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A NOTE ON LINEAR PROGRAMMING AND
INTEGER FEASIBILITY

Fred Glover
The University of Texas, Austin, Texas

(Received February 26, 1968)

This paper proves a theorem that provides new strategies for solving integer
programming problems, based on finding certain types of basic solutions to
linear programs. The theorem is motivated by and extends ideas of CaBor
AND HURTER. An integer programming method based on the theorem is
outlined.

THE zero-one mixed integer programming problem may be written

Maximize cz+dy, subject to Ax+Dy=b, "
1
z=e, x, y=0 and z integer,
where e denotes a vector of ones, A is mXn, D is mXr, z is n X1, y is
mX1, and ¢, d, b, and e are dimensioned compatibly. Adding ve ctors u
and v of slack variables, the constraints of (1) become

Azxz+Dy+u=b, x+v=e, x, y, u, v=0 and z integer. (2)

The results to follow are unchanged if this constraint is more generally
Azxz+Dy+Uu=»b, provided the augmented matrix (D, U) contains an
mXm nonsingular submatrix.

A strategy that is often used for solving (1) is to adjoin additional con-
straints and variables to partition the feasible region into subsets (e.g.,
restricting cx+dy to specified intervals), and to seek a feasible solution to
the additionally constrained problem. We assume that such constraints
and variables are already included in (1) and (2), and address ourselves to
obtaining feasible solutions to (2).

In a variety of practical situations the constraints of (2) contain im-
bedded network problems (such as transportation and assignment prob-
lems) having the property that every extreme-point solution is integer.
Moreover, one can readily derive constraints from (2) that impose bounds
on nested partial sums of variables (see reference 3), and these constraints
also have the property that every extreme point is integer. Finally, a set
of such constraints can be adjoined to further partition the feasible region
of (2).
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Thus, representing these special constraints by Px=f and Qz+w=g,
consider the augmented system

Axz+Dy+u=b, z+v=e, Pr=f, Qzt+w=yg, ()
z, Y, u, v, w=0 and x integer,

where P, @, f, and ¢ are integer matrices, P is pXn, @ is ¢Xn, and (g)

. . P
has the unimodular property; i.e., every square submatrix of ( Q) has

determinant 0, 1, or —1. (P or @ may also be null.) We also stipulate
p=n and every p Xp submatrix of P is nonsingular.

THEOREM. If there is a feasible solution to (3) with x=2x" and ' integer,
then there is a basic feasible solution to (3) with x=2" and m of the com-
ponents of (y, u) basic. Moreover, every basic feasible solution to (3) with m
of the components of (y, u) basic assigns integer values to the components of

z, v, and w.

The chief significance of this theorem is that it permits one to elect a
strategy for solving (2) that focuses on finding a solution to (3) with m of
the components of (y, u) basic.

The first application of such a strategy occurs in the pure zero-one linear
programming method of CaBor axp Hurter,™ whose ideas motivate this
note. Specifically, the Cabot and Hurter method results (for D and d
null) from adjoining the constraint ex=N to (2) and replacing b by b+ ee,
where 0<e<1 and A and b are assumed integer. Beginning with N at an
upper bound for ex, Cabot and Hurter prescribe finding a basic feasible
solution to this particular version of (3) with all components of u basic.
(No procedure is given for accomplishing this, however.) If an acceptable
solution is found, the method stops [or is applied to a new system (2)].
Otherwise, N is decremented and the process repeats.

The theorem implies that ex=N can be dispensed with in the Cabot and
Hurter approach, making it unnecessary to reapply the process for different
values of N. Moreover, a variety of other side conditions and supple-
mentary constraints can be accommodated by the theorem, some of the
more important of which have already been indicated.

A method for exploiting the theorem for the pure integer programming
problem is given below. We first establish the validity of the theorem with

the following three lemmas.
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Lemma 1. Every square submatriz of

I I 0
H=|P 0 0
Q 0 I

has determinant 0, 1, or —1 (where the I matrices of the top row are nXn).
. . P .
Proof. First, it is assumed that < Q) has the unimodular property.
Using induction on ¢, and expanding the determinants of the appropriate

PO .

Q I> has the unimodular
property. The rest of the proof follows the same argument, using induc-
tion on 7.

