PROBABILISTIC TABU SEARCH FOR
TELECOMMUNICATIONS NETWORK
DESIGN

Jiefeng Xu*, Steve Y. Chiu**, and Fred Glover*
*Graduate School of Business, University of Colorado at Boulder, CO 80309-0419.

** GTE Laboratories, Inc., 40 Sylvan Road, Waltham, MA 02254

Abstract. This paper presents a computational study of a network
design problem arising in the telecommunication industry. The objec-
tive can be formulated as that of finding an optimal degree constrained
Steiner tree in a graph whose nodes and edges are weighted by costs.
We develop a probabilistic Tabu Search heuristic for this problem, ad-
dressing issues of move evaluations, error correction, tabu memories,
candidate list strategies and intensification strategies based on elite so-
lution recovery. Computational results for a test set of difficult problem
instances show that the new heuristic yields optimal solutions for all
problems that could be solved by exact algorithms, while requiring only
a fraction of the solution time. In addition, for larger and more realistic
sized problems, which the exact methods were unable to solve, compu-
tational results show our method also outperforms the best local search
heuristic currently available.

Key words. Steiner Tree-Star, Tabu Search, Telecommunications Net-
work Design.

This research was supported in part by the Air Force Office of Scientific
Research AASERT grant #F49620-92-J-0248.DEF.

Published in Combinatorial Optimization: Theory and Practice, Vol. 1,
No. 1 (1996), pp. 69-94.

2 Jiefeng Xu, Steve Y. Chiu and Fred Glover

1. Introduction

Designing a cost-effective digital network is a critical issue in the success of
today’s telecommunication industry. In this paper, we address a problem of
designing a private line digital data service (DDS) network over a finite set
of customer locations. To provide mutual communication between customers,
each customer location must be connected to its designated wire center that in
turn needs to be connected to one of the data switching offices with bridging
capabilities, called a hub. Furthermore, if more than one hub is chosen to be
active, those active hubs must be interconnected by digital lines so that the
customers connected with different wire centers can communicate with each
other via the resulting hub network.

The costs involved in DDS network design include the fixed bridging costs
for every active hub in the network, the variable bridging costs for each incom-
ing and outcoming lines in all active hubs, and the transport costs for each
link between a customer location and its designated wire center, or between a
wire center and its assigned hub, or between two active hubs. These costs are
calculated according to the tariff charges established by the Federal Commu-
nications Commission (FCC). The problem is to design such a network that

minimizes the total costs. Figure 1 illustrates a simple DDS network scenario.

Probabilistic T'S Heuristic for Telecomm. Network Design 3

As shown in this diagram, the number of lines between a wire center and its
assigned hub is equal to the number of customer locations connected to that

wire center.

The DDS network design problem can be simplified by reference to a Steiner
Tree framework. (For more on Steiner Tree problems, see for example the
survey by Duin and Vof, 1994.) It is well known that the most cost effective
architecture for interconnecting all active hubs is a minimum spanning tree
over these active hubs. Since the linking cost per line between a wire center
and a potential hub is fixed and the bridging cost per line for that hub is also
known, we can pre-calculate the cost of connecting a customer location to a
hub by adding up these two terms. Thus, the intermediate wire centers can
be eliminated and therefore the DDS network problem can be converted into
an extension of the Steiner Tree Problem, where the hubs define the Steiner
nodes and the customer locations define the target nodes. More specifically, the
new problem can be formulated as an extension of the standard Steiner Tree
Problem that includes the addition of node-associated weights (fixed bridging
costs for the hub) and of degree constraints on the target nodes. This problem

was first investigated by Lee et al (1994) and then Lee, Chiu and Ryan (1995).

4 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Since the target nodes form a star topology around the active Steiner nodes,
and the active Steiner nodes are connected as a tree, this problem is also called
a Steiner tree-star (STS) problem. Figure 2 illustrates a solution for the STS

problem that corresponds the DDS network scenario in Figure 1.

Lee, Chiu and Ryan (1995) show that the STS problem is strongly NP-
hard, investigate valid inequalities and facets of the underlying polytope of
the STS problem, and implement a branch and cut procedure for solving the
problem exactly. A separation procedure based on a maximal flow algorithm
is devised to find the violated facets if the resulting relaxation solutions are
fractional. The branch and cut procedure is also equipped with a specially
designed heuristic to find a high quality upper bound solution within acceptable
time bounds.

As in most other applications involving strongly NP hard problems , the
computational complexity of the problem limits the size of problems that can be
solved optimally. The branch and cut procedure of Lee, Chiu and Ryan (1995)
is able to solve 100 node instances of the STS problem, but encounters severe

difficulties for problems beyond that size. The design of an efficient heuristic

Probabilistic T'S Heuristic for Telecomm. Network Design 5)

therefore becomes of paramount importance for dealing with problems of larger
sizes, and constitutes the key focus of our research.

In this paper, we explore an implementation of probabilistic Tabu Search
(TS) for the STS problem. For a comprehensive overview of Tabu Search and

its applications, see Glover and Laguna (1993) and Glover (1995).

This paper is organized as follows. Section 2 describes the probabilistic TS
based heuristic for the STS problem and examines several relevant issues, such
as long term memory, probabilistic move selection, neighborhood structure,
move evaluation, error correction, candidate list strategies and an advanced
restart /recovery strategy. In section 3, we report computational results on
three sets of specially designed test problems, accompanied by comparisons
with the solutions obtained by the exact algorithm and a heuristic approach
called LS, which was found by Lee, Chiu and Ryan (1995) to be very effective
for this problem. In addition, we provide an extension and improvement of the
LS heuristic and report its performance. Section 4 summarizes our methodol-
ogy and findings. In addition, we include a description of the LS heuristic in
Appendix A and provide a high-level pseudocode in Appendix B to facilitate

the reading and comprehension of our TS algorithm.

6 Jiefeng Xu, Steve Y. Chiu and Fred Glover

2. The Probabilistic TS Based Heuristic

We begin by indicating an apparent property of the STS problem that is fun-

damental for our heuristic design.

STS Property: In an optimal STS solution, every target node is linked to an
active Steiner node that gives a minimum cost connection for the target node
(over the active Steiner node set). Consequently, once the active Steiner nodes

are selected, the links for the target nodes can be determined immediately.

The foregoing property is a trivial consequence of the STS definition. By
reference to it, we focus our search on the goal of finding the active Steiner
node set associated with an optimal solution. Once such a set is found, an
optimal solution can be thereby discovered by first constructing a minimum
spanning tree on the active Steiner nodes and then linking every target node
to its cheapest active Steiner node (i.e. the active node to which it connects

by the least cost link).

Probabilistic T'S Heuristic for Telecomm. Network Design 7

2.1. Neighborhood Structure and Moves. We divide the Steiner nodes
into the disjoint subsets of active nodes (A) and inactive nodes (A). The moves
that define the neighborhood structure for our procedure consist of transferring
a chosen node from one of these two subsets to another, and of exchanging two

nodes between these subsets. Specifically, we divide the transfer moves into the

following two elementary types:

(1) constructive move: transfer a selected Steiner node from A to A. This move
increases the cardinality of the set A by one and thereby forms a new spanning

tree by adding a node. This move is disallowed if the set A is empty;

(2) destructive move: transfer a Steiner node from A to A. This move reduces
the cardinality of the set A by one, deleting the active Steiner node from the
current spanning tree, and requiring a new smaller spanning tree to be con-

structed. This move is disallowed if the set A is empty.

Any set A can be reached via a sequence of constructive and/or destruc-
tive moves starting from any solution configuration. Thus, constructive and
destructive moves are considered to be elementary moves in the search process.
Pairwise exchange (swap) moves, which exchange one active Steiner node with
one inactive Steiner node, can be viewed as a combination of a constructive

and a destructive move. Such a combined move leaves the cardinalities of both

8 Jiefeng Xu, Steve Y. Chiu and Fred Glover

set A and A unchanged, but requires the spanning tree to be reconstructed.
The swap move is disallowed if either the set A or A is empty.

