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Abstract

Tabu search has achieved widespread successes in solving practica optimization problems.
Applications are rapidly growing in areas such as resource management, process design, logigtics,
technology planning, and genera combinatoria optimization. Hybrids with other procedures, both
heurigtic and agorithmic, have dso produced productive results. We examine some of the principa

features of tabu search that are most responsible for its successes, and that offer abasis for improved
solution methods in the future.

Note: Thisexpanded verson contains additiond illugtrations and information on candidate list
drategies, probabiligtic tabu search, strategic oscillation and parallel processing options.
Sections have aso been added on principles of intelligent search.
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Background

Tabu Search (TS) isametaheuristic that guides aloca heuristic search procedure to explore
the solution space beyond local optimality. Widespread successes in practica applications of
optimization have spurred arapid growth of tabu search in the past few years. TS procedures that
incorporate basic eements describe in this paper, and hybrids of these procedures with other heuristic
and dgorithmic methods, have succeeded in finding improved solutions to problems in scheduling,
sequencing, resource dloceation, investment planning, telecommunications and many other areas. Some
of the diversity of tabu search gpplicationsis shown in Table 1. (See aso the survey of Glover and
Laguna (1993), and the volume edited by Glover, Laguna, Taillard and de Werra (1993).)

Tabu search is based on the premise that problem solving, in order to qudify asinteligent, must
incorporate adaptive memory and responsive exploration. The use of adaptive memory contrasts
with "memoryless’ designs, such as those inspired by metgphors of physics and biology, and with "rigid
memory" designs, such as those exemplified by branch and bound and its Al-related cousins. The
emphasis on responsive exploration (and hence purpose) in tabu search, whether in adeterministic or
probabiligtic implementation, derives from the supposition that a bad strategic choice can yield more
information than a good random choice. (In asystem that uses memory, a bad choice based on strategy
can provide useful clues about how the strategy may profitably be changed. Even in a space with
sgnificant randomness’] which fortunatdly is not pervasive enough to extinguish dl remnants of order in
most red world problems [J a purposeful design can be more adept at uncovering the imprint of

gructure, and thereby at affording a chance to explait the conditions where randomnessis not all-

encompassing.)



ILLUSTRATIVE TABU SEARCH APPLICATIONS

Scheduling

Design

Flow-Time Cell Manufacturing
Heterogeneous Processor Scheduling
Workforce Planning

Classroom Scheduling

Machine Scheduling

Flow Shop Scheduling

Job Shop Scheduling

Sequencing and Batching

Computer-Aided Design

Fault Tolerant Networks
Transport Network Design
Architectural Space Planning
Diagram Coherency

Fixed Charge Network Design
Irregular Cutting Problems
Lay-Out Planning

L ocation and Allocation

Multicommodity Loceation/Allocation
Quadratic Assignment

Quadratic Semi-Assignment
Multilevel Generalized Assgnment

Logic and Artificial Intelligence

Maximum Satisfiability
Probabilistic Logic

Clustering

Pattern Recognition/Classification
Data Integrity

Neura Network Training

Neura Network Design

Technology

Seismic Inversion

Electrica Power Distribution
Engineering Structural Design
Minimum Volume Ellipsoids
Space Station Congtruction
Circuit Cell Placement
Off-Shore Oil Exploration

Telecommunications
Cdl Routing
Bandwidth Packing
Hub Fecility Location
Path Assignment
Network Design for Services
Customer Discount Planning
Failure Immune Architecture
Synchronous Optical Networks

Production, Inventory and I nvestment
Flexible Manufacturing
Just-in-Time Production
Capacitated MRP
Part Selection
Multi-item Inventory Planning
Volume Discount Acquisition
Fixed Mix Investment

Routing
Vehicle Routing
Capacitated Routing
Time Window Routing
Multi-Mode Routing
Mixed Fleet Routing
Traveling Salesman
Traveling Purchaser
Convoy Scheduling

Graph Optimization
Graph Partitioning
Graph Coloring
Clique Partitioning
Maximum Clique Problems
Maximum Planner Graphs
P-Median Problems

General Combinational Optimization
Zero-One Programming
Fixed Charge Optimization
Nonconvex Nonlinear Programming
All-or-None Networks
Bilevel Programming
Genera Mixed Integer Optimization

TABLE 1




These basic dements of tabu search have severd important features, summarized in Table 2.

PRINCIPAL TABU SEARCH FEATURES

Adaptive Memory
Sdectivity (including strategic forgetting)
Abdraction and decompostion (through explicit and attributive memory)

Timing:
recency of events
frequency of events
differentiation between short term and long term

Qudity and impact:
relative atractiveness of dternative choices
magnitude of changes in structure or congtraining
relationships

Context:
regiona interdependence
structura interdependence
sequentia interdependence

Responsive Exploration

Strategicaly imposed restraints and inducements
(tabu conditions and aspiration levels)

Concentrated focus on good regions and good solution festures
(intensification processes)

Characterizing and exploring promising new regions
(diversification processes)

Non-montonic search patterns
(strategic oscillation)

Integrating and extending solutions
(path relinking)

TABLE 2




Tabu search is concerned with finding new and more effective ways of taking advantage of the
concepts embodied in Table 2, and with identifying associated principles that can expand the
foundations of intelligent search. Asthis occurs, new strategic mixes of the basic ideas emerge, leading
to improved solutions and better practical implementations. This makes TS afertile areafor research
and empirica sudy.

The remainder of this paper is divided into three main parts. Section 1 and its subsections are
devoted to presenting the main concepts and strategies of tabu search, and to showing how they
interrdlate. Section 2 focuses on specific aspects of implementation, with illustrations of useful waysto
organize memory processes to enhance the efficiency of the search. Section 3 discusses specid
consderations for advanced solution capabilities. Implications for future developments are discussed in
the concluding section.

1. Tabu Search Foundations

The basisfor tabu search may be described asfollows. Given afunction f(x) to be optimized
over aset X, TSbeginsin the sameway as ordinary loca search, proceeding iteratively from one point
(solution) to another until a chosen termination criterion issatisfied. Each x T X has an associated
neighborhood N(x) I X, and each solution x[J N(x) is reached from x by an operation caled amove.

