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1 Introduction

The bin packing (BP) problem consists of finding the minimum number
m of bins of capacity C necessary to pack a set of weighted items so that
the sum of the weights of the items in each bin does not exceed the bin’s
capacity. BP is known to be closely related to the multiprocessor schedul-
ing problem (P‖Cmax), which is the problem of scheduling n independent
tasks with associated processing times wi on m parallel identical processors
with the objective of minimizing the maximum completion time of a task
(makespan). Both problems are NP-hard [6]. They share the same decision
problem, which is to determine whether all items/tasks can be assigned to
m bins/processors with bin capacity/makespan equal to C. This kind of
dual relationship is explored in the works of Alvim et al. [3, 2].

The authors present a hybrid improvement method incorporating tabu
search for the bin packing problem (HI BP) and its associated multipro-
cessor scheduling problem (HI PCmax). The overall method consists of a
suite of component procedures, each having a specific preprocessing step and
sharing the same core procedure formed by the construction, redistribution
and improvement phases. Tabu search is at the heart of the improvement
phase, fulfilling the function of restoring solutions to feasibility each time a
construction phase produces a solution that violates the problem constraints.

A solution is feasible to BP if the makespan is no greater than the bin
capacity. A solution is feasible to P‖Cmax if it uses no more than m bins.
The construction phase builds a feasible solution to P‖Cmax. Whenever a
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feasible solution to P‖Cmax is not feasible to BP, redistribution phase apply
load balancing/unbalancing strategies to improve bin usability. Finally, if
the current solution is not feasible to BP, the improvement phase uses tabu
search as a means to eliminate capacity violations.

2 The Tabu Search Strategy

The tabu search strategy for reducing capacity violations in the current
infeasible solution operates as follows. The search neighborhood consists
of swap moves which exchange pairs of items, one of them always from a
violated bin. Each move i ↔ k is defined by an ordered pair (i, k) of items
from different bins. The first element in the pair is always an item in the
target violated bin, whose excess deviation is to be reduced. Only moves
that decrease the excess deviation of the target violated bin are considered,
i.e., swap moves for which wi > wk. Let ∆(i, k) be the value of the excess
violation associated exclusively with the bins where these items are placed
after their exchange. Six types of moves are considered, one for each pos-
sible combination of the bins situation after a move i ↔ k: (1) complete
and complete, (2) complete and incomplete, (3) incomplete and incomplete,
(4) complete and violated, (5) incomplete and violated and (6) violated and
violated. The rules allow different choices at different iterations, and are
particularly useful in the context of moves leading to infeasible solutions
that may eventually be made feasible at a later step.

The proposed strategy may be seen as a variant of the “persistent vote”
approach [7, page 134] which also embodies an oscillation strategy. The
integration of multiple decision rules criterion, suggested by the vote, gives
a useful basis for better choices.

One of the important aspects of the oscillation strategy is that it provides
a dynamic variation among the elements subjected to the oscillation, and
gives a basis for learning strategies to enhance the form of the oscillation.

The tabu search strategy known as logical restructuring, which is based
on anticipatory analysis [7], is used to enhance the efficacy of these steps.
In this context, the logical restructuring tries to answer the following ques-
tions: “Which conditions assure the existence of a path that leads to a better
solution?” and “Which intermediate moves can be created to permit these
conditions?”. Intermediate moves are then generated by modifying the eval-
uation used to select transition between solutions or modifying neighborhood
structure which determine these transitions [7].
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3 Experiments and remarks

We report computational experiments for BP and for P‖Cmax. Experi-
ments were performed on a 1.7 GHz Pentium IV, 256 Mbytes of RAM
memory. Detailed computational results are available at [1]. We consider
four groups of test problems for BP. Group-I, distributed by the OR Li-
brary (http://mscmga.ms.ic.ac.uk/jeb/orlib/binpackinfo.html), has 160 in-
stances. Group-II is composed by 1210 instances available from Scholl
and Klein [10]. Group-III is composed by 217 instances distributed by
SICUP [13] and Group-IV is composed by 100 instances of each of 145 ffd-
hard and extremely-ffd-hard classes proposed by Schwerin and Wäscher [11].
HI BP found optimal solutions for all instances of Group-I and Group-II.
HI BP also solved four open instances from Group-II, as reported by Scholl
and Klein [10]. HI BP improved the best results for 11 instances of Group-
III and found the same results for the others. We also compared our re-
sults with those obtained by MTPCS [12] for Group-IV. HI BP performed
consistently better than MTPCS, solving to optimality 97.9% of the 14500
instances against 84.2% by MTPCS.

We considered two groups of test problems for P‖Cmax. Each group
is formed by ten test problems for each of 39 classes. These classes
are characterized by different combinations of m ∈ {5, 10, 25} and n ∈
{10, 50, 100, 500, 1000} with processing times randomly generated in the in-
tervals [1,100], [1,1000], and [1,10000]. The two groups differ by the distribu-
tion of the processing times: uniform [5] and non-uniform [8]. We compared
HI PCmax [2] with the branch-and-bound code (B&B) by Dell’Amico and
Martello [4] with the number of backtracks set at 4000. Table 1 summarizes
the main results obtained by algorithms HI PCmax and B&B on the same
computational environment. For each group of test problems and for each
algorithm, it indicates the number of optimal solutions found over the 130
instances, the maximum absolute errors (w.r.t. the best lower bound), the
average relative errors, and the average computation times in seconds. The
superiority of HI PCmax is clear for the non-uniform instances. It not only
found better solutions, but also in smaller computation times. Recently
work of Paletta and Vocaturo [9] compared their composite algorithm (CA)
with our HI PCmax for the same set of P‖Cmax test problems and also for
unpublished results for Group-I of bin packing instances. The results ob-
tained by CA and HI PCmax are comparable, both in quality and running
time.

The move selection strategy used by the Tabu Search, which combines a
variant of persistent vote and anticipatory analysis, is a major contribution
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Table 1: Comparative results: HI PCmax vs. B&B.

HI PCmax B&B
opt max abs rel avg time opt max abs rel avg time

Group ti ∈ error error (s) error error (s)

[1, 100] 130 0 0.0000 0 130 0 0.0000 0
uniform [1, 1000] 126 1 1.36e-05 0.02 126 3 2.22e-05 0.03

[1, 10000] 110 12 3.46e-05 0.15 107 173 4.33e-04 0.17

[1, 100] 120 7 6.79e-04 0.14 87 20 2.12e-03 2.12
non-uniform [1, 1000] 128 25 1.03e-04 0.20 79 152 1.77e-03 1.52

[1, 10000] 121 253 1.04e-04 0.72 77 880 1.80e-03 3.99

of this work and very likely can be applied to other problems in similar situ-
ations. HI BP and HI PCmax compare favorably with other approaches. In
addition to dominating other methods when it was published more than five
years ago, recently published work [9] for the P‖Cmax shows that HI PCmax
is still a competitor in terms of solution quality and/or computation times.
Observations from [3] about potential enhancements that may further im-
prove the basic method remain to be investigated.
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