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Abstract — Scatter search (SS) is a population-based method that has recently been 
shown to yield promising outcomes for solving combinatorial and nonlinear 
optimization problems. Based on formulations originally proposed in the 1960s for 
combining decision rules and problem constraints, SS uses strategies for combining 
solution vectors that have proved effective in a variety of problem settings. Path 
relinking (PR) has been suggested as an approach to integrate intensification and 
diversification strategies in a search scheme. The approach may be viewed as an 
extreme (highly focused) instance of a strategy that seeks to incorporate attributes of 
high quality solutions, by creating inducements to favor these attributes in the moves 
selected. 
 
The goal of this paper is to examine SS and PR strategies that provide useful 
alternatives to more established search methods. We describe the features of SS and 
PR that set them apart from other evolutionary approaches, and that offer 
opportunities for creating increasingly more versatile and effective methods in the 
future. Specific applications are summarized to provide a clearer understanding of 
settings where the methods are being used. 
 
 
1. Introduction 
 
Scatter search, from the standpoint of metaheuristic classification, may be viewed as 
an evolutionary (population-based) algorithm that constructs solutions by combining 
others. It derives its foundations from strategies originally proposed for combining 
decision rules and constraints in the context of integer programming. The goal of this 
methodology is to enable the implementation of solution procedures that can derive 
new solutions from combined elements in order to yield better solutions than those 
procedures that base their combinations only on a set of original elements. E.g., see 
the overview by Glover (1998). 
 
The antecedent strategies for combining decision rules were first introduced in the 
area of scheduling, as a means to obtain improved local decisions. Numerically 
weighted combinations of existing rules, suitably restructured so that their 
evaluations embodied a common metric, generated new rules (Glover, 1963). The 
approach was motivated by the conjecture that information about the relative 
desirability of alternative choices is captured in different forms by different rules, and 
that this information can be exploited more effectively when integrated than when 
treated in isolation (i.e., by choosing selection rules one at a time). Empirical outcomes 
disclosed that the decision rules created from such combination strategies produced 
better outcomes than standard applications of local decision rules. The strategy of 
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creating combined rules also proved superior to a “probabilistic learning approach” 
that used stochastic selection of rules at different junctures, but without the 
integration effect provided by the combined rules (Crowston, et al., 1963). 
 
The associated procedures for combining constraints likewise employed a mechanism 
of generating weighted combinations. In this case, nonnegative weights were 
introduced to create new constraint inequalities, called surrogate constraints, in the 
context of integer and nonlinear programming (Glover, 1965, 1968). The approach 
isolated subsets of (original) constraints that were gauged to be most critical, relative 
to trial solutions that were obtained based on the surrogate constraints. This critical 
subset was used to produce new weights that reflected the degree to which the 
component constraints were satisfied or violated. In addition, the resulting surrogate 
constraints served as source constraints for deriving new inequalities (cutting planes) 
which in turn provide material for creating further surrogate constraints. 
 
Path Relinking has been suggested as an approach to integrate intensification and 
diversification strategies (Glover and Laguna, 1997) in the context of tabu search. This 
approach generates new solutions by exploring trajectories that connect high-quality 
solutions, by starting from one of these solutions and generating a path in the 
neighborhood space that leads toward the other solutions. 
 
Recent applications of both methods (and of selected component strategies within 
them) that have proved highly successful are:  
 

 The Linear Ordering Problem (Campos, Laguna and Martí) 
 The Bipartite Drawing Problem (Laguna and Martí) 
 The Graph Coloring Problem (Hamiez and Hao) 
 Capacitated Multicommodity Network Design (Ghamlouche, Crainic and 

Gendreau) 
 The Maximum Clique Problem (Cavique, Rego and Themido)  
 Assigning Proctor to Exams (Ramalhinho, Laguna and Martí) 
 Periodic Vehicle Loading (Delgado, Laguna and Pacheco) 
 Job Shop Scheduling (Nowicki and Smutnicki) 
 The Arc Routing Problem (Greistorfer) 
 Resource Constrained Project Scheduling (Valls, Quintanilla and Ballestín) 
 Multiple Criteria Scatter Search (Beausoleil) 
 Meta-Heuristic Use of Scatter Search via OptQuest (Hill) 
 Pivot Based Search Integrated with Branch and Bound for Binary MIPs 

(Løkketangen and Woodruff) 
 Scatter Search to Generate Diverse MIP Solutions (Glover, Løkketangen and 

Woodruff) 
 Path Relinking to Improve Iterated Start Procedures (Ribeiro and Resende) 

 
A number of these applications are described in Section 4 where a collection of 
vignettes is presented. They provide a diverse range of settings where SS and PR have 
made useful contributions, and suggest the form of additional applications where 
similar successes may be anticipated. 
 
2. Scatter Search 
 
Scatter search is designed to operate on a set of points, called reference points, which 
constitute good solutions obtained from previous solution efforts. Notably, the basis 
for defining “good” includes special criteria such as diversity that purposefully go 
beyond the objective function value. The approach systematically generates 
combinations of the reference points to create new points, each of which is mapped 
into an associated feasible point. The combinations are generalized forms of linear 
combinations, accompanied by processes to adaptively enforce feasibility conditions, 
including those of discreteness (Glover, 1977). 
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The SS process is organized to (1) capture information not contained separately in the 
original points, (2) take advantage of auxiliary heuristic solution methods (to evaluate 
the combinations produced and to actively generate new points), and (3) make 
dedicated use of strategy instead of randomization to carry out component steps. SS 
basically consist of five methods: 
 

1. A Diversification Generation Method to generate a collection of diverse trial 
solutions, using one or more arbitrary trial solutions (or seed solutions) as 
an input. 

 
2. An Improvement Method to transform a trial solution into one or more 

enhanced trial solutions. (Neither the input nor the output solutions are 
required to be feasible, though the output solutions are typically feasible. If 
the input trial solution is not improved as a result of the application of this 
method, the “enhanced” solution is considered to be the same as the input 
solution.) 

 
3. A Reference Set Update Method to build and maintain a reference set 

consisting of the b “best” solutions found (where the value of b is typically 
small, e.g., no more than 20), organized to provide efficient accessing by 
other parts of the solution procedure. Several alternative criteria may be 
used to add solutions to the reference set and delete solutions from the 
reference set. 

 
4. A Subset Generation Method to operate on the reference set, to produce a 

subset of its solutions as a basis for creating combined solutions. The most 
common subset generation method is to generate all pairs of reference 
solutions (i.e., all subsets of size 2). 

 
5. A Solution Combination Method to transform a given subset of solutions 

produced by the Subset Generation Method into one or more combined 
solutions. The combination method is analogous to the crossover operator 
in genetic algorithms although it should be capable of combining more 
than two solutions. (The combination processes proposed in the original SS 
paper included forms of “crossover” not envisioned in the GA literature 
until a decade later, and combination processes proposed since then, as in 
Glover (1994,1995) utilize principles and constructions that remain beyond 
the scope embraced by GA approaches.) 

 
The basic procedure in Figure 1 starts with the creation of an initial reference set of 
solutions (RefSet). The Diversification Generation Method is used to build a large set of 
diverse solutions P. The size of P (PSize) is typically 10 times the size of RefSet. 
Initially, the reference set RefSet consists of b distinct and maximally diverse solutions 
from P. The solutions in RefSet are ordered according to quality, where the best 
solution is the first one in the list. The search is then initiated by assigning the value 
of TRUE to the Boolean variable NewSolutions. In step 3, NewSubsets is constructed 
and NewSolutions is switched to FALSE. For illustrative purposes we focus attention 
on subsets of size 2. Hence the cardinality of NewSubsets corresponding to the initial 
reference set is given by (b2-b)/2, which accounts for all pairs of solutions in RefSet. 
(Special conditions are imposed on subsets of larger sizes to ensure a suitable 
composition is achieved while generating no more than a restricted number of these 
subsets.) The pairs in NewSubsets are selected one at a time in lexicographical order 
and the Solution Combination Method is applied to generate one or more solutions in 
step 5. If a newly created solution improves upon the worst solution currently in 
RefSet, the new solution replaces the worst and RefSet is reordered in step 6. The 
NewSolutions flag is switched to TRUE and the subset s that was just combined is 
deleted from NewSubsets in steps 7 and 8, respectively. 
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1. Start with P = Ø. Use the Diversification Generation Method to construct a solution x. If  then Px ∉
add x to P (i.e., ), otherwise, discard x. Repeat this step until |P| = PSize. Build xPP ∪=
RefSet = { x1, …, xb } with b diverse solutions in P. 

2. Evaluate the solutions in RefSet and order them according to their objective function value such that 
x1 is the best solution and xb the worst. Make NewSolutions = TRUE. 

while ( NewSolutions ) do 
 3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at least one 

new solution. Make NewSolutions = FALSE. 
 while ( NewSubsets ≠ ∅  ) do 
 4. Select the next subset s in NewSubSets. 
 5. Apply the Solution Combination Method to s to obtain one or more new solutions x. 
 if ( x is not in RefSet and ( ) ( )bxfxf <  ) then 
 6. Make xb = x and reorder RefSet. 
 7. Make NewSolutions = TRUE. 
 end if 
 8. Delete s from NewSubsets. 
 end while 
end while 

Figure 1. Outline of basic scatter search for a minimization objective. 
 
This basic design can be expanded and improved in different ways. The SS 
methodology is very flexible, since each of its elements can be implemented in a 
variety of ways and degrees of sophistication. Different improvements and designs 
from this basic SS algorithm are given in Glover (1998), Glover, Laguna and Martí 
(1999 and 2000), Laguna (2000) and Laguna and Armentano (2001). 
 