TS goes beyond loca search by employing a strategy of modifying N(x) asthe search
progresses, effectively replacing it by another neighborhood N* (). Asour previous discussion
intimates, a key agpect of tabu search isthe use of specid memory structures which serve to determine
N* (x), and hence to organize the way in which the space is explored.

The solutions admitted to N* (x) by these memory structures are determined in severa ways.
One of these, which gives tabu search its name, identifies solutions encountered over a specified horizon
(and implicitly, additiond related solutions), and forbids them to belong to N* (X) by classfying them

tabu. (The tabu terminology isintended to convey atype of restraint that embodies a”cultura”



connotation [ i.e,, one that is subject to the influence of history and context, and capable of being
surmounted when conditions warrant.)

The process by which solutions acquire atabu status has severa facets, designed to promote a
judicoudy aggressve examination of new points. A ussful way of viewing and implementing this
processisto concelve of replacing origina eva uations of solutions by tabu eval uations, which
introduce pendties to sgnificantly discourage the choice of tabu solutions (i.e., those preferably to be
excluded from N*(x), according to their dependence on the elements that compose tabu status). In
addition, tabu evauations aso periodically include inducements to encourage the choice of other types
of solutions, as aresult of aspiration levels and longer term influences.

It should be emphasized that the concept of a neighborhood in tabu search dso differs from that
used in local search, by embracing the types of moves used in congtructive and destructive processes
(where the foundations for such moves are accordingly caled constructive neighborhoods and
destructive neighborhoods). Such expanded uses of the neighborhood concept reinforce a
fundamenta perspective of TS, which isto define neighborhoods in dynamic ways that can include serid
or smultaneous congderation of multiple types of moves, by mechanisms subsequently identified. We
begin by sketching in agenera way how tabu search takes advantage of memory (and hence learning
processes) to modify the neighborhood structures it works with, and to guide its trgjectory through these

dructures. With this foundation, we then give a more detailed view of the primary TS components.



Explicit and Attributive Memory: [0 The memory used in TSis both explicit and attributive.
Explicit memory records complete solutions, typicaly conssting of dite solutions visited during the
search (or highly attractive but unexplored neighbors of such solutions). These specid solutions are
introduced at dtrategic intervals to enlarge N* (), and thereby provide useful options not in N(X).

Attributive memory, by contrast, records information about solution attributes that change in
moving from one solution to ancther. For example, in agraph or network setting, attributes can consast
of nodes or arcs that are added, dropped or repositioned by the moves executed. |n more abstract
problem formulations, attributes may correspond to values of variables or functions. Properly used,
attributive memory makes it possible to exert avariety of subtle influences. Sometimes attributes are
aso grategicaly combined in TS to creste other attributes to be used in such memory, as by hashing
procedures or by Al related chunking or "vocabulary building” methods. (Such approaches are
discussed in Hansen and Jaumard (1990), Woodruff and Zemel (1992), Battiti and Tecchioli (1992a),
Woodruff (1993), Glover and Laguna (1993).)

Because tabu search has severd critical components, and the task of integrating them may seem
a fird to involve afair amount of effort, a number of implementations have been based only on the firgt
ideas typicaly developed in agenera expostion. However, it isto be stressed that the critical
components number only a handful (each with afew key variations), and once digested create an
interconnected framework that is congderably more effective than focusing only on one or two of the

piecesin isolaion.



1.1 Short Term Memory and its Accompaniments

An important digtinction in TS arises by differentiating between short term memory and longer
term memory. Each type of memory is accompanied by its own specid strategies. The most commonly
used short term memory keeps track of solution attributes that have changed during the recent past, and
is cdled recency-based memory. Recency-based memory is exploited by assgning atabu-active
designation to selected attributes that occur in solutions recently visited. Solutions that contain tabu-
active eements, or particular combinations of these attributes, are those that become tabu. This
prevents certain solutions from the recent past from belonging to N*(x) and hence from being revisited.
Other solutions that share such tabu-active attributes are dso smilarly prevented from being revisited.
The use of tabu evauations, with large pendties assigned to appropriate sets of tabu-active atributes,
has the effect of dlowing tabu status to vary by degrees.

Managing Recency-Based Memory: [J The processis managed by creating one or severd
tabu ligts, which record the tabu-active attributes and implicitly or explicitly identify their current satus.
The duration that an attribute remains tabu-active (measured in numbers of iterations) is caled itstabu
tenure. Tabu tenure can vary for different types or combinations of attributes, and can dso vary over
different intervals of time or stages of search. This varying tenure makes it possible to create different
kinds of trade offs between short term and longer term Strategies. It also provides adynamic and
robust form of search. (See, e.g., Tallard (1991), Ddl’Amico and Trubian (1993), Glover and Laguna
(1993).)

Aniillugtration of how recency-based memory operatesis provided in Diagram 1. The problem
of thisillugtration isto find an optimal tree (a subgraph without cycles) on the graph with nodes

numbered 1 to 7, as shown in the diagram. (For the case where the objective



Iteration k Iteration k+1

1 -i’)
,
® @

Iteration k Features

Before After
(1,3) in (1,3) out
(4,6) out (4,6) in

Solution k attributes that change,
(1,3)in and (4,6 )out, qualify to
become tabu-active (to prevent them
from being re-instated during their
tabu tenures)

Diagram 1

Example: Optimal Tree Problem with Nonlinear Objective



function islinear the problem is very easy, and o we suppose a more complex nonlinear objective
applies, asin dectrical power distribution and telecommunication network design problems) All
possible edges thet join pairs of nodes will be assumed available for composing the tree, and the three
subgraphsillusirated for iterationsk, k + 1, and k + 2 (where k is arbitrary) identify particular trees
generated at different stages of solving the problem. We suppose that the moves used for changing one
tree into another (hence that define the neighborhood N(x), where the solution x correspondsto a
particular tree) consist of salecting an edge to be dropped and another to be added, so that the result
remainsatree. (The edge dropped must lie on the unique cycle produced by introducing the edge
added, or equivaently, the edge added must join the two separate subtrees created by removing the
edge dropped.)

