2) corresponds to a node (with
upper and lower bounds on its demand of 4; and d;), and each variable
x; corresponds to an arc (whose endpoints are the two nodes for which
a; # 0).

The more general case is handled as follows. Each constraint of (2)
again corresponds to a node. Variable x; is viewed as an arc with multiple
ends, one for each constraint in which the variable has a non-zero
coetficient. To accommodate the fact that an ordinary arc has only two
ends, the variable x; is “subdivided” into a collection of ordinary arcs
which link 10 each other through a common node j, (which has no supply
or demand of its own).

In particular, let M; = {i € M: a; ¥ 0}. Then for each ¢ € M; (when
IM;l > 2) an arc (3, jo) is created that connects the common node jj to
“node i (o7 the i constraint). The multiplier on the “node ¢ end is ay.
The multiplier on the *j,” end is —1 for all but one of the arcs, which will
be called arc (i*, jo), where #* is one of the indices ¢ € M. Arc (i*, jo), which
may be selected arbitrarily, is given a positive multiplier on its j, end equal
to IM;l — 1. Finally, (#*, jo) is designated to be a “0-1” arc with a cost of ¢;,
while the other arcs are given upper bounds of 1 and costs of 0. Each of
these other arcs will autornatically receive a value (flow) equal to 0 or 1
when the (¢, jo) arc receives that value. (The effect can more generally be
achieved by assigning (i*, jo) any non-zero multiplier, and allowing the
other arcs to have any multipliers of the opposite sign that sum to the
negative of the multiplier for (%, jo).)

The pure network formulation

The 0-U pure network formulation of (1), (2), (4) can be described using
the same terminology as the 0-1 generalized network formulation. The
designation 0-U comes from restricting the flow on certain arcs to either
their lower bound (0) or their upper bound (U). Here the problem (1), (2),
(4) is first modified by the addition of a constraint

do< 2 ag%; < bo, (5)
JEN

where the coefficients ag, j € N, are selected so that

a0j=— Z

Ajj.
icM
The constar.ts dy and bg are selected so that (5) is redur.dant, for example,
bo can equa. the sum of the positive ag; and do can equal the sum of the
negative ag; Thereupon, incorporating (5) into (2), the amended problem
(1), (2), (4) has the property that
2. a4y == 2 ay

i€My* ieM;
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where M;" = {i € M;: a; > 0} and M;™ = {i € M;: a; < 0}. For this

problem the network is constructed as follows:

1. Create a node for each i € M as in the generalized network
formulation.

2. Create two nodes, j; and ji, for each variable x;, j € N, and an associated
ordinary arc (j,, j2), with capacity

uj = Z d,'j.

7

(Nodes j; and j» have no net supply or demand of their own.) Arc
(J1> J2) is designated a 0-U arc, which means that it is restricted to
receive either a 0 flow or a flow equal to its capacity . It is given
a cos: equal to ¢; divided by its capacity.

3. For each ¢ € M;™, create an ordinary arc (z, j;) with 0 cost and with
capacity equal to —ay;.

4. For each i € M;" create an ordinary arc (jy, 1) with 0 cost and with
capacity equal to a;.

5. If there is only a single arc (4, j;) entering node jj, this arc can be
collapsed by designating node j, to be the same as node i. Similarly, if
there 1s a single arc (jo, 7) leaving node js, this arc can be collapsed by
designating node j, to be the same as node i.

The equivalence of this 0-U pure network problem to the original 0-1
problem is established due to the fact that assigning an arc (jy, jo) 2 flow
equal to 0 or to its upper bound u,; accomplishes the same effect as setting
x; equal to 0 or to 1, respectively. The relaxed problem, in which 0-U
restriction 1s removed, is a weaker relaxation than that of the generalized
network formulation but has the advantage that it can be solved still
more efliciently (e.g., using the specialized codes of®814,

Lagrangean manipulations
In the generalized network formulation the costs cn the arcs incident to a
given node jy can be manipulated provided that these costs always sum to
¢;- This may be interpreted as a form of “Lagrangean” manipulation,®”
where tke side constraints stipulating that the flow on each arc incident to
Jjois to b the same are taken into the objective function. It can be shown
that there exists some such assignment of costs for which the optimum
objective function value for the generalized network problem is identical
to that for the usual linear programming relaxation of (1), (2), (4).
Likewise, in the pure retwork formulation, the costs on arcs associated
with a given variable x; can be manipulated, so long as the weighted sum of
these costs, each divided by the associated arc capacity, is equal to ¢;.
Allowing a heavier reliance on Lagrangean manipulations, a somewhat
simpler type of constrained network formulation is immediately available
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that applies to non 0-1 as well as to 0-1 problems. This formulation arises
by splitting the non-zeroes of any column into disjoint pairs (with perhaps
one element left over). Each pair corresponds to an arc of a generalized
network (singletons corresponding to slack arcs). The original problem is
recovered by requiring the flows on each of these arcs to be the same.