Because a swap move involves a more significant change in the spanning tree
(and hence requires a more complex evaluation of its consequences), we per-
form it more sparingly in the search process. In particular, we apply it chiefly
to produce periodic perturbation and conditional oscillation. A perturbation
step is guided by elementary moves and executed once for every certain number
of iterations. The conditional oscillation step is designed to achieve a greater
intensification of the search, by executing swap moves for some number of iter-
ations when the search cannot improve the solution for a pre-defined duration.
This two-level mechanism proves effective and efficient in our application, since
we find that a dominant reliance on the elementary moves, when handled intel-
ligently, yields good decisions with only occasional reliance on more complex

moves.

2.2. Move Evaluation. Once the subset A is determined, the cost of the
current STS solution can be calculated by: (1) constructing a minimum span-
ning tree over A and identifying the resulting cost, plus (2) linking every target
node to its cheapest-link Steiner node and finding the sum of the resulting
connection costs. The second part can be easily implemented by maintaining
a presorted list for every target node, which records the connection costs from

this target node to every Steiner node. Thus, the corresponding connection

Probabilistic T'S Heuristic for Telecomm. Network Design 9

costs can be found in linear time for each target node. The key issue of the
move evaluation therefore becomes the spanning tree construction.

Though the minimum spanning tree problem can be solved trivially over a
finite node set, it is very expensive computationally to do this for every move
evaluation. Instead, a good and quick cost estimate of the new spanning tree

is desired.

Constructive Move Estimate. A simple cost estimate suffices for a construc-

tive move by linking the added Steiner node to its cheapest Steiner node in the
tree. This increases the cost of the spanning tree by adding one new edge. The
resulting spanning tree is not necessarily the minimum one and so the estimate
is an upper bound on the true minimum cost. However, the added edge belongs

to a minimum spanning tree for this choice of active nodes.

Destructive Move Estimate. The destructive move estimate becomes more com-

plex, since dropping a Steiner node deforms the spanning tree. We use a
candidate list strategy to simplify the estimate procedure and to concentrate
attention on a promising subset of moves. In particular, we avoid evaluating
the whole neighborhood by restricting attention to destructive moves involving
only those Steiner nodes whose degree does not exceed three in the current
spanning tree. The prototypes for reforming the new spanning tree are estab-

lished for the cases of Steiner nodes with degree one, two, three respectively.

10 Jiefeng Xu, Steve Y. Chiu and Fred Glover

These are illustrated in Figure 3 where the dotted line represents the link before
the move, the solid line represents the link after the move and the bold circle

denotes the Steiner node that is moved.

In (c) of Figure 3, the reconnection consists of adding the two shorter edges
of the indicated triangle (formed by the three nodes previously connected to
the node dropped). Once again, these estimates provide a quick approximation

of the optimal cost of the new spanning tree.

Swap Move Estimate: The swap move estimate makes use of both the destruc-

tive and constructive move estimates. Consider two Steiner nodes x and y where
x € A and y € A, the swap of x and y can be performed by first dropping node
x and then adding node y. We estimate the swap cost by first calculating the
cost of dropping node x, and then adjusting the cost by adding node y to the
newly formed spanning tree.

For a swap move evaluation, effort must be taken to reduce the computa-
tional expense when the number of Steiner nodes is moderately large. For that

purpose, a natural candidate list is constructed to isolate a promising subset

Probabilistic TS Heuristic for Telecomm. Network Design 11

of the swap moves. This candidate list restricts attention to pairs (x,y) whose
elements are drawn from the k best destructive and constructive moves where
k is an integer in the range of 5 to 15. This candidate list strategy is loosely
supported by the idea of the Proximate Optimality Principle (POP) that says
good solutions at one level (for example, produced by either the destructive or
the constructive move) are likely to be found close to good solutions at an adja-
cent level (i.e., produced by the swap move). As a consequence, this candidate
list is used to screen for the good partial moves whose composition may give a
good candidate to evaluate. Such a candidate list strategy proves to be much
faster than evaluating the whole swap neighborhood, yet yields comparably
good outcomes, as the computational tests disclose in section 3.

Since the swap moves are performed only periodically (conditionally), we
collect the k best destructive and constructive moves only before such a series
of swap moves is to initiated. Furthermore, the collection of the good partial
moves makes use of pool storing and isolating a certain number of best moves

for probabilistic move selection, as described later.

2.3. Error Correction.. The approximations used for move evaluation
raise the issue of error correction. The error — that is, the difference between the
estimated and true cost of a minimum spanning tree — can be readily corrected
by applying a minimum spanning tree algorithm to the current active Steiner

node set. This correction process is conducted when the estimated cost discloses

12 Jiefeng Xu, Steve Y. Chiu and Fred Glover

that a “new best” solution is found (since the estimate can never understate
the true cost). It is also performed on a periodic basis to counter a progressive
accumulation of error. This periodic correction seeks to balance the tradeoff
between expected accuracy and speed of executing the algorithm.

To achieve this, we manipulate a priority queue that includes a selected
number of elite solutions encountered so far during the search, where these
solutions consist of those actually visited (without error correction) and also of
those that may potentially be visited by means of currently available candidate
moves. The priority queue is ordered by the estimated costs of its component
solutions. Error correction is then periodically performed on each element
in this queue. Once an element’s true cost is thus identified, this element is
marked so that no repetitive error correction is executed on this element in the
future. At the same time, the element is repositioned in the queue according to
its new cost. Thus, when a new elite element is encountered whose estimated
cost is better (smaller) than the cost of the current worst element of the queue,
the new element is added and the worst element is dropped from the queue.
Because of periodic updating, the costs associated with queue elements can be
a mix of true costs and estimated costs. The updating of the priority queue
is further enhanced by applying a sorted pointer list to facilitate the add and
drop operations. As a byproduct, this elite list can also serve as a pool of points
for advanced restarting. We describe this option later.

The cost approximation inevitably has a significant influence on move selec-

tion. To further compensate for the effects of approximation, we also use a move

Probabilistic TS Heuristic for Telecomm. Network Design 13

selection rule based on probabilistic tabu search, as described in subsection 2.5.

2.4. Tabu Search Memories. The core of the algorithm is the use of TS
memory structures to guide the search process. A short term memory is em-
ployed principally to prevent the search from being trapped in a local optimum,
and to introduce vigor in the search process. A long term memory is used to

handle more advanced issues, such as intensification and diversification.

Short Term TS Memory. The short term memory operates by imposing re-

strictions on the composition of new solutions generated (typically expressed
as a restriction on attributes of these solutions). For elementary moves, we
impose restrictions that assure a move cannot be “reversed”. In particular, if
the node x is added to the active Steiner node set A (transferred from A to A,
we forbid this node to be transferred back to A for several iterations. Similarly,
if the node y is dropped from the active node set A (transferred from A to
A, we forbid the node to be transferred back to A for several iterations. For
swap moves, we impose the tabu restrictions on moves in both directions. If
an active node x is swapped with an inactive node y on the current move (x
is transferred from A to A and y is transferred from A to A), the restriction
inhibits both transferring node x back to A and transferring node y back to

A. Such a restrictive mechanism prevents the search from revisiting a local

14 Jiefeng Xu, Steve Y. Chiu and Fred Glover

optimum in the short term and greatly diminishes the chance of cycling in the
long term.