The move applied at iteration k to produce the tree of iteration k + 1 consists of dropping the
edge (1,3), and adding the edge (4,6), as shown respectively by the edge marked with two crossed
lines and the edge that is dotted. The presence of the edge (1,3) and the absence of the edge (4,6) in
the tree of the iteration k may be considered as two different solution attributes, which we denote by
(1,3)in and (4,6)out, asindicated in the last box of Diagram 1. Since these are attributes that change as
aresult of the move, they qualify to be designated tabu-active, and to be used to define the tabu status
of moves at future iterations. Assume for the moment we will classfy a move to be tabu if any of its
attributes is tabu-active. For example, we can specify that (1,3)in should be tabu-active for 3 iterations,
seeking to prevent edge (1,3) from being added back to the current tree for this duration, and (4,6)out
should be tabu-active for 1 iteration, seeking to prevent edge (4,6) from being removed from the current
tree for this duration. (These conditions effectively seek to avoid "reversing” particular changes created
by the move))

The indicated tabu tenures of 3 and 1 of course are very smal, and we later discuss how such

tabu tenures may be chosen appropriately. However, the rationale for giving alarger tenureto (1,3)in
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than to (4,6)out isimportant. Specifically, in our illugtration, many edges exigt that can be added to the
tree as part of amove to create a new tree, but somewhat fewer edges exist that can be dropped as
part of such amove (snce dl non-tree edges are available to be added but only the tree edges are
available to be dropped). Thus, making (1,3)in tabu-active, which prevents edge (1,3) from being
added, is much less regtrictive than making (4,6)out tabu-active, which prevents edge (4,6) from being
dropped. (Stated differently, preventing an edge from being added excludes a smaller number of moves
than preventing an edge from being dropped.) In generd, then, the tabu tenure of an attribute should
depend on the redtrictiveness of the associated tabu condition.

The terminology used in this example can be relaxed to smply refer to the edges (1,3) and (4,6)
as attributes of the move, since the condition of being in or out is aways autometicaly known from the
current solution. Thus, we can smply say that these two edges are tabu-active (with different tenures).
If amove is consdered that adds edge (1,3) to the treg, it is only necessary to check whether this edge
is tabu-active (without keeping separate memory according to whether the edge is present or absent
from the tree).

More complex attributes can be used to determine the tabu tatus of moves, but awarning is
necessary. Such attributes must be treated as properties of solutions rather than properties of moves, if
cycling isto be avoided during the period that the attributes are tabu-active. (Cycling is normdly
prevented for much longer durations, typicaly being diminated dtogether, for reasonable choices of
tabu tenures. But the avoidance of cycling is not the sole purpose of recency-based memory.)

We again illusgtrate by reference to Diagram 1. Suppose & iteration k we create a tabu
regtriction gtipulating that a move which combines the two attributes of adding (1,3) and dropping (4,6)
istabu. That is, we prevent the reversad of the move gpplied at iteration k. Then, at iteration k + 1, with
this condition tabu-active, we could sdect the move of adding edge (2,4) and dropping edge (1,4), as

shown in Diagram 1, to produce the tree of iteration  k + 2. Similarly, we stipulate that the reverse
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move, which combines the attributes of adding (1,4) and dropping (2,4), istabu. Now, starting from
the tree of iteration k + 2, we can perform two additional moves in successon, the first congsting of
adding (1,3) and dropping (2,4), and the second consisting of adding (1,4) and dropping (4,6).
Although neither of these moves violates the tabu redtrictions, the outcomeisto produce the origind tree
at iteration k.

It is therefore important to note the distinction between making move attributes tabu-active (as
intheimmediately preceding example) and making solution attributes tabu-active. Thus, for example,
we could have stipulated instead at iteration k that the compound attribute of (1,3)in and (4,6)out will
render amove tabu if the move creates a solution with this attribute. Thiswill avoid the cydling
phenomenon just indicated, but checking for such compound attributes within solutions usually requires
more memory and effort than checking for smple attributes.

A smpler and more effective dternative is to express tabu regtrictions in terms of conjunctions
of ample attributes. Thus, for example, we could tipulate a move to be tabu only if dl (or some
number) of its component solution attributes are tabu-active. This requires no additiona memory
beyond keeping arecord that discloses the tabu-active status of individua attributes, and it also
prevents cycling for the duration spanned by the tabu-active status. (This assertion about preventing
cydling requires qudification, but the assumptions that vaidate it are natural.) Such an approach yidds
less redtrictive tabu conditions than those based on "digunctions” where amove istabu if any of its
attributes are tabu-active, and hence provides greater flexibility for choosing moves. In Stuations where
such flexibility can be appropriately exploited (particularly in certain intensfication phases of search, as
described later), it can be useful to identify "secondary” solution attributes to incorporate in conjunctive
redrictions. For example, in the present illustration another type of attribute that is easily accessed and
updated is the node degree of the endpoints of edges added and dropped (i.e., the number of tree

edges that meet each of these endpoint nodes). Creating tabu restrictions that incorporate conjunctions
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based on such attributes provides additiona options without a Sgnificant increase in processing and with
agenerdly tolerable increase in memory.

Asabasisfor indentifying attributes that may be used in the ways we have illudtrated, a natura
possihility isto consder the use of created attributes, which result by sdlecting functions of other
smple atributes and identifying the values of these functions as attributes for defining tabu restrictions
(Glover (1989a)). The objective function quaifies as one such function, but other possbilities merit
consderation. The amount of additional memory depends on the number of relevant vaues of the
functions (which may be compressed into intervas). Alternately, this memory can be made to depend
on the length of the tabu tenures for such values (if acircular list is used to record the vaues generated
over these tenures), though this can entail more effort to check tabu conditions. Such concernslie a the
heart of proposds for hashing and chunking.