 
3. Path Relinking 
 
One of the main goals in any search method is to create a balance between search 
intensification and search diversification. Path relinking has been suggested as an 
approach to integrate intensification and diversification strategies (Glover and Laguna, 
1997). Features that have been added to Scatter Search, by extension of its basic 
philosophy, are also captured in the Path Relinking framework. This approach 
generates new solutions by exploring trajectories that connect high-quality solutions 
  by starting from one of these solutions, called an initiating solution, and generating 
a path in the neighborhood space that leads toward the other solutions, called guiding 
solutions. This is accomplished by selecting moves that introduce attributes contained 
in the guiding solutions. 
 
The approach may be viewed as an extreme (highly focused) instance of a strategy that 
seeks to incorporate attributes of high quality solutions, by creating inducements to 
favor these attributes in the moves selected. However, instead of using an inducement 
that merely encourages the inclusion of such attributes, the path relinking approach 
subordinates other considerations to the goal of choosing moves that introduce the 
attributes of the guiding solutions, in order to create a “good attribute composition” in 
the current solution. The composition at each step is determined by choosing the best 
move, using customary choice criteria, from a restricted set – the set of those moves 
currently available that incorporate a maximum number (or a maximum weighted 
value) of the attributes of the guiding solutions. 
 
The approach is called path relinking either by virtue of generating a new path 
between solutions previously linked by a series of moves executed during a search, or 
by generating a path between solutions previously linked to other solutions but not to 
each other. Figure 2 shows two hypothetical paths (i.e., a sequence of moves) that link 
solution A to solution B, to illustrate relinking of the first type. The solid line indicates 
an original path produced by the “normal” operation of a procedure that produced a 
series of moves leading from A to B, while the dashed line depicts the relinking path. 
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The paths are different because the move selection during the normal operation does 
not “know” where solution B lies until it is finally reached, but simply follows a 
trajectory whose intermediate steps are determined by some form of evaluation 
function. For example, a commonly used approach is to select a move that minimizes 
(or maximizes) the objective function value in the local sense. During path relinking, 
however, the main goal is to incorporate attributes of the guiding solution (or 
solutions) while at the same time recording the objective function values.  
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Figure 2. Path relinking illustration. 

 
The effort to represent the process in a simple diagram such as the one preceding 
creates some misleading impressions, however. First, the original (solid line) path, 
whch is shown to be “greedy” relative to the objective function, is likely to be 
significantly more circuitous along dimensions we are not able to show, and by the 
same token to involve significantly more steps (intervening solutions) – an aspect not 
portrayed in Figure 2. Second, because the relinked path is not governed so strongly 
by local attraction, but instead is influenced by the criterion of incorporating 
attributes of the guiding solution, it opens the possibility of reaching improved 
solutions that would not be found by a “locally myopic” search. Figure 2 shows one 
such solution (the darkened node) reached by the dotted path. Beyond this, however, 
the relinked path may encounter solutions that may not be better than the initiating 
or guiding solution, but that provide fertile “points of access” for reaching other, 
somewhat better, solutions. For this reason it is valuable to examine neighboring 
solutions along a relinked path, and keep track of those of high quality which may 
provide a starting point for continued search.  
 
The incorporation of attributes from elite parents in partially or fully constructed 
solutions was foreshadowed by another aspect of scatter search, embodied in an 
accompanying proposal to assign preferred values to subsets of consistent and strongly 
determined variables. The theme is to isolate assignments that frequently or 
influentially occur in high quality solutions, and then to introduce compatible subsets 
of these assignments into other solutions that are generated or amended by heuristic 
procedures. (Such a process implicitly relies on a form of frequency-based memory to 
identify and exploit variables that qualify as consistent.) 
 
Multiparent path generation possibilities emerge in path relinking by considering the 
combined attributes provided by a set of guiding solutions, where these attributes are 
weighted to determine which moves are given higher priority. The generation of such 
paths in neighborhood space characteristically “relinks” previous points in ways not 
achieved in the previous search history, hence giving the approach its name. This 
multiparent Path Relinking approach generates new elements by a process that 
emulates the strategies of the original Scatter Search approach at a higher level of 
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generalization. The reference to neighborhood spaces makes it possible to preserve 
desirable solution properties (such as complex feasibility conditions in scheduling and 
routing), without requiring artificial mechanisms to recover these properties in 
situations where they may otherwise become lost. 
 
The PR approach benefits from a tunneling strategy that often encourages a different 
neighborhood structure to be used than in the standard search phase. For example, 
moves for Path Relinking may be periodically allowed that normally would be excluded 
due to creating infeasibility. Such a practice is protected against the possibility of 
becoming “lost” in an infeasible region, since feasibility evidently must be recovered by 
the time the guiding solution is reached. 
 
A natural variation of path relinking occurs by using constructive neighborhoods for 
creating offspring from a collection of parent solutions. In this case the guiding 
solutions consist of subsets of elite solutions, as before, but the initiating solution 
begins as a partial (incomplete) solution or even as a null solution, where some of the 
components of the solutions, such as subsets of free variables, are not yet assigned. 
The use of a constructive neighborhood permits such an initiating solution to “move 
toward” the guiding solutions, by a neighborhood path that progressively introduces 
elements contained in the guiding solutions, or that are evaluated as attractive based 
on the composition of the guiding solutions.  
 
4. SS / PR Vignettes 
 
This section provides a collection of “vignettes” that briefly summarize applications of 
SS and PR in a variety of settings. These vignettes are edited versions of reports by 
researchers and practitioners who are responsible for the applications. A debt of 
gratitude is owed to the individuals whose contributions have made this summary 
possible. 
 
4.1 The Linear Ordering Problem 
 
Given a matrix of weights E = { eij }m×m, the Linear Ordering Problem (LOP) consists of 
finding a permutation p of the columns (and rows) in order to maximize the sum of the 
weights in the upper triangle. In mathematical terms, we seek to maximize: 
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where p(i) is the index of the column (and row) in position i in the permutation. In the 
LOP, the permutation p provides the ordering of both the columns and the rows. The 
equivalent problem in graphs consists of finding, in a complete weighted graph, an 
acyclic tournament with a maximal sum of arc weights. In economics, the LOP is 
equivalent to the so-called triangulation problem for input-output tables (Reinelt, 1985). 
 
Campos et al. (1999) propose a solution method for the linear ordering problem based 
on the scatter search template in Glover (1998). The procedure combines the following 
elements: 
 
a) Diversification Generator 
b) Improvement Method 
c) Reference Set Update Method 
d) Subset Generation Method 
e) Solution Combination Method 
 
where a), b) and e) are context dependent and c) and d) are “generic” elements. 
 

 6



 
 

The authors developed and tested 10 Diversification Generation Methods. These 
methods included a completely random method, several versions of GRASP, a 
deterministic method that disregards the objective function, and a method using 
frequency-based memory as proposed in tabu search. The diversification approach 
using TS frequency-based memory was found to clearly outperform the competing 
methods. 
 
The Improvement Method is based on the neighborhood search developed for the 
Tabu Search algorithm for the LOP in Laguna, Martí and Campos (1999). 
 
The Solution Combination Method uses a min-max construction based on votes. The 
method scans each reference permutation to be combined, and uses the rule that each 
reference permutation votes for its first element that is still not included in the 
combined permutation (referred to as the “incipient element”).  
 
In a set of Computational Testing Experiments, the authors compare the 
performance of two variants of the scatter search implementation with three methods: 
Chanas and Kobylanski (CK, 1996), Tabu Search (TS, Laguna, Martí and Campos, 
1998) and a greedy procedure especially designed for the LOP. The scatter search 
procedures were tested on four sets of instances. 
 
The tabu search method and the two scatter search instances dominate the other 
approaches in terms of solution quality. The TS method is the fastest of the high 
quality methods, running 3 to 5 times faster than the first scatter search variant, but 
the scatter search variants give the best overall solution quality, indicating their value 
where quality is the dominant consideration. 
 
4.2 The Bipartite Drawing Problem 
 
The problem of minimizing straight-line crossings in layered bipartite graphs consists 
of aligning the two shores V1 and V2 of a bipartite graph G = (V1, V2, E) on two parallel 
straight lines (layers) such that the number of crossing between the edges in E is 
minimized when the edges are drawn as straight lines connecting the end-nodes. The 
problem is also known as the bipartite drawing problem (BDP). 
 
The main application of this problem is found in automated drawing systems, where 
drawing speed is a critical factor. Simple heuristics are very fast but result in inferior 
solutions, while high-quality solutions have been found with meta-heuristics that 
demand an impractical amount of computer time. Laguna and Martí (1999) propose a 
method that combines GRASP and Path Relinking to develop a procedure that can 
compete in speed with the simple heuristics and in quality with the complex meta-
heuristics. 
 
The hybrid procedure proposed for the BDP utilizes GRASP as the multistart method 
to be augmented, and stores a small set of high quality (elite) solutions to be used for 
guiding purposes. 
 
In a set of Computational Testing Experiments, the authors compare the 
performance of the GRASP and Path Relinking implementations with two methods: the 
iterated barycenter (BC, Eades and Kelly, 1986) and a version of the Tabu Search 
algorithm (TS, Martí, 1996). The former is the best of the simple heuristics for the BDP 
(Martí and Laguna, 1997), while the later has been proven to consistently provide the 
best solutions in terms of quality. For these experiments 3,200 instances have been 
generated with the random_bigraph code of the Stanford GraphBase by Knuth (1993). 
 
The first experiment shows that the best solution quality is obtained by the tabu 
search method, which is able to match the 900 known optimal solutions, while GRASP 
matches 750 and PR matches 866. However, in contrast to some other applications 
(such as the Linear Ordering problem previously described), TS employs more 
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computational time (15 seconds) than the other methods reported. GRASP performs 
quite well, considering its average percent deviation from optima of 0.44% achieved on 
an average of 0.06 seconds. Notably, path relinking achieves a significantly improved 
average percent deviation of 0.09% with a modest increase in computer time (0.28 
seconds). Finally, iterated BC from 10 random starts turns in a substantially less 
attractive performance, with an average percent deviation of 3.43% achieved in 0.08 
seconds. 
 