How long a given restriction operates depends on a parameter called the
tabu tenure, which identifies the number of iterations a particular tabu restric-
tion remains in force. The tabu tenure can be either fixed or variable, but
a tenure that varies within a small range about a central value often proves
more robust. Moreover, in our application, we allow the central value to differ
according to the move type. Since a constructive move that adds a node to A
introduces a fixed cost, and thus makes the move appear less attractive than
a destructive move, we assign a longer tabu tenure to avoid destructive moves
than to avoid constructive moves. Customary criteria, by contrast, would as-
sign tabu tenures based on the relative sizes of A and A. That is, longer tenures
would be given to placing a node back in the smaller set, because there are more
options to move a node from the larger set to the smaller set than to move a
node in the opposite direction. We have not tested this alternative in this
study.

An important TS component is the use of aspiration criteria to allow a
restriction to be overridden if the outcome of the move is sufficiently desirable.
A commonly-used criterion is to override the restriction if the current candidate
move would lead to a new best solution. However, as stated before, our move
costs are estimated and therefore contaminated with some “noise”. Accordingly

we use a simple but a more robust aspiration criterion to accept any move that

Probabilistic TS Heuristic for Telecomm. Network Design 15

leads to a solution better than the third best, provided the move does not
duplicate the cost of either of the two current best solutions. To apply this
criterion, we perform an immediate correction of any cost that falls in this high
category. Again, the top three best solution can be readily found from the
ordered elite list.

Short term memory can be efficiently implemented using a recency-based
memory structure. To illustrate this, let iter denote the current iteration num-
ber and let tabu_ add(x) and tabu drop(y) denote the future iteration values
governing the duration that will forbid a reversal of the moves of adding node
x and dropping node y (i.e. by preventing node x from being dropped and
node y from being added). Similarly, let tabu_add_tenure and tabu_drop_tenure
be the values of tabu tenures for these two moves. Initially, tabu_add(z) and
tabu_drop(z) are set to zero for all nodes z, and iter starts at one. When the

TS restriction is imposed, we update the recency memory as follows:

tabu_drop(x) = iter + tabu_drop_tenure (for the constructive move of adding
node x, to prevent x from being dropped),
tabu_add(y) = iter 4 tabu_add_tenure (for the destructive move of dropping

node y, to prevent y from being added).

Once a node x has been added, by transferring it from A to A, we refer to
it notationally as a node y in A, to consider the possibility of dropping such

a node by transferring it from A to A. Thus the restriction to prevent such

16 Jiefeng Xu, Steve Y. Chiu and Fred Glover

a node y from being dropped is enforced when tabu drop(y) > iter. Similarly
the restriction to prevent a node x from being added (where x was previously
denoted as y when dropped) is enforced when tabu_add(x) > iter. As previously
noted, we select the central value for tabu_add_tenure to be smaller than that
of tabu_drop_tenure. Let best_move cost be the evaluation (estimated cost) of
the move we select. Also define cost(.) as the move evaluation value. Then
the move selection procedure incorporating the TS restrictions and aspiration

criteria proceeds as follows:

Assign a large value to best_move_cost.
For each candidate inactive Steiner node x, do
if cost(x) < best_move_cost do
if the aspiration criterion is satisfied or tabu_add(x) <= iter do
best_move_cost = cost(x).

For each candidate active Steiner node y, do
if cost(y) < best_move_cost do
if the aspiration criterion is satisfied or tabu_drop(y) <= iter do
best_move = cost(y).

For the exchange move, we have

Assign a large value to best_move _cost.
For each candidate pair of inactive node x and active node y, do
if pair (x,y) is in candidate list, do
if cost(x,y) < best_move_cost do
if cost(x,y) < best_sol_cost or
(tabu_add(x) <= iter or tabu_drop(y) <= iter) do
best_move_cost = cost(x,y).

Probabilistic TS Heuristic for Telecomm. Network Design 17

Long Term TS Memory. The long term TS memory we employ makes use of a

frequency based memory structure to achieve a diversification effect, encourag-
ing the search to explore regions less frequently visited.

More specifically, we use this memory to discourage moves that occurred
frequently during the search (and consequently to encourage moves that oc-
curred less frequently). A transition measure is used to record the number of
times each Steiner node changes from an active status to an inactive status
or vice versa. Let frequencyO(x) be the number of times that Steiner node x
is changed from active to inactive, frequencyl(x) be the number of times that
Steiner node x is changed from inactive to active. These frequencies can easily

be updated as follows:

frequency0O(x) = frequencyO(x) + 1 if the move is destructive;

frequencyl(x) = frequencyl(x) + 1 if the move is constructive.

This transition measure is then normalized to lie in the interval [0,1] by di-
viding by the maximum of frequency0(.) or frequencyl(.) as appropriate. This
normalized value is then linearly scaled by a selected constant to create a
penalty term. The penalty term is added to the corresponding move evalua-
tion so that the frequency factor is taken into account in the move selection
procedure.

It should be cautioned, however, that there are additional uses of long term

memory in tabu search that we have not undertaken to examine here, including

18 Jiefeng Xu, Steve Y. Chiu and Fred Glover

those with the goal of balancing both intensification and diversification simul-

taneously.

2.5. Probabilistic Move Selection. The move selection approach of prob-
abilistic tabu search, as formulated by Glover (1989), has been successfully ap-
plied in solving general 0-1 mixed integer programming problems (see Glover
and Lgkketangen, 1994). The fundamental idea is simply to translate tabu
restrictions and aspirations into penalties and inducements that modify the
standard evaluations, and then to map these modified evaluations into prob-
abilities that are strongly biased to favor the highest evaluations. We are
particularly motivated to apply this approach in the present setting as a result
of observations of Glover and Lgkketangen (1994) concerning the uses of prob-
abilities to combat “noise”. Specifically, recall that we refine the candidate list
and create the move evaluation based on a cost approximation. Thus the move
evaluation is contaminated by a form of noise, so that a “best evaluation” does
not necessarily correspond to a “best move”. Therefore we seek a way to assign
probabilities that somehow compensates for the noise level.

Probabilistic move selection also has an evident diversification role. It
should be noted that the probabilistic mechanism of tabu search is somewhat
different from that of approaches like simulated annealing (SA), not only by
incorporating the influence of memory but by accounting for evaluation differ-

ences at a more refined level. In contrast to simulated annealing, for example,

Probabilistic TS Heuristic for Telecomm. Network Design 19

tabu search does not resort to random sampling (which excludes direct com-
parison of different evaluations), and does not consider all improving moves as
having the same status (which in SA compels any such move encountered to
be selected).

Again, following the approach used in the mixed integer programming set-
ting, we apply probabilistic tabu search in the following form (subject to a

special modification indicated subsequently).

Step 1 Generate the candidate list and evaluate the moves of this list,
assigning penalties to moves that are tabu.

Step 2 'Take the move from the candidate list with the highest evalua-
tion.
If the move satisfies the aspiration criterion, accept it and exit;
Otherwise, continue to Step 3.

Step 8 Accept the move with probability p and exit;
Or reject the move with probability 1 — p, go to Step 4.

Step 4/ Remove the move from the candidate list.
If the list is now empty, accept the first move of the original
candidate list and exit. Otherwise, go to Step 2.

In practice, if the candidate list is moderately large, the foregoing procedure
can be simplified by considering a reduced number of moves for probabilistic
selection. For this, we create a pool to store a certain number of best moves
from the candidate list (penalizing tabu moves as before), thus effectively cre-
ating a new and smaller candidate list. This simplification is based on the

high probability of choosing one of the first d moves, for modest values of p,

20 Jiefeng Xu, Steve Y. Chiu and Fred Glover

even if d is relatively small. To illustrate this, we observe the following property:

Property: For the indicated probabilistic move selection, the probability of

choosing one of the d best moves in the candidate list is 1 — (1 — p)d.