We emphasize again, however, that the use of increasingly relaxed tabu restrictions by these
devicesis not invariably desirable, snce stronger restrictions have an effect of creating a certain vigor in
the search process, avoiding "smilar" solutions as well as duplicated solutions. However, in phases
devoted to searching highly fertile regions more thoroughly, the ability to draw upon less stringent tabu
restrictions can ofer advantages.

We have described at some length these issues of creating tabu restrictions that depend on
attributive memory, because attributes such as those illustrated are dso a basis for types of TS memory
other than recency-based memory. At the same time, however, we have left open the question of
designing specific memory structures to handle tabu redtrictions conveniently. Examples of such
structures for recency-based memory, and associated rules for implementing them, are given in Section
2.1

Aspiration Levels: [ Expanding the issue of defining tabu conditions at various levels of

redrictiveness, an important ement of flexibility in tabu search is introduced by means of aspiration
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criteria The tabu status of a solution is not an absolute, but can be overruled if certain conditions are
met, expressed in the form of aspiration levels. In effect, these aspiration levels provide thresholds of
atractiveness that govern whether the solutions may be considered admissible in spite of being classfied
tabu. Clearly a solution better than any previoudy seen deserves to be consdered admissble. Similar
aspiration criteria can be defined over subsets of solutions that belong to common regions or that share
specified features (such as a particular functiond vaue or leve of infeasibility). For example, one such
agpiration criterion is based on identifying " conditionaly best" objective function vaues that can be
attained by movesthat sart from particular intervals of vauesfor f(x). Then amove is deemed
acceptable if it can attain anew best vaue for the intervd it sarts from.

The foregoing approach naturdly generdizes by replacing intervals of objective function vaues
with other types of intervas. Inthiscaseit is often preferable to stipulate that the move attains an
improved objective function vaue in relation to the interval at the end of amove rather than at the dtart
of amove. This corresponds more closely to a standard tabu restriction, except that it is used to
override other tabu restrictions. (Implicitly it corresponds to a specid type of conjunction.) Additiond
examples of aspiration criteria are provided later.

Candidate List Strategies.[1 The aggressive aspect of TSisreinforced by seeking the best
available move that can be determined with an appropriate amount of effort. It should be kept in mind
that the meaning of best is not limited to the objective function evauation. (As aready noted, tabu
evauations are affected by pendties and inducements determined by the search history. They are dso
affected by considerations of influence as subsequently characterized.) For situations where N*(x) is
large or its lements are expensve to evauate, candidate list strategies are used to restrict the number of
solutions examined on agiven iteration.

Because of the importance TS attaches to sdlecting dementsjudicioudy, efficient rules for

generating and evauating good candidates are critica to the search process. Even where candidate list
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drategies are not used explicitly, memory structures to give efficient updates of move evauations from
oneiteration to another, and to reduce the effort of finding best or near best moves, are often integrd to
TSimplementations. Intelligent updating can appreciably reduce solution times, and the indlusion of
explicit candidete list drategies, for problemsthat are large, can sgnificantly magnify the resulting
benefits. Useful kinds of candidate list strategies are indicated in Section 2.2.

We now bring these short term eements together and illustrate how they interact in Diagram 2.
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TABU EVALUATION

(Short Term Memory)

Candidate List Examination

Generate a (new) move from the candidate list, to create a trial
solution x' from the current solution.

I}

Tabu Test

Identify atiributes of x that are changed to create x'. (e.g.,
added and dropped elements, modified values of variables
or functions). Do these attributes include a critical
set of tabu-active attributes?

Create Unpenalized

Tabu Evaluation Aspiration Test

Attach no penalty (or very
small penalty based on
status of tabu-active
attributes).

Does x' satisfy an
aspiration threshold?

i Create Penalized
Cholce Update Tabu Evaluation

If tabu evaluation of X' is
the best for any candidate
examined, record this by

an appropriate update.

——— Attach a large penalty
based on status of tabu-
active attributes.

Completion Check Execute Chosen Move

Move from x to a best
recorded x'.

Enough moves examined
(according to candidate
list criteria)?

Diagram 2



The representation of pendtiesin Diagram 2 ether as"large” or "very smdl" expresses athresholding
effect. Intheillugtration of Diagram 1, we treated tabu status as an al-or-none type of condition, but
differentiation is clearly possible, as by reference to different numbers of tabu-active attributes or to
different levels of unexpired tabu tenures. Tabu status generdly corresponds to using pendtiesthat yield
agreatly deteriorated evauation or else that chiefly served to bresk ties among solutions with highest
evauations. (Tie bresking occurs for moves that are no longer tabu in an al-or-none sense, by alowing
alingering diminished influence according to the age of tenures that might otherwise be consdered to be
expired.) Such an effect of course can be modulated to shift evaluations across levels other than these
extremes. If dl moves currently available lead to solutions that are tabu (with evauations that normaly
would exclude them from being selected), the pendties result in choosing a"least tabu™ solution.

It may be noted that the sequence of the Tabu Test and the Aspiration Test in Diagram 2 can be
interchanged (thet is, by employing the tabu test only if the aspiration threshold is not satisfied). Also,
the tabu evauation can be modified by creating inducements based on the aspiration leve, just asit is
modified by cresting pendties based on tabu status. In this sense, aspiration conditions and tabu
conditions can be conceived roughly as "mirror images' of each other.

The TS variant caled probabilistic tabu search follows a corresponding design, with a short
term component that can be represented by the same diagram. The approach additiondly keeps track
of tabu eval uations generated during the process that results in selecting amove. Based on this record,
the move is chosen probabilistically from the pool of those evauated (or from a subset of the best
members of this pool), weighting the moves so that those with higher evaluations are especidly favored.

Fuller discussions of probabilistic tabu search are found in Glover (1989, 1993), Soriano and
Gendreau (1993) and Crainic et d. (1993). Recently, severa highly successful implementations of
probabiligtic tabu search have been developed, particularly for problems involving noisy evaluations.

The elements underlying these gpproaches are discussed further in Section 3.6.
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1.2 Longer Term Memory

In some agpplications, the short term TS memory components are sufficient to produce very high
quality solutions. However, in generd, TS becomes significantly stronger by including longer term
memory and its associated dtrategies. (A number of TS implementations incorporating only short term
memory have subsequently been notably improved by introducing longer term memory components.)