Lemma 2. Consider the system

Mt+Rez=c, Hz=8, andt, 2=0, (4)

submatrices of H by minors, it is easy to see that (

where M is mXI, R is mXs, and H is hXs, the vectors o and B dimensioned
compatibly. If B us integer and every square submatriz of H has determinant
0, 1 or —1, then z is integer n every basic solution of (4) with m of the com-
ponents of t basic.

Proof. The basic solution must have the form t=M71"'(c —R,H1'8) and
Z=Hi'8, where M, is an mXm submatrix of M, R; is an mXh submatrix
of R, and H, is an hAXh submatrix of H. The latter assures z is integer
(see HorFrMAN AND KRUSKALT),

Lemmas 1 and 2 collectively imply the latter part of the theorem. The
first part of the theorem is implied by the following stronger statement.
LemMA 3. If there is a feasible solution to (3) with x=2" and &’ integer, then
there 1s a basic feasible solution to (3) in which

(1) every component of w s basic,
(ii) =; is basic if x; =1 and v; is basic if ; =0,

(iii) any p of the remaining components of (x, v) are basic,

(iv) m of the components of (y, u) are basic.

Proof. Conditions (i), (ii), (iil) give ¢-+n-p variables. We show that
the submatrix composed of the associated columns of H of Lemma 1 (call
it H,) is nonsingular. First, all columns of @ in H may be reduced to 0 by
subtracting from them appropriate multiples of the columns of 7,x, (asso-
ciated with w). Next, there must be exactly p indices j such that x; and
v; are chosen to be basic. Subtracting each of these v; columns from its
assoclated z; column and rearranging rows and columns transform H, into

<(I))1 ?)r where P; is a p Xp submatrix of P, R consists of 0 columns
and columns of P, and I is the (n4¢)X(n+4q) identity matrix. The



Linear Programming and Integer Feasibility 1215

nonsingularity of P, assures H, is nonsingular, and hence a basis for the
subsystem of (3) with Az+Dy—+u=0> removed. Since H; contains a
column for each positive component of 2', ¢, and w' (where t' =e—2a’,
w =g—Qz’), the basic solution to the subsystem must yieldz=2". Finally,
(iv) is established in conjunction with (i), (ii), and (iii) from the as-
sumed existence of a feasible, and hence a basic feasible, solution to
Dy+u=b—Az.

AN INTEGER PROGRAMMING METHOD

WE GIVE an integer programming method for the pure zero-one problem
(with D and d null) that pursues the objective of making the m components
of u basic in (3). Assume A and b are integer, and replace A by 24 and
b by 2b+e. (This replacement clearly does not change the set of integers
x satisfying Az <b, and implies u=e and integer for all nonnegative u,
x satisfying u+Ax=> and z integer.)

1. Solve the linear program: Maximize zo=au, subject to (3) (disre-
garding the integer restriction on z), where a>0 and integer (e.g., let
a=e). Represent the current tableau for the simplex method in the
‘orm

Maximize To= aoo+ Zj:{ ao]'( —tj),

ze=a+ 2071 ai(—t;), =1, -+, p,

where the z; are the current basic variables and the ¢; the current nonbasic
variables. (The a;; coefficients of the current tableau are not to be con-
fused with the components of the A matrix.) Upon obtaining an optimal
tableau (a:x=0 and ao;=0 for 7, j=1), go to Step 2.

2. If aq is integer for all 7, the basic solution z;=a., and ¢;=0 (all 7, 5)
gives a feasible integer solution for (2) by identifying the variables z; from
among those currently designated z; and ¢;. Otherwise, if some a is non-
integer, adjoin a cut™” and reoptimize with the dual simplex method.

3. If some ay is still noninteger, let ¢, denote the current nonbasic vari-
able that was the slack variable for the cut adjoined (most recently) in
step 2. Replace ag; with ap,— K <0, where K is an integer (e.g., the least
integer <aos). Then reoptimize with the primal simplex method and re-
turn to 2.

The purpose of Step 3 is to exploit the fact that the cut slack qualifies
to be one of the u; of the theorem. Thus, it assigns the slack a weight in
the objective function designed to drive it basie, thereby possibly modify-
ing, but not discarding, the weights assigned to the other u, .

Finite convergence is guaranteed if one uses the choice rules of Gomory
in Step 2 and bypasses Step 3 after a fixed number of iterations. The

(4]
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main point, of course, is that the method gives a way to pursue integer
feasibility by exploiting the theorem.
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