Thus if p = 0.3, the probability is about 0.832 for picking one of the top
five moves, and about 0.972 for picking one of the top ten moves. We selected
p = 0.3 as a basis for our subsequent experiments.

In addition, as noted previously, this pool can also serve to identify the k
best destructive and constructive moves for generating the candidate list for
swap moves at the next iteration. The candidate list produced at the preced-
ing iteration is not the same as that produced at the beginning of the swap
move. However, for problems with reasonable size, we observe that the differ-
ence between these two lists is very insignificant. We adopt this approximated
candidate list obtained from the move selection pool at the iteration preceding
the swap move (where constructive and destructive moves are evaluated). This
reduces the effort of collecting k best partial moves, and consequently allows
us to perform the swap moves more frequently during the search. To imple-
ment this approach, we simply set the size of the pool equal to k. Thus, at the
iteration preceding the swap move, the k best moves are collected separately
for destructive and constructive moves, and then preserved for constructing the
candidate list used at the next iteration. Finally, these two lists of k best moves

are merged into the same-sized pool for probabilistic move selection.

Probabilistic TS Heuristic for Telecomm. Network Design 21

Instead of using the static value of selection probability p in Step 3, we in-
troduce a modification to take fuller account of the relative move evaluations.
Specifically, we fine-tune the probability of selection based on the ratio of the
move evaluation currently examined to the value of the best solution found so

= where r represents the

far. This selection probability is calculated by p
indicated ratio and o and (3 are positive parameters. Recall that our aspiration
criterion is to accept the move that leads to a solution better than the third
best solution (i.e. with a lower cost evaluation) and does not duplicate the first
two best solution, thus r > 1 even in some cases where the aspiration criterion
is satisfied. With the values of o and (3 set appropriately, the new probabil-
ity function provides a fine-tuned probability to discriminate among different
evaluations, and favor those proportionately closer to the best solution value.
This increases the chance of selecting “good” moves. For example, if « is set to
1.0 and 3 is set to 0.15, then a move with an evaluation 1.01 times the best so-
lution cost (r = 1.01) has a selection probability of 0.355, which is higher than
the base probability 0.3; for a move with r = 1.2, the selection probability is
0.282, which is lower than the base probability 0.3. In particular, the additional

fine-tuned mechanism yields probabilities greater than p for r < (1 +)/, and

probabilities less than p for r > (1 4 3)/a.

2.6. Advanced Restarting and Recovery. Strategies that employ random

restarting are often used with simple local search (of the type that always

22 Jiefeng Xu, Steve Y. Chiu and Fred Glover

terminates with a local optimum). In this case, restarting gives a chance to
find other local optima. In TS, restarting takes a range of forms, according
to the degree of emphasis placed on diversification or intensification — that is
, according to the degree of driving away from regions already explored, or
driving toward particularly good elements.

In an intensification strategy, which is the type we consider here, one of
the variants is not to return to an initial “null” state to restart from scratch,
but instead to jump directly to an elite solution found previously in the search.
This approach involves a form of solution recovery that bears a superficial
resemblance to the “best branch” rule of branch and bound. However, a critical
difference is that the flexibility of the search structure in our approach makes
it possible to locate and return to solutions in a much more fluid manner
than permitted in branch and bound. Further, the sequence of recovering such
solutions (which in some instances involves recovering multiple solutions in
parallel (Glover, 1977)), follows a more flexible pattern, as does the mode of
expecting the solutions once recovered.

The use of advanced restart /recovery strategies as an intensification compo-
nent in Tabu Search has proved effective in a number of applications, including
job scheduling, flow shop scheduling and quadratic assignment problems. One
of the highly successful variants (Nowicki and Smutnicki (1993, 1994)) records
TS memory along with the solutions saved, together with an added tabu re-

striction to avoid revisiting the same solution visited in earlier search departing

Probabilistic TS Heuristic for Telecomm. Network Design 23

from the same solution. Another successful variant (Voss, 1993) requires the
solutions recovered to exhibit a certain diversity in relation to each other.

In this application, we employ a variant that postpones the recovery of elite
solutions until the last stage of the search. Each recovered solution launchs a
search that constitutes a fixed number of iterations before selecting the next
solution to recover. The same elite solution list maintained for error correcting,
described in section 2.3, serves naturally as a pool of solution for this final
stage. Solutions are recovered from this pool in reverse order, that is, by
stating from the solution with the worst evaluation and working toward the
solution with the best evaluation. The list is updated each time a solution
is found better than the current worst solution in this elite pool. We merely
insert the new solution in its proper location, dropping the worst solution.
To enable more elite solutions to be recovered, we thus allow the number of
solutions recovered to be larger than the size of the original size of the elite
pool. We implement the elite pool for restart/recovery as a circular list, that
is, when the best solution (last element) in this pool is recovered, we move
back around to the current worst solution (first element) and work toward
the best solution again. For each solution recovered, all tabu restrictions are
overridden and reinitialized. Thus, while this approach is somewhat simpler
than that of Nowicki and Smutnicki (1993, 1994), for example, by not saving
the associated tabu memory and its added TS restriction, we anticipate that

our use of probabilistic move selection establishes an implicit diversification

24 Jiefeng Xu, Steve Y. Chiu and Fred Glover

that compensates for this use of memory. (This type of compensation effect is
one of the motivating features of probabilistic TS (Glover, 1989).)
Our simple recovery strategy coupled with probabilistic TS works well for

our hardest test problem set, as the subsequent computational results disclose.

3. Computational Results

In this section, we report our computational outcomes for three sets of test
problems. The first two sets of problems are generated randomly from dis-
tributions whose parameters are selected to create the most difficult problem
instances from a computational standpoint. The last set of problems is gener-
ated to represent a special case arising in Steiner Tree problems. All test data

are available on request from the authors for the purpose of comparability.

3.1. Parameter Settings of Probabilistic TS. An initial solution for
our TS approach is produced simply by connecting every target node to its
cheapest-link Steiner node, and then constructing a minimum spanning tree on
the set of selected Steiner nodes. Since this initial solution does not address
the tradeoff between Steiner node costs and target node costs, it is usually a
poor quality solution. Our TS approach starts from this solution to search for
progressively better solutions.

Tabu tenures for the three types of moves in the T'S procedure are randomly

generated from an associated (relatively small) interval each time a move is

Probabilistic TS Heuristic for Telecomm. Network Design 25

executed. The interval [1,3] is used for constructive moves and the interval
[2,5] is used for destructive moves. In the case of swap moves, an interval of
[1,3] is used for each of the two elementary moves composing the swap. Most
TS applications use intervals that are centered around somewhat larger values.
Apparently, the ability to use these small intervals successfully, without cycling,
is aided by the fact that the search oscillates between the two different types
of elementary moves. The smaller tabu tenures conceivably help the search
explore promising regions more thoroughly.

Swap moves are executed either once every seven iterations or in a block
of five consecutive iterations when no “new best” solution is found during
the most recent 200 iterations. The search process terminates upon reaching
max_iter iterations, where max_iter is set to min(20000, max(3000,n?))/2. The
error correction procedure is executed each time a “new best” solution is found,
and is applied to the current solution after every three accumulated moves, not
counting destructive moves that drop nodes of degree one. Error correction is
also applied every 200 iterations to the priority queue that stores the twenty
best solutions.

Long term memory is activated after 500 iterations, so that it can be based
on relatively reliable frequency information. The penalty term based on long
term memory is calculated by multiplying 300 by the normalized frequency for
elementary moves, and multiplying 150 by the sum of the two respective nor-

malized frequencies for swap moves. In probabilistic move selection, we choose

26 Jiefeng Xu, Steve Y. Chiu and Fred Glover

the probability of acceptance p = 0.3, as previously noted. We additionally use
the simplification of shrinking the candidate list for the probabilistic rule to
contain the ten best moves (adjusted for tabu penalties), since the probability
of selecting a move outside the reduced list would be less than 0.03. The num-
ber k, which indicates the number of best destructive and constructive moves
to be selected for constructing a candidate list for swap moves, is also set to
ten. The two parameters used in the fine-tuned selection probability function,
« and [, are set to 1.0 and 0.15 respectively.

