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This is the second half of a two part series devoted to the tabu search metastrategy for optimization problems. 
Part I introduced the fundamental ideas of tabu search as an approach for guiding other heuristics to overcome 
the limitations of local optimality, both in a deterministic and a probabilistic framework. Part I also reported 
successful applications from a wide range of settings, in which tabu search frequently made it possible to obtain 
higher quality solutions than previously obtained with competing strategies, generally with less computational 
effort. Part 11, in this issue, examines refinements and more advanced aspects of tabu search. Following a brief 
review of notation, Part I1 introduces new dynamic strategies for managing tabu lists, allowing fuller exploitation 
of underlying evaluation functions. In turn, the elements of staged search and structured move sets are characterized, 
which bear on the issue of finiteness. Three ways of applying tabu search to the solution of integer programming 
problems are then described, providing connections also to certain nonlinear programming applications. Finally, 
the paper concludes with a brief survey of new applications of tabu search that have occurred since the developments 
reported in Part I. Together with additional comparisons with other methods on a wide body of problems, these 
include results of parallel processing implementations and the use of tabu search in settings ranging from 
telecommunications to neural networks. 

A s  a prelude to the considerations of this paper, we 
briefly review some of the basic notation introduced in SIMPLE TABU SEARCH 
Part 1.'' l1  An optimization problem will be represented 1. Select an initial x E X and let x* := x. Set the 
in the following form: iteration counter k = 0 and begin with T 

(P) Minimize c(x): x € X 

where x C R,. The objective function c(x) may be 
linear or nonlinear, and may incorporate penalty func- 
tion components to drive toward satisfying certain types 
of constraints. The condition x E X summarizes con- 
straining conditions which, except in special strategic 
variations, will be maintained at each step of the search, 
and in many contexts of interest will require specified 
components of x to receive discrete values. 

A move s that leads from one trial solution (se- 
lected x E X) to another may be viewed as a mapping 
defined on a subset X(s) of X: 

Associated with x E X is the set S(x) which consists of 
those moves s E S that can be applied to x;  i.e., S(x) = 
{s E S: x E X(s)) (and hence X(s) = {x E X: s E S(X))). 

To complete the notation relevant to later sections 
of Part 11, we reiterate the description of a simple form 
of tabu search used as a starting point in Part I, based 
on creating a set T of tabu moves and an evaluator 
function denoted by OPTIMUM. 

Subject classrjicatron Programming: integer, heunstlc. 

empty. 
2. If S(x) - T is empty, go to Step 4. 

Otherwise, set k := k + 1 and select sk € S(x) - 
T such that s ~ ( x )  = OPTIMUM(s(x): 
s E S(X) - T). 

3. Let x := sk(X). If C(X) < c(x*), where x*  denotes 
the best solution currently found, let x*  := x. 

4. If a chosen number of iterations has elapsed 
either in total or since x* was last improved, 
or if S(x) = 0 upon reaching this step directly 
from Step 2, stop. Otherwise, update T (as 
identified in Part I) and return to Step 2. 

To provide a basis for understanding the extensions 
of ideas to be developed here, we briefly comment on 
the character of the foregoing process, which rests on 
the way the tabu set T is defined and treated. 

A key concept in the management of T is to 
constrain the search in a manner that allows latitude in 
selecting "best" (highest evaluation) moves with the 
OPTIMUM function, while undertaking to assure the 
method will not re-visit a previous solution except by 
following a trajectory not traveled before. This is ac- 
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complished by introducing tabu restrictions (or penal- 1. Dynamic Tabu List Processes 
ties) which discourage the reversal, and in some cases 
repetition, of selected moves. In the simplest imple- 
mentations, an attribute or set of attributes is identified 
which, if prevented from occurring in a future move, 
will assure the present move cannot be reversed. The 
attributes which are classified as forbidden (tabu) are 
recorded on a tabu list, where they reside for a specified 
number of iterations and then are removed, freeing 
them from their tabu status. 

This short-term memory function of tabu search 
is customarily handled by treating the tabu list as a 
circular list, adding elements in sequence in positions 
1 through t, where t is the list size, and then starting 
over at position 1 again. The addition of each element 
thus erases the element recorded in its position t itera- 
tions ago. Empirical results have indicated that a robust 
range o f t  values exists for which such a simple tabu list 
performs very effectively for driving the search beyond 
local optima and obtaining progressively improved 
solutions (in a nonmonotonic sequence). 

Longer-term memory processes are incorporated 
as a means to intensify and diversify the search, as 
elaborated in Part I. The guiding theme in these pro- 
cesses is to endow the memory structures with a flexi- 
bility to choose the "most attractive" moves by evalu- 
ation functions that are determined to be most effective. 
Such effectiveness generally requires evaluations that 
are based not only on objective function change, but 
on the state of search. Thus, beyond its simplest forms, 
tabu search does not restrict evaluations to measures of 
"ascent" and "descent," but employs more adaptive 
and varied measures. The use of target analy~is ' '~, '~] has 
proved instrumental in determining the form these 
measures should take (and the conditions under which 
they should be modified). 

In the short-term memory process, the flexibility 
to take advantage of such measures is enhanced by 
means of aspiration criteria which allow a move to be 
selected regardless of its tabu status. This creates a 
pattern of removing moves (attributes) from the tabu 
list on a basis not entirely related to the sequence 
in which they were added. The identification of appro- 
priate aspiration criteria can have an important ef- 
fect on the performance of the short-term memory 
proc-ss.111,17~201 

Beyond this brief review of basic ideas, which 
provides a background for understanding most of the 
material that follows in Part 11, a more complete famil- 
iarity with the concepts and strategies of tabu search, 
including strategic oscillation, representation of the 
search by a digraph, and probabilistic tabu search, will 
prove additionally useful as a foundation for later 
sections. 

The effectiveness of simple rules for constructing and 
managing tabu lists leads to consideration of extending 
those rules to provide more general "dynamic" list 
handling processes. Such processes can have an impor- 
tant influence on which moves are available to be 
selected at a given iteration, and hence can also affect 
the determination of appropriate aspiration criteria. 
More particularly, a primary goal of such processes is 
by the evaluation functions to be embodied in OPTI- 
MUM (and, by means of approaches such as target 
analysis, to promote the development of evaluation 
functions that enable this freedom to be applied more 
effectively). 

In the following development we focus not only 
on general procedures but also on data structures which 
are essential for efficient implementation. A number of 
relationships are developed that are subject to a more 
formal theorem-proof characterization, but we under- 
take to provide sufficient explanation within the nar- 
ration to allow the main assertions to be substantiated 
by the reader without difficulty. Our treatment is in- 
tended to provide useful details for those interested in 
practical aspects of design and execution. 

1.1. Tabu List Strategies for Single Attribute 
Moves 

We let TL denote the tabu list that implicitly defines 
the set T of tabu moves, i.e., TL is a vector of attributes 
which impart a tabu classification to moves that contain 
these attributes. 

As a starting point, consider TL to be given in the 
following form 

We suppose the elements (attributes) are indexed by 
iteration, identifying the point at which they were added 
to the list, and q is the index of the current iteration. 
For convenience TL is depicted as a list that progres- 
sively enlarges as q increases, although we implicitly 
allow for earlier elements to be discarded by reference 
to a selected limiting size for TL as in customary 
tabu list processes (e.g., treating TL as a circular list). 
Correspondingly, we may identify the list of solutions 
(x(l), x(2) ,  . . . , x(q)) such that, for each i, e(i) is the 
attribute associated with the move applied to x ( i )  to 
prevent this move from being reversed to return to x(i). 

We will depart slightly from usual notation in the 
following development by supposing that it is not the 
attributes e(i) themselves which are tabu, but rather 
their inverse (or complementary) attributes P ( i ) .  By this 
means, e(i) may directly refer to the move applied 
to x(i)  rather than to its reversal. For example, in a 

Copyright O 2001 All Rights Reserved 



6 Glover 

zero-one integer programming context, if x(i) is trans- 
formed into x(i  + 1) by a move that sets x, = 1, then 
e(i) may be taken to represent this assignment, and 
hence the attribute t ( i )  represents the tabu assignment 
x, = 0 that transforms x(i  + 1) into x(i). (In this case, 
the move attribute completely identifies the associated 
move. However, when a move is defined more broadly 
to include reference to the solution to which it is 
applied, additional attributes can be included such as 
objective function values, linear combinations of se- 
lected variables, and so forth.) 

In general we will assume, as in the preceding 
example, that the move attributes satisfy a suficiency 
property, which specifies that no two solutions, x(h) 
and x(k), for h < k, can be the same unless there exists 
a matching of the elements e(h), . . . , e(k) such that, 
for each pair e(r), e(s) of the matching, P(r) = e(s). 

It is useful for our subsequent purposes to state 
this property in a different fashion, based on a process 
of "successive cancellation." We assume for conven- 
ience that the attributes e(i) are defined so that no e 
can appear twice on TL unless 2 appears in an inter- 
mediate position. (For example, x, = 1 cannot occur 
twice unless x, = 0 intervenes.) In the sequence e(p), 
. . . , e(q), if any e(r) is followed by an element e(s) 
such that e(r) = C(s) then e(r) is said to be canceled 
by the first such e(s) (i.e., the e(s) indexed by the least 
s > r) which exhibits this property. Consider all maxi- 
mal subsequences, beginning with a canceled element 
that does not cancel any previous element, where each 
successive element in the subsequence cancels the ele- 
ment that precedes it in the subsequence. (Hence, the 
last element is uncanceled.) All such subsequences can 
be identified by a single pass through the elements e(p), 
. . . , e(q), checking whether each element encountered 
cancels an earlier element, and if so, adding it to the 
appropriate subsequence (and also adding the element 
it cancels if the earlier element is the start of the 
subsequence). Then the sufficiency property states that 
these subsequences contain all the elements e(p), . . . , 
e(q), and every such subsequence has an even number 
of elements. 

Note that if each e(i) consists of setting the value 
of a selected variable to 0 or 1 (in a zero-one IP 
application), or consists of adding or deleting a selected 
element from a set (in an optimal set membership 
application), then these elements satisfy the sufficiency 
property, and in addition satisfy a corresponding neces- 
sity property, which stipulates that x ( p )  = x(q) will 
result whenever a matching (or collection of subse- 
quences) exists which has the form used to define the 
sufficiency property. 

The goal of this section will be to focus on two 
different ways of managing TL to provide a more 
dynamic (time and event dependent) characterization 

of tabu status. In each of these, an attribute P(i) is not 
automatically tabu as a result of the membership of e(i) 
in TL, but only potentially tabu. In spite of this relax- 
ation of customary tabu status, TL will be treated in a 
manner that assures no solution will be duplicated 
within the span of moves subjected to consideration, 
except where aspiration criteria or the absence of 
admissible alternatives may lead to selecting a move 
designated to be tabu. 

1.2. Tabu Status Based on Cancellation 
Sequences 

We associate with the tabu list TL an active tabu list, 
ATL, which consists only of the elements of TL that 
have not been canceled, and represent ATL in the same 
general form as TL, i.e., 

ATL is understood to be a subsequence of TL, which 
contains the same last element e(q) (derived from the 
move that transforms x(q) into the solution x(q + 1)). 
We assume that a buffer of the tb most recent elements 
e(i) (i.e., for i > q - tb) is created which serves a 
purpose similar to that of a standard tabu list by auto- 
matically defining the associated elements 2 ( i )  to be 
tabu. (Such a buffer will appropriately be somewhat 
smaller than the size of a standard tabu list, however.) 

To understand the way that ATL will be managed, 
consider a step in which an element e(q + 1) is added 
to ATL, where e(q + 1) # P(q) (under the assumption 
tb 3 I), and suppose that e(q + 1) cancels an earlier 
element e(i) of ATL as a result of e(q + 1) = P ( i ) .  (Since 
ATL consists only of uncanceled elements, the identi- 
fication of e(i) is unique.) The structure of ATL, upon 
adding e(q + l), but before dropping the element e(i) 
canceled by e(q + I), may be depicted as follows: 

The elements e(h) and e(j) are respectively the imme- 
diate predecessor and the immediate successor of e(i) 
on the list ATL. The element e(j) may be the same as 
e(q), and e(i) may be the same as e(p) (in which case 
the predecessor e(h) of e(i) does not exist or is not in 
ATL). 

If the addition of e(q + 1) constitutes the first time 
that any element cancels a previous element (hence 
ATL and TL are the same to this point) then the 
sufficiency property implies that no two solutions gen- 
erated so far can be the same. Moreover the solution 
x(i) cannot be duplicated by the solution resulting from 
any sequence of future moves unless every element in 
the nonempty sequence e(j), . . . , e(q) is canceled. We 
call this sequence which lies between the canceling 
element e(q + 1) and the canceled element e(i) the 
Cancellation Sequence, or C-Sequence. Given that we 
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prevent the cancellation of e(q) by e(q + I), if we can 
insure that at least one element in each successive C- 
Sequence will remain uncanceled, then no solution can 
ever repeat. (This is a sufficient but not a necessary 
condition to avoid repetition of solutions.) 

This means of avoiding a duplication of an earlier 
solution can be assured by specifying an attribute 2(i) 
to be tabu if and only if the associated element e(i) of 
ATL is the last remaining member of some C-Sequence, 
once all other members have been canceled. To enforce 
this condition successfully, a way must be afforded to 
remove each canceled element from every C-Sequence 
to which it belongs, and to identify when one or more 
of these sequences has been reduced to a single element. 

An efficient method for accomplishing this can be 
based on the observation that whenever one sequence 
lies within another, the larger sequence is dominated 
by the smaller and may be discarded, since retaining 
an element in the smaller sequence assures that one 
is also retained in the larger. (This observation is also 
central to establishing the sufficiency of nonempty 
C-Sequences to avoid duplicate solutions, as long as 
moves exist that permit this condition to be main- 
tained.) Specifically, we introduce a data structure 
consisting of two arrays, startseq(e) and endseq(e), 
defined for each element e on the active tabu list ATL, 
where startseq(e) denotes the element f on ATL that 
starts the C-Sequence terminated by e (where f = void, 
a dummy element, if e does not terminate such a 
sequence), and endseq(e) denotes the element g on ATL 
that ends the C-Sequence initiated by e (where g = void 
if e does not initiate such a sequence). The dominance 
property implies that these two values are uniquely 
defined for each e on ATL (i.e., of two contending 
values for f or g, the element which is closer to e on 
ATL takes precedence). Moreover, the condition in 
which e is the only element of a C-Sequence is identified 
by startseq(e) = endseq(e) = e. 

The use of these arrays and the role of dominance 
is illustrated in Figures 1 and 2. Figure 1 shows the 
creation of a C-Sequence as a result of a cancellation 
step, together with the associated startseq and endseq 
assignments. Figure 2 provides an example of domi- 
nance, and of the creation of tabu status. (It may be 
noted in Figure 2 that the "old C-Sequence" will also 
dominate the new if the canceled element occurs as 
early in the ATL list as the starting element of the old 

ATL Before Cancellation 

ATL After Cancellation 

Figure I.  Creation of C-sequence by cancellation. 

New C-Sequence Dominated by Old 
(Hence New 1s Not Recorded) 

New 
Element 

Old C-Sequence 

New C-Sequence I 
Later ATL Before Creatina Tabu Element 

(Remalning C-Sequence Accentuated) 
New 

Element 

Later ATL After Creating Tabu Element 

(Remalning C-Sequence Accentuated) 

startseq(4) = endseq(4) = 4 

(Element T 1s tabu) 

Figure 2. Domination and creation of tabu status. 

C-Sequence, since the form of this sequence after the 
cancellation will still lie inside the new C-Sequence.) list, i.e., first-dummy precedes the first (oldest) element 

To complete the basis for identifying and updating and last-dummy succeeds the last (most recent) ele- 
the C-Sequences, we introduce the two arrays predeces- ment. Finally, we define iteration(e) = the iteration e 
sor(e) and successor(e), which respectively identify the was added to ATL, letting this value equal 0 if e is not 
elements that precede and succeed e on ATL. Also, on ATL. Then for two elements e and f on ATL, 
we introduce two elements, first-dummy and last- iteration(e) < iteration(f) indicates that e appears be- 
dummy, which respectively begin and end the ATL fore f. The iteration array will be used to determine 
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whether a newly created C-Sequence is dominated by 
an earlier C-Sequence. This determination is made by 
reference to a special variable, last-start, which identi- 
fies largest value of iteration (e) such that e is the starting 
element of a C-Sequence; i.e., such that endseq(e) # 
void. Then iff  denotes the element that starts the new 
C-Sequence, this C-Sequence will be dominated by an 
earlier one if and only if last-start 2 iteration (f). 