Specid typesof frequency-based memory are fundamenta to longer term congderations.
These operate by introducing penaties and inducements determined by the relative span of time that
attributes have belonged to solutions visited by the search, dlowing for regiona differentiation.
Transition frequencies keep track of how often attributes change, while residence frequencies keep
track of relative durations that attributes occur in solutions generated. These memories are aso
sometimes accompanied by extended forms of recency-based memory.

Perhaps surprisingly, the use of longer term memory does not require long solution runs before
its benefits become visble. Often its improvements begin to be manifest in ardatively modest length of
time, and can dlow solution efforts to be terminated somewhat earlier than otherwise possible, dueto
finding very high quality solutions within an economicd time span. The fastest methods for job shop and
flow shop scheduling problems, for example, are based on including longer term TS memory (both
explicit memory and attributive memory). On the other hand, it is dso true that the chance of finding il
better solutions as time grows [ in the case where an optima solution is not dready found [ is
enhanced by using longer term TS memory in addition to short term memory. Section 2.1 describes
forms of frequency-based memory that provide abass for useful longer term srategies.

Intensification and Diversification: [0 Two highly important longer term components of tabu
search are intensification strategies and diversification strategies. Intengfication srategies are
based on modifying choice rules to encourage move combinations and solution features higtorically

found good. They can be applied with congtructive and destructive neighborhoods as well as transition
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neighborhoods, as in restarting procedures that seek to incorporate good attributes into the current level
of congruction or destruction (conditional upon attributes previoudy incorporated). Such gpproaches
have worked well by the choice rule designs of probabilistic tabu search (see, e.g., Rocha and Taillard
(1995)). Intengfication Strategies may aso initiate areturn to attractive regions to search them more

thoroughly. A smpleingtance of this latter type of gpproach is shown in Diagram 3.

19



20

Simple TS Intensification Approach

Apply Short Term TS Memory

Apply an Elife Selection Strategy:
Create and Keep a List of k Elite Solutions
(e.g., k=510 30)

When Rate of Finding New Best Solutions With Short Term
TS Memory Falls Below Threshold:

Stop if Iteration Limit is Reached, or List is Empty.
Otherwise, Choose one of the Elite Solutions (and
Remove it from the List).

Resume Short Term TS from the Chosen Solution.

If New Solutions Found can qualify by the Selection Strategy,
add them to the list (to replace others, if the List is Full).

Diagram 3




The grategy for sdecting dite solutionsisitaicized in Diagram 3 due to itsimportance. Three
variants have proved quite successful. One, dueto Voss (1993), introduces a diversification measure to
assure the solutions recorded differ from each other by a desired degree, and then erases dl short term
memory before resuming from the best of the recorded solutions. The second variant, due to Nowicki
and Smutniki (1993), keeps a bounded length sequentid list that adds a new solution at the end only if it
is better than any previoudy seen. The current last member of the list is ways the one chosen (and
removed) as abasis for resuming search. However, TS short term memory that accompanied this
solution aso is saved, and the first move aso forbids the move previoudy taken from this solution, so
that a new solution path will be launched. (A smilar approach, dso highly effective, has been
introduced in Barnes and Chambers (1992).) The third variant, due to Xu, Chiu and Glover (1995),
maintains an ordered list of k best solutions, and then, after a gpecified number of iterations, begins at
the worst member of thislist and progresses toward the best. The currently selected member launches
anew search, using probabilitic tabu search as an dternative to recovering prior memory. Only afixed
number of iterations is permitted upon restarting from such a solution, before recovering the next, but the
list continues to be updated. Thet is, whenever a better solution is found than the worgt that remainsto
be examined, this new solution isinserted in its gppropriate position and the wordt remaining solution is
removed from thelist. This strategy proved quite effective for problemsin telecommunication network
design.

These gpproaches are an ingtance of what is sometimes called arestructured move approach,
reflecting the fact that the norma set of moves is periodicaly modified to dlow adirect jumpto a
solution outside the customary neighborhood. A related form of this approach keeps tracks of best
unvisited neighbors (from those examined on candidete lists), with a provison for rediricting attention to
specific types of solutions, such as neighbors of loca optima or neighbors of solutions visited on steps

immediately before reaching such loca optima (Glover (1990a)). Although this "unvisited neighbor”
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strategy appears to be unexplored, it is noteworthy that the related strategies previoudy indicated have
provided solutions of remarkably high quality. For example, the study of Vaessens, Aarts and Lenstra
(1994) documents that the approach of Nowicki and Smutnicki (1993) is unsurpassed for solving job
shop scheduling problems.

Another type of intensfication approach isintensification by decomposition, where
redtrictions may be imposed on parts of the problem or solution structure in order to generate aform of
decomposition that allows a more concentrated focus on other parts of the structure. A classica
exampleis provided by the traveling sdlesman problem, where edges that belong to the intersection of
elite tours may be "locked into" the solution, in order to focus on manipulating other parts of the tour.
The use of intersections may be seen as an extreme instance of a more generd Srategy that seeksto
identify and condrain the vaues of strongly determined and consistent variables. In this approach,
frequency information keeps track of variables that receive particular vaues (or thet liein particular
ranges) in subsets of dite solutions (Glover (1977)). The qudity of the solutions in which these vaues
assignments occur, and the disruptive effect of changing these assgnments, provide measures of their
grength. Congtraining the values of gppropriate variables by such information can leed to identifying
additiond varigbles that quaify to be smilarly congtrained, thus imparting a recursve dement to the
gpproach. The overal effect may be likened to creating a combinatorial implosion of possibilities (in
reverse analogy to the notion of acombinatoria explosion), Since condraining discrete variables, as by
temporarily fixing and dropping them, operates in exactly the opposite way as adding new discrete
varigbles. Thistype of intengfication approach has been gpplied highly effectively in vehicle routing by
Rochat and Taillard (1995).