For the advanced restart/recovery strategy, the number of solutions re-
covered (num_recover) is selected as max{40,10 % [0.01 * max_iter/30]}. For
each recovered solution, a block of 30 iterations is executed. Thus, the recov-
ery strategy begins at iteration iter_recover = max_iter — 30 % num_recover and
is executed every 30 iterations thereafter. If iter_recover is negative, the restart
is never executed since the iteration counter starts at zero. However, since
max_iter is at least 1,500 in our setting, the number iter_recover is at least 300,
indicating that recovery is always executed.

To verify and validate the performance of probabilistic tabu search (PTS),
a simple version of TS is adapted for comparison. Instead of incorporating the
long term memory function and the probabilistic move selection as in PTS, this
simple version employs the short term memory described in section 2.4 together
with the most commonly-used aspiration criterion (override the TS restriction

if a “new best” solution is found),. This approach, which we denote by TSS,

Probabilistic TS Heuristic for Telecomm. Network Design 27

also evaluates the whole neighborhood of the swap moves rather than using the
candidate list in PTS. All parameters required in TSS, including max_iter, are
set to the same as those in PTS, so comparisons between PTS and TSS are

meaningful.

3.2. Tests on Randomly Generated Problems. The locations of target
nodes and Steiner nodes are randomly generated in Euclidean space with coor-
dinates from the interval [0, 1000]. Euclidean distances are used because they
are documented to provide the most difficult instances of classical randomly
generated Steiner Tree problems (see Chopra and Rao 1994). The fixed cost
of selecting a Steiner node is generated randomly from the interval [10,1000],
which provides the most difficult tradeoff with the other parameters selected
(see Lee, Chiu and Ryan, 1995).

The first set of test problems is generated as in Lee, Chiu and Ryan (1995)
, and is restricted to problems of relatively small dimensions that were capable
of being solved by the branch and cut approaches of this study. Problems from
the second test set have larger (more realistic) dimensions, and are beyond the
ability of current exact methods to solve. The tables that report our results
represent the problem dimensions by m and n, which identify the number of
target and Steiner nodes respectively. CPU times represent seconds on a Sun

Sparc workstation 10 , Model 512.

28 Jiefeng Xu, Steve Y. Chiu and Fred Glover

The first set consists of 23 test problems where m ranges from 50 to 150,
and n ranges from 10 to 90. For comparison, we list the solution values and
CPU times for the branch and cut algorithm described in Lee, Chiu and Ryan
(1995). We also include solution information for a special heuristic (denoted
LS) that is described in Lee, Chiu and Ryan (1995) and provides the upper
bound for their exact algorithm. This heuristic strategically generates a set of
initial solutions and then improves them using local search. The computational
results in Lee, Chiu and Ryan (1995) showed that for problems with sizes and
parameters distributions represented by our first problem set, this heuristic can
find solutions within 0.6% from the optimum while requiring only a fraction of
the time required for the exact method. We list this heuristic in the appendix.
Finally, Results for two tabu search methods, PTS and TSS, are reported.
Computational results for the first set of test problems appear in Table 1. For
ease of comparison, we only list the percentages of the cost and CPU times
for PTS, LS and TSS in relation to the values of these elements for the exact

method.

Probabilistic TS Heuristic for Telecomm. Network Design

29

Problem Exact Method PTS/Exact LS/Exact TSS/Exact
(m xn) | Cost | CPU (sec.) | Cost (%) | CPU (%) | Cost (%) | CPU (%) | Cost (%) | CPU (%)
50 x 10 15010 1 100.00 100.00 100.00 100.00 100.00 100.00
100 x 10 | 23603 3 100.00 33.33 100.00 66.67 100.00 33.33
150 x 10 | 37526 10 100.00 20.00 100.00 90.00 100.00 10.00
50 x 20 11562 13 100.00 7.69 100.07 7.69 100.00 7.69
100 x 20 | 18815 31 100.00 9.68 100.00 19.35 100.00 12.90
150 x 20 | 28240 26 100.00 19.23 100.00 73.08 100.00 26.92
50 x 30 9965 43 100.00 6.98 100.00 2.33 100.00 6.98
100 x 30 | 18702 109 100.00 4.59 100.00 8.26 100.00 6.42
150 x 30 | 25026 442 100.00 1.81 100.00 6.79 100.00 2.71
50 x 40 11083 508 100.00 0.59 100.08 0.20 100.00 0.98
100 x 40 | 17738 139 100.00 4.32 100.40 8.63 100.00 7.91
150 x 40 | 23781 570 100.00 1.58 100.00 7.19 100.00 3.33
50 x 50 10549 521 100.00 0.77 100.13 0.38 100.00 1.34
100 x 50 | 16703 493 100.00 1.42 100.00 3.25 100.00 3.65
150 x 50 | 23428 441 100.00 2.49 100.00 12.47 100.00 6.12
50 x 60 9692 448 100.00 1.34 100.00 0.45 100.00 2.68
100 x 60 | 15988 2216 100.00 0.45 100.23 1.08 100.00 1.17
150 x 60 | 21893 1349 100.00 1.19 100.07 6.38 100.00 3.26
50 x 70 9969 5185 100.00 0.21 100.96 0.06 100.00 0.44
100 x 70 | 15456 6277 100.00 0.27 100.04 0.37 100.04 0.73
150 x 70 | 22204 20512 100.00 0.12 100.09 0.36 100.00 0.37
20 x 80 4812 2261 100.00 0.40 103.08 0.04 100.00 0.75
10 x 90 3435 4759 100.00 0.25 100.00 0.02 100.29 0.36
Average — — 100.00 9.51 100.25 18.05 100.01 10.44

Table 1: Computational Results on Small Size Problems

From Table 1, we find that the computation times for the exact method

increase exponentially with m and n, and are particularly sensitive to n. Con-

sequently, it is not surprising that the larger instances of the STS problem were

not capable of being solved using the current exact method. For the LS, PTS

and TSS procedures, the CPU times grow at a far smaller rate. While the value

of n correlates with the difficulty of the problem, the value of m chiefly influ-

ences the time required for the move evaluation. All three heuristics take only

a fraction of the time required by the exact method. Among the three, PTS

takes less time than TSS for most cases due to the effect of the candidate list.

PTS and TSS take about the same time as LS for most of the test problems,

30 Jiefeng Xu, Steve Y. Chiu and Fred Glover

but require more time when n increases significantly (i.e. last two problems
in Table 1). For these problems from the small size group, LS finds optimal
solutions in thirteen cases and finds solutions relatively close to the optimum
(within 3.08%) in the remaining ten cases. TSS finds optimal solutions in 21
cases and near-optimal solutions in two cases. P'TS is the best by finding all
optimal solutions.

The dimensions for the second set of the test problems are as follows. The
value of n for the first fifteen problems ranges from 100 to 200 in increments of
25. For each n, three problems are generated by setting m equal to n, n + 50
and n + 100 respectively. The last six problems in this set are designed to
be particularly hard and have dimensions 250 x 250, 300 x 250, 350 x 250,
100 x 300, 200 x 300 and 300 x 300. Since exact methods are unable to handle
problems of this second set, comparisons are performed among the three heuris-
tics. In addition, we examine the results of extending the LS method to include
the probabilistic influence of probabilistic tabu search, also without using TS
memory, so that the decisions are based solely on the LS choice criteria. We
denote this latter method by LS-PTS’. Note that LS runs much faster than
PTS and TSS when n is moderate large, and the gap between speeds becomes
significantly enlarged on the problems of large dimensions. This makes any
direct comparisons between LS-PTS? and its TS counterparts misleading. To
avoid this imperfection, we allow LS-PTS? to be restarted from scratch n +m

times, so the computation devoted to LS-PTS? approximately matches that of

Probabilistic TS Heuristic for Telecomm. Network Design

PTS and TSS for the first few smallest problems in our subsequent test sets.
Clearly, LS-PTS? is an enhancement of LS and performs significantly better

than LS from our preliminary tests, hence increasing the motivation to test it

on the harder problems.