The procedure for managing the tabu list, based 
on the use of cancellation sequences, is indicated as 
follows. We refer to e(q + I), the new element to be 
added to ATL, and to e(q), the previous last element of 
ATL, without altering notation (though these elements 
do not represent indexed members of a list in the 
procedure). The most important part of this procedure 
is the update of preexisting C-Sequences made possible 
by the dominance property when a cancellation occurs. 

C-SEQUENCE METHOD 

This is the main sequence of steps. The data 
structure includes elemental lists: iteration, startseq, 
and endseq defined over elements (e); and, ATL 
(Active Tabu List), which is dynamic (limited by a 
maximum size), defined by predecessor and 
successor lists. 
1. Initialize: 

For all elements (e), set iteration(e) := 0; 
startseq(e) := void; endseq(e) := void. 

Set last -start := 0; predecessor(1ast -dummy) 
:= first-dummy; successor(first-dummy) 
:= last-dummy. 

2. Iterate until stopping rule is satisfied (q denotes 
iteration number): 
Set e(q) := predecessor(1ast-dummy); v := 

complement of e(q + 1). 
IF iteration(v) # 0 THEN perform Cancel(v). 
Insert e(q + I) on ATL: 

predecessor(e(q + I)) := e(q); 
successor(e(q)) := e(q + 1); 

predecessor(1ast-dummy) := e(q + 1); 
successor(e(q + 1)) = last -dummy. 

Set iteration (e(q + I)) = q + 1 and complete 
update of other relevant tabu conditions: 
Add e(q + 1) to the starting buffer of tabu 

elements, and remove the oldest element 
if the addition of e(q + 1) causes the 
buffer to contain more than tb elements. 

If a tabu element (excluding those on the 
starting buffer) has been tabu for more 
than t iterations, release it from its tabu 
status. 

CANCEL(v) 

This cancels the element identified by v (entering 
argument). 
1. Set u := predecessor(v); w := successor(v). 
2. IF startseq(v) # void THEN update C-Sequence 

that ends with v (and which necessarily 
dominates any C-Sequence that ends with 
its predecessor, u): 
Set f := startseq(u); endseq(f) := void; 

startseq(u) := startseq(v). 
IF startseq(u) = u and iteration(u) 2 least- 

cut-off, THEN make u tabu. (u became the 
only element in a C-Sequence). 

3. IF endseq(v) # void THEN update (v starts a C- 
Sequence that dominates any C-Sequence 

I that starts with its successor, w): 
Set g := endseq(w); startseq(g) := void; 

endseq(w) := endseq(v). 
IF endseq(w) = w and iteration(w) 2 least- 

I cut-off, THEN make w tabu. (w became the 
only element in a C-Sequence). 

Set last-start := maximum(1ast -start, 
iteration (w)]. 

4. IF last-start < iteration (w) THEN create new, 
undominated C-Sequence: 
last-start := iteration(w); startseq(w) := e(q); 

endseq(e(q)) := w. 
5. Re-link u to w and drop v from ATL: 

Set predecessor(w) := u; successor(u) := w; 
iteration(v) := 0. 

6. Free e from its tabu status if it is tabu, and 
return. 

Several aspects of the foregoing procedure may be 
noted. First, the operations involving the updates of 
C-Sequences by the dominance principles are very ef- 
ficient, involving no loops or searches. Second, when u 
or w becomes the only element of a C-Sequence, and 
qualifies to become tabu, it is allowed to escape its tabu 
status if it has resided on ATL long enough (has a small 
enough value of iteration(u) or iteration(w)). This cut- 
off value involving residence on ATL is a parameter 
different from the limit t, which governs the number of 
iterations an element is kept tabu after receiving a tabu 
classification. One of these two parameters may be 
disregarded, if desired. However, if t is retained, intui- 
tion suggests that t + tb should not greatly exceed the 
tabu list sizes found to be effective in standard imple- 
mentations. (In any event, tb should be relatively small, 
perhaps only 1 .) 

Third, memory savings are possible due to the fact 
that an arbitrary element e and its complement 2 cannot 
appear on ATL simultaneously. Hence the arrays that 
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use these elements as arguments can be halved in size 
by means of an appropriate external flag (which intro- 
duces at most one half-sized array). However, if the 
number of such elements is still large, then predecessor, 
successor, startseq, endseq and iteration can instead 
name positions on a circular TL list, which contains 
the elements of only as many iterations as are chosen 
to be relevant (essentially twice the number of iterations 
an element is allowed to reside on TL before being 
considered ineligible to receive tabu status, noting that 
elements beyond this age may still define relevant C- 
Sequences since TL is not the same as ATL). In this 
case, iteration(e) can be inferred from the position on 
the TL list rather than maintained as a separate array. 

1.3. Tabu List Management by the Reverse 
Elimination Method 

The second dynamic process for managing tabu lists is 
based on generating move restrictions implied by C- 
Sequences of a more general form, whose boundaries 
can expand as well as contract. The appropriateness of 
expanding the boundaries of a C-Sequence derives from 
the fact that the addition of a new element to ATL 
protects against the return to solutions otherwise 
"guarded by" some C-Sequences, and thus should be 
included among these sequences. There is an obstacle 
to doing this, however, because the new element is not 
adjacent to the previous elements, and generally no way 
exists to rearrange elements and boundaries so that 
these expanded C-Sequences can be defined by the 
convenient types of data structures introduced for 
handling ordinary C-Sequences. 

The approach we propose to overcome this obsta- 
cle operates by successively eliminating elements of the 
TL list, not by the sequence of steps that occurs in 
keeping ATL updated at each iteration, but by the 
reverse sequence, hence producing what we call the 
Reverse Elimination Method. After a new element is 
added to TL, becoming the new e(q) in the sequence 
TL = (e(l), . . . , e(q)), a trace is initiated applying rules 
for eliminating elements that are slightly different from 
those used to produce ATL. Specifically, as each e(i) is 
visited in turn (in the process of tracing backward from 
e(q) to e(l)), a Residual Cancellation Sequence from 
e(i) through e(q) is identified, along with the num- 
ber n(i) of elements in this sequence. A Residual 
C-Sequence is defined to be a subsequence that remains 
after removing a maximum number of pairs of mu- 
tually canceling elements, i.e., pairs of the form (e, P), 
where each member of the sequence is allowed to 
belong to only one such pair. 

When the suficiency assumption holds, it is not 
difficult to see that the solution x(i) will be the same 
as x(q + l), the solution produced by the move asso- 

ciated with e(q), only if n(i) = 0, and this becomes an 
if and only if condition provided the necessity assump- 
tion also holds. Moreover, if n(i) = 1 and e denotes the 
unique element belonging to the associated Residual 
C-Sequence, then under the same assumptions the 
new solution produced by the move associated with 
e(q + 1) will duplicate x(i)  only if (or if and only i f )  
e(q + 1) = 2. Thus, the rule to prevent the new solution 
from duplicating any preceding solution is to make C 
(and the moves associated with it) tabu at each point 
of the reverse trace where such an element is found, as 
signaled by n(i) = 1. 

Generally, of course, since the size of q can become 
large, it is appropriate to limit the size of TL as in 
customary tabu search applications, conducting a re- 
verse trace of the sequence e(p), . . . , e(q) for a selected 
p 3 1. Similarly, a buffer may be maintained which 
imparts temporary tabu status to the last tb elements of 
the list, as in the C-Sequence method. The rule that 
classifies elements of TL tabu by the Reverse Elimina- 
tion Method does not change under these conditions. 

The data structure requirements of the method are 
very simple, making use of the same predecessor and 
successor arrays used by the C-Sequence approach. 
However, these arrays do not identify the composition 
of the ATL list, but instead successively identify the 
elements of each Residual C-Sequence generated during 
the reverse trace of TL. Beyond this, the method re- 
quires only the TL array itself. The value n(i) can be 
treated simply as a number n, since we are only inter- 
ested in its current value as it changes from step to step. 

To characterize the method, we indicate that 
an element e is absent from the current Residual 
C-Sequence by introducing a dummy element absent 
and setting successor(e) = absent. The first element of 
the current Residual C-Sequence (associated with the 
earliest iteration) will be denoted by the variable first- 
e. As before, first-dummy precedes the first element of 
each linked sequence and last-dummy follows the last 
(associated with the most recent iteration). 

An important departure from the C-Sequence 
Method, in addition to tracing in the reverse direction, 
is that the elimination operation not only removes a 
previously canceled element but also omits the new 
element, that causes the cancellation, from the se- 
quence. Before presenting the details of the procedure, 
we provide an illustration of how it operates in Figure 
3, tracing the TL list back to the first iteration ( p  = 1). 
For simplicity no buffer is employed. (In contrast to 
the C-Sequence Method, tb = 0 is always possible with 
the Reverse Elimination Method.) The array structures 
used for implementation are also not shown, though 
the processes involved should be clear by reference to 
the effect of each successively examined e(i) of TL on 
the composition of the Residual C-Sequence. 
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Figure 3. Reverse elimination method. 
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It is interesting to observe that the tabu classifica- 
tions produced by the method for this example are the 
same as those produced by the more restrictive C- 
Sequence Method when the latter employs a minimum 
buffer size of tb = 1. However, with the addition of the 
element e(9) = '5 to TL, the Reverse Elimination 
Method continues to generate a set of restrictions which 
is exactly necessary and sufficient to prevent duplica- 
tions, while the C-Sequence Method produces two ad- 
ditional (unnecessary) tabu restrictions. 

The precise details of the method that generates 
the sequences and tabu classifications shown in Figure 
3 are as follows. 

REVERSE ELIMINATION METHOD AT 
EACH ITERATION 

Residual C-Sequence 

3 

5, 5 

4 ,  5, 7 
4 ,  5 (5  and 5 cancel) 

4 ( 3  and 3 cancel) 

2 .  4 

comment: 
The following local initialization is implemented 

after selecting the move whose associated 
attribute is e(q). 

For each element e: designate e to be "not tabu" 
, and set 

n 

1 

2 

3 

2 

1 

successor(e) := absent 
predecessor(1ast-dummy) := first-dummy 

successor(first-dummy) := last -dummy 
first-e := last-dummy 

Tabu Status 

3 Tabu 

i  Tabu 

2 ( i  and 4 cancel) 1 
6, 2 

n := 0 
comment: 

Select the current size of TL by choosingp < q, 
and select the buffer size tb. Then trace 
the TL list in reverse order, as follows. 

for i := q until p do 

5 Tabu 

begin 
e := e(i) 
if successor(C) = absent then 
begin 

comment: 
Expansion Step: C is not in the current 

residual C-Sequence, hence e becomes 
the new first element of this sequence. 

successor(e) := first-e 
predecessor (first -e) := e 
first-e := e 
predecessor(e) = first-dummy 
n : = n +  1 
if n = 1 then make C tabu 

else begin 
comment: 

Elimination Step: P is in the current residual 
C-Sequence. Hence e is not added and 
C is eliminated. 

f := predecessor(2) 
g := successor(2) 
successor(f) := g 
predecessor(g) := f 
 successor(^) := absent 
if P = first-e then first-e := g 
n : = n -  1 
if n = 1 then make the complement of first-e 

tabu 
comment: 

if n = 0, the solutions x(i) and x(q + 1) are 
the same 

end; 
comment: 

create automatic tabu status for elements of 
the buffer 

if i > q - tb then make C tabu 
end; 

Reducing Effort and Related Strategic Considerations 

The foregoing procedure evidently requires more work 
than the C-Sequence procedure, since it traces the TL 
list at each iteration. However, some shortcuts are 
possible at the expense of more memory. For example, 
there is no need to continue the trace after adding an 
element on the Expansion Step which does not contain 
a complement among earlier elements of TL (a condi- 
tion easily recorded). 

A process that may achieve greater savings is the 
following. On a given iteration, record a value least (n) 
for each value of n from 0 to a selected cut-off n*, 
which identifies the smallest value of i for which a 
Residual C-Sequence has a size of n(i) = n. This value 
may be determined automatically by starting with 
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leasr(n) = q for all n, followed by setting least(n) = i, 
where n = n(i), for each i in the reverse sequence from 
i = q to p. Then, given that n(i) cannot decrease by 
more than 1 on the next iteration, it is unnecessary at 
that point to trace earlier than a value of = Mini- 
mum(1east (O), least ( 1 ), least (2)), and in general it is 
unnecessary on the next r iterations to trace earlier than 
a value of i = Minimum(least(k): k = 0, . . . , r + I). A 
simple auxiliary means to save effort is to identify tabu 
status by setting tabu(e) := q, the current iteration value, 
thereby avoiding the need to change or erase previous 
array values at the start of each new iteration. 

The allowance for choosing p anew at each itera- 
tion, instead of giving it a fixed relationship to q, reflects 
a strategic property of the Reverse Elimination Method 
not shared by other tabu list approaches. Specifically, 
there is no "danger" in choosing p too small (i.e., in 
making TL too large), except for considerations of 
computational effort. In other tabu list procedures, if 
TL grows beyond a certain size, the selection of new 
moves becomes restricted too severely, and solution 
quality suffers. With the Reverse Elimination Method, 
however, the only restriction caused by creating tabu 
status (except for elements in the buffer, which may 
allowably be empty) is to prevent returning to an earlier 
solution. Assuming the existence of multiple paths to 
the neighbors of such solutions, this restriction is likely 
to be benign. (In the event that it is not, appropriately 
designed aspiration criteria may permit tabu status to 
be overridden and thereby return to an attractive 
region.) Consequently, to exploit the fact that a fuller 
examination of TL is generally advantageous, the 
Reverse Elimination Method can employ a strategy of 
periodically tracing TL to a deeper level than chosen 
for "customary" iterations, persisting until generating 
some number of solutions that are verified to provide 
no duplication at that level. However, it is probably 
unnecessary in most applications to trace back much 
earlier than a first local optimum, since solutions en- 
countered before such a point are unlikely to be revis- 
ited in any event. 

The Reverse Elimination Method also creates an 
appealing opportunity for diversifying the search pro- 
cess, as accomplished by the use of long-term memory 
functions in other versions of tabu search. In particular, 
rather than making a move attribute tabu only when 
n = 1, it is additionally possible to penalize, or condi- 

added to the current Residual C-Sequence, and n is 
increased by 1, set min-n(e) := Minimum(min-n(e), 
n). On an Elimination Step, when 2 is eliminated and 
the resulting n is at most n *, trace the successive pred- 
ecessors f of 2, and set min-n(f) := Minimum(min- 
n(f), n) for each of these predecessors encountered. 
(These are the only members of the Residual C- 
Sequence that may receive a smaller assigned value 
than previously.) At the completion of the reverse trace, 
each element e thus receives a penalty (or is classified 
tabu) according to the size of min-n(e). 

It is to be noted that situations may arise where no 
move exists that will avoid duplicating a previous so- 
lution. The number of such situations can be strategi- 
cally reduced by approaches that penalize rather than 
categorically forbid infeasible moves, but it is still pos- 
sible to become walled off with no recourse except to 
repeat an earlier solution. Under such circumstances 
(i.e., where each available move contains an attribute 
made tabu by the Reverse Elimination Method), a 
reasonable choice is to select the tabu attribute e(i) with 
the smallest i value. To make this choice accurately, 
the method should keep track for each e of the first 
(hence largest) i for which e is made tabu. We conjecture 
that such a choice has implications for finiteness in the 
zero-one IP and optimal set membership examples, 
provided infeasible moves are penalized rather than 
strictly removed from consideration. 