The second experiment is devoted to sparse graphs. It is shown that the path relinking 
algorithm achieves the best average deviation of less than 1%. The computational 
effort associated with the PR variant is very reasonable (with a worst case average of 
1.61 seconds).  
 
A third experiment was performed to assess the efficiency of the proposed procedures 
in denser graphs (relative to the second experiment). The results show that the tabu 
search procedure outperforms both the BC and the GRASP variants. The average 
deviation from the best known values is 1.41% for the TS procedure, while PR obtains 
an average deviation of 8.96%, using similar computational time (i.e., 26 seconds for 
TS versus 22 seconds for PR). 
 
The enhancements produced by path relinking suggests the potential merit of joining 
the PR guidance strategies with other multistart methods. 
 
4.3 The Graph Coloring Problem 
 
Graph k-coloring can be stated as follows: given an undirected graph G with a set V of 
vertices and a set E of edges connecting vertices, k-coloring G means finding a 
partition of V into k classes V1, ..., Vk, called color classes, such that no couple of 
vertices (u, v) ∈  E belongs to the same color class. Formally, {V1, ..., Vk} is a valid k-
coloring of the graph G=(V, E) if ∀  i ∈  [1..k] and ∀  (u, v) ∈  Vi, (u, v) ∉  E. The graph 
coloring problem (GCP) is the optimization problem associated with k-coloring. It aims 
at searching for the minimal k such that a proper k-coloring exists. This minimum is 
the chromatic number χ(G) of graph G. 
 
Graph coloring has many real applications, e.g., timetable construction, frequency 
assignment, register allocation or printed circuit testing. There are many resolution 
methods for this problem: greedy constructive approaches (DSATUR, RLF), hybrid 
strategies (HCA for instance), local search metaheuristics (simulated annealing, tabu), 
neural network attempts, ... Despite the fact that the literature on graph coloring is 
always growing, there exists, to our knowledge, no approach relying on scatter search 
for the graph coloring problem. We summarize here such an experimental 
investigation following the scatter search template of Glover (1998). 
 
Our Diversification Generation Method uses independent sets to build initial 
configurations. Color classes are built one by one by selecting vertices in a random 
order to insure diversity. 
 
The Improvement Method is based on the tabu search algorithm of Dorne and Hao 
(1998). This algorithm iteratively changes the current color of a conflicting vertex to 
another one, until achieving a proper coloring. A tabu move leading to a configuration 
better than the best configuration found so far, within the same execution of the 
improvement method or within the overall scatter search procedure, is always 
accepted (aspiration criterion). 
 
Although the Reference Set Update Method is usually a “generic” element of scatter 
search, we provide here the way configurations are compared in terms of diversity. 
This point is crucial since, in the context of graph coloring, the Hamming distance is 
not well suited to compare two configurations c1 and c2. The distance between c1 and 
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c2 is the minimum number of moves necessary to transform c1 into c2. The fitness of 
any configuration is naturally its number of conflicting edges. 
 
The Solution Combination Method uses a generalization of the powerful greedy 
partition crossover (GPX), proposed by Galinier and Hao (1999) within an evolutionary 
algorithm. GPX has been especially developed for the graph coloring problem with 
results reaching, and sometimes improving, those of the best known algorithms for the 
GCP. Given a subset p generated by the subset generation method, the generalized 
combination operator builds the k color classes of the new configuration one by one. 
First, choose a configuration c ∈  p. Remove from c a minimal set of conflicting vertices 
such as c becomes a partial proper k-coloring. Next, fill in a free color class of the new 
configuration with all conflict-free vertices of the color class having maximum 
cardinality in c. Repeat these steps until the k color classes of the new configuration 
contain at least one vertex. Finally, to complete the new configuration if necessary, 
assign to each free vertex a color such that it minimizes the conflicts over the graph. 
 
Computational Testing Experiments has been carried out on some of the well-
known DIMACS benchmark graphs (Johnson and Trick, 1996). The scatter search 
procedure (SSGC) was compared with the generic tabu search (GTS) algorithm of 
Dorne and Hao (1998) together with the best-known methods available for the graph 
coloring problem: two local search algorithms based on particular neighborhoods and 
a distributed population-based algorithm (Morgenstern, 1996), and an hybrid method 
including a descent algorithm and a tabu procedure with various heuristics mixed 
with a greedy construction stage and the search for a maximum clique (Funabiki and 
Higashino, 2000). 
 
The scatter search approach SSGC managed to reach the results of the best-known 
algorithms in quality (minimal number of colors used), except on the r1000.5 graph 
for which a 237-coloring has been published recently (Funabiki and Higashino, 2000). 
(The sophisticated algorithm used to reach this coloring includes, among other 
components, the search for a maximum clique.) Nevertheless, SSGC obtained here a 
better coloring (240) than GTS (242) and outperformed the previous best result (241) 
for this graph (Morgenstern, 1996). Our scatter search approach also improves in 
quality on the results obtained with tabu search (GTS) on a few graphs. This means 
that tabu search, the improvement method we used within scatter search, surely 
benefits from the other general components of scatter search. 
 
4.4 Capacitated Multicommodity Network Design 
 
The fixed-charge capacitated multicommodity network design formulation (CMND) 
represents a generic model for a wide range of applications in planning the 
construction, development, improvement, and operations of transportation, logistics, 
telecommunication, and production systems, as well as in many other major areas. 
The problem is usually modeled as a combinatorial optimization problem and is NP-
hard in the strong sense. Thus, not only the generation of optimal solutions to large 
problem instances constitutes a significant challenge, but even identifying efficiently 
good feasible solutions has proved a formidable task not entirely mastered. 
 
The goal of a CMND formulation is to find the optimal configuration - the links to 
include in the final design - of a network of limited capacity to satisfy the demand of 
transportation of different commodities sharing the network. The objective is to 
minimize the total system cost, computed as the sum of the link fixed and routing 
costs. 
 
The paper Ghamlouche, Crainic and Gendreau (2001) proposed a new class of cycle-
based neighborhood structures for the CMND and evaluated the approach within a 
very simple tabu-based local search procedure that currently appears as the best 
approximate solution method for the CMND in terms of robust performance, solution 
quality, and computing efficiency. Still more recently, Ghamlouche, Crainic and 
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Gendreau (2002) explore the adaptation of path relinking to the CMND. This work 
evaluates the benefits of combining the cycle-based neighborhood structures and the 
path relinking framework into a better meta-heuristic for this difficult problem. 
 
The method proceeds with a sequence of cycle-based tabu search phases that 
investigate each visited solution and add elite ones to the reference set R. When a 
predefined number of consecutive moves without improvement is observed, the 
method switches to a path relinking phase. 
 
What solutions are included in the reference set, how good and how diversified they 
are, has a major impact on the quality of the new solutions generated by the path 
relinking method. We study six strategies corresponding to different ways to build R. 
 
In strategy S1, R is built using each solution that, at some stage of the tabu search 
phase, improves the best overall solution and become the best one. 
 
− Strategy S2 retains the “best” local minima found during the tabu search phase. 

This strategy is motivated by the idea that local minimum solutions share 
characteristics with optimum solutions.  

 
− Strategy S3 selects R-improving local minima, that is local minimum solutions that 

offer a better evaluation of the objective function than those already in R. 
 
− Strategy S4 allows solutions to be retained in R not only according to an attractive 

solution value but also according to a diversity, or dissimilarity criterion. 
 
− Strategy S5 aims to ensure both the quality and the diversity of solutions in R. 

Starting with a large set of “good” solutions, R is partially filled with the best 
solutions found, to satisfy the purpose of quality. It is then extended with 
solutions that change significantly the structure of the solutions already in R to 
ensure diversity. 

 
− Strategy S6 proceeds similarly to S5 with the difference that R is extended with 

solutions close to those already in R. 
 
During the path relinking phase, moves from the initial to a neighboring one direct the 
search towards the guiding solution. Due to the nature of the neighborhoods used, 
there is no guarantee that the guiding solution will be reached. One cannot, therefore, 
stop the process only if the current and the guiding solutions are the same. We then 
define ∆IG as the number of arcs with different status between the initial and the 
guiding solutions and we allow the search to explore a number of solutions not larger 
than ∆IG. 
 
Initial and guiding solutions are chosen from the reference set. This choice is also 
critical to the quality of the new solutions and, thus, the performance of the 
procedure. We investigate the effect of the following criteria: 
 
− C1: Guiding and initial solutions are defined as the best and worst solutions, 

respectively. 
 
− C2: Guiding solution is defined as the best solution in the reference set, while the 

initial solution is the second best one. 
 
− C3: Guiding solution is defined as the best solution in the reference set, while the 

initial solution is defined as the solution with maximum Hamming distance from 
the guiding solution. 

 
− C4: Guiding and initial solutions are chosen randomly from the reference set. 
 

 10 



 
 

− C5: Guiding and initial solutions are chosen as the most distant solutions in the 
reference set. 

 
− C6: Guiding and initial solutions are defined respectively as the worst and the best 

solutions in the reference set. 
 
The path relinking phase stops when the reference set becomes empty (cardinality ≤ 
1). Then, either stopping conditions are verified, or the procedure is repeated to build 
a new reference set. 
 
Extensive computational experiments, conducted on one of the 400 MHz processors of 
a Sun Enterprise 10000, indicate that the path relinking procedure offers excellent 
results. It systematically outperforms the cycle-based tabu search method in both 
solution quality and computational effort. On average, for 159 problems path relinking 
obtains a gap of 2.91% from the best solutions found by branch-and-bound versus a 
gap of 3.69% for the cycle-based tabu search. (However, the branch and bound code, 
CPLEX 6.5, was allowed to run for 10 CPU hours.) Thus, path relinking offers the best 
current meta-heuristic for the CMND.