Intengfication by decomposition aso encompasses other types of sirategic considerations,
basing the decomposition not only on indicators of strength and consistency, but aso on opportunities

for particular dements to interact productively. Within the context of coordinated permutation problems
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that can be conveniently defined by reference to graphs (as in scheduling, vehicle routing and TSPs), a
decomposition may be based on identifying subchains of an dite solutions, where two or more
subchains may be assigned to a common st if they contain nodes that are "strongly attracted” to be
linked with nodes of other subchainsin the set. An edge digoint collection of subchains can be treated
by an intengfication process that operatesin paralel on each s&t, subject to the redtriction that the
identity of the endpoints of the subchainswill not be atered. Asaresult of the decompostion, the best
new sets of subchains can be reassembled to create anew solution. Such a process can be applied to
multiple aternative decompaositions in broader forms of intensification by decompaosition.

Diversification Srategies:[1 TS diversification drategies, astheir name suggedts, are
designed to drive the search into new regions. Often they are based on modifying choice rulesto bring
atributes into the solution that are infrequently used. Alternatively, they may introduce such attributes
by partidly or fully re-starting the solution process.

The same types of memories previoudy described are useful as afoundation for such
procedures, athough these memories are maintained over different (generdly larger) subsets of solutions
than those maintained by intengfication drategies. A smple diversfication agpproach that kegps a
frequency-based memory over al solutions previoudy generated, and that has proved very successtul

for machine scheduling problems, is shown in Diagram 4.
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Simple TS Diversification Approach
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¢

Keep Frequency-Based Memory of Attributes in Solutions

'
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'
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:
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If Iteration Limit is Reached, Stop.

'

Continue Applying Penalties Until a Move is Selected That
Creates a Solution Better Than its Immediate Predecessor.
Then Discontinue Penalties,

Diagram 4




Significant improvements over the goplication of short term TS memory  have been achieved by
the procedure of Diagram 4 (see Laguna and Glover (1993)). However, it should be stressed that the
timing for introducing diversfication in this approach isimportant. Diversfication is not gpplied
arbitrarily but only at local optima. In addition, best moves are still selected to guide the process
(subject to diversfying pendties, which have alimited period of operation).

The TS locd optima reached by this gpproach, and used as a basis for launching a sequence of
diversifying steps, naturdly may differ from true loca optima since tabu search choice rules may exclude
some improving moves. The success of this gpproach suggests the merit of incorporating a TS variant
that always continues to atrue loca optimum once an improving move becomes an acceptable choice [
based on an aspiration criterion thet is activated only after executing an improving move. In this
gpproach, as long as additiona improving moves exig, the apiration criterion alows one of them to be
selected, by atabu evaluation rule that pendizes choices based on their tabu status (restricting attention
to theimproving set). Once atrue loca optimum is reached, the specia aspiration criterion is
discontinued until a new improving move is selected by standard TSrules. This approach embodies an
ingance of aspiration by search direction, and can be ussfully refined by taking spheres of influence
into account (Glover and Laguna (1993)).

The precise manner in which frequency-based memories are used to implement strategies of
intengfication and diversfication (gpart from defining these memories over different subsets) providesa
fertile areafor investigation. Two different generd patterns for exploiting these memories are illugtrated

in Diagram 5.
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A variety of additiona dternatives can be inferred from natura variations in these patterns.
Diverdfication drategies that create partid or full restarts are important for problems and neighborhood
structures where a solution trgjectory can become isolated from worthwhile new dternatives unless a
radica changeisintroduced. Specid forms of diversfication in these cases have been developed by
Hertz and de Werra (1991), Gendreau, Hertz and Laporte (1991), Soriano and Gendreau (1993),
Porto and Ribeiro (1993), and Hubscher and Glover (1993).

Diverdfication strategies can d <0 utilize along term form of recency-based memory, which
results by increasing the tabu tenure of solution attributes. A smple version of this approach that has
produced good results (Kelly et al. (1991)) is shown in Diagram 6.

The reason for the success of this gpproach isthat it isnot "blind" divergfication, but implicitly
incorporates intengfication. That is, each move continues to be made by an aggressive choice rule that
selects the best available option from those admissible (again, alowing the use of candidate list
drategies, as eaborated in Section 2.2. The enforced requirement of moving progressively away from a
particular solution may compel some unaitractive moves, but till the best moves are tabu in the class
considered. The god may be expressed asthat of influential diversification, where influence
includes the concept of qudity. In aprobabilistic sense, diversfication of this type (that includes
intengfication concerns) is a stronger form of diversfication, under the expectation that solutions of
higher quality are digtributed in the solution space S0 that the probability of encountering them is
relativdy smal. Thus asolution thet is"far from" another, but that is of high quality, islesslikdy to be
reached than by a series of random moves that apply the same number of steps. The notion can be
refined by considering separation from more than one "reference solution” smultaneoudy, and by using

the path relinking concept subsequently discussed.
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The determination of effective ways to baance the concerns of intensfication and diversfication
represents apromising research area. These concerns dso lie at the heart of effective parald
processing implementations. The god from the TS perspective isto design patterns of communication
and information sharing across subsets of processors in order to achieve the best tradeoffs between
intengfication and diversfication functions. Generad andyses and studies of pardld processing with tabu
search are given in Taillard (1991, 1993), Baititi and Tecchioli (1992b), Chakrapani and Skorin-Kapov
(1991, 1993), Crainic, Toulouse and Gendreau (1993a, 1993b), and V oss (1994).

1.3  Strategic Oscillation

Strategic ostillaion is dosdy linked to the origins of tabu search, and provides a meansto
achieve an effective interplay between intengfication and diversification over the intermediate to long
term. The gpproach operates by orienting movesin relation to acritical level, asidentified by a sage
of condruction or a chosen interval of vaues for afunctiond.

Such acritica leve often represents a point where the method would normdly stop. Instead of
stopping when thisleve is reached, however, the rules for selecting moves are modified, to permit the
region defined by the critical level to be crossed. The approach then proceeds for a specified depth
beyond the criticad level, and turnsaround. The critical level again is gpproached and crossed, thistime
from the opposite direction, and the method proceeds to a new turning point.