An Alternate Characterization of Residual C-Sequences 

Before progressing to more advanced considerations, 
we note that it is possible to characterize the Residual 
C-Sequence associated with each e(i) of TL, which we 
denote by RCS(i), in an alternate way that does not 
require the application of the Reverse Elimination 
Method. Specifically, for each h s q define 

cancel(h) = Maximum(k: k < h and e(k) = C(h)) 

where cancel(h) = 0 if no e(k) of the specified form 
exists. The index i = cancel(h) thus identifies the ele- 
ment e(i) that is canceled by e(h) in the progressive 
construction of ATL, at the point where e(h) is added 
as the new element of ATL (and e(i) accordingly is 
dropped). Then, associated with the sequence e(i), . . . , 
e(q), which represents the attributes of the moves that 
collectively transform x(i)  into x(q + I), the Residual 
C-Sequence RCS(i) is given by 

tionally avoid, the choice of attributes associated with RCS(i) = (e(h): i s h s q and cancel(h) < i). 
low n values, e.g., for n s n*. 

This can be accomplished by creating a record By reference to this characterization, the change in 
min-n(e) which identifies the smallest value n(i) value RCS(i) each time a new element e(q) is added to TL is 
for any Residual C-Sequence that contains element e. easily specified. By convention, treat RCS(q) as empty 
To determine this value, start each iteration by setting before e(q) is added, and let the symbols "+" and "-" 
min-n(e) := n* + 1 (a value for n that receives no denote the operations of adding and deleting elements 
penalty). On the Expansion Step, when element e is from sequences (effectively treated as sets). Then the 
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change in RCS(i) is given by 

RCS(i) := RCS(i) + e(q) for cancel(q) < i a q 

and, letting k := cancel(q), if cancel(q) > 0, set 

RCS(i) := RCS(i) - e(k) for cancel(k) < i a k. 

Repeating this process, we let h := cancel(k) take the 
role of q (provided cancel(k) > O), and hence in turn 
let k := cancel(h), thereby identifying successive inter- 
vals of i indexes in which RCS(i) either adds the ele- 
ment e(h) or drops the element e(k), where e(h) = e(q) 
and e(k) = P(q). Accordingly, the value of n(i) increases 
or decreases by 1 over these intervals. 

These relationships may be susceptible to exploi- 
tation by intermediate level procedures that combine 
aspects of the C-Sequence and Reverse Elimination 
Method. For example, a "shadow ATL" may be main- 
tained that encompasses the elements e(h) for h = 
cancel(i), associated with each e(i) on ATL, noting that 
updates involving ATL and its shadow can be handled 
more efficiently than those involving TL, and can gen- 
erate tabu conditions that are sufficient to prevent 
repetition of solutions. 

1.4. Adaptations for Bounded Variable Integer 
Programs 

Integer programming problems with general upper 
bounds are often disregarded in treatments of combi- 
natorial optimization, under the supposition that pro- 
cedures which apply to zero-one problems apply to the 
general upper bounded case as well. Though theoreti- 
cally accurate, this assessment disregards the fact that 
considerable inefficiency and excessive demands on 
memory may result by "direct adaptations." Conse- 
quently, we undertake to show how the foregoing 
procedures can be adapted in a more effective man- 
ner to treat IP problems with general upper bounds, re- 
femng specifically to the class of moves that consists 
of changing the value of a selected variable to an adja- 
cent value. 

Perhaps surprisingly, standard techniques to trans- 
form the problem into one with zero-one variables are 
not only inefficient, but fail to work in this context. 
For example, if a variable x, is represented by a binary 
expansion as XI, + 2x2, + 4x3] + 8x4,, . . . , then to 
change the value of x, from 7 to 8 involves a composite 
move that changes XI,, x2, and x3, from 1 to 0, and x4, 
from 0 to 1. Other representations of xJ as a linear 
combination of zero-one variables require the use of a 
composite move that changes the value of one variable 
from 1 to 0 and another variable from 0 to 1. Such 
moves belong to the class of paired attribute moves 
which require more complex rules and memory struc- 
tures, and whose treatment is indicated in Section 1.5. 

Bounded Variable Specialization of the Reverse Elimination Method 

We first consider how the Reverse Elimination Method 
can be adapted to the bounded variable setting. This 
adaptation is considerably simpler than the one for the 
C-Sequence Method, and allows a convenient means 
for introducing considerations basic to both procedures. 

Move attributes that satisfy the sufficiency and 
necessity conditions discussed earlier result by the nat- 
ural device of creating an attribute to represent the 
increase or decrease of each integer variable to a specific 
value. For example, by selecting an attribute e to rep- 
resent increasing x, from 7 to 8, the complement 2 
represents decreasing x, from 8 to 7. In principle, the 
Reverse Elimination Method in the form previously 
described can be applied directly to this representation 
of move attributes. However, this unfortunately creates 
an attribute for every value to which x, can be increased 
or decreased, producing 2UJ attributes for every variable 
x,, where U, is the upper bound for x,. Thus, a 500 
variable IP problem where each variable is constrained 
to lie between 0 and 100 gives rise to about 1,000,000 
elements, and hence requires a corresponding dimen- 
sion for each of the predecessor and successor arrays. 

There is a simple way to organize the Reverse 
Elimination Method by the use of a different data 
structure that will reduce this component of memory 
by a factor of more than 30. In general, instead of 
requiring array space of 2(C U,), this alternative data 
structure requires an array space of only 3m, where m 
is the total number of variables-essentially introducing 
a single array of m elements beyond the two arrays of 
m elements required by the zero-one problem. 

The approach is based on the fact that it is not the 
sequence of elements in the Residual C-Sequences that 
is important, but only their identity. Thus the predeces- 
sor and successor arrays serve only as a convenient 
means for tracking this identity (and indeed, by the use 
of bit string coding, and efficient routines for identifying 
bits that are "on," the zero-one case can be handled 
with less memory as well). 

The specialization of the Reverse Elimination Pro- 
cedure to the zero-one IP example allows a simple 
interpretation for the elements of the Residual C-Se- 
quence that are linked by the predecessor and successor 
arrays. In particular, at the point where the element 
e(i) is either added to the sequence or used to eliminate 
its complement, the residual C-Sequence elements iden- 
tify precisely the variables xJ whose values in x(i) differ 
from their values in the current solution x(q). 

By extension, to track the corresponding infor- 
mation for the general upper bound case, we use a 
deviation array which identifies the vector difference 
x(i) - x(q), i.e., deviation(j) = xJ(i) - xJ(q). The 
specialization of the Reverse Elimination Procedure to 
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this setting occurs by starting with all entries of the 
deviation array equal to 0. Each e(h) encountered dur- 
ing the reverse trace from e(q) to e(i) in TL records the 
information that a particular xJ was increased or de- 
creased, and on the basis of this information the cor- 
responding value of deviation(j) is changed in the 
opposite direction. The value of n in the Reverse Elim- 
ination Procedure accordingly represents the sum of 
the absolute values of the deviation array entries in this 
specialization. The predecessor and successor arrays are 
given a changed role, which consists of linking the 
indexes of nonzero entries of the deviation array. 
Hence, when n = 1, the only element remaining linked 
by these arrays is the unique index J such that devia- 
t ion(~)  = 1 or -1, indicating that xJ appropriately 
becomes tabu to be increased or decreased, respectively, 
in the current solution. The resulting specialization of 
the Reverse Elimination Method to the bounded vari- 
able IP setting thus becomes both straightforward and 
easy to execute. 

The process which incorporates this specialization 
is illustrated in Figure 4. 

Bounded Variable Specialization of the C-Sequence Method 

The handling of general bounded IP problems with the 
more efficient (though more restrictive) C-Sequence 
Method requires a different type of approach. The 
dominance property once again leads to a process that 

&eclalizazion for Bounded Variable IP 

TL Llst Code 
j means Increase x .  by 1 

-j means decrease x i  by 1 

Reverse Eli3ination Trace 

I devration (j) I 

Figure 4. Reverse elimination method. 

is highly efficient and which achieves an economical 
use of memory. 

As a basis for this specialization we introduce an 
array ATLrecord, which is dimensioned to the maxi- 
mum size to be allotted to the ATL list, and which 
contains the elements of this list without specifying the 
order in which they appear. The order is provided by 
altering the function of the predecessor and successor 
arrays to link ATLrecord indexes. Specifically for h = 
predecessor(i) and j = successor(i), the entries ATLrec- 
ord(h), and ATLrecord(j) identify the elements that 
immediately precede and follow the element ATL- 
record(i) on the ATL list. Correspondingly, the array 
entries startseq(i) and endseq(i) name the positions in 
ATLrecord of the elements that start and end the C- 
Sequences that the element ATLrecord(i) ends and 
starts, respectively. Similarly, the iteration array is 
keyed to positions of ATLrecord. 

We will show by means of this data structure, and 
two additional arrays, that the C-Sequence Method can 
be specialized in a way that permits the associated 
component of memory to be reduced by a factor 
roughly equivalent to that achieved for the Reverse 
Elimination Method. To describe how this occurs, we 
first stipulate that the predecessor and successor arrays 
must initially link two different sets of indexes (each 
beginning and ending with its own fixed dummy in- 
dexes), one which consists of the positions on ATLrec- 
ord where elements of ATL currently are found, and 
the other which consists of "free" positions. When an 
element is canceled, its ATLrecord index goes on 
the linked list of free positions. Once ATLrecord is 
full, however, and no free positions remain, the 
current element added to ATL goes in the position of 
ATLrecord occupied by the element canceled on this 
step, or by the oldest (earliest) element if no element is 
canceled, and this position is relinked to become the 
new "last" position. 

The elements recorded on ATLrecord embody 
three pieces of information: the variable xJ whose value 
was changed on a given iteration, the new value as- 
signed to this variable, and whether the change was an 
increase or decrease. The first of the two additional 
arrays for exploiting this representation effectively has 
the purpose of identifying the location of each e on 
ATLrecord, and will be denoted location (e). Instead of 
defining this array over elements recorded in ATLrec- 
ord, however, we specify that the elements accessed by 
location(e) are "reduced elements" that indicate only 
the identity of specific xJ variables and whether they are 
increased or decreased (without reference to the value 
attained). This results in much less memory than would 
otherwise be required, but entails that location(e) points 
only to a subset of the elements on ATLrecord. To 
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compensate for this, the second additional array, de- 
noted pre(i), links positions of ATLrecord which loca- 
tion(e) temporarily omits. Specifically, for each element 
ATLrecord(i), pre(i) names the position h such that 
ATLrecord(h) contains the most recent earlier appear- 
ance of the same variable x, and the same direction of 
change recorded in ATLrecord(i). (A dummy position 
is named if ATLrecord contains no such entry.) Then 
location(e) identifies precisely the latest position (asso- 
ciated with the largest iteration value) that a given 
variable x, was changed in a given direction. 

The ability to restrict location(e) in this way derives 
from the fact that this entry names the only position in 
ATLrecord which is currently of interest (for the asso- 
ciated "reduced" e)-i.e., it identifies the only element 
that currently can be canceled by a new move that 
changes x, in the direction opposite to that indicated by 
e. Upon cancellation, the new position to be named 
by location(e) is determined by the value of pre(i), for 
i = location(e). 

To complete the process, when the attributes of 
the new moves are recorded in ATLrecord(h), then 
location(e) (for e identifying the appropriately reduced 
subset of these same attributes) gives the proper entry 
for pre(h), and location (e) is reset by location(e) := h. 
Indeed, by these observations, the use of the location 
and pre arrays makes it possible to record attributes in 
reduced form (identifying only a variable x, and a given 
direction of change) within ATLrecord itself, provided 
current values of the variables are stored separately, 
and we assume this henceforth. 

It remains only to designate how tabu status can 
be recognized and enforced. As a result of the foregoing 
process, the condition startseq(i) = i, which identifies 
the element ATLrecord(i) to be tabu, can only be 
relevant for the current solution in the situation where 
location(e) = i. Thus, whenever a change results in 
setting startseq(i) = endseq(i) = i, the attribute e = 
ATLrecord(i) is checked to determine whether loca- 
tion(e) = i, and similarly, when location(e) is updated 
to name a new position i, the condition startseq(i) = i 
can be checked. Since location(e) identifies the index 
of the only move for x, (in the given direction) that is 
relevant to be considered tabu, all tabu moves can be 
identified by flagging location(e) negative for those 
elements e that currently identify a tabu move in this 
manner. 

An illustration of how the ATLrecord array is 
linked by the location and pre arrays is provided in 
Figure 5. For convenience, this illustration assumes the 
elements of ATLrecord occur in the same order as in 
ATL (hence, appearing in the order of their iteration 
values, for the subset of iterations encompassed by 
ATL). By this means, the predecessor and successor 
arrays refer to successive indexes of ATLrecord and it 

Part ia l  Data Structures f o r  Bounded Variable I P  

Note: ATLrecord 1 s  assumed to have the same 
order as ATL (hence predecessor(1) = 1-1) 

Figure 5. C-Sequence method. 

is unnecessary to identify them separately to determine 
the "true order" of ATLrecord. We note that this type 
of data structure and the rules for its management can 
be adapted to a variety of other settings involving large 
numbers of elements, where these elements belong to 
ordered classes in which each member (other than the 
first) can occur in a solution only if its "class predeces- 
sor" does also. 

1.5. Dynamic Tabu Lists for Paired Attribute Moves 

A wide range of procedures for optimization problems 
operate by means of moves that may be represented by 
a pair of attributes (e, f). Such paired attribute moves 
are exemplified by a variety of "add/drop" operations, 
such as adding and dropping elements from a set, edges 
from a graph, or variables from a basis. Rather than 
treat the attributes of such moves as ordered pairs, we 
explicitly consider an element used in two different 
ways to be two different move attributes; hence, in one 
move e may represent adding a given element and in 
another move g may represent dropping the same ele- 
ment (in which case, we may also write g = 2). 

Such paired attribute moves can also include single 
attribute moves by the use of "null attributes" a and d, 
which respectively take the place of the operations of 
adding and dropping "ordinary" elements. Thus if e 
represents the attribute of adding a given edge to a 
graph, the pair (e, d )  represents the move consisting of 
adding this edge without dropping another (i.e., drop- 
ping instead the null attribute d). By the convention 
that d = ~3 the subsequent development can be applied 
consistently to this type of representation. In the case 
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where each element is eligible for membership only in 
one specific set, it is preferable to create a different pair 
of null elements for each set. (Otherwise, moves that 
cannot occur may unnecessarily be identified as tabu.) 

The importance of paired attribute moves is en- 
hanced by the fact that a variety of methods for discrete 
and nonlinear optimization are based on the use of 
basis exchange operations, whose moves fall naturally 
into this category. (We examine a mixed integer pro- 
gramming method of this type in a later section.) An- 
other area of application for such moves occurs in 
"multiple choice" problems, where zero-one variables 
belong to sets, and are governed by the provision that 
exactly (or at most) one of the variables in a given set 
can receive the value 1. (The introduction of zero-one 
slack variables converts the "at most one" case to the 
"exactly one" case.) The relevant paired attribute moves 
for these problems take the form of setting x, = 1 and 
xJ = 0, where x, and xJ belong to the same set. 

A variety of moves that do not seem at first to be 
paired attribute moves can be expressed in the context 
of multiple choice problems. For example, moves that 
allow variables to "jump" to nonadjacent values can be 
viewed in this setting (conceiving the range of values 
for a variable to be a multiple choice set). Operations 
that transfer a job between machines, which appear to 
involve several attributes (e.g., the identity of the job, 
the machines affected by the transfer, and the sequence 
position of the job on each machine), likewise can be 
viewed as multiple choice moves. In this case, the 
multiple choice set derives from the collection of posi- 
tions and machines to which the job may be assigned, 
since the job can be placed in at most one position on 
at most one machine. In addition to their pervasiveness, 
multiple choice moves have the attractive feature of 
permitting an economical data structure for recording 
tabu status in both the C-Sequence and Reverse Elim- 
ination Methods, as will be shown. 

Handling Paired Attribute Moves by the C-Sequence Method 

As in the single attribute case, we will represent the 
tabu list TL for paired attribute moves by 

However, e(i) no longer refers to a move attribute 
associated with iteration i. Instead, two attributes e(i) 
and e(i + I),  for i odd, are generated at each iteration 
k (where k = (i + 1)/2). The value q is then twice the 
value of the current iteration. By this convention the 
sufficiency and necessity properties for TL can be de- 
fined exactly as earlier, noting that solutions are asso- 
ciated only with odd valued i indexes. 