We evaluate the PTS heuristic for second set problems by comparing its

performance to that of the LS-PTS? and TSS. Table 2 lists the costs and CPU

times by PTS and the percentage of the other two heuristics.

Problem PTS TSS/PTS LS-PTS"/PTS
(mxn) | Cost | CPU (sec.) | COST (%) | CPU (%) | Cost (%) | CPU (%)
100 x 100 | 16166 52 100.00 286.54 100.00 163.46
150 x 100 | 19593 73 100.00 367.12 100.00 350.68
200 x 100 | 25102 92 100.00 453.26 100.64 589.13
125 x 125 | 16307 127 100.00 406.30 100.00 166.14
175 x 125 | 20878 156 100.00 489.10 100.44 307.05
225 x 125 | 25706 206 100.06 502.43 100.23 442.23
150 x 150 | 19056 232 100.00 435.34 100.00 186.21
200 x 150 | 24374 289 100.02 501.04 100.62 302.42
250 x 150 | 28248 355 100.00 558.03 100.01 488.17
175 x 175 | 20907 321 100.05 547.04 100.24 260.75
225 x 175 | 25017 369 100.00 617.62 100.30 433.33
275 x 175 | 27672 429 100.00 644.99 100.10 596.04
200 x 200 | 24198 421 100.02 527.32 100.25 341.57
250 x 200 | 26122 525 100.00 597.14 100.37 513.33
300 x 200 | 29879 551 100.04 715.25 100.56 811.07
250 x 250 | 25566 659 100.29 645.37 100.63 552.05
300 x 250 | 29310 737 100.00 704.07 100.50 811.26
350 x 250 | 32664 903 100.03 779.51 100.59 1015.95
100 x 300 | 13120 401 100.00 478.55 100.18 148.63
200 x 300 | 21238 645 101.36 741.71 100.88 418.29
300 x 300 | 28722 1287 100.05 522.92 100.06 584.15
Average — 420.48 100.09 548.66 100.31 451.52

Table 2: Computational Results on Larger Size Problems

32 Jiefeng Xu, Steve Y. Chiu and Fred Glover

From Table 2, we observe that TSS consistently outperforms LS-PTS®. Out
of the 21 test problems in the second set, T'SS obtains better solutions than
LS-PTS® on seventeen. PTS achieves even better outcomes than TSS, obtain-
ing better solutions in nine cases (and matching TSS’s solutions in remaining
cases). The average improvement rate of PTS is 0.09% over TSS and 0.31%
over LS-PTS?. Given the fact that LS and TSS can find solutions on average
very close to the optimum in Table 1, such an improvement by PTS on the sec-
ond set problems is notable. The performance indicates that the contribution
of memory to the success of the TS procedure is apparently quite significant.
It also shows that the additional advanced diversification components in P'TS,
such as probabilistic move selection, the advanced restart/recovery strategy,
etc., provide effective enhancements over the simple TSS heuristic.

The results in Table 2 also show the advantage of PTS over the other two
heuristics in terms of the computational times. The times for LS-PTS? average
4.52 times longer than those for PTS, although these two heuristics take almost
the same time in Table 1. The comparison between CPU times of the two TS
approaches is interesting. Though PTS requires additional time to handle the
stochastic aspects and the solution recovery mechanism that are not included
in TSS, PTS is much superior to TSS, requiring an average only 18.23% of the
time required by TSS. This superority is due to the efficiency contributed by
the candidate list strategy adopted by PTS. Using this candidate list approach,

PTS only needs to evaluate at most k? swap moves (generated by combining the

Probabilistic TS Heuristic for Telecomm. Network Design 33

k best destructive moves and the k best constructive moves), while TSS exam-
ines the whole neighborhood with n? swap moves. The fact that we were able
to choose k to be far less than n, without noticeably degrading the quality of
the best swap moves presented for selection, resulted in a significant reduction
in computational expense. The difference in efficiency grows as the problem
dimensions increases. (A few exceptions occur in Table 2, which may be due to
the size of the target nodes and the stochastic nature of PTS, but the overall

pattern is apparent.)

3.3. Tests on STS on Grid Graph. We have additionally tested our prob-
ablistic TS method on a third set of problems which have special structure.
Since our previous experiments show that each of PTS, LS-PTS? and TSS can
easily solve the small size problems, the comparative tests are concentrated
on problems with larger dimensions. We have made no effort to exploit the
special structure of this additional problem set to improve the performance of
our methods, but adhere to our original designs in order to test the potential
of our PTS methodology to solve a wide range of telecommunication network
design problems without specialization.

It is well known that the Steiner Tree Problem on a grid graph is generally
harder than the problems on the Eculidean plane (See e.g. Chopra, Gorres
and Rao, 1992). To test the effectiveness of our TS approaches in this case,

we generate the third problem set as follows. We randomly select m nodes as

34 Jiefeng Xu, Steve Y. Chiu and Fred Glover

target nodes from an s x s grid graph, hence selecting the remaining s> — m
grid nodes as Steiner nodes. The distance between either a target node and a
Steiner node, or between two Steiner nodes, is defined as follows. For a given
problem, randomly select two integers a and b from the inteval [0,100]. If the
two nodes are adjacent in a row, then the distance between them is a; if the two
nodes are adjacent in a column, then the distance is b; if the two nodes are not
adjacent either in a row or in a column, the distance is a large cost equal to the
sum of the distances between all adjacent nodes, that is (a + b)s(s — 1). Again,
the setup cost for each Steiner node is randomly generated from the interval
[10,1000], as in the previous test sets. We generate nineteen test problems
in total with s equal to 10, 15, 20, 25, 30. The dimensions of the problems
are listed in the first column in Table 3. We also report the computational

performance of PTS, TSS and LS-PTS? in Table 3.

Probabilistic TS Heuristic for Telecomm. Network Design

Problem PTS TSS/PTS LS-PTS’/PTS
(m x n) Cost CPU (sec.) | COST (%) | CPU (%) | Cost (%) | CPU (%)
50 x 50 50712 6 110.02 150.00 114.10 100.00
100 x 125 | 147920 142 124.4 395.08 158.70 98.21
125 x 100 52432 68 102.24 433.26 100.89 322.07
100 x 300 79770 574 106.94 609.52 130.37 87.76
150 x 250 | 188483 897 101.22 583.73 114.99 98.16
200 x 200 | 318339 972 104.76 498.13 125.16 167.69
250 x 150 | 273318 737 101.66 423.91 104.49 185.24
300 x 100 | 549320 133 100.88 4102.22 100.88 812.02
125 x 500 | 218076 1247 123.48 976.39 135.21 189.90
225 x 400 | 397477 2327 114.24 903.53 132.86 252.51
325 x 300 | 678786 2868 104.86 668.79 116.47 324.02
425 x 200 | 818524 1720 101.10 538.56 104.19 714.70
175 x 450 | 297091 2154 113.48 742.37 119.96 301.99
275 x 350 | 420354 2903 107.68 707.51 112.69 282.26
375 x 250 | 206739 1085 100.29 1149.76 105.31 941.47
475 x 150 | 2067345 1153 100.38 392.28 101.05 850.48
400 x 500 | 903812 8314 105.08 801.99 122.59 484.39
500 x 400 | 653630 5111 110.29 943.56 119.49 923.26
450 x 450 | 792166 4193 102.51 1067.45 113.23 833.01
Average — 1926.53 107.13 846.73 117.51 419.42