Since the equal-flow side constraints destroy the network structure, the
imposition of the integer restrictions does not provide a network
equivalent. The network portion of the problem constitutes a valid
relaxation, however, and a Lagrangean strategy can be used to capture
some of the influence of information contained in the side constraints.

This simple splitting of the columns into paired elemnents (handling the
side constrzints by Lagrangean relaxation) introduces no new continuous
variables, but [K/2] new integer variables, where K is the number of
non-zero ccefficients in the original non-network portion of the problem.
(By contras, the preceding 0-1 generalized network formulation requires
roughly K new continuous variables (arcs), but no new integer variables.)

Nembhauser and Weber"® apply an instance of such a column splitting
scheme to the classical partitioning problem — with a novel twist. In this
approach, ihe integer restrictions are included within the generalized
network relaxation itself. Redundant upper bound constraints are
introduced where necessary, so that each column splits perfectly into a
collection of paired non-zeroes (both equal 1), thereby producing a
weighted matching problem. The side constraints must of course still be
handled by Lagrangean manipulation.

In settings more general than the matching problem, the need to
introduce new integer variables and the dependence upon the side
constraints to achieve equivalence when the integer conditions are
enforced make the column splitting formulation appear less attractive
than the previous formulations. In addition, there seems to be no
advantageous way to specialize the column splitting formulation to the
multiple-choice problem. Nevertheless, the penalty calculation results of
section 4 are applicable to this formulation as well as to the others.

3 NeEw FORMULATIONS FOR THE MULTIPLE CHOICE PROBLEMS

We now provide two alternative pure network formulations for the Q-1
multiple choice problem. Each is designed to take explicit account of the
multiple choice constraints for the case in which M; = M;” forall j € J;, or
M; = M;” for all j € J, for all £ € K. We suppose tha: the pure network
formulatiori of 'V, just described, is firstapplied to the partial problem (1),
(2), (4) in which the constraints of (3) are not incorporated into those of (2).
It suffices to assume M; = M," for all j € J,, since an ir.equality of (2) with
non-positive coefficients can be multiplied through by —1 to produce an
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inequa ity with non-negative coefficients. For this case the node j; is made
a comnion node for all j € J,. We now show how to add constraints (3) to
this formulation.

Alterna'ive I: Let wy be the maximum capacity of the arcs (j}, 7o) for j € T
Create a dummy node i, with unrestricted supply and demand (corre-
sponding to the creation of a new redundant inequality for (2)). For each
€ Jisuch that arc (j1, j2) has capacity less than wy, 2dd a zero cost arc (j2» Jo)
with cadacity equal to w, minus the capacity of arc (jy, jo). Finally, set the
capacity of (jy, jo) equal to wy for all j € J, and give the common node j; a
supply of exactly w;.

Alternairve 2: 1dentify w, and create a node i, as in alternative 1. Also, let /,
be the minimum capacity of the arcs (jy, jo) for j € Ji. Give the common
node j; a supply of exactly wy. If [ # w, create a zero-cost arc (J1, 20) with
capacity equal to w; — 4. Finally, impose the stipulation that exactly one of
the arcs (3, j2) for j € J, must have a flow equal to its capacity, and all other
(71, J2) ercs must have a 0 flow.

It should be noted that the stipulation of alternative 2 is automatically
accommodated in alternative 1 by the 0-U requirement on the arcs (7, jo)
for j € Ji. For this reason it is plausible to suppose that the relaxation
provided by alternative 1 (dropping the 0-U requirement} would be
stronger than the relaxation provided by alternat:ve 2 (dropping the 0-U
requirement and the added stipulation). However, neither relaxation
dominates the other in all cases.

Because they are explicitly designed to accommodate the constraints of
(3), these relaxations are often strongly preferatile to those of''" in the
multiplz choice context. Still, it should be borne in mind that the
relaxation provided by the 0-1 generalized network formulation can be
organized so that it is more restrictive than either of these alternatives.
This occurs by designating the node j* to be the node i € M; that
corresponds to the multiple choice constraint containing the variable x;.
For this reason, when the conditon M; = M;* does not hold for all j € Ji,
the 0-1 generalized network formulation is likely to strongly dominate the
0-U pure network formulation for multiple choice problems. (It is
possible to construct variants of alternatives 1 and 2 to handle the case for
M;* # M; by imposing a further stipulation that flows on pairs of arcs
must be equal, but the relaxations provided ty these variants seem
particularly weak).