 
4.5 A Scatter Search for the Maximum Clique Problem 
 
The Maximum Clique Problem (MCP) can be defined as follows. Given an undirected 
graph G=(V, A) and A(vi) denoting the set of vertices vj such that (vi, vj) ∈ A, then a 
graph G1=(V1, A1) is called a subgraph of G if V1⊆ V, and for every vj ∈ V1, 
A1(vi)=A(vi)∩V1. A graph G1 is said to be complete if there is an arc for each pair of 
vertices. A complete subgraph is also called a clique. A clique is maximal, if it is not 
contained in any other clique. In the MCP the objective is to find a complete subgraph 
of largest cardinality in a graph. The clique number is equal to the cardinality of the 
largest clique of G.  
 
The MCP is an important problem in combinatorial optimization with many 
applications which include: market analysis, project selection, and signal 
transmission. The interest for this problem led to the algorithm thread challenge on 
experimental analysis and algorithm performance promoted by Second DIMACS 
Implementation Challenge (Johnson and Trick 1996). 
 
Cavique, Rego and Themido (2001) developed an experimental study for solving the 
Maximum Clique Problem (MCP) using a Scatter Search framework. The proposed 
algorithm considers structured solution combinations weighted by a “filtering vector” 
playing the role of linear combinations. For the heuristic improvement a simple tabu 
search procedure based on appropriate neighborhood structures is used. Some special 
features and techniques have been introduced for the implementation to this problem. 
The algorithm implementation is structured into five basic methods: 
 
Diversification Generation Method  
 
The aim of the diversification generation method is to create a set of solutions as 
scattered as possible within the solution space while also using as many variables (or 
solution attributes) as possible. In the MCP, all vertices in the graph G should be 
present in RS. 
 
When the algorithm starts, RS is initialized with a set of diverse solutions obtained by 
a constructive procedure, which starting from a single vertex, each step adds a new 
vertex to the current clique until a maximal clique is found. Starting from a different 
vertex not yet included in RS, the procedure is repeated as many times as the 
cardinality of the reference set. The clique value is used to order the solutions in RS.  
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Improvement Method 
 
The improvement method has two phases: given a solution that is typically infeasible, 
the method first undertakes to recover to a feasible one; and afterward it attempts to 
increase the objective function value. Neighborhood structures based on add, drop, 
and node swap moves are used in the local search. The method allows for the 
solutions being infeasible by temporarily dealing with non complete subgraphs, which 
implements a strategic oscillation allowing trajectories to cross infeasible regions of 
solutions. 
 
Reference Set Update Method  
 
The reference set update method must be carefully set up with diverse and high 
quality solutions to avoid the phenomenon of premature convergence of RS, which 
occurs when all the solutions are similar. To prevent this “pitfall”, the reference set RS 
is divided into two groups: the set of best solutions and the set of diverse solutions.  
 
Regarding the replacement policy, a combination of the best replacement policy and 
the worst replacement policy called ‘journal replacement’ policy is used, which 
replaces the worst solution with the new best solution found, reporting all the ‘hits’ of 
the search.  
 
Subset Generation Method  
 
This method generates the following types of solution subsets which are combined in 
the next method. The method generates subsets with two, three or more elements in a 
relatively reduced computational effort. To eliminate repetition of the elements in the 
subsets, the reference set with diverse solutions is used for the two by two 
combinations, instead of the complete reference set. The method also includes a new 
feature by adding a distant (or diverse) solution maximizing the distance from the 
region defined as the union of the vertices in the solution’s subset. In this way, a new 
point “far from” the solution cluster is obtained at each iteration to maintain an 
appropriate diversity of solutions in the reference set. 
 
Solution Combination Method  
 
This method uses each subset generated in the subset generation method and 
combines the subset solutions, returning one or more trial solutions. Solution 
combinations are created using a filter vector applied to the union of solutions, called 
λ-filter. The λ-filters are used in Scatter Search as a form of structured combinations 
of solutions. Instead of drifting within the solution space defined by the reference set, 
the SS procedure searches each region extensively by applying different λ-filters. Each 
λ-filter generates a trial solution to be improved by the Improvement Method. A 
sequence of previously planned λ-filters generates a set of solutions within and beyond 
regions defined by two or more solutions in which new trial solutions will be chosen 
for updating the reference set in an evolutionary fashion. 
 
Applying λ-filters in subsets with diverse solutions, a bypass strategy is created. 
Instead of finding solutions between two others, it is possible to bypass the path using 
a intermediate reference solution.  
 
Computational results obtained on a set of the most challenging clique DIMACS 
benchmark instances shown the scatter search algorithm can be advantageously 
compared with some of the most competitive algorithms for the MCP.  
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4.6 Assigning Proctor to Exams with Scatter Search 
 
Several real assignment problems can be viewed as a generalization of the well-known 
Generalized Assignment Problem. One of these problems is the Proctor Assignment 
Problem (PAP), which consists in the assignment of proctors to final exams at a school 
or university, with respect to some objective function as for example the maximization 
of the total preferences of proctors to exams’ dates.  
 
Martí, Lourenço and Laguna (2000) presented a Scatter Search to solve particular 
instances of the PAP, based on the real data from a Spanish University. The problem 
was formulated as a multiobjective integer program with a total preference and 
workload-fairness objective functions, and can be stated as follows: consider a set of 
proctors at a large university. Each proctor has a maximum number of hours that 
he/she can devote to proctor final exams. This limit depends on his/her contract and 
teaching load. Each final exam requires a given number of proctors for proctoring. 
Since the most of the proctors are graduate students and Teaching Assistants (TAs), 
they also have final exams and therefore they cannot proctor exams during periods 
that conflict with their own exams. The constraints can be summarized as follows: 
 
•  Each exam must be proctored by a specified number of TAs. 
•  A TA cannot exceed his/her maximum number of proctor hours. 
•  A TA cannot proctor more than one exam at the same time. 
•  A TA cannot proctor a final exam that conflicts with one of his/her own. 
•  A TA should proctor the exams of the courses he/she taught. 
 
The last constraint can be handled before formulating the model by simply assigning 
proctors to the exams of the courses they taught and adjusting the associated input 
data accordingly (e.g., reducing the total number of proctor hours and the exam 
requirements). Teaching assistants have preferences for some exams, which reflect 
their desire for proctoring on a given day or avoiding certain days. For example, some 
TAs would like to avoid proctoring an exam the day before one of their own exams. As 
a result of these preferences, one objective of the problem is to make assignments that 
maximize a function of the total preferences. 
 
Another important criterion is the assignment of proctor to exams such that the 
workload is evenly distributed among TA’s. Unfair workloads are likely to generate 
conflicts among TA’s and between TA’s and the administration. Several objective 
functions can be formulated to measure the workload-fairness of a given assignment. 
One possibility is to maximize the minimum workload associated with each TA. Since 
the number of available hours for each TA varies, the workload can be expressed as 
the ratio of assigned hours to available hours. 
 
Martí, Lourenço and Laguna (2000) considered a weighted function to deal with the 
multiobjective model and proposed a scatter search method based on the work by 
Glover (1998), Laguna (1999) and Campos et al. (1998). The diversification generation 
method generates the population solutions using the preferences values modified by a 
frequency function. This frequency function is used to bias the potential assignment of 
TAs to exams during subsequent constructions of solutions, and therefore to induce 
diversity in the new solutions with respect to the solutions already in the population. 
TAs are assigned to exams in order to maximize the modified preference values. The 
reference set is constructed by using the best solutions and a distance function 
between solutions to diversify the solutions in this set. The solution combination 
method is applied to each subset generated as in Glover (1998). It is based on a voting 
system, where each solution votes for specific assignment of TAs to exams. The 
resulting solution may be infeasible with respect to some constraints, and in this case, 
a repair mechanism is applied. The method outputs the best solution with respect to 
the weighting function. 
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The data used for these experiments correspond to real instances of the proctor 
assignment problem at the Universitat Pompeu Fabra in Barcelona (Spain). The 
results were compared with manually generated assignments also with assignments 
found by solving the mixed-integer programming formulation with Cplex 6.5 (some of 
which are optimal). For the set of test problems that utilize the utility function, the 
scatter search solutions are often slightly sub-optimal. However, this is offset by the 
advantage that the scatter search reference set contains a number of high-quality 
solutions, allowing the decision-maker to choose the one to implement, based on non-
quantitative elements. The maximum standard deviation of the utility function value 
for solutions in the final reference set was 0.000407 for all problem instances. This 
indicates that practically all of the solutions in the final reference set have the same 
quality with respect to the objective function value. Since the utility function is a 
mathematical representation of some subjective measure of performance associated 
with a given assignment, the ability to choose among solutions that have similar 
objective function values is an important feature of a decision support system 
designed for this managerial situation.  
 
Since scatter-search is a population-based search, the method is a useful solution 
technique to solve multiobjective problems by finding an approximation of the set of 
Pareto-optimal solutions. A multiobjective scatter search for the solving the PAP is 
investigated in Lourenço, Martí and Laguna (2001). The main features of this 
approach are the construction and updating of the reference set using the set of non-
dominated solutions. Also, the cardinality of the reference set varies with respect to 
the size of the set of non-dominated solutions. An improvement method is applied to 
improve the solutions obtained by the greedy heuristic, the diversification method and 
the solution combination method. This improvement method consists of a simple local 
search method, where the neighborhood is obtained by exchanging one TA for another 
one from the list of proctors. Finally, the method is restarted with the set of non-
dominated solutions in the reference set. Preliminary results for this new approach 
indicate that multiobjective scatter search with restarting gives the best results with 
respect to the weighting function, across different versions of the method. Also, 
multiobjective scatter search enables the user to analyze a collection of very good 
solutions and make the final decision. 
 