Table 3: Results on Problems on Grid Graph

The outcomes in Table 3 validate the general observations for the previ-
ous experiments. However, the differences between the methods are more
pronounced. First, in nineteen test problems, none of the solutions by TSS
and LS-PTS® can match the solutions by PTS. Also none of the solutions by
LS-PTSY are better than any of those by TSS. This additionally strengthens
the conclusion that the TS based memory choice is more effective than the
memoryless form of PTS embedded in the LS-PTS® approach. Apart from
this, the gaps between the solution qualities obtained by the various heuristics

are consistent. For example, we observe from Table 3 that the average per-

centage numbers by which the TSS and LS-PTS® solution costs exceed those

36 Jiefeng Xu, Steve Y. Chiu and Fred Glover

of PTS are 107.13% and 117.51% respectively. The corresponding percentage
numbers are 100.09% and 100.31% in Table 2. This shows that the advanced
components in PTS work with increasing effectiveness as the problems become
harder. This conclusion is further supported by the fact that the problems of
the third set required substantially more computational time, indicating that
this set is much harder to solve than the other two sets.

An additional observation is relevant. Recall that we deliberately assign
every diagonal or bridge link a very large cost in the third problem set that
outweighs the other cost factors. Since every target node must connect to an
active Steiner node, and all active Steiner nodes must be interconnected as a
spanning tree, the expensive diagonal and bridge links typically can not all
be excluded from the solutions. However, the best solution will be those with
a minimum number of diagonal and bridge links. This property allows us to
visually compare the quality of the solutions obtained by the various heuristics.
Figures 4, 5, and 6 illustrate the final solutions for problem 50 x 50 in Table 3
by LS-PTS°, TSS and PTS respectively, where the dots represent the target
nodes, the small circles designate the Steiner nodes. In addition, we use the
solid lines to represent the links between active Steiner nodes, and the dash

lines for the links between target nodes and active Steiner nodes.

Probabilistic T'S Heuristic for Telecomm. Network Design 37

From the three preceding figures, we find that the solutions provided by
various heuristics are quite distinctive. The PTS solution uses fourteen diago-
nal links while the TSS and LS-PTS? solutions respectively use seventeen and
eighteen diagonal links . All three solutions are locally optimal. Visually ex-
amining these three local optima discloses that there exist long paths linking
these solutions with each other, indicating that long sequences of moves may
be required for moving from each such solution to the others. In this case, in-
telligently guided diversification plays a very important role in effective search.
This can partially explain the outstanding performance of PTS over TSS and
LS-PTS®, since PTS has been designed to marry the diversifying influence of
the biased probabilistic choice with the intensifying influence of the advanced
restart /recovery strategy.

To investigate the progress of our algorithm, we plot a performance graph
for the (50 x 50) problem in Table 3, for our PTS and TSS heuristics. The

performance measure on the vertical axis is the ratio of the current best known

38 Jiefeng Xu, Steve Y. Chiu and Fred Glover

solution value to the best value ultimately obtained by any of the methods.
This measure is recorded each time an improved solution is found during the
search. Since TSS takes longer to perform an iteration than PTS, we have
adopted a normalized iteration ratio (current iteration count divided by the
maximum iteration count) to represent the progress of the search times. The
iteration ratio is shown logarithmically on the horizontal axis. Figure 7 displays

the improvements of our algorithm as a function of time.

Figure 7 clearly demonstrates that the initial solution is poor compared with
the best-known cost. Both heuristics improve the solution quality quickly in
the early stage of solving the particular illustrated problem. We see that PTS
improves the solution effectively throughout the search process, while T'SS stalls
after reaching around 20% of the total computation time and fails to improve
the best solution during the remaining 80% of the execution time. Note in this
problem, the solution recovery stage of PTS begins at iteration 300, that is at
iteration ratio of 0.2, which corresponds approximately to the iteration ratio at
which TSS stalls. Since the PTS search continues to improve the solution, this
indicates that our solution recovery strategy in PTS is effective for locating
new and better solutions. Given sufficient computational time, PTS is good at

finding solutions of extremely high quality.

Probabilistic TS Heuristic for Telecomm. Network Design 39

4. Conclusion

We have developed and tested alternative tabu search implementations for
the Steiner Tree Star problem in telecommunication network design. In our
approach, the search incorporates constructive and destructive moves as well
as exchange moves to explore different neighborhood structures. We introduce
evaluation estimates to allow moves to be selected more efficiently, accompanied
by an error correction procedure in order to offset the risk of making improper
choices. Long term memory, probabilistic move selection and an intensification
strategy based on elite solution recovery are also included in the more advanced
version.

Numerical tests for two sets of test problems, from distributions designed
to make the problem hard to solve, show that for the 23 smaller test problems,
tabu search yields optimal solutions in all cases while using only a fraction of the
CPU time required by the exact method (which was specialized for this problem
class by prior research). For the 21 larger problems. which the exact method
is incapable of handling, tabu search consistently outperforms the best local
search heuristic available, and likewise outperforms an enhancement of this
heuristic designed in this study. Our outcomes demonstrate the effectiveness of
long term memory and probabilistic move selection for obtaining better results
than relying on short term memory alone.

To better understand the relative performance of the approaches tested, we

designed an additional problem set representing the Steiner Tree Star problem

40 Jiefeng Xu, Steve Y. Chiu and Fred Glover

on a grid graph that is considered to be harder than the randomly generated
problems for other methodologies in the literature. Our experiments show
that the probabilistic T'S approach works well in this case, and the ranking
of the methods remains the same as for the randomly generated problems. In
addition, we find that our probabilistic TS approach is particularly effective
for problems of this hardest set compared with the other heuristics. Among
the several components employed by our TS algorithm, the basic TS short
term memory effectively overcomes the limitation of local optimality to achieve
optimal or near-optimal solutions for small problem instances. Advanced com-
ponents such as the probabilistic move selection and solution recovery strategy
improve the performance and are responsible for finding extremely high-quality
solutions for the large and hard test problems.

Future improvements of our T'S approach are anticipated to result by in-
cluding additional long term memory functions (we examine only one) and by
using more refined candidate list strategies. Intensification procedures can take
advantage of the fact that some of the Steiner nodes always reside in the ac-
tive set for good solutions, while other are always inactive. Uses of frequency
based memory in an intensification strategy, which afford additional informa-
tion for probabilistic TS designs, may also provide useful enhancements for
solving these types of problems.

Finally, we note that the parameters of our probabilistic TS approach are
set arbitarily or by common sense in this paper. Systematically fine-tuning
these parameters using statistical tests can further improve the performance of

our approach, as shown in our current research (Xu, Chiu and Glover, 1996).

Probabilistic TS Heuristic for Telecomm. Network Design 41

References

CHOPRA, S. AND M. R. RAO, “On the Steiner Tree Problem I & I1”, Mathematical
Programming, 64, (1994) 209-246.

CHOPRA, E. GORRES AND M.R. RAO, “Solving the Steiner Tree Problem on a
Graph Using Branch and Cut”, ORSA Journal on Computing, 4 (1992) 320-336.

Duin, C. AND S. Vog, “Steiner Tree Heuristics - A Survey”, in: Operations Research
Proceedings 1993, Papers of the 22nd Annual Meeting of DGOR in Cooperation with
NSOR (Springer-Verlag, 1994) 485-496.

GLOVER, F., “Heuristics for Integer Programming Using Surrogate Constraints”,
Decision Sciences, 8 (1977) 156-166.

GLOVER, F., “Tabu Search - Part I”, ORSA Journal on Computing, 3 (1989) 190-
206.