4 NETWORK PENALTY CALCULATIONS

Each of the preceding formulations can be exploited in a branch and
bound setting by specifying up and down lower bounds (“penalties”),
specialized to the multiple choice problem, for compelling a 0-1 variable
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to take the value of 1 or 0, respectively. The multiple choice sets in each

case receive imputed penalties that are additive — that is, penalties whose

sum gives a valid bound on the difference between the optimum x, value

for the network relaxation and the optimum x, va.ue for the original

multiple choice problem.

Definition: Relative to a given variable x; of the multiple choice problem,

and a given problem formulation (to be specified), E; is the set whose

elements are as follows.

— For the generalized network formulation: the arcs incident to node j.

— For the pure network formulation: the arcs incident to nodes j; and jo
when M;" and M;™ are non-empty; the arcs incident to j, when M;* is
empty; aad the arcs incident to jo when M;™ is empty.

— For the column-splitting formulation: the arcs derived from the paired

non-zeroes of column j.
~ For the multiple choice network formultions of alternatives 1 and 2: the

arcs incic.ent to node jo.

Remark: Every arc of E; receives a 0 flow when x; = 0 and receives a flow
equal to its upper bound when x; = 1. (The result is immediate by analysis
of the constructions of the preceding sections.)

The identification of E; provides a basis for specifying penalties
applicable to all of the preceding formulations by means of a single,
unifying ccllection of formulas. For this purpose we require some
additional notation. Denoting an arbitrary arc of the network by the
symbol ¢, and let U, = the upper bound (capacity) of arc e. Then, relative
to the optimal linear programming solution to a relaxed network problem
(dropping 0-1 and 0-U requirements, plus any related side conditions),
let:

UB = {e: ¢ is non-basic at its upper bound U.}
LB = {e: ¢ is non-basic at its lower bound 0}

R, = the absolute value of the reduced cost (updated linear program-
mir g objective function coefficient) of arc e.
Theorem 1

Fora given set Ji, and a variable x;, h€ ]y, valid penalties Px(1) and Pn(0)
for the assignments x; = 1 and x, = 0, are given by:

pP(l)= 2 U.R,,

et Sy
where

S, == {e:e € LB N Eyor e € us N E, for some j € J, — {h}}

and

P,(0)= Min (Pi(1)).
jeJk—{h}
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Proof: The assignment x,, = 1 yields upper bound flows U, on all arcs ¢ ¢
Ej,. The p reduced cost is 0 for all arcs with flows strictly between their
bounds, and flows already at upper bounds do not incur additional cost.
Conseqently, the cost increase due to changed flows over arcs ¢ in E,
equals (or exceeds) U,R, summed over arcs ¢ € g N E;. In addition,
setting zz, = 1 compels x; = 0 for all j € J, — {h}. This in turn yields O flows
forallaccs ein the sets £}, for j € J; — {h}. Combining these cost increases
yields th.e formula for P,(1). On the other hand, setting x;, = 0 implies x; =
1 for some j € J, — {h}. Consequently, the cost increase due to this
assignment is bounded below by the value of P,(0). This completes the
proof.

Theorem 1 identifies the form of the penalty calculation available to the
network. relaxation by restricting attention to a 0 or 1 assignment for a
single variable. Next, we show how to obtain imputed penalties for the
multiple choice sets that exhibit the additive property referred to earlier.

Theorem 2
Let the oenalty P, for the multiple choice set J, be give by
Py = Min (P(1)
J€k
and let xo* and x,' respectively denote the optimum x, values for the
multiple choice problem and its network relaxation.
Then
Z PkS-XO*-'x()’.
KeK
Proof: Some x; for j € J, must be assigned the value 1. By the validity
of the P;(1) penalties (established by theorem 1), it “ollows that P < xo* —
xo' for €ach £ € K. Furthermore, the P;(1) penalties do not require an
implicit casis exchange for their calculation, but are all derived relative to
the current updated network (LP) representation of xo. The additive
property of the P, penalties follows at once.
The greceding theorem has two noteworthy aspects. First, from the
identification of P;(0) in theorem 1, it follows that

P,(0) = P forallj € J, — {k*},

where & is an index in J, for which Pi(1) = P,. From the standpoint of
branch and bound choice rules, the assignment x,« = | represents the best
(least penalty) branch available from the set J,. A standard branching
strategy therefore would elect to set x,« = 1, by the imposition of th.e
correspcnding flows in the relaxed network problem, where the index g is
identified by

P, = Max (Py).
143. ¢
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Second, the Lp analog of the value P, provides the limiting bound on
the objective function increment in customary LP relaxations of (1)—(4).
More precisely, letting p* denote the multiple choice penalty value
associated with set J; in the LP relaxations, the standard Lp bound
condition has the form

Max (Pk*) = xo* - xo’,
kéK

as contrastad to the additive bound condition expressed in theorem 2.

o)
2

3
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