Similarly, this convention allows the active tabu 
list, ATL, to be given the same representation as before. 
The predecessor and successor arrays also operate with 

no change. However, there is an important distinction 
concerning the manner in which the attributes of TL 
are processed. The identity of each block of attributes 
that corresponds to a single move is maintained 
throughout all operations, enabling C-Sequences to take 
a more general form that depends on this identity. (This 
fact may allow memory savings in certain settings.) 
Correspondingly, the array iteration(e) continues to 
refer to the iteration when element e was added to ATL, 
thereby automatically identifying members of a com- 
mon block by the shared value of location(e). 

The more general form of the C-Sequence Method 
that occurs for paired attribute moves may be charac- 
terized as follows. Assume that e(q + 1) and e(q + 2) 
constitute the block of elements newly added, and let e 
denote each of these elements in succession. If 2 belongs 
to ATL, and hence is canceled by e, then the resulting 
C-Sequence ends with the predecessor of e, as before. 
However, the C-Sequence does not necessarily begin 
with the successor of 2, but rather with the element f 
which is the other member of the block to which 2 
belongs, unless f has previously been canceled. This 
follows from the fact that the solution which was trans- 
formed by the block consisting of 2 and f (i.e., by the 
move associated with this block) cannot be repeated, 
under the sufficiency condition, unless both attributes 
of the block are canceled. The C-Sequence applicable 
to the single attribute case, where each block consists 
of just one element, also obeys this rule, since the 
cancellation of an element eliminates "all members" of 
the block and thus excludes it from the C-Sequence. 

The newly added block of elements is not similarly 
encompassed by the C-Sequence, since a C-Sequence 
does not permissibly include an attribute which can- 
cels another. However, the process for creating a C- 
Sequence acquires a new feature, due to the ability to 
consider the members of the added block in any order, 
which allows either one of the new attributes to be 
designated e(q + l), and the remaining attribute to be 
designated e(q + 2). Different ordering yield different 
outcomes, and it is possible to identify an ordering that 
guarantees the best (least restrictive) collection of C- 
Sequences from the alternatives available. 

The rule to generate the preferable ordering is as 
follows. Choose e(q + l ) ,  the "first" member of the new 
attribute pair, to be an attribute which does not cancel 
an attribute currently recorded on ATL, or which can- 
cels an attribute recorded earlier than the attribute 
canceled by the other member of the new pair. If neither 
member cancels an earlier element, or if both members 
cancel elements from the same block, then their order 
is immaterial. (In the latter case, regardless of order, 
the dominance condition for C-Sequences results in 
creating only one C-Sequence, which ends immediately 
before the first member and hence excludes them both.) 
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This stipulation is accompanied by the requirement 
that the tabu buffer must contain at least one attribute 
of the last preceding move, i.e., the added elements 
e(q + 1) and e(q + 2) are not permitted to cancel both 
members of the immediately preceding block (consist- 
ing of e(q) and e(q - I)). 

The application of this rule for creating C- 
Sequences is illustrated in Figure 6. 

To determine tabu status by the application of the 
preceding rule, null add and drop attributes are disre- 
garded, and effectively dropped out of the C-Sequence 
representation. It is possible on a given step for a C- 
Sequence to be reduced to consist of one or two ele- 
ments. Once a C-Sequence shrinks to a single element, 
then the complement of this element is made tabu as 
before, thus rendering any move that contains this 
complement tabu. However, whenever a C-Sequence is 
reduced to consist of two elements, the complements 
of these elements are made tabu as a single pair, rather 
than separately. (The tabu classification is unnecessary, 
of course, if the pair does not correspond to an existing 
move. For example, in an addldrop context it is possi- 
ble that two remaining elements will both represent 
"drop attributes," in which case no corresponding move 
exists.) 

The creation of tabu status can be handled for such 
pairs by coding them as single entities-as, for example, 

(1) 7 cancels an earlier element than 6, hence interchange 6 and ? to 
put 3 first before cancellrng. 

An. Before Cancellation 

Newly Added 

- - 
New: endseq ( 7 )  = startseq (6) = 7 - 

7 

(2) Carry out remaining cancellation. (Uncancelled member of pair 
starts new C-Sequence. Perform standakd update of startseq and 
endseq. ) 

An. M t e r  Cancellation 

3 2  

C-Sequence #1 I;,,.,. 
C-Sequence Y 2  

Figure 6. C-Sequence creation-paired attribute moves. 

1 4  

by a matrix representation M(r, s) which refers to 
adding an element indexed r and dropping an element 
indexed s, where M(r, s )  is assigned a positive value for 
a tabu pair. However, it is generally possible to do better 
than this. The positive M(r, s) matrix entries are likely 
to be a very small fraction of the total, and hence a 
linked list may be maintained for each index r (or s)  
that identifies its associated tabu pairs. Only a small 
search is required to identify tabu status under this 
scheme. 

In the multiple choice context this approach can 
be made additionally effective, and can be implemented 
without a need for search. An addldrop pair indexed 
by (r, s) can eliminate reference to the "drop index" s 
and still recover its identity from knowledge of the 
associated multiple choice set. Specifically, tabu status 
can be established by a single list tabu(r), where tabu(r) 
> 0 signifies that the move associated with the pair (r, 
s) is tabu, and s is the unique element such that x, = 1 
in the multiple choice set that contains x,. 

For problems outside the multiple choice context, 
an alternative approach can be employed to reduce 
memory, based on assigning numerical "tabu values" 
to different attributes recorded on ATL. A move is then 
treated as tabu if the sum of the tabu values of its 
attributes is at least I .  Specifically, when a C-Sequence 
shrinks to one element, the tabu value of the comple- 
ment of this element is set equal to 1, assuring that any 
move which contains this attribute will be tabu. By 
extension, when a C-Sequence shrinks to two elements, 
the tabu value of each complement is set to one-half. 
This approach can render a larger number of moves 
tabu and hence constitutes a more restrictive means of 
creating tabu status than the approach that codes (r, s)  
pairs as single entities. 

6 6  3 

Handling Paired Attribute Moves by the Reverse 
Elimination Method 

The Reverse Elimination Method allows a more rigor- 
ous treatment of paired attribute moves, although at 
the expense of greater computational effort. The TL list 
is represented with the same conventions indicated for 
the C-Sequence Method, where the paired attributes for 
successive moves are recorded in blocks of the form 
e(i), e(i + 1) for odd values of i. 

The operations of adding and eliminating elements 
occur by the same rules that apply to the situation 
where each e(i) is created by a separate move. However, 
during the reverse trace tabu status is only assigned at 
the conclusion of examining both members of a block. 
Null add and drop elements are not extracted from the 
sequences (except as they cancel each other), but are an 
integral part of the process. Further, tabu status applies 
only to pairs of attributes defining specific moves, rather 
than to single attributes, and does not depend on 
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whether both members of the pair belong to the same 
block. 

In particular, after every second element examined 
in the reverse trace, the value of n is checked to see if 
it equals 2. (This value will always be even at this 
point.) If so, the two attributes that are linked by the 
predecessor and successor arrays identify the comple- 
mentary pair of attributes to be made tabu. A pair that 
does not represent a move accessible to the current 
solution can be disregarded.) In an add/drop context, 
it is assured that one member of the tabu pair will 
represent an element previously added and one will 
represent an element previously dropped. The M(r, s) 
matrix coding and the "numerical value" approach for 
creating tabu status can be employed as with the C- 
Sequence Method. Similarly, a single tabu(r) array can 
be used to achieve an economical use of memory in 
the multiple choice problem setting. 

To apply a diversification strategy, pursuing the 
goal of avoiding moves that belong to small sequences 
(i.e., which separate the current solution from a pre- 
vious solution by a small number of steps), the rules 
become somewhat more complex than in the single 
attribute case. In the add/drop context, every possible 
pairing of "add" and "drop" attributes contained in the 
sequence identifies a potential move whose reversal 
should be avoided, provided the move currently exists. 
(These two types of attributes will occur in equal num- 
bers, in no specific order, and will respectively belong 
and not belong to the current solution.) Thus a diver- 
sification strategy based on the Reverse Elimination 
Method will reasonably restrict attention to sequences 
of only a few such attributes. This limitation may be 
avoided, at the risk of penalizing more moves than 
necessary, by a diversification strategy based on assign- 
ing numerical tabu values to attributes. 

A tabu buffer that automatically assigns a tabu 
status to the complements of the tb most recent attri- 
butes on TL also achieves a degree of "local diversifi- 
cation." Such a buffer is probably more important for 
paired attribute moves than for single attribute moves. 
In the paired attribute case, there are often more paths 
between solutions and more opportunities to follow a 
trajectory that remains in the vicinity of a solution 
recently visited. This can create a significant overlap in 
the solutions implicitly evaluated by examining alter- 
native moves. For example, in a multiple choice prob- 
lem, if a tabu buffer is not used to encourage diversity, 
a move that sets x, = 1 and x, = 0 may reasonably be 
followed by a move that sets x, = 0 and xu = 1. Yet the 
solutions reached by all moves of the latter type, for 
u # s, were previously accessible by the moves that set 
x, = 0 and xu = 1 on the preceding iteration. Unless 
there is comvellinn reason to reconsider these alterna- 

designate all such moves tabu. (When the associated 
solutions should in fact be reconsidered, tabu search 
typically allows these solutions to be encountered by a 
more roundabout circuit, which may be shortened by 
the use of appropriately designed aspiration criteria. We 
note that structured move sets of the type discussed in 
Section 2 can allow earlier alternatives to be visited 
more directly than by such roundabout move se- 
quences.) 

The strategic oscillation approach characterized in 
Section 7 of Part I likewise serves as a means of supple- 
menting local diversification. The number of steps that 
are selected in this approach for continuing beyond a 
boundary, before permitting the search to return (and 
thereby to meet and cross the boundary from the op- 
posite direction), will generally have a direct effect on 
the degree of diversification. An appropriate depth for 
penetrating such boundaries is likely to be greater for 
paired attribute moves than for single attribute moves, 
for the reasons already suggested. 

Apart from the diversification issue, the implemen- 
tation of the Reverse Elimination Method for paired 
attribute moves is a straightforward adaptation of the 
form of the method for single attribute moves, and the 
implications of the sufficiency and necessity conditions 
in avoiding duplicate solutions are the same as in the 
simpler case. 

An illustration of the Reverse Elimination Method 
for paired attribute moves is given in Figure 7. The 
Residual C-Sequences generated in this example dis- 
close that the add and drop attributes do not necessarily 

paired Attribute wolree 

TL Lis t  Code 

Reverse B l M n a t i o n  Trace 

tives, a localhiver~ification policy would appropriately Figure 7. Reverse elimination method. 
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alternate as they do on the original TL list, and that 
tabu moves may derive their attributes from different 
blocks of TL. A duplicated solution is also illustrated, 
depicting the type of situation that may occur when all 
currently accessible moves are tabu, or when TL is 
traced to greater depths on some iterations than on 
others. 

1.6. Extensions to Multiattribute Moves 

Optimization procedures sometimes employ moves 
that involve more than two attributes. For example, it 
is common in the traveling salesmen setting to employ 
"four-attribute moves" that drop two edges and add 
two others. The ideas we have presented for handling 
paired attribute moves can be extended more generally 
to multiattribute moves, provided a few special condi- 
tions are heeded. 

For both the C-Sequence and Reverse Elimination 
Methods, the TL list does not alter its representation, 
although the blocks of attributes that correspond to 
moves now consist of an increased number of elements. 
In the C-Sequence approach, when an attribute of a 
newly added block cancels an attribute of an earlier 
block, all uncanceled elements in the earlier block are 
included in the C-Sequence that results. The preferred 
ordering of the attributes of the newly added block 
arises by choosing attributes that do not cancel earlier 
attributes on ATL to appear first. Then, of the attributes 
remaining, those which cancel earlier attributes on ATL 
appear before those that cancel later attributes on ATL. 
Numerical tabu values may appropriately be employed 
by assigning a value of l/k to each attribute in a C- 
Sequence of size k, restricting attention to C-Sequences 
that do not exceed the size of a block. 

The Reverse Elimination Procedure examines all 
members of each successive block before considering 
the assignment of tabu status. A tabu move is identified 
when the linked elements are exactly equal in number 
to the size of a block. These elements can be fewer in 
number without implying that a move should be iden- 
tified as tabu. (An exception may occur if a type of 
move that contains such a smaller number of attributes 
is admissible.) 

Except for these changes, the multiattribute setting 
is handled by the same data structures and processing 
rules previously described. 

1.7. lntensification/Diversification Tradeoffs and 
Frequency-Based Tabu List Management 

In contrast to the approaches of the preceding sections, 
which organize all attributes on a single tabu list, there 
are occasions where the use of different tabu lists for 
different types of attributes is warranted. Multiple tabu 
lists, which can be based on the simpler structures that 

classify the complements of all elements on the list tabu 
(instead of merely potentially tabu), give an opportunity 
to exploit tradeoffs between intensifying and diversify- 
ing the search. Intensification strategies, which reinforce 
attribute combinations characteristic of a particular 
region (or combinations historically found good), seem 
inherently opposed to diversification strategies, which 
seek to drive the search into new regions. However, 
these two strategies are not always mutually exclusive, 
and sometimes can be handled more effectively by 
seeking a balance, rather than an alternating domi- 
nance, between the two. 

A notable illustration of this occurs in the setting 
of add/drop moves, as in the edge swapping moves for 
transforming one tree into another or one traveling 
salesman tour into another (in the latter case, adding 
and dropping pairs of edges at a time). Experimental 
evidence suggests that it is better to maintain a tabu list 
to prevent dropped elements from being added back 
than it is to maintain such a list to prevent added 
elements from being dropped. Such findings also sug- 
gest that the best sizes for the first type of list should be 
somewhat smaller than for the second.[201 Intuition 
supports both of these outcomes. The difference in tabu 
list sizes derives from the fact that the number of edges 
that lie in a tree (or tour) is typically much smaller than 
the number that lie outside. Under such circumstances, 
a tabu condition that locks an edge into a tree is much 
more restrictive than one that keeps an edge out of the 
tree, and a list that accomplishes the former result 
should be smaller than one that accomplishes the latter 
result. At the same time, the general superiority of the 
list that prevents dropped elements from being added 
back seems reasonable from the standpoint of flexibil- 
ity. Although such a list may be larger, and therefore 
render more elements tabu, it still generally allows a 
larger number of moves to be constructed from non- 
tabu elements, giving the search more degree of free- 
dom. (Of course, these arguments are not relevant to 
the more advanced dynamic tabu list strategies.) 

Additional useful insight into the tradeoffs between 
the two types of lists can be gained by considering their 
effects on intensifying and diversifying the search. Two 
perspectives appear relevant. From the first perspective, 
a restriction that locks an edge into a tree has an 
intensification role by focusing the search in the sub- 
space where the tabu portion of the tree remains rela- 
tively invariant (changing by one edge each iteration), 
while a tabu restriction that keeps a dropped edge from 
being added back to a tree has a diversification role by 
assuring that new edges will thereby be added to the 
tree. From the second perspective, locking an edge into 
a tree also has a diversification role, because it assures 
that edges of the tree which are not tabu will change 
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their identities, while preventing a dropped edge from 
being added back has an intensification role by limiting 
the search to the moves that incorporate the remaining 
non-tree edges. 

This complementarity of the intensification and 
diversification strategies suggests the value of not simply 
using a tabu list for a single type of attribute (when 
simpler lists are used), but of maintaining multiple lists 
whose sizes reflect the relative restrictiveness of their 
associated tabu conditions (as influenced by the relative 
number of choices available in different categories; e.g., 
non-tree versus tree edges). To date, applications in- 
volving multiple tabu lists have focused on creating 
different lists for different components or stages of 
search, or for preventing repetitions as well as reversals. 
By contrast, the use of multiple lists that incorporate 
different types of attributes has been largely unexplored, 
and the issue of exploiting tradeoffs between intensifi- 
cation and diversification by this means remains open 
to investigation. 

Such considerations, which invite a closer look at 
the standard tabu list structures, also invite examination 
of different types of dynamic strategies that maintain 
these structures. Accordingly, to conclude the treatment 
of dynamic tabu list strategies, we propose two alter- 
native procedures that rely on the organization and 
processing techniques of standard tabu list implemen- 
tations, but which introduce frequency criteria for de- 
termining the current tabu status of attributes on the 
list. In spirit, these procedures are related to those 
of probabilistic tabu search described in Section 9 of 
Part I, and the second procedure provides a natural 
accompaniment to a probabilistic tabu search 
approach. 