GLOVER, F. (1995), “Tabu Search Fundamentals and Uses”, Working Paper, Grad-
uate School of Business, UNiversity of Colorado at Boulder, Boulder, Corado, USA.

GLOVER, F. AND M. LAGUNA, “ Tabu Search”, in: C. Reeves, (eds.), Modern
Heuristics for Combinatorial Problems (Blackwell Scientific Publishing, 1993) 71-140.

GLOVER, F. AND A. LgKKETANGEN (1994), “Probabilistic Tabu Search for Zero-
One Mixed Integer Programming Problems”, Working Paper, Graduate School of
Business, University of Colorado at Boulder, Boulder, Colorado, USA.

LEE, Y., L. Lu, Y. Qiu AND F. GLOVER, “Strong Formulations and Cutting Planes
for Designing Digital Data Service Networks”, Telecommunication Systems, 2 (1994)
261-274.

LEE, Y., S. Y. CHIU AND J. RYAN (1995), “Branch and Cut Algorithms for a
Steiner Tree-Star Problem”, to appear in ORSA Journal on Computing.

Nowicki, E. AND C. SMUTNICKI (1993), “A Fast Taboo Search Algorithm for the
Job Shop Problem”, Report 8/93, Institute of Engineering Cybernetics, Technical
University of Wroclaw, Poland.

42 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Nowicki, E. AND C. SMUTNICKI (1994), “A Fast Tabu Search Algorithm for the
Flow Shop Problem”, Institute of Engineering Cybernetics, Technical University of
Wroclaw, Poland.

Voss, S., “Tabu Search: Applications and Prospects”, in: D.-Z. DU and P.M.
PARDALOS (eds.), Netork Optimization Problems (World Scientific, 1993) 333-353.

Xu, J., S. Y. Cuiu AND F. GLOVER (1996), Fine-Tuning a Tabu Search Algorithm
with Statistical Tests, Working Paper, Graduate School of Business, University of
Colorado at Boulder, Boulder, Colorado, USA.

Probabilistic TS Heuristic for Telecomm. Network Design 43

Appendix A

In this appendix, we describe the heuristic procedure that has been used
to provide an initial upper bound on the optimal solution value in the branch-
and-cut algorithm. The following notation and definitions will be used for that
purpose. First recall that m is the number of target nodes and n is the number
of steiner nodes. A star is a subgraph that consists of a single steiner node
(the center of the star) and a set of target nodes with edges connecting them
to the center. The weight of a star is equal to the sum of its edge costs and
its steiner node cost. The size of a star is equal to the number of target nodes
contained in that star. Finally, the steiner number and steiner spanning tree of
a solution are defined respectively as the number of steiner nodes being used

and the spanning tree connecting these nodes in that particular solution.

Heuristic procedure for minimum steiner tree-star problems:
For star size k = 2,3, ..., m, repeat the following steps:

Step 1. (Generating an initial current solution)

Step 1.1 Label all nodes in M U N “unselected” and set ¢+ = 1. While
1 < min{[%1 ,n}, determine the minimum-weight star of size k
that contains only unselected nodes (the last iteration may find a
smaller star), and then label all the nodes in the star “selected”; set

t =1+ 1. Each selected terminal node has been currently assigned

to the center of its star.

44 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Step 1.2 Reassign each selected terminal node in M to its closest selected

steiner node in NV if necessary.

Step 1.3 Assign each unselected terminal node in M to its closest steiner

node in N and then label it “selected”.

Step 1.4 Connect all selected steiner nodes in /N with a minimal spanning

tree of these nodes only.

Step 2. (If the steiner number of the current solution is greater than or equal

to 2, try to improve the solution as follows:)

Step 2.1 Unselect any selected steiner node in N that is a leaf node
in the current steiner spanning tree 7' and has no terminal nodes

assigned to it.

Step 2.2 Unselect any selected steiner node in N that is a leaf node in
the current steiner spanning tree 7' and has only one terminal node
assigned to it. Reassign the terminal node to its closest selected

steiner node.

Step 2.3 Unselect any selected steiner node in N that is connected to
exactly two other selected steiner nodes in the current steiner span-
ning tree 7" and has no terminal nodes assigned to it. Connect the

two selected steiner nodes directly.

Step 3. For each unselected steiner node in N, repeat the following steps:

Probabilistic TS Heuristic for Telecomm. Network Design 45

Step 3.1 Generate a new temporary solution by adding the unselected
steiner node to the current solution as follows: Connect the new
steiner node to its closest selected steiner node. Reassign terminal

nodes to the newly-added steiner node if it is closer.

Step 3.2 Replace the current solution with the temporary solution if the

latter is better.

Step 4. If the steiner number is greater than or equal to 3, reconnect the

selected steiner nodes in /N with a minimal steiner spanning tree.

Step 5. If any improvement is made to the current solution in Step 2, 3, or 4,

go back to Step 2.

If the current solution is better than the best solution found, record the current

solution as the new best solution found.

46 Jiefeng Xu, Steve Y. Chiu and Fred Glover

Appendix B

Here we sketch a high-level pseudocode to describe our T'S algorithm. We
define iter as the iteration counter and introduce iter_swap such that the search
will perform swap moves if and only if iter_swap > iter. When this condition
does not hold, the elementary destructive and constructive moves are executed.
We let cur_sol and best_sol denote the current solution and the best solution
so far, and cur_cost and best_cost denote their correponding objective function
values. The values ni, ny and ns identify the pre-defined iteration counters
and max_iter identifies the maximum iteration number. In addition, best_iter
denotes the iteration counter at which the current best_sol is obtained. The

search procedure is defined as follows:

Probabilistic TS Heuristic for Telecomm. Network Design

47

iter = 0.
iter_swap = 0.

Tabu Search Procedure

Find the initial solution and set it as the current solution.
While (iter < max_iter) do

if

else

(iter mod n; =0) or (iter_swap > iter) do
evaluate the candidate swap moves, update

the elite solution list if necessary, and select

the “best” candidate move probabilistically.

evaluate the candidate destructive and

constructive moves, update the elite solution

list if necessary, and select the “best”
candidate move probabilistically.

Perform the selected move.
Update the TS restrictions and update the
recency and frequency memories.
Execute the error-correction if necessary.
if (cur_cost < best_cost) do
best_sol = cur_sol;
best_cost = cur_cost;
best_iter = iter.
if (iter > best_iter + ny) do
iter_swap = iter + ngs.
iter = iter + 1.

Recover a selected elite solution to become
the new current solution by the repetitive
circular list recover strategy.

48 Jiefeng Xu, Steve Y. Chiu and Fred Glover

[] Digital Hub O Wire Center /\ Customer Location

Figure 1: A DDS Network Scenario

Probabilistic TS Heuristic for Telecomm. Network Design 49

[] Steiner Node /\ Target Node

Figure 2: A Solution for a STS Problem

50 Jiefeng Xu, Steve Y. Chiu and Fred Glover

@ (b) (©
dotted lines are edges to be dropped.

solid lines are edges to be added.

bold circles are nodes to be dropped.

Figure 3: Modifying the Spanning Tree by Destructive Moves

51

Probabilistic TS Heuristic for Telecomm. Network Design

Figure 4: A Solution by LS-PTS"

Jiefeng Xu, Steve Y. Chiu and Fred Glover

52

Figure 5: A Solution by TSS

93

Probabilistic TS Heuristic for Telecomm. Network Design

*-———— o ————-

-5 -————-9

Figure 6: A Solution by PTS

o4 Jiefeng Xu, Steve Y. Chiu and Fred Glover

16—

15- —TSS

14-

13-

Performance Meter

0.001 001 01 1
Iteration Ratio

Figure 7: The Performance of the Algorithm over Time