4.7  Periodic Vehicle Loading 
 
Delgado, Laguna and Pacheco (2002) address a logistical problem of a manufacturer of 
auto parts in the north of Spain.  The manufacturer stores auto parts in its warehouse 
until customers retrieve them.  The customers and the manufacturer agree upon an 
order pickup frequency. The problem is to find the best pickup schedule, which 
consists of the days and times during the day that each customer is expected to 
retrieve his/her order.  For a given planning horizon, the optimization problem 
is to minimize the labor requirements to load the vehicles that the customers use to 
pick up their orders.   
 
Heuristically, the authors approach this situation as a decision problem in two levels.  
In the first level, customers are assigned to a calendar, consisting of a set of days with 
the required frequency during the planning horizon.  Then, for each day, the decision 
at the second level is to assign each customer to a time slot.  The busiest time slot 
determines the labor requirement for a given day.  Therefore, once customers have 
been assigned to particular days in the planning horizon, the second-level decision 
problem is equivalent to a multiprocessor scheduling problem (MSP), where each time 
slot is the equivalent of a processor, and wherethe objective is to minimize the 
makespan. 
 
A scatter search procedure is developed for the problem of minimizing labor 
requirements in this periodic vehicle-loading problem and artificial as well as real data 
are used to assess its performance.  The scatter search constructs and combines 
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calendar assignments and uses a heuristic to solve the MSP's for each day in the 
planning horizon and thus obtain a complete solution. 
 
The diversification method is based on GRASP constructions.  The greedy function 
calculates the increase in labor requirements from assigning a previously unassigned 
order to a calendar.  The procedure starts with all the orders in the "unassigned" set.  
The orders are considered one by one, from the largest to the smallest (i.e., from the 
one that requires the most amount of labor to the one that requires the least 
amount of labor).   
 
The improvement method is based on a procedure that changes the assignment of an 
order from its current calendar to another. Preliminary experiments showed that the 
performance of the improving method with simple moves (i.e., the change of calendars 
for one order only) was not as good as the performance of a local search employing 
composite moves.  A composite move is a chain of simple moves. Therefore, while a 
simple move prescribes the change of one order from one calendar to another, a 
composite move prescribes the change of several orders from their current calendars 
to others.  It may seem that a local search based on simple moves should be capable 
of finding sequences of moves that are equivalent to composite moves.  However, 
this is not necessarily the case because the local search based on simple moves is 
greedy and searches for the best exchange and performs the exchange only if it results 
in an improving move.  A local search with composite moves, on the other hand, may 
perform some non-improving simple moves that lead to a large improving move. 
 
The combination method generates new solutions by combining the calendar 
assignments of two reference solutions.  The objective function values of the reference 
solutions being combined are used to probabilistically assign orders to calendars in 
the new trial solution.  That is, on the average, most of the assignments come from the 
reference solution with the better objective function value.  The procedure uses a 
static update of the reference set. 
 
Using both randomly generated data adapted from the literature and real data from a 
manufacturer, the authors were able to show the merit of the scatter search design.  
In particular, extensive experiments show that significant savings may be realized 
when replacing the manufacturer's current rules of thumb with the proposed 
procedure for planning purposes. 
 
4.8 Tabu and Scatter Search in Job-Shop Scheduling 
 
The job-shop scheduling problem is known as a particularly hard combinatorial 
optimization case. It arises from OR practice, has a relatively simple formulation, 
excellent industrial applications, a finite but potentially astronomical number of 
solutions and unfortunately is strongly NP-hard. It is also considered an indicator of 
practical efficiency of advanced scheduling algorithms. In the early nineties, after a 
series of works dealing with optimization algorithms of the B&B type, it became clear 
that pure optimization methods for this problem had a ceiling on their performance. In 
spite of important advances over the past two decades, the best B&B methods cannot 
solve instances with more than 200 operations in a reasonable time (hours, days, 
weeks). 

 
A new era started when job-shop algorithms based on the TS approach appeared. The 
simple and almost ascetic Algorithm TSAB (Nowicki and Smutnicki , 1996), designed 
originally in 1993, found the optimal solution of the notorious job-shop instance FT10 
(100 operations) in a few seconds on a PC. This instance had waited 26 years, since 
1963, to be solved by an optimization algorithm. But going far beyond the solution of 
FT10, the TSAB approach made it possible to solve, in a very short time on a PC, 
instances of size up to 2,000 operations with unprecedented accuracy – producing a 
deviation from an optimality bound of less than 4% on average. This is considerably 
better than the deviation of approximately 20% for special insertions technique, 35% 
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for standard priority rules and over 130% for random solutions. Another highly 
effective tabu search method for the job shop problem has recently been introduced by 
Grabowski and Wodecki (2001). 

 
Further exploration of the ideas underlying TSAB focuses on two independent 
subjects: (1) acceleration of the speed of the algorithm or some its components, and (2) 
a more sophisticated diversification mechanism, the key for advanced search 
scattering. Recent papers by Nowicki and Smutnicki (2001a and 2001b), provide some 
original proposals located precisely in these research streams. They refer to a new look 
at the landscape and valleys in the solution space, set against the background of 
theoretical properties of various distance measures. There are proposed accelerators 
based on theoretical properties, which, by means of skillful decomposition and 
aggregation of calculations, speed up significantly search process, namely: (a) INSA 
accelerator (advanced implementation of insertion algorithm used for starting solution 
in TSAB), (b) tabu status accelerator, (c) NSP accelerator (fast single neighborhood 
search). Next, in order to diversify the search, TSAB has been embedded in the Scatter 
Search and Path Relinking framework. The resulting algorithm i-TSAB described in 
Nowicki and Smutnicki (2001a), the powerful successor of TSAB, works with elite 
centers of local search areas forming a MILESTONE structure, modified by space 
explorations conducted from VIEWPOINTS located on GOPS (a class of goal oriented 
paths). 

 
As the immediate practical result of this new approach, 24 better upper bounds (new 
best solutions) have been found for 24 of the 35 instances from the common 
benchmark set of Taillard, attacked by all job-shop algorithms designed till now. The 
proposed algorithm still runs on a standard PC in a time of minutes.  
 
4.9 A Tabu Scatter Search Metaheuristic for the Arc Routing Problem 

 
The problem treated in Greistorfer (2001a) is the so-called capacitated Chinese 
postman problem (CCPP). The goal of the (undirected) CCPP is to determine a least-cost 
schedule of routes in an undirected network under the restriction of a given fleet of 
vehicles with identical capacity, which operates from a single depot node. In the 
standard version of the CCPP the number of vehicles is unlimited, i.e. it is a decision 
variable. The CCPP is a special instance of the general class of arc routing problems, a 
group of routing problems where the demand is located on arcs or edges (one-way or 
two-way roads) connecting a pair of nodes (junctions). Relevant practical examples of 
the CCPP are postal mail delivery, school bus routing, road cleaning, winter gritting or 
household refuse collection. But applications are not limited to the routing of 
creatures or goods. There are also cases in industrial manufacturing, e.g. the routing 
of automatic machines that put conducting layers or components on to a printed 
circuit board. 
 
The algorithmic backbone of the tabu scatter search (TSS) metaheuristic introduced is 
a tabu search (TS) which operates with a set of neighborhood operators (edge 
exchange and insert moves) on a long-term diversification strategy guided by 
frequency counts. The short-term tabu memory works with edges and simply prohibits 
reversal moves within a dynamically varied tenure period. Additionally, the procedure 
has a pool component which accompanies the TS by maintaining a set of elite 
solutions found in the course of the optimization. If the classic genetic algorithm can 
be understood as a pure parallel pool method because it always works on a set of high 
quality solutions, then the TSS follows a sequential pool design, where periods of 
isolated and single-solution improvements of the TS alternate with multi-solution 
combinations. With respect to the type of encoding, the solution combination method 
(SCM) is purely phenotypical, which turns this pool method into a type of scatter 
search (SS) algorithm. The TSS architecture as proposed here does not exactly follow 
the template ideas of Glover (1998), although there are many common features as will 
be outlined below. 
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The SCM component combines elite solutions which have been collected by the TS. As 
suggested in the template paper and further literature, the combination of solutions is 
supported by generalized rounding procedures which may follow heuristic rules or 
approaches based on linear programming (LP). The underlying principle of the SCM 
proposed follows an adapted transportation problem (TPP) formulation, which is the 
generalization of the assignment operator of Cung et al. (1997). 

 
The TSS and its SCM benefit from a data structure which, generally, can be used for 
problems described by pure permutations (customers) or by permutations where sub-
strings (routes) have to be considered as well. The SCM works as follows. Given a set 
of elite solutions S1,...,Sc, the TPP coefficients aij denote the number of times a 
customer j is assigned to a route i in this pool subset. The TPP coefficient matrix can 
be interpreted as an assignment frequency matrix (AFM), being the linear combination 
of the c individual assignment matrices. Unit TPP demands are a consequence of the 
need that every edge has to be serviced by a single vehicle. The supply of a route is 
approximated by the average number of customers that can be serviced respecting the 
vehicle capacity whereas a dummy column picks up the oversupply. Maximizing this 
TPP results in customer-route assignments which maximize the total number of 
desirable assignments while simultaneously minimizing the total Euclidean distance 
to the AFM, which represents the (infeasible) combination of the initial trial points. 
Although the outcome of this SCM can be directly used, it is clearly improvable since 
the optimal clusters (sets) provided do not imply any guidance of how the vehicle 
routes (sequences) should be formed. Therefore, a greedy sequencing heuristic (GSH) is 
used for post-optimization to put the customers of all routes into a cost-convenient 
order. 