To describe the first frequency-based method, con- - 
sider the list ATL, which consists of the complements 
of the elements of ATL (hence consists of those ele- 
ments that are potentially tabu in the C-Sequence 
Method). We may either consider the full set of such 
complements, or more - restrictively, by the use of mul- 
tiple tabu lists, allow ATL to represent a subset that 
corresponds to attributes of a particular - classification. 
In the latter case, more than one such ATL may be 
handled simultaneously, selecting appropriate - parame- 
ters for each. The basic idea is to partition ATL into 
groups, bracketed according to the ages of their mem- 
bers, where tabu status for younger groups is main- 
tained more stringently than for older groups. For 
example, the first group may consist of the 3 youngest - 
elements of ATL, which are required to maintain their 
tabu status without exception, the second - group may 
consist of the next 5 youngest elements of ATL, which 
are strongly but not invariably required to maintain 
their tabu status, and so on. (These divisions may be 

based on iterations rather than numbers of elements. 
For example, a group may consist of elements that were 
added between h and k iterations ago, and hence which 
may contain fewer than k + 1 - h elements as cancel- 
lations occur.) A common approach for accomplishing 
such a progressive relaxation of tabu status is to apply 
successively smaller penalties to the elements in older 
groups, which often produces an effect similar to that 
of making all penalties uniform. By contrast, the ap- 
proach adopted here allows elements of the groups to 
fully escape their tabu status, according to certain fre- 
quencies that increase with the age of the groups. Thus, 
rather than being subjected to diminishing penalties, 
elements are periodically allowed to be chosen freely, 
which requires the determination of an appropriate 
form of frequency measure and an associated means 
for implementing it. 

The Tabu Cycle Method 

The first of the two frequency-based procedures we 
propose is based on the use of iteration intervals called 
tabu cycles, which are made smaller for older groups 
than for younger groups. Specifically, if Group k has a 
tabu cycle of TC(k) iterations, then at each occurrence 
of this many iterations, on average, the elements of 
Group k escape their tabu status and are free to be 
chosen. To illustrate, suppose there are three groups 
(each older than the preceding), whose tabu cycles are 
4, 3 and 2. Then, roughly speaking, an element could 
be selected from the first group once in every 4 itera- 
tions, from the second group once in every 3 iterations 
and the third group once in every 2 iterations. (A buffer 
group whose elements never escape tabu status has an 
implicit tabu cycle of infinity.) 

However, the process is not quite as simple as the 
illustration suggests. By selecting - elements in the man- 
ner indicated, an element of ATL could escape its tabu 
status on virtually every iteration: e.g., by picking an 
element of Group 3 on iteration 2, an element of Group 
2 on iteration 3, then an element either of Group 3 or 
Group 1 on iteration 4, and so on. Moreover, there is 
no clear provision of how to handle the situation where 
no element is chosen from Group k for a duration of 
several tabu cycles, given that the goal is to allow an 
element to be selected, on average, once every cycle. 

To take care of the preceding considerations, we 
introduce a cycle count, CC(k), for Group k. Initially, 
CC(k) starts at 1 and is incremented by 1 at every 
iteration. Each group has three states, OFF, ON and 
FREE. We define Group k to be: 

OFF if CC(k) < TC(k) 
ON if CC(k) a TC(k) 
FREE if Group h is ON for all h a k. 
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An element is allowed to be chosen from Group k only 
if it is FREE, hence only if its cycle count equals or 
exceeds its tabu cycle value (qualifying the group as 
ON), and only if this same condition holds for all older 
groups. The ON and FREE states are equivalent for the 
oldest group. As implied by our earlier discussion, we 
assume TC(k) < TC(k - 1) for all k > 1. 

The definition of the FREE state derives from the 
fact that each CC(k) value should appropriately be 
interpreted as applying to the union of Group k with 
all groups younger than itself. Accordingly, once an 
element is selected from Group k, the cycle count CC(k) 
is re-set by the operation 

CC(h) := CC(h) - TC(h) for all h 3 k, 

whereupon the cycle counts are incremented again by 
1 at each succeeding iteration. By this rule, if Group k 
becomes FREE as soon as it is ON, and if an element 
is chosen from Group k at that point, then CC(k) is 
re-set to 0 (which gives it a value 1 the iteration after it 
receives the value TC(k)). On the other hand, if no 
element is selected from Group k (or any younger 
group) until CC(k) is somewhere between TC(k) and 
2TC(k) iterations, the rule for re-setting CC(k) assures 
that Group k will again become ON when the original 
(unadjusted) cycle count reaches 2TC(k) itera- 
tions. Thus, on the average, this allows the possibility 
of choosing an element from Group k once during 
every TC(k) iteration. 

This process is illustrated in Figure 8. An additional 
buffer group ("Group 0") may be assumed to be in- 
cluded, although not shown, whose elements are never 
allowed to escape tabu status, hence which is always 
OFF. For convenience, a sequence of iterations is 
shown starting from a point where all cycle counts have 
been re-set to 1 (iteration 6 1 in the illustration). Since 
a group is OFF until its cycle count reaches its tabu 
cycle value, each group begins in the OFF state. A 
group that is both ON and FREE is shown as FREE, 
and a FREE group from which an element is selected 
is indicated by an asterisk. 

Figure 8 discloses how the choice of an element 
from a FREE group affects the cycle counts, and hence 
the states, of each group. Thus, for example, on iteration 
64 the choice of an element from Group 2 reduces the 
cycle counts of both Group 2 and Group 3 by the rule 

Hence on iteration 65, where these counts are again 
incremented by 1, their values are shown as CC(2) = 2 
and CC(3) = 1. 

There are a few additional features of this process 
to emphasize. First the tabu cycles do not have to be 
integers. A value such as TC(k) = 3.5 can be selected 

Figurel. Tabu cycle method illustrated. (*New element is 
selected from the indicated group.) 

to allow the method, on average, to choose an element 
from Group k once every 3.5 iterations (hence twice 
every 7 iterations). The rules remain exactly as speci- 
fied. A slight elaboration of the rules is required, how- 
ever, to handle a situation that may occur if no element 
is selected from Group k or any younger group for a 
relatively large number of iterations. In this case, CC(k) 
may attain a value which is several times that of TC(k), 
causing Group k to remain continuously ON, and 
hence potentially FREE, until a sufficient number of 
its elements (or of younger groups) are chosen to bring 
its value back below TC(k). This leads to the possibility 
that a series of iterations will occur where elements are 
repeatedly selected from Group k. (The frequency of 
selection will be limited however, by the cycle count 
values of older groups. Hence the greatest risk of inap- 
propriate behavior occurs when elements are selected - 
entirely outside of ATL for a fairly high number of 
iterations.) Such a "statistically exceptional" outcome 
can be guarded against by bounding the value of CC(k), 
preventing CC(k) from being incremented once it 
reaches a specified multiple of TC(k)-for example, 
upon reaching some fraction f of the number of ele- 
ments assigned to Group k. Similarly, CC(k) should 
initially be bounded by (fy + l)TC(k) until Group k 
has acquired y elements. (The multiple fy + I allows 
Group k to be ON, and hence permits elements to be 
selected from younger groups, during the initial period 
where y = 0.) It should be noted for the case of multiple 
tabu lists that the definition of "iteration" may need to 
be varied for different lists, if not all types of attributes 
are present in each move. 

The Conditional Probability Method 

The second frequency-based tabu list approach has an 
orientation similar to the first, but chooses elements 
from different groups by establishing a probability P(k) 
that Group k will be FREE on a given iteration. The 
probability assigned to Group k may be viewed concep- 
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tually as the inverse of the tabu cycle value TC(k), i.e., 
P(k) = l/TC(k). As with the treatment of cycle counts 
in the Tabu Cycle Method, the appropriate treatment 
of probabilities in the Conditional Probability Method 
is based on interpreting each P(k) as applicable to the 
union of Group k with all groups younger than itself. 
Also, Group k can only be FREE by implicitly requiring 
all older groups likewise to be FREE. 

Under the assumption P(k) > P(k - 1) for all k > 
1, we generate a conditional probability, CP(k), as a 
means of determining whether Group k can be desig- 
nated as FREE. (We may again suppose the existence 
of a buffer, Group 0, which admits no choice of its 
elements, hence for which P(0) = 0.) The rule for 
generating CP(k) is as follows: 

P(k) - P(k - 1) 
CP(k) = for k > 1. 

1 - P ( k -  1)  

Then at each iteration, the process for determining the 
state of each group starts at k = 1, and proceeds to 
larger values in succession, designating Group k to be 
FREE with probability CP(k). If Group k is designated 
FREE, then all groups with larger k values are also 
designated FREE and the process stops. Otherwise, the 
next larger k is examined until all groups have been 
considered. 

The derivation of CP(k) is based on the following 

will generally fall below P(k), without any compensat- 
ing increase in freedom to choose elements from these 
groups (which would potentially allow the average per 
iteration to come closer to P(k)). Moreover, the same 
result will occur if for some number of iterations no 
element is selected from a group as young as Group k. 

To handle this, the original P(k) values may be 
replaced by "substitute probabilities" P*(k) in the 
determination of CP(k). These substitute probabilities 
make use of the same cycle count values CC(k) used in 
the Tabu Cycle Method, invoking the relationship 
TC(k) = l/P(k). To begin, P*(k) = P(k) until CC(k) 
exceeds TC(k) (bounding CC(k) in early iterations 
as specified previously). Then P*(k) is allowed to 
exceed P(k) as an increasing function of the quantity 
CC(k)/TC(k). In contrast to the Tabu Cycle Method, 
a negative value can result for CC(k) in this ap- 
proach, as a result of the update CC(k) := CC(k) - 
TC(k) (which occurs whenever an element is selected 
from a Group h, for h =S k). 

A variation with an interesting interpretation re- 
sets the cycle count CC(k) to 0 instead of decrementing 
it by TC(k). Then CC(k) counts consecutive iterations 
where no element is chosen from any Group h, h 6 k, 
an event which may be (loosely) construed as occuning 
with probability (1 - P(k))', for r = CC(k). Then the 
substitute probability P*(k) on the following iteration 
may be established by setting 

argument. By interpretation, P(k) represents the prob- P*(k) = 1 - (1 - P(k))'+' 
ability that Group k or some younger group is the first (Note this gives P*(k) = P(k) when r = 0.) 
FREE group, while CP(k) designates the probability Finally, to provide a valid basis for computing 
that Group k is the first FREE group but no younger CP(k), we require P*(k) 2 P*(k - 1) for k > 1. Hence, 
group is FREE- The CP(l) = P(l) is appro- beginning with the largest k and working backward, we 
priate since it is not possible for any group younger 

bC L 
than Group 1 to be FREE. In general, for larger values 
of k, the event that Group k or a younger group is P*(k - 1) := Minimum(P*(k - I), P*(k)). 
FREE derives from the two exclusive events (assumed 
independent) where either (1) Group k - 1 or some 
younger group is the first FREE group, which occurs 
with probability P(k - l), or (2) this is not the case and 
Group k is the first FREE group. This gives rise to the 
formula 

and solving for CP(k) gives the value specified. 
Consideration of the rationale underlying the Tabu 

Cycle Method described earlier, however, shows that 
an appropriate characterization of the CP(k) probabil- 
ities is not yet complete. Designating Group k to be 
FREE does not imply an element will be selected from 
this group. For some number of iterations, elements - 
outside of ATL may be accepted regardless of the FREE - 
state of groups of elements within ATL. When this 
occurs, the expected number of elements per iteration 
chosen from groups no older than any given Group k 

The substitute probability approach has the advantage 
of increasing the probability of choosing elements of 
neglected groups as long as they remain neglected. The 
variation that re-sets CC(k) = 0 on the update step also 
automatically avoids the creation of inappropriately 
high probabilities for the type of situation handled in 
the Tabu Cycle Method by capping CC(k). 

By assigning numerical values to tabu attributes, 
with an associated limit on the sum (or other function) 
of these values to determine the tabu status of a move, 
both the Tabu Cycle Method and the Conditional Prob- 
ability Method can be applied to multiple attribute 
moves as readily as to single attribute moves. 

2. Structured Move Sets and Staged Tabu Search 

The dynamic tabu list strategies described in the pre- 
ceding sections offer a variety of opportunities for 
tailoring methods to particular problem settings by 
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manipulating their parameters for escaping (or impos- 
ing) tabu status. Beyond this, however, it is possible to 
structure the moves treated by these processes in an 
adaptive manner. This offers a means of directly visiting 
solution states which are not contiguous by the original 
move definitions. 

It is worth noting that procedures for solving short- 
est path problems already induce a structure, or an 
implicit progression, for examining solutions associated 
with nodes of a digraph, such as the digraph G in 
Section 5 of Part I, which is a function of the search 
itself. This induced structure supersedes the structure 
given by initially defining S(x) as the set of moves to 
nodes y such that (x, y)  is an arc of the digraph. Building 
on this observation, we now indicate a class of methods 
for creating a similar type of induced structure for 
moves employed by tabu search, based on generalizing 
a class of methods described in [15] for finding shortest 
paths from an origin node to all other nodes of a 
digraph. In its origional form the approach uses two 
sets, NOW and NEXT, to which we add a third set, 
denoted TABU. 

TABU SEARCH WITH S(x) IMPLICITLY 
RESTRUCTURED 

1. Initialization. Start with sets NEXT and TABU 
empty, and k = 0. Let the set NOW consist of a 
selected starting solution x* E X. 

2. Choose a "best" non-tabu element from NOW. 
If NOW - TABU is empty, go to Step 4. 

Otherwise, set k: = k + 1 and choose xk = 
OPTIMUM(x: x E NOW - TABU), and 
remove xk from NOW. If c(xk) < c(x*), let x*: 
= xk. 

3. Apply a Screening Test for Partitioning. For 
each s(xk), s E s(xk), such that s(xk) is not 
dominated by an element of NOW or NEXT: if 
s(xk) is dominated by an element of TABU, add 
s(xk) to TABU; otherwise add s(xk) either to 
NOW or to NEXT, according to the outcome of 
applying a screening test to (s, xk), and delete 
from NOW and NEXT any elements 
determined to be dominated by s(xk). 

4. Test for Termination. If NOW and NEXT are 
both empty, or k exceeds an iteration cut off 
level, stop. Otherwise, if NOW # 0, update 
TABU and Return to Step 2, while if NOW = 0 
proceed to Step 5. 

5. Apply a Screening Test for Repartitioning. 
Choose a nonempty subset of NEXT by 
applying a repartitioning screening test and 
transfer elements of this subset from NEXT to 
NOW. Then return to Step 2. 

Several observations apply to this procedure. The 
screening tests for partitioning and repartitioning are 
decision points of the method designed to maintain the 
most attractive solutions in the set NOW. The present 
approach maintains access to moves from different sets 
S(x) as a means of redefining the set of moves consid- 
ered currently available (those in NOW). A candidate 
list procedure could be superimposed on this approach 
to narrow the alternatives, but its function is to reduce 
the effort to identify good current choices as contrasted 
with restructuring the set currently available. 

In the shortest path setting,[15] the tests to deter- 
mine membership in NOW constitute evaluation 
thresholds which, if supplemented by those of a candi- 
date list procedure, would represent a higher level of 
screening to extract the elite candidate list members for 
inclusion in NOW (in some instances, excluding all 
candidate list members, and relegating them instead to 
NEXT). The indicated handling of dominated solutions 
of course depends on procedures capable of identifying 
such solutions. For shortest path problems, the identi- 
fication is extremely easy: a solution associated with a 
given node automatically is interpreted to dominate all 
subsequent solutions associated with the same node 
that have a c(x) value at least as large. 

We further allow the possibility of attaching eval- 
uation labels to elements that are added to NEXT at 
Step 3 as a means of biasing them against being trans- 
ferred from NEXT to NOW at Step 5. This means of 
transmitting information from the decision rule at Step 
3 to the decision rule at Step 5 encompasses the device 
of creating a special FLUNK set of the form specified 
in [15]. 