The process of repesatedly gpproaching and crossing the critical level from different directions
crestes an oscillatory behavior, which gives the method its name. Control over this behavior is
established by generating modified evaluations and rules of movement, depending on the region
navigated and the direction of search. The possibility of retracing a prior trgjectory is avoided by
standard tabu search mechanisms.

A ample example of this gpproach occurs for the multidimensiond knapsack problem, where

values of zero-one variables are changed from 0 to 1 until reaching the boundary of feasibility. The
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method then continues into the infeasible region using the same type of changes, but with amodified
evauator. After asdected number of steps, the direction isreversed by choosing moves that change
variablesfrom 1to 0. Evauation criteriato drive toward improvement vary according to whether the
movement occurs ingde or outside the feasible region (and whether it is directed toward or away from
the boundary), accompanied by associated restrictions on admissible changes to vaues of variables.
Implementations of such an approach by Freville and Plateau (1986, 1992) and more recently by
Glover and Kochenberger (1995), have generated particularly high qudity solutions for multidimensiona
knapsack problems.

A somewhat different type of gpplication occurs for graph theory problems where the critica
level represents a desired form of graph structure, capable of being generated by progressive additions
(or insertions) of basic dements such as nodes, edges, or subgraphs. One type of strategic oscillation
approach for this problem results by a congtructive process of introducing €ements until the criticad level
is reached, and then introducing further e ements to cross the boundary defined by the criticd level. The
current solution may change its structure once this boundary is crossed (as where aforest becomes
transformed into a graph that contains loops), and hence a different neighborhood may be required,
yielding modified rules for selecting moves. The rules again change in order to proceed in the opposite
direction, removing eements until again recovering the structure that defines the critical leve. Such rule
changes based on the direction and phase of search are typica fesatures of strategic oscillation, and
provide an enhanced heuridtic vitdity. The gpplication of different rules may be accompanied by
crossing a boundary to different depths on different Sdes. An option isto gpproach and retrest from

the boundary while remaining on asingle sde, without crossing (i.e., decting acrossing of "zero depth™).

Both of these examples condtitute a congtructive/destructive type of drategic oscillation, where

congtructive steps "add" elements (or set variables to 1) and destructive steps "drop” eements (or set
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vaiablesto 0). One-sided ostillations are often especialy relevant in congtructive/destructive
gpproaches, asin the context of avariety of scheduling and graph theory problems, where a ussful
structure can be maintained up to a critica point and then islost (by running out of jobsto assign, or by
going beyond the conditions that define atree or tour, €c.). In these cases, the constructive process
builds to the criticd level, and then reverses to apply destructive moves. Once a congtructive phase
congsting of aseries of "add moves' is completed, the mogt attractive "drop move' for the destructive
phaseislikely to have little relation to the sequence in which e ements were added. Nevertheless, TS
memory structures are still needed to assure the aternating phases do not effectively cancel each other.
A specid type of memory sructure that has proved highly effective for this, yieding best resultsin the
literature for gpplications related to resource alocation, isindicated in Section 2.3.

In drategic oscillation approachesiit is frequently important to spend additiona search timein
regions close to the critical level, and especidly to spend time at the criticd leve itsdf. Thismay be
done by inducing a sequence of tight oscillations about the criticd leve, as a preude to each larger
oscillation that proceedsto a grester depth. Alternately, if greater effort is permitted for evaluating and
executing each move, the method may use "exchange moves' (broadly interpreted) to stay et the critica
level for longer periods. A smple option, for example, isto use such exchange moves to proceed to a
locd optimum each time the critica leve isreached. A drategy of smilarly applying exchanges a
additiond levelsis suggested by a proximate optimality principle, which states roughly that good
congtructions a one level are likely to be close to good congtructions at another. (See Section 3.2) A
ample verson of a congructive/desiructive form of srategic oscillation isillugtrated in Diagram 7. As
observed in the table accompanying Diagram 7, the oscillation can aso operate by increasing and
decreasing bounds for afunction g(x). Such an gpproach has been the basis for a number of effective
gpplications, where g(x) has represented such items as workforce assgnments, objective function

vaues, and feasbility/infeasibility levels, to guide the search to probe a various depths with the
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associated regions.

When the levels refer to degrees of feasibility and infeagihbility, g(x) is a vector-vaued function
associated with a set of problem congtraints (which may summarized, for example, by g(x) O b). Inthis
case, controlling the search by bounding g(x) can be viewed as manipulating a parameterization of the
selected congtraint set. A preferred dternative is often to make g(x) a Lagrangean or surrogate
congraint pendty function, avoiding vector-vaued functions and alowing tradeoffs between degrees of
violation of different component congraints. (Approaches that embody such ideas may be found, for
example, in Freville and Plateau (1986), Gendreau, Hertz and Laporte (1993), Kdly, Golden and
Assad (1993), Osman (1993), Osman and Christofides (1993), Rochat and Semet (1993), and Voss
(1993).)

1.4  Path Rdinking

A useful integration of intengification and diversification srategies occurs in the gpproach caled
path relinking (Glover (1989a, 1993)). This gpproach generates new solutions by exploring
trgectories that "connect” dite solutions [ by gtarting from one of these solutions, called an initiating
solution, and generating a path in neighborhood space that |eads toward the other solutions, caled
guiding solutions. Thisis accomplished by selecting moves that introduce attributes contained in the
guiding solutions. (Aswill be seen, the initiating solution can dso bea"null” or "overspecified” solution
when congtructive and destructive neighborhoods are used.)

The approach may be viewed as an extreme (highly focused) instance of a strategy that seeksto
incorporate attributes of high quality solutions, by creating inducements to favor these attributesin the
moves selected. However, ingtead of using an inducement that merely encourages the inclusion of such
attributes, the path relinking approach subordinates dl other considerations to the god of choosing
moves that introduce the attributes of the guiding solutions, in order to create a "good attribute

compoasition” in the current solution. The composition at each step is determined by choosing the best
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move, using customary choice criteria, from the restricted set of moves that incorporate a maximum
number (or amaximum weighted value) of the attributes of the guiding solutions. Asin other
goplications of TS, aspiration criteria can override this redtriction to dlow other moves of particularly
high quality to be consdered.