 
The overall TSS starts from a random pool whose elements are exchanged for 
solutions which have been improved in the TS phase. The SCM is occasionally called 
and forms a combined solution which is then returned to the TS for further 
inspections. This alternating process between TS and the SCM stops after a pre-
defined period of iterations.  
 
The TSS is tested on several classes of CCPP instances: there are a number of planar 
Euclidean grid-graph instances, Euclidean random instances and the well-known 
DeArmon data set as used for the CARPET arc routing heuristic of Hertz et al. (2000). 
In a direct comparison with an old TS method (see Greistorfer (1995)) the TSS 
significantly improves the results for the Euclidean classes (in 54% of all cases) and is 
clearly able to keep up with CARPET regarding the instances from literature. Here the 
number of (known) optimal solutions is identical, while the TSS finds one more best-
known solution. Its worst average deviation (due to a single instance) is only 1.29% 
higher than the one of CARPET. The total running times, which are scaled with 
respect to the CARPET-PC, are longer. However, it is shown that on average the TSS 
obtains its best results faster than the CARPET heuristic. Thus, adding a pool 
component to a TS and using an advanced SCM has obvious merits. 
 
Testing Population Designs  
 
The theme of Greistorfer (2001a) is continued in Greistorfer (2001b), where the focus 
is more on the methodology. The task is to work out relevant pool strategies and to 
evaluate them by means of thorough computational comparisons. Test results again 
refer to a sample of CCPP arc routing instances but, as mentioned above, the encoding 
offers a certain ability to generalize the algorithmic findings for a number of different 
problems. From the manifold design options for heuristic pool methods, the discussion 
concentrates on three basic components: the input and output functions, which are 
responsible for pool maintenance and which determine the transfer of elite solutions, 
and a solution combination method which must effectively combine a set of elite 
solutions provided by the output function. 
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The heuristic design variants of the TSS comprise four input strategies, I0,…,3, four 
output strategies, O0,…,3, and three SCMs, namely M0,…,2 (including the settings of 
Greistorfer (2001a), indexed with a 0). 
 
Input strategy I0 reduces the quality aspect to the cost dimension of a solution and 
does not deal with structural properties of a solution or their relations to each other. I1 
overcomes this disadvantage by including full duplication checks between potential 
elite solutions and pool members. I2, known as the reference set update method of 
Glover (1998), is additionally linked with preceding hash comparisons. In I3 an 
attempt is made to find a compromise by skipping the full duplication part in I2, i.e. I3 
only relies on hashing. Input functions I1,2,3 build on ordered structures which are 
provided by a sorting algorithm. A corresponding procedure is suggested by the author 
as well as a relevant hash function. 

 
By analogy to I0, O0 does not utilize structural information and simply refers to a 
random selection. O1 uses frequency counts and selects those solutions for 
combinations which have not been used before or have been used rarely. Such a 
tracking of the number of involvements of a solution in a combination process 
introduces a certain memory effect. By contrast, the subset generation method of 
Glover (1998) explicitly makes use of an algorithmic structure which completely avoids 
a duplicate subset selection. Output strategies O2 and O3 select solutions which have 
the smallest and largest distance to each other, respectively. For that purpose a 
distance function is proposed which aggregates the customer positions and their route 
membership. 

 
The combination strategy M0 is the LP-based transportation method which is 
described in detail in Greistorfer (2001a). The last two SCM variants are based on 
deriving average solutions. M1 constructs average customer labels whereas M2 
determines average customer positions (see also Campos et al. (1999)). Both 
approaches relax the capacity restriction whose validity has to be secured afterwards 
by splitting the permutation sequence into a set of route clusters. The final offspring is 
obtained after applying the post-optimizing GSH. 
 
The computational investigation of the results for the different TSS designs was 
performed by checking all possible 4⋅4⋅3=48 TSS configurations against each other. 
Each configuration was run over the whole set of test instances and evaluated by its 
corresponding average objective function value derived from the best solutions found. 
The best configuration turned out to be (I3,O3,M0). In order to evaluate the specific 
effects of an input, output or combination variant, all results were checked according 
to a variance analysis by means of SPSS. 
 
Generally, effects of variations tended to be smaller at the input side of the pool since 
all tests did not indicate any significant difference between the input strategies 
described. One model of explanation is that duplications are effectively prevented by 
each of the input procedures I1,2,3, while the (empirical) probability of collision (hashing 
error) is smaller than 0.195% for I2,3. Another reason might be that strongly 
diversifying input strategies are not adequately utilized by the other variable 
components. The results generated by the straightforward algorithmic setting of I0 
cannot keep up with the results of the other methods. 
 
The picture completely changes when output strategies or different SCMs are looked 
upon. It was found that the min-distance approach in O2 is definitely an inferior 
option. The argument that good solutions are mostly found in the vicinity of the best 
solution cannot be upheld, which is clearly in agreement with the SS philosophy of 
selecting diverse solutions to be combined. This fact is also underlined by the 
superiority of the max-distance function O3 over O2. The expected memory effect in O1 
turned out to be too small to guide the selection process. Random sampling in O0 can 
be justified in an isolated view which ignores input and combination method effects. 
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As an SCM, the LP approach of M0 significantly contributes to finding better solutions 
than M1 and M2. While there are no significant relations between the latter ones, the 
individual best choice for M0 proves its very useful role in the collective optimal design 
(I3,O3,M0). 

 
4.10 A Population Based Approach to the Resource Constrained Project 
Scheduling 

 
Valls et al. (2001) propose a population-based approach to the resource-constrained 
project-scheduling problem (RCPSP), where n activities have to de processed, taking 
into account the precedence relations and the resource restrictions. The procedure 
incorporates different strategies for generating and improving a population of 
schedules. The method has two phases. Phase 1 (Figure) can be interpreted in terms 
of the scatter search methodology. 
 

Figure. Phase_1 outline 
 
1. POP = INITIAL_SET_1(20) 
2. POP’ = HIA(POP) 
3. For [i=1,2] 
       3.1.  POP5 = {the 5 best schedules in POP’} 
       3.2.  POP = CSA(4,POP5) 
       3.3.  POP40 = {the 40 best schedules in POP} 
       3.4.  POP’ = HIA(POP40) 
4. Return the best schedule obtained 

 
INITIAL_SET_1(size) is the Diversification Generation Method, which generates a 
collection of diverse trial solutions. To achieve quality and diversity, different well-
known priority rules and random procedures are used. The best size solutions are 
stored in the set POP. 
 
The Improvement Method is called HIA, the Homogenous Interval Algorithm. It is 
applied to the solutions in POP and is an iterative procedure for improving the local 
use of resources. It incorporates an oscillatory mechanism that alternatively searches 
two different regions of the schedule space (strategic oscillation). 
 
The Subset Generation Method and the Solution Combination Method are carried out 
by the Convex Search Algorithm (CSA). CSA(k,SET) generates all pairs of reference 
solutions of SET and combine each of them with a procedure that integrates path 
relinking characteristics. 
 
First of all, CSA codifies each schedule by a topological order (TO) representation. A 
TO representation of a schedule S is a special priority value vector γ, the one that 
fulfills the conditions (1) {γ(i), i = 1, ..., n} = {1, ..., n}, (2) si < sj → γ(i) < γ(j), being si the 
beginning of activity i in S, and (3) si = sj and i < j → γ(i) < γ(j), i.e., the label is used to 
order activities with the same beginning. The Serial schedule generation scheme can 
be used to decodify a TO representation γ and obtain an active schedule S(γ), by 
selecting at each stage the eligible activity j with the lowest priority γ(j). 
 
Afterwards, for each pair of reference schedules A and B, CSA calculates the priority 
value vectors γp, defined by γp(j) = (1-p/2k) γA(j) + (p/2k) γB(j), p = 1, ..., 2k-1, where k is 
an integer and γA and γB are the TO representations of A and B, respectively. Although 
γp is not a TO representation, is a vector of priorities compatible with the precedence 
relations that can be easily transformed into a TO representation that gives the same 
schedule as γp when decodified. Moreover, the priority vectors γp, p = 1, ..., 2k-1 are 
uniformly distributed in the geometric segment joining γA and γB and it can be 
statistically proved that something similar happens to the schedules S(γp), p = 1, ..., 
2k-1, in the path between S(γA) and S(γB). This means that each S(γp) incorporates more 
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attributes of S(γB) and less of S(γA) as p increases, so this procedure builds a trajectory 
between S(γA) and S(γB). 
 
The best 40 schedules calculated by CSA are introduced in POP40, and the 
improvement procedure HIA is applied to each of them. The Reference Set Update 
Method is quite simple: the first reference set contains the best 5 schedules calculated 
in step 2 and the following reference sets are formed by the best 5 solutions obtained 
after having applied CSA and HIA. So, the reference set is totally replaced in each 
iteration, looking for a fast convergence, since step 3 is applied only twice. 
 
At the end of phase 1, the best solution obtained so far is generally of high quality. 
Experience seems to indicate that good candidate schedules are usually to be found 
‘fairly close’ to other good schedules. The objective of the second phase is therefore to 
closely explore regions near high quality sequences. Exploring such a region means, 
first, generating a population by taking a random sample from a region near a good 
sequence, and second, applying to the population the improving procedure used in the 
first phase – but with a variation. The on-going search is interrupted when a better 
sequence is obtained and a fresh search starts from the point of the newer sequence. 
Phase two begins from the best solution obtained in phase one. 
 
Computational experiments have been carried out on the standard j120 set generated 
using ProGen. They show that the indicated SS algorithm produces higher quality 
solutions than state-of-the-art heuristics for the RCPSP in an average time of less than 
five seconds in a PC at 400 MHz. 
 