The sets NOW, NEXT and TABU are depicted for 
notational simplicity as containing only solutions x E 
X, though in fact in most cases they will be more 
complex. Allowing the set TABU to correspond to the 
set T, interpreted as in the latter part of Section 4 of 
Part I, TABU may be construed to consist of pairs (s, 
x), recorded implicitly by reference to solution attri- 
butes from which specific solutions can be recon- 
structed. In general, it should be kept in mind that the 
foregoing procedure uses the set notation for NOW, 
NEXT and TABU as a way of simplifying the reference 
to other underlying sets, of variable specification, that 
may be used to generate and process solutions from a 
record of designated attributes. 

The use of simplified references to sets occurs 
naturally (in a less general form) in the solution of 
shortest path problems. The sets NOW and NEXT in 
this case are sets of nodes, not solutions, where a 
solution consists of a node, a distance label, and a path 
whose identity requires processing to determine. How- 
ever, the data structure simplification that results by 
storing nodes on NOW and NEXT nevertheless makes 
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it possible to access just those solutions that are not 
explicitly dominated by others thus far discovered. 
(More precisely, the current distance and predecessor 
labels attached to the node provide access to the essen- 
tial components of the solution needed for processing. 
Also, strictly speaking, a solution can be dominated 
implicitly, and the record for recovering its associated 
path may be inaccurate, unless distance labels are kept 
sharp.) 

The use of the set TABU provides one of the major 
departures of the procedure from the shortest path 
setting. As always the attributes and restrictions used to 
define tabu status can strongly affect the way the 
method functions. Recall that T (and hence TABU) 
may involve multiple sets of different lengths, or ten- 
ures. In contexts where a t value is allowed to grow with 
k, the effect can be to impart a permanent tenure to 
moves whose attributes are recorded on a tabu set; i.e., 
an element once added to such a set will not be re- 
moved. Elements permanently excluded from consid- 
eration in this manner are assumed to be extracted 
from NOW and NEXT in checking whether these sets 
are empty at Step 4. 

Finally, in the simple case where NOW, NEXT 
and TABU are processed strictly as collections of solu- 
tions, and where the update of TABU at Step 4 consists 
of adding xk (and preferably solutions dominated by 
solutions s(xk)) to TABU with a permanent tenure, 
then the results of [15] provide a convergence guarantee 
for this setting. In particular, under the stated assump- 
tions an optimal solution will be found in a finite 
number of steps, provided the associated graph is finite 
and contains a path from the starting solution to an 
optimal solution. 

Staged Search Processes 

In some types of search environments the sets S(x) of 
moves associated with solutions x in X are structured 
in a way that naturally partitions the search into levels, 
or stages. When this occurs, it can be appropriate to 
apply tabu search in corresponding stages, with separate 
or nested tabu lists applicable to separate stages. In the 
case where the stages establish a strict hierarchy, it can 
further be appropriate to purge the list for a given stage 
when a predecessor stage is visited. 

A simple example involving a strict hierarchy of 
stages occurs where the digraph G characterized in 
Section 5 of Part I corresponds to a tree, disregarding 
the simple cycles produced by pairs of arcs (i, J )  and 
(j, i). We illustrate an instance of this employing a 
structure closely analogous to that produced by branch 
and bound, showing the relevance of creating staged 
tabu lists in parallel with stages induced by S(x). Let X 
be the set of vectors x whose components x,, J < n, take 
the values #, 0, 1, . . . , U,, where x, = # has the 

interpretation that x, is not assigned a value. (It is 
natural to map the # values of a vector into provisional 
"real" values, as by solving a problem relaxation.) 

Then a method for defining S(x) that results in a 
staged representation may be expressed as follows. Stage 
0 occurs when all x, = #, and is the starting point for 
generating the solution sequence. Stage 1 occurs when 
x,  # # but all other x, = #, and in general, Stage p 
occurs when x, # # if j s p and x, = # if j 7 p. All 
moves can be represented as ordered pairs of the form 
(x,', #) and (#, x,'), which have the interpretation that 
x, changes its value, respectively, from # to x,' and 
from x,' to #. For any x' that satisfies the definition of 
a Stage p vector, S(x') is the set of vectors x "  derived 
from x' either by a (x,', #) move or by a (#, x," + 1) 
move, where x," + 1 is any value in the acceptable 
range for x, + I other than #. (The (x,', #) move is 
disallowed if p = 0 and the (#, x," + 1) move is 
disallowed i fp  = n.) 

A tabu list for Stage p, adopting the policy of 
preventing move reversals, will therefore operate in the 
following manner. Upon making a Stage p - 1 move 
(#, x/), the reverse move (x,", #) is entered on the tabu 
list for Stage p. Similarly, on making a Stage p move 
(x,', #), the reverse move (#, x,') will go on the tabu 
list for Stage p - 1. (In this latter case, having transi- 
tioned from Stage p to a lower stage, the tabu list for 
Stage p is purged.) By this scheme, choosing a tabu list 
size for Stage p greater than or equal to the number of 
Stage p moves, it is easy to show that tabu search will 
do a depth first search of the graph of solutions created 
by the structure of S(x). 

The small amount of memory and straightforward 
processing required by this staged tabu search scheme 
underscores an important point. In the absence of 
creating separate lists that match the stages induced by 
the structure of S(x), a simple form of tabu search will 
still do a depth first search of the tree, but in this case 
moves and attributes generally must be characterized 
in a manner that involves a greater amount of memory. 
For example, one such scheme that assures an exhaus- 
tive search of the tree results by allowing the length of 
the tabu list to grow with the number of iterations and 
by defining tabu restrictions in a manner that prohibits 
exactly those moves that lead to a solution previously 
visited. While this is easily done in the present context, 
the increased overhead for memory is considerable, and 
hence a procedure that matches lists to stages is highly 
desirable. 

3. Tabu Search and Mixed Integer Programming 

Three principal methods for mixed integer program- 
ming (MIP) problems based on tabu search will be 
described in this section. The first two fall into the 
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framework of Sections 2-4 of Part I, while the third 
involves a modification of this framework which entails 
changing the definition of a move. 

We define the MIP problem by writing x in the 
form x = (xI, x,), where XI and x, denote the vectors of 
integer and continuous variables, and by identifying 
the set X for (P) by 

X = {x: A,x, + Acxc = b, x 3 0 and xl integer] 

The objective function c(x) is assumed to be linear, 
although ways to get around this assumption will be 
evident from the context. 

For convenience in describing the following MIP 
methods, we defer consideration of aspiration levels 
and of intermediate- and long-term memory functions 
until the end, where prescriptions relevant to all pro- 
cedures will be indicated. 

MIP Method 1 

The first method is based on specifying the form of a 
move s to be given by 

where x," = sl(xl') takes the form 

and x," is an optimal solution to the linear program 

(LP) Minimize c(xlU, x,): 4 x ,  

The set S(x ') applicable to the trial solution x' consists 
of those moves such that XI" = xI' +. e, does not violate 
a lower or upper bound for the variable x,. 

By these conventions, a tabu search method for 
the MIP problem can make use either of the types of 
tabu lists described in Part I or of the dynamic tabu 
lists of Section 1, applied in this case to single attribute 
moves. Such lists can thus be maintained by recording 
the index j of the integer variable whose value was 
changed on given iteration and whether the change was 
an increment or a decrement. (A vector whose com- 
ponents are associated with the components of XI can 
be used to facilitate the checking of tabu status.) 

Given a tabu list that implicitly defines the set T 
of tabu moves, the key to characterizing this procedure 
is to identify an appropriate form of the OPTIMUM 
function for evaluating the move to be selected on the 
current iteration. Suppose x '  denotes the current solu- 
tion, and hence the next solution x" is given by 

x"  = OPTIMUM(s(x '): s E S(x ') - T). 

Then the "natural" choice for OPTIMUM, which se- 
lects x"  as the vector that minimizes c(s(xl)) for s E 

S(x ') - T, can be computationally expensive to imple- 
ment in the MIP setting, since it requires solving (LP) 
to find x," for each xl" = xl' k e,. Consequently, it is 
appropriate to use an easily computed approximation 
to an optimum LP solution to provide a proxy for the 
minimum c(s(x')) value. This can derive, for example, 
from a "partial" dual postoptimizing pivot applied to 
the linear program solved on the preceding iteration of 
the method, or from other more complex postopti- 
mizing penalties as standardly computed in branch and 
bound.[6. 16,28.32.33.371 

Let v(x,) denote the function that yields such an 
approximation, noting that (LP) depends only on the 
vector xln, and that x," is computed without reference 
to x,'. Then x"  may be determined from OPTIMUM 
in two steps. The first examines the integer vectors 
XI" = XI' + eJ and xl" = xl' - e, for appropriate choices 
ofj, excluding alternatives ruled out by the tabu list T, 
and chooses the particular xl" that minimizes v(xl). 
This step determines the move s to be chosen. The 
second step completes the move by solving (LP) to 
determine x," and c(x"). 

The choices made by such an approach can lead 
to surprises as a result of selecting a move that is not 
attractive when its consequences are identified fully 
(upon at last solving the linear program that discloses 
the true value of c(xW)). An improved form of OPTI- 
MUM would therefore use v(xI) as a screening device 
to provide candidate moves that are then examined in 
greater detail before one is selected, e.g., picking the 
first candidate that passes a second screening test. 

The final element of this approach is to endow the 
objective function c(x) with the ability to take on values 
that reflect varying degrees of infeasibility, since in 
many MIP problems an XI vector that yields a feasible 
starting solution may not be known and, in addition, 
subsequent moves by tabu search may lead from the 
feasible region into the infeasible region. By the usual 
convention, an infeasible solution is interpreted to yield 
a value of infinity for c(x). Thus, if this convention is 
maintained, the problem should be modified to encom- 
pass a larger feasible region with penalties for lying 
outside the true region of interest. This can be accom- 
plished by a goal programming formulation, or more 
generally by introducing bounded variables to allow 
increasing constraint violations at increasing cost. Spe- 
cialized LP methods exist for solving such problems 
efficiently. 

This application of tabu search to the MIP problem 
can take a variety of specific forms, depending on the 
way the original problem is altered to penalize infeasi- 
bilities and on the choice of the OPTIMUM function 
(via the function v(xl)). An appealing feature of this 
approach is that once these choices are made, it is 
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relatively straightforward to implement. It is also able 
to incorporate other types of moves, such as the paired 
attribute moves that arise in multiple choice problems, 
where incrementing a given variable to the value 1 
entails that all other variables in its multiple choice set 
receive the value 0. 

MIP Method 2 
The second tabu search method for the MIP problem 
will first be described in the context where all integer 
variables are zero-one variables. For this approach we 
assume that X does not include the stipulation that x, 
is integer, but that the constraints defining X include 
the bound x, d 1 for integer variables. Correspondingly, 
we assume c(x) penalizes points at which such variables 
are not 0 or 1, as by a weighted component that is 0 at 
x, = 0 and x, = 1, and that attains a unique local, hence 
global, maximum at x, = '/2. (For example, the product 
x,(l - x,), raised to any positive power, provides such 
a component. A variety of alternative functions that 
can be used in this context are proposed in [ 5 ] . )  The 
function c(x) therefore is transformed to be nonlinear 
for this case, but as will be seen this poses no difficulty. 
Indeed, different forms of penalty functions can be used 
at different stages of the search. 

The approach uses the fact that an optimal zero- 
one MIP solution can be found at one of the extreme 
points of X, and hence the search for such a solution 
can be undertaken by a method that pivots from one 
extreme point to the next, like the simplex algorithm. 
(Such pivots include the operation of moving a non- 
basic zero-one variable x, from one of its bounds to 
another, or equivalently of replacing x, by 1 - x,. 
Consequently, one of the better known heuristics in 
this setting has been called the "pivot and complement" 
method.C2') 

The moves of S, therefore, need only to be defined 
on the extreme points of X, and for each of these, s(x) 
is an adjacent extreme point of x for each s in S(x). 
The implementation of tabu search in this setting com- 
pares favorably with that of MIP Method 1, and is 
simpler in some respects, because the moves do not 
require solving an associated linear program and OP- 
TIMUM does not require reference to an approximat- 
ing function v(xI). Thus, in particular, for any extreme 
point x '  in X,  we may stipulate that the choice 

selects X" to be an extreme point adjacent to x '  such 
that 

C(X ") = Min(c(s(x ')): s E S(x ') - T). 

Allowing c(x) and S(x) to vary according to availability 
of certain types of improving moves, such an evaluation 

includes that of the pivot and complement heuristic. 
However, it is important in the present context not to 
exclude a class of moves from S(x) simply because they 
are nonimproving, but to let the tabu search framework 
decide an appropriate move from the larger set. 

To complete the specification of the present MIP 
method, we need only to identify the form of T. By 
reference to the goal of preventing a move reversal, or 
more broadly, of preventing a return to an extreme 
point from which a move was initiated, T may be 
defined in the simpler types of tabu list approaches to 
consist of moves that would make s ( x f )  an extreme 
point reached on one of the preceding t iterations. An 
attribute of previous moves that is easily identified and 
recorded is the pair of nonbasic and basic variables 
whose exchange led from one previous extreme point 
to the next-i.e., this attribute is a "composite" of the 
two attributes that arise in a paired attribute represen- 
tation of the exchange move. Thus, employing such a 
composite attribute, T could be maintained in the form 
of a related list 

T' = {(p, q): Nonbasic variable x, exchanged with basic 

variable x, on iteration h > k - t 1. 

Then a move would be classed tabu if it involved an 
exchange, in reverse, of nonbasic x, for basic x, for 
some (p, q) E T'. 

It is interesting to note that such a characterization 
of T, while seeming to be similar to a paired attribute 
representation, is in fact quite different, and exemplifies 
a case where preventing a move reversal may not pre- 
vent returning to a preceding solution. For example, a 
sequence of pivots yielding T' = ((1, 2), (2, 3), (3, 1)) 
identifies a cycle that the use of T' is unable to prevent. 
(If T' were organized to prevent the execution of orig- 
inal moves as well as move reversals, as by specifying 
T to be the set described in Section 2 of Part I that 
consists of the union of two sets T, and T,, then 
traversing such a cycle would not be followed by a 
repetition of the same moves.) Among the simpler types 
of tabu list approaches, one that is appropriately effec- 
tive, and easier to process, is to designate the set T' by 

T' = (q :  basic variable x, 

became nonbasic on iteration h > k - t ) .  

The tabu classification applies in this case to those 
moves that allow x, to enter the basis for some q E T'. 
Such a list T' can be maintained for the bounded 
variable simplex method by interpreting a variable 
which is nonbasic at its upper bound to be basic, with 
its complementary variable nonbasic. 
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A possible alternative for T', is given by 

T" = (p: nonbasic variable x, 

bound methods, and underly the derivation of a variety 
of cutting planes for the MIP 

Tabu search acquires features in this setting that 
became basic on iteration h > k - t i .  are similar in concept, but different in detail,-from 

However, T" generally is more restrictive (and probably 
less desirable) than T' since the number of nonbasic 
variables typically is larger than the number of basic 
variables and, moreover, the use of T" to prevent a 
basic variable from becoming nonbasic could prevent 
more than one nonbasic variable from becoming basic. 
An appropriate value of t, in any event, would be 
different for T" than for T '. The relative performance 
of these simpler tabu list approaches by comparison 
to the C-Sequence and Reverse Elimination Methods 
in this MIP setting provides an interesting area for 
investigation. 

MIP Method 2 for zero-one problems can be 
extended to the general MIP problem by reference to 
pseudo-extreme points which are reached by truncated 
pivots. We define a pseudo-extreme point, recursively, 
to be an extreme point, or to be any point that can be 
reached from another pseudo-extreme point by incre- 
menting or decrementing the value of a nonbasic vari- 
able, maintaining feasibility, to a new value at which 
some integer variable receives an integer value. Thus, a 
pseudo-extreme point can arise by assigning nonbasic 
variables values other than upper and lower bounds. It 
is not difficult to prove that an optimal MIP solution 
lies at one of these pseudo-extreme points. 

A truncated pivot occurs in this setting when a 
change in a nonbasic variable stops short of making the 
variable equal to one of its bounds, and before causing 
any basic variable to equal one of its bounds, but drives 
some basic integer variable x, to an integer value u. The 
basis exchange is executed in the standard manner for 
such a pivot, and the basic variable x, becomes nonbasic 
at the value u. 

From these observations, the zero-one approach 
may be extended to a procedure that transitions among 
adjacent pseudo-extreme points (or jumps beyond to 
nonadjacent pseudo-extreme points), while creating 
tabu status in a manner analogous to that previously 
indicated. 

MIP Method 3 
The final variant of tabu search for MIP problems may 
be characterized by reference to moves that consist of 
imposing (and relaxing) constraints, rather than moves 
defined as mappings. The constraints underlying such 
moves arise from disjunctions of the form "x, s u or 
xJ 3 u + 1," as u and u + 1 range over admissible 
integer values for an integer variable xJ. Such disjunc- 
tions are the building blocks for many branch and 

those based on defining moves as mappings. In bartic- 
ular, we define moves that derive from disjunctions to 
consist of three types: restriction moves, relaxation 
moves and complement moves. 

A restriction move takes the form exemplified by 
the Dakin branching scheme for branch and bound 
which imposes one of the two constraints x, 6 [x,'] or 
x, 3 [x,'] + 1, relative to a given trial solution x' ,  where 
x, is an integer variable, x,' is not an integer, and [x,'] 
denotes the greatest integer c x,'. The motivation for 
such moves, as in branch and bound and in cutting 
methods, is to take X to be the feasible continuous 
region, disregarding the stipulation that x1 is integer, 
and to impose constraints progressively until obtaining 
a subset of X whose optimal continuous extreme point 
solution, minimizing c(x), yields integer values for the 
components of XI. 

Specifically, let the constraints associated with a 
given stage of such a process be summarized by refer- 
ence to regions RI, i = 1, . . . , r, where each R, has the 
form Ix: x, s u )  or {x:  x, a u + 1) for a given integer 
variable x, and integer u. Then the current feasible 
region X', created by imposing the associated con- 
straints, is given by 

(By convention, X' = X when r = 0.) The trial solution 
x', associated with X' is an optimal solution to the 
linear program 

(LP') Minimize c(x): x E X' 

Thus, assuming (LP') has a feasible (and bounded 
optimal) solution x' with some component of x,' non- 
integer, a restriction move consists of selecting a con- 
straint whose corresponding region R,, I creates a new 
feasible region X" given by 

X" = X' n R,+,. 

Then upon increasing r by 1, X" becomes the current 
X'. 

A relaxation move is the reverse of a restriction 
move and consists of discarding a previously imposed 
constraint. 

A complementation move consists of replacing one 
of the two constraints xJ c u and x, 3 u + 1 by the 
other, where the constraint that is replaced corresponds 
to one of the regions R,. 

Based on the foregoing definitions, we present an 
outline of the third MIP procedure, temporarily omit- 
ting reference to how the choices of the method are 
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made, and to the way in which particular moves acquire 
and lose tabu status. 

I 
OUTLINE FOR MIP METHOD 3 

1. Initialization. Start with X '  = X and r = 0. 
2. Solve (LP'). If an optimal solution x '  for (LPf) 

yields xI' integer, and if c(xf)  < c(x*) for the 
current best feasible MIP solution x*, then 
record x ' as x* and go to Step 5. Otherwise, if 
this step has been executed more than a 
specified number of times since obtaining an 
improved solution x* (or more than a specified 
number of times overall), stop. 

3. If xI' is integer, go to Step 5 and otherwise go to 
Step 4. 

4. Make a restriction move. Select an integer 
variable xj such that x,' is not integer, and make a 
non-tabu restriction move involving x,. If no such 
move exists for all noninteger xjf in xl' go to Step 
5. Otherwise, update R and X '  relative to the 
selected move and return to Step 2. 
5. Make a complementation or relaxation move. 

Select some R,, i = I ,  . . . , r, and make a non- 
tabu complementation or relaxation move. If r 
= 0 or if no such move exists for all R,, stop. 
Otherwise update x '  relative to the selected 
move and return to Step 2. 

To give this outline substance, it is necessary to 
identify how choices are made at Steps 4 and 5, and 
how tabu moves are defined. These elements have the 
same role as specifying the form of OPTIMUM and 
the composition of T in the framework of preceding 
sections. 

The choice of restriction moves at Step 4, and of 
relaxation and complementation moves at Step 5, can 
be based on the postoptimality information available 
from solving (LP') at Step 2, employing considerations 
analogous to those described in connection with the use 
of the evaluation function v(xI) for MIP Method 1. 
Generally speaking, the types of criteria used to select 
branches in branch and b o ~ n d [ ~ , ~ ~ . ~ ~ , ~ ~ , ~ ~ 1  can also be 
applied to choosing moves in the present setting. 

However, there are differences in the analyses rel- 
evant to branch and bound, and those relevant to tabu 
search, that stem from differences in the underlying 
organization of the two procedures. In tabu search the 
postoptimality information required to evaluate poten- 
tial moves is always available from the most recent 
solution of (LP'), or from analysis that takes this solu- 
tion as a starting point. In branch and bound, by 
contrast, information required to evaluate (or execute) 
a new branch which is reached by a backtracking or 

"sidetracking" step, must be based on some process of 
recovering or regenerating the tableau information 
from solving some linear program in the past. 

Branch and bound, moreover, lacks the option of 
a complementation step, except where it is possible to 
complement a branch that meets one of the leaves 
(current end nodes) of the tree, since all other comple- 
mentations require an enforced discard of intervening 
choices. There is no adequate way to compare the effect 
of remote complementations to those at the leaves of 
the tree, even after recovering or regenerating relevant 
information at the antecedent nodes, since bounds and 
penalty calculations applicable to these earlier nodes 
are less accurate than at their descendants. 

Viewed from a tree perspective, tabu search always 
works at the leaf level, currently maintaining only a 
single path of branches from the root. Instead of having 
a rigidly inherited sequence, the branches on the path 
can have their order reshuffled to bring any branch 
whose alternative is not tabu to the end of the tree, thus 
enabling a single string of connections to yield a variety 
of different possibilities for the next step. By this means, 
there is greater latitude of choice to restructure the 
search than in branch and bound. The presence of 
additional choice opportunities on a single sequence of 
branches, however, can entail more evaluative effort 
per iteration if these opportunities are to be exploited 
fully. 

Another characteristic of tabu search to be noted 
in this setting is that each option to be evaluated resides 
at the same tree depth, i.e., may be considered as a leaf 
of the tree. All such options therefore have access to 
information of comparable quality, in contrast to the 
inferior quality of information available at the earlier 
nodes of a branch and bound tree. Moreover, once 
enough branches have been created to make all com- 
ponents of x, integer, thereby reaching a depth where 
information concerning consequences of moves ap- 
proaches its highest quality, the current depth can be 
maintained on subsequent iterations (allowing increases 
or decreases according to where new integer solutions 
are found and the imposed constraints that are cur- 
rently binding). By thus maintaining a close proximity 
to integer solutions, the search tends to increase the 
number of feasible MIP solutions generated as candi- 
dates for x*  in relation to the total number of iterations. 

In the process of building to an ideal depth, an 
alternative is to allow the algorithm to proceed from 
Step 3 to Step 5 when x,' is not integer, provided r Z 
0. By this approach, the method can continue to explore 
a given depth, accepting only those complementation 
moves that the solution of (LP') identifies as improving, 
until a local optimum is obtained as a foundation for 
going to the next level. Such a local optimum may 
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appropriately be defined relative to a function that 
penalizes deviations of xi components from integer 
values. (In this variation, a limit may be placed on the 
number of iterations allowed at a given level.) 

Finally, the relaxation move for tabu search offers 
an additional possibility for increased latitude of choice. 
A complementation move can be viewed as a composite 
move consisting of a relaxation move followed by a 
restriction move, where both moves are defined relative 
to the same variable. After making a relaxation move, 
if a restriction move involving a different variable be- 
comes preferable, then such an alternative is available 
to be selected by the method if the two types of moves 
are made in sequence rather than in combination. This 
type of relaxation-restriction sequence has no precise 
counterpart in branch and bound. 

Defining Tabu Status 
The manner of determining tabu status involves several 
considerations beyond those involved in creating the 
set T (or associated list T') indicated for the two pre- 
ceding MIP procedures. In particular, the three types 
of moves employed by MIP Method 3 suggests a natural 
implementation involving the creation of three tabu 
lists T I ,  T2 and T3, with associated parameters t , ,  t2, 
t3. 

The first list, T I ,  is updated whenever a relaxation 
move is made. If the relaxation move discards the 
constraint xJ < u (or x, 2 u + I) ,  then TI is used to 
prevent a restriction move from reimposing this same 
constraint until t, restriction or complementation 
moves have been made. Note that t, is not the size 
of T , ,  which will generally vary. Since it is reasonable 
to make no more relaxation moves than restriction 
moves, however, T I  typically will have no more than t, 
elements. 

The list T2 is updated when a restriction move is 
made. Only the identity of the variable x, involved in 
the restriction, and not the form of the bound imposed, 
is relevant in this case. The role of T2 is to prevent the 
occurrence of any relaxation move that involves xJ, for 
t2 restriction or complementation moves. Here too, tz 
does not identify the size of TZ but provides an upper 
limit, in this case without exception. 

Finally, the list T3 is updated when a complemen- 
tation move is made. Ts is used both to prevent the 
reverse of this complementation and to prevent the 
restriction move that reimposes the same constraint 
discarded by the complementation move, for a period 
of t3 restriction or complementation moves. 

In applying the parameters t, , t2 and t3, particularly 
in the variant that seeks to generate local optima de- 
fined relative to a given depth before proceeding to the 
next, an alternative is to defer activation of the tabu 
lists until a deterioration in some evaluation function 

cannot be avoided (e.g., employing a function that 
combines c(x) with a penalty for integer infeasibility). 
The opportunity to apply the types of dynamic tabu list 
strategies of Section 2 in this setting creates additional 
avenues for exploration, and poses a research challenge 
of determining the best way to handle moves that may 
be viewed as "partial complements" of others. 

MIP Aspiration Level Functions 

Two types of aspiration level functions are relevant 
to all of the preceding MIP methods. The first is based 
on stratifying possible values for c(x) into intervals I , ,  
IZ, . . . , I,,. Let A(h) denote the aspiration level for Ih, 
where A(h) is large initially. When a move results in 
replacing solution x '  by a next solution x", identify I, 
and I, such that c(xf) E I, and c(x") E I,, and let 

and 

Then tabu status can be disregarded for a move that 
leads from a subsequent x '  to a subsequent x" if 

c(xf') c A(h) where c(x ') E Ih. 

To apply this criterion at the point where moves are 
evaluated, c(x ') may not be known accurately, but only 
approximated by the evaluation criteria. In such cases, 
the updating of A(q) and A(p) also may be based on 
approximate evaluations of c(x") or a refined approxi- 
mation may be used for the aspiration level test. (The 
updating of A(p) also may optionally be omitted.) For 
MIP Method 3, c(x) should be replaced for the opera- 
tions of checking and updating aspiration levels by a 
function which incorporates a penalty for noninteger x, 
vectors. 

The second type of aspiration level function is 
keyed to the variable and type of move employed. Let 
A(j, u )  represent the aspiration value of c(x) for a 
"Type v" move involving variable xJ. For MIP Method 
1, xJ is the variable whose value is changed on a given 
iteration and v = 1 or 2 according to whether the 
variable is incremented or decremented. In the adjacent 
extreme point procedure of MIP Method 2, x, can be a 
variable that enters (or leaves) the basis, and v takes 
only the value 1. For MIP Method 3, xJ is the variable 
associated with the constraint(s) currently relaxed or 
(and) imposed, and v takes on values to code the 
possibilities previously identified as relevant to creating 
T1, T2 and T3. In all these cases, A(j, v) can be 
initialized and updated in a manner analogous to that 
indicated for A(h). 

Finally, we note that these aspiration level func- 
tions can be integrated with the tabu restrictions in the 
manner indicated in Section 4 of Part I. 
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Additional MIP Memory Functions 

Strategies for intensifying and diversifying search by 
means of intermediate- and long-term memory func- 
tions can vary widely in sophistication in the MIP 
setting, but it is worth noting that simple approaches 
are available that are easy to implement. 

An intermediate-term memory function for the 
three MIP methods can be based on identifying vari- 
ables that consistently receive certain values or bounds, 
or consistently appear in or out of the basis, in selected 
subsets of the best solutions (e.g., identified by cluster 
analysis that groups solutions of similar types). These 
variables may then be compelled to adopt the restric- 
tions (values, bounds or basis classifications) thus as- 
sociated with them for an additional period of search. 

A simple long-term memory function can be based 
on recording the frequency that variables, or subsets of 
variables, take on distinguishing characteristics (i.e., 
appear at certain values, bounds, or basis states) in the 
trial solutions generated to date. Then the solution 
process is restarted or continued using a modified eval- 
uation criterion that avoids particular classes of moves 
in relation to their recorded frequency, until reaching 
a trial solution that is locally optimal by this modified 
evaluation. 

4. Tabu Search Applications 

This section briefly highlights some of the applications 
of tabu search which have occurred (or have become 
more generally known) in the interval since the appli- 
cations described in Part I. 

A variety of tabu search implementations have 
been developed for problems containing a central fea- 
ture that can be expressed by means of a graph theory 
or network flow representation. An example is a uni- 
versity course scheduling problem whose underlying 
structure has been expressed by Hertz and de Werra[17] 
as a weighted graph partitioning problem. In this ap- 
proach, courses are represented as nodes and incom- 
patibilities between courses are represented as edges. A 
different weight w(e) is assigned to each edge e accord- 
ing to the importance of the associated incompatibility. 
The goal is to partition the set of nodes N into k subsets, 
N, , . . . , Nk, in order to minimize w(EI ) + - . . + w(Ek), 
where w(E,) = C (w(e): e E E,) and El is the set 
containing the edges with both endpoints in N,. 

As in most real world applications, the resulting 
graph theory formulation does not encompass all con- 
straints of interest, and the method is therefore designed 
to handle additional geographical constraints (involving 
different buildings in the university), compactness re- 
quirements and classroom capacity requirements. The 
approach has been successfully applied to schedule 300 
courses for the Faculty of Economics at the University 

of Geneva. Two variants of this procedure, similarly 
based on an underlying graph theory model, have been 
developed by Hertz and de Werra[17] and by Benker4] 
for scheduling courses, respectively, at the Swiss Federal 
Institute of Technology and at a technical school in 
Austria. In each case, additional restrictions which com- 
plicate the basic model framework are handled directly 
by incorporating appropriate infeasibility checks into 
the tabu search procedure. 

Telecommunications problems involving mini- 
mum cost installation and call routing can be given 
natural formulations as network flow problems with 
discrete (all-or-none) conditions. The first phase of a 
study applying a variety of approaches for handling 
these formulations is described in a volume edited by 
J.  A parallel processing implementation of 
tabu search for a path assignment problem (Oliviera 
and Stro~d[~'])  and a partitioned tabu search approach 
for a platform location and sizing problem (Lee[241) 
emerged as significant developments of the volume, 
yielding highly effective solutions for their respective 
problems, while encompassing more of the real world 
attributes of these problems than accommodated by the 
other approaches studied. 

A more classical graph theory application has been 
developed by Friden, Hertz and de WerraL8] to find large 
stable node sets in a graph. (A node set is stable if no 
pair of its elements is joined by an edge.) An approach 
for accelerating the method was devised by employing 
three different tabu lists which operate hierarchically. 
The study examines random graphs containing up to 
1500 nodes, and in 60% of the cases obtains stable sets 
with cardinality equal to the probabilistic estimate of 
the maximum. In the remaining cases, the cardinality 
is only one unit below this estimate. 

An extensive study applying tabu search to flow 
shop sequencing problems has been camed out by 
Widmer and Hertz.[361 Their implementation of tabu 
search succeeded in obtaining solutions superior to the 
best previously found (by applying a range of methods 
proposed in the literature) in about 90% of the cases. 

A study by Laguna, Barnes and Glover[211 exam- 
ined a machine scheduling problem that requires min- 
imizing a weighted combination of delay penalties and 
sequence dependent setup costs. The method easily 
generated solutions to 20-job problems that could not 
be solved by several branch and bound procedures 
within 150 CPU seconds on a mainframe computer. 
Within a comparable time span (averaging 155 seconds) 
on a microcomputer, rather than a mainframe, the tabu 
search approach completed a set of 12 solution trials 
per problem and succeeded in obtaining an optimal 
solution to each. Moreover, the worst solutions ob- 
tained by tabu search over the 12 trials averaged within 
99.8% of optimality, with a worst case of 99.6% of 
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optimality for all problems and parameter settings. The 
method also quickly obtained high quality solutions to 
larger problems which the optimizing methods could 
not handle either within reasonable time limits or 
storage requirements. 