4.11 Multiple Criteria Scatter Search 

 
Beausoleil (2001) has developed a scatter search procedure that uses the concept of 
Pareto optimality to obtain a good approximate Pareto frontier. Tabu Search is used to 
obtain an initial set of reference points. Different frequency memories are used to 
diversify the search. In order to designate a subset of strategies to generate a reference 
solutions a choice function called Kramer Selection is used. A Kemen-Snell measure is 
applied in order to find a diverse set to complement the subset of high quality current 
Pareto solutions. Path Relinking and Extrapolated Path Relinking are used as a 
Combination Method. 
 
Structured weighted combination is used in a special case to obtain weighted 
solutions inside the convex region spanned by selected reference points. To implement 
the process, in the Tabu Search phase, memory is maintained of selected attributes of 
recent moves and their associated solutions. A thresholding aspiration guides the 
selection of an initial set of solutions. Solution quality is measured by introducing an 
Additive Value Function in this phase. A study involving multiple cases demonstrates 
the ability of the algorithm to find a diverse Pareto frontier. 
 
The results of the experiments show that the first TS phase generates an initial good 
Pareto frontier. The combined method using path relinking and extrapolated path 
relinking as an intensification-diversification method proves an effective mechanism to 
generate new Pareto points, yielding a good approximation to the Pareto frontier in a 
relatively small number of iterations.  
 
4.12 Meta-Heuristic Use of Scatter Search via OptQuest 

 
Optimization and simulation models play an important role in Defense Analyses. A 
crucial component of a model-based analysis effort is agreement upon the planning 
scenario upon which the analysis is conducted. For example in military force 
structuring, the model might suggest a prescribed force structure necessary to best 
meet the demands of a planning scenario. Conversely, given some proposed force 
structure, a model might provide insight into a “best use” of that force within the 
specified scenario. A particularly perplexing challenge for military analysts occurs 
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when they must suggest a single overall force structure after considering multiple 
competing scenarios, each suggestive of potentially differing optimal force structures. 

 
Hill and McIntyre (2000) addressed this particular vexing military force structure 
problem. They define a robust force structure (solution) as that force structure 
(solution) “providing the best overall outcome as evaluated with respect to some set of 
scenarios each of which has an associated likelihood of occurrence.” Their approach 
considered the multi-scenario optimization problem within which each particular 
scenario solution becomes a component of an aggregate multi-scenario solution. They 
treat the multi-scenario space as a composite of the component scenario spaces where 
each component space contributes relative to its likelihood of occurring or relative 
importance weight. Using a meta-heuristic to guide a search using the combat model 
as an evaluation function provides a means to find a single solution, potentially 
optimal in the multi-scenario space, and by definition, robust across each of the 
individual scenario spaces. 
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The Hill and McIntyre approach is presented graphically in the Figure above. Central 
to the approach is a CONTROLLER interface between the meta-heuristic module and 
the combat models conducting the evaluations. The META-HEURISTIC guides the 
search process providing the CONTROLLER potential solutions (input force structure) 
and receiving from the CONTROLLER evaluations of those solutions. The COMBAT 
MODEL receives its input (and scenario) from the CONTROLLER, evaluates the input, 
and returns the requisite quality measure from the combat model assessment 
associated with the input. The CONTROLLER accepts the potential solutions, provides 
those to each of the scenario evaluators in the COMBAT MODEL, and combines each 
measure into the final value or fitness of the potential solution. This process continues 
until predefined stopping conditions are satisfied at which time the best, or set of best, 
solutions are returned. 

 
Bulut (2001) applied scatter search, implemented within the OptQuest callable library 
(Laguna and Marti, 2002) to solve a multi-scenario optimization problem based on the 
United States Air Force’s Combat Forces Assessment Model (CFAM), a large-scale 
linear programming model for weapons allocation analyses. Three notional planning 
scenarios were used and a robust solution sought to the multi-scenario problem. He 
compared OptQuest results with previous results obtained using a genetic algorithm 
(for the same scenarios). His results indicated that better overall solutions, a greater 
diversity of solutions, and quicker convergence results were obtained using the 
OptQuest scatter search approach. 
 
The methodology proposed by Hill and McIntyre (2000) and implemented by Bulut 
(2001) using OptQuest is directly applicable to any analytical situation involving 
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competing “scenarios” within which one needs a single solution that is “robust” 
relative to any differences among the scenarios. 
 
4.13 Pivot Based Search integrated with Branch and Bound for Binary MIPs 
 
Linear programming models with a mixture of real-valued and binary variables are 
often appropriate in strategic planning, production planning with significant setup 
times, personnel scheduling and a host of other applications. The abstract formulation 
for linear problems with binary integers takes as data a row vector c, of length n, a m × 
n matrix A and a column vector b of length m. Let D be the index set 1,…,n. The 
problem is to select a column vector, x of length n so as to 
 

{ }

min

. .

0,1
0 \

i i
i I

i

i

c x

s t
Ax b
x i I
x i D I

∈

≥
∈ ∈
≥ ∈

∑

 

 
where the index set I gives the variables that must take on zero-one values. 
 
Issues related to the behavior of a pivot based tabu search integrated with branch and 
bound algorithm, using path relinking and chunking are discussed by Løkketangen 
and Woodruff (2000). 
 
The integration takes place primarily in the form of local searches launched from the 
nodes of the branch and bound tree. These searches are terminated when an integer 
feasible solution is found or after some number of pivots, NI. Any time a new best is 
found, the search is continued for an additional NI pivots. Chunking (see Woodruff 
1996, 1998) is used to detect solutions that should be used for special path relinking 
searches that begin at the LP relaxation and to determine when the use of pivot 
searches should be discontinued. (See also Glover, Løkketangen and Woodruff, 2000, 
for another application of chunking to the same kind of problems) 
 
As the search is launched from nodes in a B&B tree, there are some special 
considerations that come into play that sets this use of the pivot based search 
somewhat apart from other implementations. First, the chunking mechanism and the 
path relinking based target searches, respectively, fulfill the functions of diversification 
or intensification. Second, the purpose, or focus, of the search is somewhat different 
from the stand-alone search, in that for some of the searches, the emphasis is shifted 
more towards obtaining integer feasibility quickly. This focus is controlled by a 
separate parameter skew, that is used to adjust the relative importance of obtaining 
feasibility versus maintaining a good objective function value.  
 
Chunking addresses the questions of when the launching of pivot based searches 
should be terminated, and when the path relinking searches should be launched. 
More specifically, path relinking searches are used to exploit “unique” or “outlying” 
solutions. The meaning of “unique” and “outlying” can be supplied by chunking. 
 
Two types of local searches can be launched at a node. The first are the normal TS 
pivot-based searches launched from nodes in the B&B tree (see Løkketangen and 
Glover, 1995, 1996, 1998, 1999). 
 
The other type are the Path Relinking searches. After a best-so-far solution x* has 
been found, the chunking mechanisms try to identify distant solutions, x’ (w.r.t. the 
current sample). When such a distant solution has been identified, a 2-target search is 
launched. This is a variant of path relinking, with the purpose of launching a new 
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search into unknown territory, while at the same time keeping good parts of the 
solutions. This integrates the considerations of intensification and diversification. 
 
The starting point of this search is the relaxed root node solution LP* (being an upper 
bound on the objective function value), and the target for the path relinking is the 
hyperplane defined by the common integer solution values of x* and x’. All integer 
variables are freed. To allow the search to focus on this hyperplane, the integer 
infeasibility part of the move evaluation function is temporarily modified. (The 
objective function value component is unaltered, as is the aspiration criterion – see 
Løkketangen and Woodruff, 2000 ). Instead of using the normal integer infeasibility 
measure of summing up over all the integer variables the distance to the nearest 
integer, the authors use the following scheme: 
 

•  Sum up over all the integer variables 
•  If the two targets have the same integer solution value for the variable, use the 

distance to this value. 
•  If the two targets differ, use the normal integer infeasibility measure (i.e. the 

closest integer value). 
 
When the search reaches the hyperplane connecting x* and x’, the normal move 
evaluation function is reinstated, and the search continues in normal fashion for NI 
iterations. 
 
Computational testing was done on problems from Miplib and Dash Associates, 
consisting of a mix of MIP’s and IP’s. The testing showed that the local searches had a 
beneficial effect on the overall search time for a number of problem instances, 
particularly those that were harder to solve. 
 
4.14 Scatter Search to Generate Diverse MIP Solutions 
 
Often, scatter search and star path algorithms (Glover 1995), generate diverse sets of 
solutions as a means to an end. In a recent paper by Glover, Løkketangen and 
Woodruff (2000) diversity is the ultimate goal for which scatter search and star paths 
are employed. This paper presents methods of systematically uncovering a diverse set 
of solutions for 0-1 mixed integer programming problems. These methods can be 
applied to instances without any special foreknowledge concerning the characteristics 
of the instances, but the absence of such knowledge gives rise to a need for general 
methods to assess diversity. 

 
When the objective function is only an approximation of the actual goals of the 
organization and its stakeholders, the one solution that optimizes it may be no more 
interesting than other solutions that provide good values. However, information 
overload can be a problem here as well. It is not desirable to swamp the decision 
maker with solutions. Highly preferable is to identify a set of solutions that are 
decently good and, especially, diverse. One can reasonably rely on the objective 
function to quantify the notion of “decently good”. The diversification methods given by 
Glover, Løkketangen and Woodruff are based on the idea of generating extreme points 
in a polyhedral region of interest and then using these points and the paths between 
them in a variety of ways. The methods examine points on the polyhedron, within and 
“near” it. Their algorithm proceeds in two phases: first it generates a set of centers and 
then connects them using star paths. 
 
The description of the generation of centers can also be broken into two phases. First 
a diversification generator is used to create points. In the second phase, these points 
are provided as data to an optimization problem that results in extreme points that are 
averaged to create the centers.  
 
Although a diverse set of good solutions is clearly desirable, it is not clear in advance 
how to measure the property of diversity. In spite of the fact that the objective function 
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is not exact, it presumably gives a reasonable way to assess the relative “goodness” of 
a set of solutions. No such simple mapping is known from solution vectors to a one-
dimensional measure of diversity. Diversity measures are required both for the design 
of practical software and for research purposes. For practical software, it is important 
to know if the user should be “bothered” with a particular solution vector – that is, to 
know if a vector adds enough diversity to warrant adding it to the set of solutions that 
are displayed. For research purposes, one might want to compare the set of vectors 
generated by one method with a set of vectors generated by another.  
 
There are a number of advantages to the quadratic metric known in this context as 
Mahalanobis distances. This metric is scale invariant and can take correlations into 
account if based on a covariance matrix. Furthermore, this type of distance connects 
naturally with a scalar measure of the diversity of a set of vectors, which is the 
determinant of the covariance matrix of the set. Under the assumption of multivariate 
normality, the covariance matrix defines ellipsoids of constant Mahalanobis distances 
that constitute probability contours. Large covariance determinants correspond to 
large volumes in the ellipsoids. The assumption of multivariate normality is not 
needed to use the covariance determinant to put an order on sets of vectors and 
furthermore it is not needed to see that adding points with large Mahalanobis 
distances will increase the covariance determinant. 
 
However, there is a major difficulty. In order to calculate a covariance matrix for a set 
of vectors of length p = n one must have a set of vectors that does not lie entirely in a 
subspace. This means that at a minimum the set must contain n + 1 vectors and for 
MIP solutions, more vectors will often be required to span the full n dimensions. For 
even modest sized MIPs this is not good. In order to have a working definition of 
diversity, one must have thousands of solution vectors. A remedy for this difficulty 
that also increases the plausibility of multivariate normality has been referred to as 
chunking by Woodruff (1998). A generalization based on principal components has also 
been proposed by Woodruff (2001). 

 
As general purpose optimization methods are embedded in decision support systems, 
there will unquestionably be an increased need not only for optimal solutions, but also 
for a diverse set of good solutions. Scatter search and star paths can be an effective 
means to this end. 

 
Results of computational experiments demonstrate the efficacy of the “scatter-star-
path” method for generating good, diverse vectors for MIP problems. Furthermore, the 
results show that the method offers particular advantages when used in conjunction 
with brand and bound. The creation of these results illustrates the use of methods for 
measuring the diversity for a set of solutions. 
 
4.15 Path Relinking to Improve Iterated Re-start Procedures 
 
Research has been performed to investigate the ability of path relinking to improve the 
performance of iterated re-start procedures, with attention focused in particular on 
the GRASP method (Ribeiro and Resende, 2002). One possible shortcoming of the 
standard GRASP algorithm is the independence of its iterations, i.e., the fact that it 
does not learn from the history of solutions found in previous iterations. This is so 
because it discards information about any solution encountered that does not improve 
the incumbent. Information gathered from good solutions can be used to implement 
extensions based on path-relinking. 
 
Path relinking was originally proposed in the context of tabu search as an 
intensification strategy which explores trajectories connecting high-quality solutions. 
The use of path relinking within a GRASP procedure was first proposed by Laguna and 
Martí (1999), being followed by several extensions, improvements, and successful 
applications (e.g., Canuto et al, 2001; Aiex et al, 2002; Ribeiro et al. 2002). Path 
relinking and a very short term memory used within the local search were 
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instrumental to make a recently proposed GRASP heuristic for the capacitated 
minimum spanning tree problem competitive with other approaches in the literature 
(Souza et al. 2002). Two basic strategies are used to apply path relinking in the 
context of a GRASP heuristic: 
 

•  apply path relinking as a post-optimization step to all pairs of elite solutions; 
and 

 
•  apply path relinking as an intensification strategy to each local optimum 

obtained after the local search phase 
 
Both strategies maintain and handle a pool with a limited number Max_Elite of elite 
solutions found along the search (we used Max_Elite ranging from 10 to 20 in most 
implementations). The pool is originally empty. Each locally optimal solution obtained 
by local search is considered as a candidate to be inserted into the pool if it is 
sufficiently different from every other solution currently in the pool. If the pool already 
has Max_Elite solutions and the candidate is better than the worst of them, then the 
former replaces the latter. If the pool is not full, the candidate is simply inserted. 
 
Applying path relinking as an intensification strategy to each local optimum seems to 
be more effective than simply using it as a post-optimization step. In this context, path 
relinking is applied to pairs X – Y of solutions, where X is the locally optimal solution 
obtained after local search and Y is one of a few elite solutions randomly chosen from 
the pool (usually only one elite solution is selected). The algorithm starts by computing 
the symmetric difference between X and Y, resulting in a set ∆ of moves which should 
be applied to one of them (the initial solution) to reach the other (the guiding solution). 
Starting from the initial solution, the best move still in ∆ is applied, until the guiding 
solution is attained. The best solution found along this trajectory is also considered as 
a candidate for insertion in the pool and the incumbent is updated. Several 
alternatives have been considered and combined in recent implementations to explore 
trajectories connecting X and Y: 
 

•  do not apply path relinking at every GRASP iteration, but instead only 
periodically; 

•  explore two different trajectories, using first X, then Y as the initial solution; 
•  explore only one trajectory, starting from either X or Y; and 
•  do not follow the full trajectory, but instead only part of it. 

 
All these alternatives involve trade-offs between computation time and solution 
quality. Ribeiro et al. (2002) observed that exploring two different trajectories for each 
pair X – Y takes approximately twice the time needed to explore only one of them, with 
very marginal improvements in solution quality. They also observed that if only one 
trajectory is to be investigated, better solutions are found when path relinking starts 
from the best among X and Y. Since the neighborhood of the initial solution is much 
more carefully explored than that of the guiding one, starting from the best of them 
gives to the algorithm a better chance to investigate with more details the 
neighborhood of the most promising solution. For the same reason, the best solutions 
are usually found closer to the initial solution than to the guiding one, allowing 
pruning the relinking trajectory before the latter is reached. The same findings were 
also observed on a recent implementation of a GRASP heuristic for a multicommodity 
flow problem arising from PVC rerouting in frame relay services. Detailed 
computational results and implementation strategies are described by Resende and 
Ribeiro (2002). 
 
Path relinking is a quite effective strategy to introduce memory in GRASP, leading to 
very robust implementations. This is illustrated by the results obtained with the 
hybrid GRASP with path relinking for the Steiner problem in graphs described in 
Ribeiro et al. (2002) which in particular improved the best known solutions for 33 out 
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of the 41 still open problems in series i640 of the SteinLib repository (Voss et al., 
2001) on April 6, 2001. 
 
Even though parallelism is not yet systematically used to speed up or to improve the 
effectiveness of metaheuristics, parallel implementations are very robust and abound 
in the literature (see e.g. Cung et al. (2001) for a recent survey). Most parallel 
implementations of GRASP follow the independent-thread multiple-walk strategy, based 
on the distribution of the iterations over the processors. 
 
The efficiency of multiple-walk independent-thread parallel implementations of 
metaheuristics, running multiple copies of the same sequential algorithm, has been 
addressed by some authors. A given target value τ for the objective function is 
broadcasted to all processors which independently run the sequential algorithm. All 
processors halt immediately after one of them finds a solution with value at least as 
good as τ. The speedup is given by the ratio between the times needed to find a 
solution with value at least as good as τ, using respectively the sequential algorithm 
and the parallel implementation with ρ processors. These speedups are linear for a 
number of metaheuristics, including simulated annealing, iterated local search, and 
tabu search. This observation can be explained if the random variable time to find a 
solution within some target value is exponentially distributed (Verhoeven and Aarts, 
1995). In this case, the probability of finding a solution within a given target value in 
time pt with a sequential algorithm is equal to that of finding a solution at least as 
good as the former in time t using p independent parallel processors, leading to linear 
speedups. An analogous proposition can be stated for a two parameter (shifted) 
exponential distribution. 
 
Aiex et al. (2002) have shown experimentally that the solution times for GRASP also 
have this property, showing that they fit a two-parameter exponential distribution. 
This result was based on computational experiments involving GRASP procedures 
applied to 2400 instances of five different problems: maximum independent set, 
quadratic assignment, graph planarization, maximum weighted satisfiability, and 
maximum covering. The same result still holds when GRASP is implemented in 
conjunction with a post-optimization path relinking procedure. 
 
In the case of multiple-walk cooperative-thread parallel strategies, the threads running 
in parallel exchange and share information collected along the trajectories they 
investigate. One expects not only to speed up the convergence to the best solution but, 
also, to find better solutions than independent-thread strategies. Cooperative-thread 
strategies may be implemented using path-relinking, combining elite solutions stored 
in a central pool with the local optima found by each processor at the end of each 
GRASP iteration. Canuto et al. (2000, 2001) used path relinking to implement a 
parallel GRASP for the prize-collecting Steiner tree problem. A similar approach was 
recently adopted by Aiex et al. (2000) for the 3-index assignment problem. Each 
processor, upon completing its iterations, applies path relinking to pairs of elite 
solutions stored in a pool, and each processor keeps its own local pool of elite 
solutions. The strategy used in Canuto (2000) is truly cooperative, since pairs of elite 
solutions from a centralized unique central pool are distributed to the processors 
which perform path relinking in parallel. Computational results obtained with 
implementations using MPI and running on a cluster of 32 Pentium II-400 processors 
and on a SGI Challenge computer with 28 196-MHz MIPS R10000 processor (Aiex et 
al., 2000) show linear speedups and further illustrate the effectiveness of path 
relinking procedures used in conjunction with GRASP to improve the quality of the 
solutions found by the latter. 
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