A sequel to this study by Glover and Laguna[l4] 
focused on the harder problems of the first study and 
examined larger problems ranging up to 100 jobs. The 
goal was to seek improvements by exploiting the "best 
move" orientation of tabu search, incorporating an 
additional class of moves and using the learning pro- 
cedure of target analy~is.[ '~. '~] The learning process was 
designed to identify the possibility of improved decision 
criteria for evaluating moves. As suggested by intuition, 
the inclusion of additional moves (introducing job 
transfers in conjunction with the job swaps previously 
studied), produced improvements in average solution 
quality and processing time. More significantly, with 
less evident intuitive support, the study found that a 
better criterion existed for evaluating moves than the 
objective function values produced by these moves. 
Decisions based on objective function values were 
shown by target analysis to exhibit a regional depend- 
ency, reducing their quality in situations where no 
admissible improving moves existed. This dependency 
was exploited by biasing evaluations in "bad regions" 
to reflect evaluations previously made in "good re- 
gions," and by creating an event-dependent tabu list 
which relaxed the tabu search requirements of admis- 
sibility-compensating for this relaxation by a strategy 
of penalizing repetitions as well as reversals of moves. 
The outcome nearly halved the number of iterations 
required to obtain optimal solutions to the 20 job 
problems (whose optimal solutions are known), and 
additionally improved the quality of the best solutions 
found for the larger problems. 

An application of tabu search to the quadratic 
assignment problem has been developed by Skorin- 
~ a p o v , [ ~ ~ ]  utilizing tabu lists whose lengths vary both 
in relation to problem size and in relation to the stage 
of solution. A notable feature of the approach is its 
effective use of a long-term memory process for diver- 
sifying the search along the lines suggested in Part I. 
Tested on problems taken from the literature, the 
method yielded best known solutions in all cases while 
requiring less CPU time than previously reported. The 
method also succeeded in finding a better solution than 
the best previously known for Steinberg's problem,[351 
and obtained solutions whose quality was always as 
good or better than that of solutions obtained by a study 
of the quadratic assignment problem using simulated 
annealing. 

An unconventional tabu search application to the 
traveling salesman problem by Malek et a1.[261 uses a 

parallel processing approach which incorporates a fault 
tolerant design, pursuing the goal of allowing recovery 
from a processor failure without having to restart the 
entire program. The approach makes use of Karp's 
procedure[lgl of subdividing the problem nodes into 
clusters, seeking a good tour on each cluster, and then 
progressively merging pairs of clusters, using tabu 
search to guide the tour generation process at each 
stage. In addition to developing results concerning fault 
tolerant design, the approach provided a means for 
obtaining good trade-offs in solution time versus solu- 
tion quality. For example, applied to a 532-city problem 
that has required 60 hours of run time to achieve 
~ptimali ty,[~~I the method succeeded in obtaining a 
95% optimal solution in only 38 seconds. 

Another traveling salesman study by Mirek et al.[251 
compares tabu search to simulated annealing, finding 
that tabu search performs uniformly more effectively 
and achieves additional gains by the incorporation of a 
long-term diversification strategy, as in the study of 
Skorin-Kapo~.[~~I This study also discloses that a hybrid 
approach, which trades solutions between tabu search 
and a modified form of simulated annealing, works well 
in a parallel processing environment. The authors sug- 
gest that their modification of simulated annealing can 
be interpreted as a relaxed version of probabilistic tabu 
search, hence motivating a study which investigates the 
probabilistic framework more thoroughly. 

Another study of traveling salesman problems by 
Knox and Glover[201 tests the short-term memory com- 
ponent of tabu search against a variant of simulated 
annealing called the ELS method, due to Lam.[221 The 
ELS method departs from simulated annealing in sev- 
eral ways similar to those incorporated in the hybrid 
approach by Malek et al.,[251 and additionally makes 
use of special data registers to improve computational 
efficiency. Applied to classical test problems ranging 
from 25 to 105 cities, both the ELS method and tabu 
search succeeded in obtaining best known solutions at 
least once for each problem, out of 25 trial runs with 
different starting solutions. However, tabu search ob- 
tained best known solutions with somewhat greater 
frequency. Treating the frequencies of finding these 
solutions with each method as marginal probabilities, 
and applying a binomial probability distribution, the 
study identified the joint probability of finding a best 
known solution at least once in two runs to be 0.32 for 
tabu search and 0.04 for the ELS method. Across a 
series of five runs, these probabilities were 0.86 for tabu 
search and 0.36 for the ELS method. The study also 
underscored the relevance of employing candidate list 
strategies to reduce the number of moves examined in 
larger applications, as treated in [12]. 

A somewhat different type of application involves 
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the solution of a character recognition problem ex- 
pressed as a minimum cardinality set covering problem 
by Hertz.[17] Each character is viewed as a set of black 
pixels on a grid. A pair of characters (CI , C2) is discrim- 
inated by a pixel if the pixel is contained in exactly one 
of the two members of the pair. The goal is to determine 
a smallest number of pixels that will discriminate all 
pairs of characters. Applied to a problem of discrimi- 
nating 62 characters (1 89 1 pairs) on a grid of 600 pixels, 
the tabu search procedure found a set of 16 pixels in 
about 10 minutes. Prior to this, the best known solution 
contained 17 pixels and was obtained by an integer 
programming method that was stopped after consum- 
ing several hours of computation. 

In another study of a "recognition problem," de 
Werra and HertzI7] describe an application of tabu 
search to neural networks. The objective is to create a 
transformation matrix defining synaptic weights for a 
visual pattern recognition problem, enabling the neural 
network to learn prototype patterns, or states. More 
precisely, the goal is to be able to identify inaccurate 
copies of the prototype states by a process that corrects 
any errors that may occur, up to d in number, where 
the synaptic weights successively transform an initial 
state containing these errors into a final stable state 
which corresponds to the associated prototype. Barring 
the ability to correct all possible states that may contain 
errors, a secondary goal is to minimize the number of 
parasite states-i.e., stable states, reached by the trans- 
formation process that do not correspond to the speci- 
fied prototypes. 

Using Hamming distances to evaluate the differ- 
ence between a given state and its prototype, the objec- 
tive function was formulated as that of minimizing the 
discrepancy of all initial states from their associated 
prototypes after a single application of the transforma- 
tion matrix. The matrix that produced the greatest 
single step reduction in the number of errors, employing 
a weighted sum across all states containing at most d 
errors, was therefore assigned the highest evaluation. 
Starting with an arbitrary matrix, the moves used by 
the tabu search procedure consisted of changing exactly 
one element of the matrix, considering the smallest 
increase and decrease in the weight of this element such 
that the resulting matrix produced a different state than 
the unchanged matrix (where both were applied to the 
given current state). 

The method was tested on a visual pattern recog- 
nition problem from 1301 using two tabu lists, one to 
prevent reversing an "increase move" and the other to 
prevent reversing a "decrease move." The goal was to 
learn two prototype states in a network of 25 neurons 
containing up to 6 errors. The tabu search method 
resulted in an 80% reduction (from 21 to 5) in the 

number of parasite states produced by the previous 
learning approach. Moreover, instead of employing 
learning trials across all relevant associations of initial 
states and prototypes, which numbered approximately 
half a million, the approach was able to achieve its 
results after learning trials involving only 50 associa- 
tions. 

Conclusion 

The foregoing applications of tabu search demonstrate 
the potential usefulness of the approach, and the fertile 
opportunity for innovation in adapting the method to 
alternative settings. As the number of applications of 
tabu search continues to grow, more is being learned 
about the best ways to apply these methods, and in 
time we may expect to see a more thorough determi- 
nation of the types of data structures, tabu list proce- 
dures, aspiration criteria and other component pro- 
cesses that work best for particular types of problems. 
The aim of this paper has been to expose some of the 
future directions for extending and applying tabu 
search, and to document some of the findings of those 
who have contributed to its present practical success. 

ACKNOWLEDGMENT 
This research was supported in part by the Center for 

Space Construction of the University of Colorado under 
NASA Grant NAGQ- 1 388. 

REFERENCES 
1. E. BALAS, 1979. Disjunctive Programming, in P.L. Ham- 

mer, E.L. Johnson and B. Korte (eds.), Discrete Optimi- 
zatron II, North Holland, Amsterdam, pp. 3-52. 

2. E. BALAS and C. MARTIN, Pivot and Complement- 
A Heuristic for 0-1 Programming, Management Science 
26, 86-96. 

3. M.S. BAZARAA and C.M. SHETTY, 1976. Foundations of 
Optimization, Springer Verlag, Berlin. 

4. CH. BENKE, 1988. Die Tabu-Search Method als moglicher 
Losungsansatz fur das Stundenplanproblem, Institut fur 
Hohere Studien, Vienna, Austria (August). 

5. V.J. BOWMAN and F. GLOVER, 1972. A Note on Zero- 
One Integer and Concave Programming, Operations Re- 
search 20: I, 182-183. 

6. H. CROWDER, E. JOHNSON and M. PADBERG, 1983. Solv- 
ing Large Scale 0-1 Linear Programming Problems, Op- 
eratlons Research 31. 4, 803-934. 

7. D. DE WERRA and A. HERTZ, 1989. Tabu Search Tech- 
niques: A Tutorial and an Application to Neural Net- 
works, OR Spectrum 11, 13 1-14 1. 

8. C. FRIDEN, A. HERTZ and D. DE WERRA, Stabulus: A 
Technique for Finding Stable Sets in Large Graphs with 
Tabu Search, to appear in Computing. 

9. R.S. GARFINKEL and G.L. NEMHAUSER, 1972. Integer 
Programming, John Wiley & Sons, New York. 

10. F. GLOVER, 1986. Future Paths for Integer Programming 
and Links to Artificial Intelligence, Computers and Op- 
erations Research 13: 5 ,  533-549. 

1 1. F. GLOVER, 1989. Tabu Search, Part I, ORSA Journal on 
Computing 1: 3, 190-206. 

Copyright O 2001 All Rights Reserved 



32 Glover 

12. F. GLOVER, 1989. Candidate List Strategies and Tabu 
Search, CAAI Research Report, University of Colorado, 
Boulder (July). 

13. F. GLOVER and H.J. GREENBERG, 1989. New Approaches 
for Heuristic Search: A Bilateral Linkage with Artificial 
Intelligence, European Journal of Operational Research 
39: 2, 1 19-1 30. 

14. F. GLOVER and M. LAGUNA, 1989. Target Analysis to 
Improve a Tabu Search Method for Machine Scheduling, 
Technical Report, Advanced Knowledge Research 
Group, US West Advanced Technologies, Boulder, CO 
(September). 

15. F. GLOVER, D. KLINGMAN, N. PHILLIPS AND R. 
SCHNEIDER, 1985. New Polynomial Shortest Path Algo- 
rithms and their Computational Attributes, Management 
Science 31, 1106-1 128. 

16. P.L. HAMMER, E.L. JOHNSON, B.H. KORTE and G.L. 
NEMHAUSER, 1977. Studies in Integer Programming, 
North-Holland, Amsterdam. 

17. A. HERTZ and D. DE WERRA, The Tabu Search Metaheu- 
ristic: How We Used It, to appear in Annals of Mathe- 
matics and Artificial Intelligence. 

18. R.G. JEROSLOW, 1977. Cutting-Plane Theory: Disjunc- 
tive Methods, Annals of Discrete Mathematics I, 
293-330. 

19. R.M. KARP, 1977. Probabilistic Analysis of Partitioning 
Algorithms for the Traveling Salesman Problem in the 
Plane, Mathematics of Operations Research 2: 3, 
209-224. 

20. J. KNOX and F. GLOVER, 1989. Comparative Testing of 
Traveling Salesman Heuristics Derived from Tabu 
Search, Genetic Algorithms and Simulated Annealing, 
Center for Applied Artificial Intelligence, University of 
Colorado (September). 

21. M. LAGUNA, J.W. BARNES and F. GLOVER, Scheduling 
Jobs with Linear Delay Penalties and Sequence Depend- 
ent Setup Costs Using Tabu Search, Research Report, 
Department of Mechanical Engineering, The University 
of Texas-Austin, April 1989. 

22. J. LAM, 1988. An Efficient Simulated Annealing Sched- 
ule, Ph.D. Dissertation, Report 88 18, Department of 
Computer Science, Yale University (September). 

23. E.L. LAWLER, J.K. LENSTRA and A.H.G. RINNOOY KAN 
(eds.), 1985. The Traveling Salesman Problem, North- 
Holland, Amsterdam. 

24. M. LEE, 1989. Least-Cost Network Topology Design for 
a New Service Using Tabu Search, Heuristics for Com- 
binatorial Optimization Sect. 6 ,  1 - 18. 

25. M. MALEK, M. GURUSWAMY, H. OWENS and M. PAN- 
DYA, 1989. Serial and Parallel Search Techniques for the 
Traveling Salesman Problem, Annals of OR: Linkages 
with Artificial Intelligence. 

26. M. MALEK, M. HEAP, R. KAPUR and A. MOURAD, 1989. 
A Fault Tolerant Implementation of the Traveling Sales- 
man Problem, Research Report, Department of Electrical 
and Computer Engineering, University of Texas-Austin, 
(May). 

27. S. OLIVIERA and G. STROUD, 1989. A Parallel Version of 
Tabu Search and the Path Assignment Problem, Heuris- 
tics for Combinatorial Optimization Sect. 4, 1-24. 

28. G. NEMHAUSER, and L. WOLSEY, 1988. Integer and Com- 
binatorial Optimization, Wiley, New York. 

29. M. PADBERG and G. RINALDI, 1987. Optimization of a 
532-City Symmetric Traveling Salesman Problem by 
Branch and Cut, Operations Research Letters 6: 1, 1-7. 

30. L. PERSONNAZ, I. GUYON and G. DREYFUS, 1986. Collec- 
tive Computational Properties of Neural Networks: New 
Learning Mechanisms, Physical Review A34,42 17-4227. 

31. J. RYAN (ed.), 1989. Final Report of Mathematics Clinic, 
Heuristics for Combinatorial Optimization (June). 

32. H.M. SALKIN, 1975. Integer Programming, Addison- 
Wesley, Reading, Mass. 

33. A. SCHRIJVER, 1986. Theory of Linear and Integer Pro- 
gramming, Wiley Interscience Series, New York. 

34. J. SKORIN-KAPOV, 1989. Tabu Search Applied to the 
Quadratic Assignment Problem, ORSA Journal in Com- 
puting 2: 1, 33-45. 

35. L. STEINBERG, 1961. The Backboard Wiring Problem: 
A Placement Algorithm, SIAM Review 3, 37-50. 

36. M. WIDMER and A. HERTZ, A New Approach for Solving 
the Flowshop Sequencing Problem, to appear in Euro- 
pean Journal of Operational Research. 

37. S. ZIONTS, 1974. Linear and Integer Programming, 
Prentice-Hall, Englewood Cliffs, NJ. 

SUPPLEMENTARY BIBLIOGRAPHY 
J. BOVET, C. CONSTANTIN and D. DE WERRA, 1987. A Convoy 

Scheduling Problem, Research Report ORWP 87/22, Swiss 
Federal Institute of Technology in Lausanne (December). 

M. GRONALT, 1988. Die Verwendung der Tabu-Methode zur 
Losung eines Loading Problems, Project Report, Institut 
fur Hohere Studien, Vienna, Austria (June). 

P. HANSEN and B. JAUMARD, 1987. Algorithms for the Max- 
imum Satisfiability Problem, RUTCOR Research Report 
RR#43-87, Rutgers, New Brunswick, NJ. 

A. HERTZ and D. DE WERRA, 1987. Using Tabu Search 
Techniques for Graph Coloring, Computing 29, 345-35 1. 

J. KNOX, 1989. The Application of Tabu Search to the Sym- 
metric Traveling Salesman Problem, Ph.D. thesis, Graduate 
School of Business, University of Colorado (July). 

CH. WENDELIN, 1988. Graph Partitioning with the Aid of the 
Tabu Method, Project report, Institut fur Hohere Studien, 
Vienna, Austria (June). 

Cowright O 7001 All 