Specificaly, upon identifying a collection of one or more dite solutions to guide the path of a
given solution, the attributes of these guiding solutions are assgned preemptive weights as inducements
to be sdlected. Larger weights are assigned to attributes that occur in greater numbers of the guiding
solutions, dlowing bias to give increased emphasis to solutions with higher qudity or with specid
features (e.g., complementing those of the solution thet initiated the new trgectory). More generdly, it
is not necessary for an atribute to occur in aguiding solution in order to have afavored Satus. 1n some
Settings attributes can share degrees of smilarity, and in this case it can be useful to view asolution

vector as providing "votes' to favor or discourage
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particular attributes (Glover (1991)). Typicaly, only the strongest forms of aspiration criteria are dlowed to
overcome this type of choicerule.

In agiven collection of dite solutions, the role of initiating solution and guiding solutions can be
dternated. That is, aset of current solutions may be generated smultaneoudy, extending different paths, and
dlowing an initiating solution to be replaced (as a guiding solution for others) whenever its associated current
solution satisfies a sufficiently strong aspiration criterion. Because their roles are interchangegble, the initiating
and guiding solutions are collectively cdled reference solutions.

Anidedlized form of such aprocessis shown in Diagram 8. The chosen collection of reference
solutions consgts of the three members, A, B and C. Paths are generated by alowing each to serve asinitiating
solution, and by alowing either one or both of the other two solutions to operate as guiding solutions.

I ntermediate solutions encountered along the paths are not shown. The representation of the paths as Straight
lines of courseis overamplified, Snce choosing among available moves in a current neighborhood will generdly

produce a considerably more complex trgjectory.
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As Diagram 8 indicates, at least one path continuation is alowed beyond each initiating/guiding solution.
Such a continuation can be accomplished by pendizing the inclusion of attributes dropped during atrgjectory,
including attributes of guiding solutions that may be compelled to be dropped in order to continue the path. (An
initiating solution may aso be repdled from the guiding solutions by pendizing the indlusion of ther attributes
from the outset.) Probabilistic TS variants operate in the path rdinking setting, asin others, by trandating
evauations for deterministic rulesinto probakilities of selection, strongly biased to favor higher evauations,

Promising regions may be searched more thoroughly in path relinking by modifying the weights
attached to attributes of the guiding solutions, and by dtering the bias associated with solution quality
and sdlected solution features. Diagram 9 depicts the type of variation that can result, where the point X
represents an initiating solution and the points A, B and C represent guiding solutions. Variations of this
type within a promising domain are motivated by the proximeate optimality principle discussed in
connection with strategic oscillation. For gppropriate choices of the reference points (and
neighborhoods for generating paths from them), this principle suggests that additiond €lite points are
likely to be found in the regions traversed by the paths, upon launching new searches from high qudity
points on these paths. Evidence that combinatorial solution spaces often have topologies that may be
usefully exploited by such an gpproach is provided by findings of Maoscato (1993), Moscato and Tinetti
(1994), and Nowicki and Smutnicki (1993, 1994). Additiona aspects of path relinking are examined in
Section 2.4.

2. [lustrative Tabu Search Memory Structuresand Strategies

This section focuses on considerations relevant for implementing tabu search, with an emphasis

on examplesto illugtrate main idess.
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Path Relinking by Attribute Bias

................

X = Solution selected to generate a relinked path.
(Different solutions may be selected to take the role of X,
simultaneously or alternately.)

Neighborhood Space Paths with Different Attribute Trade-offs.

Diagram 9
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21  Recency-Based and Frequency-Based Memory Structures

Recency-Based Memory Structures: -- We begin by indicating some commonly used recency-
based memory structures for identifying attributes that are tabu-active, and for determining the tabu
dtatus of solutions containing these attributes. Let S={1, 2,...,.s} denote an index set for a collection of
solution attributes. For example, theindexesi T S may correspond to indexes of zero-one variables x,
or they may be indexes of edges that may be added or deleted from agraph. (More precisdly,
attributes referenced by S in these two cases congst of the specific values assigned to the variables or
the specific add/drop states adopted by the edges.) Ingenerd, anindexi T S can summarize more
detailed information; e.g., by referring to an ordered pair (j,k) that summarizes a vaue assgnment x =
k. Hence, the index i may be viewed as a notationa convenience for representing a pair or a vector,
etc. (Congderation can often be limited to move representations in which only avery smal number of
attributes [J or criticd atributes [1 change a atime. E.g., a pivot step, which changes the vaues of
many variables, can be recorded by indicating that just two variables change their Sates, one entering
and one leaving abasis)

For the present illugtration, supposethat eachi T S correspondsto a0 - 1 variable x. Wewill
not bother to write (i,0) and (i,1) to identify the two associated attributes x = 0 and x = 1 (Snce by
knowing the current vaue of x we also know its unique dternative value). To record recency-based
TS information for each variable, we keep track of iterations by an iteration counter denoted
current_iteration, which starts at 0 and increases by 1 each time amove is made.

When amove is executed that causes avariable x to change its value, we record tabu_start(i)
= current_iteration immediatdly after updating the iteration counter. This meansthat if the move has
resulted in x = 1, then the attribute x = 0 becomes tabu-active a the iteration tabu_start(i). Further,
we gtipulate that this attribute will remain tabu-active for a number of iterations equd to tabu_tenure(i),

whose vaue will be determined in amanner soon to be indicated. Thus, in particular, the recency-
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based tabu criterion says that the previous value of X is tabu-active throughout al iterations such thet
tabu_start(i) + tabu_tenure(i) O current_iteration.

Once current_iteration increases to the point where this inequality no longer holds, X will no longer be

tabu-active & its previous vaue and hence will not be discouraged from receiving this vaue again.

Thevduetabu_start(i) can be set to 0 before initiating the method, as a convention to indicate
no prior history exists. Then we automaticaly avoid assigning a tabu-active satus to any variable with
tabu_start(i) = 0 (snce the starting value for variable x has not yet been changed).

For convenience in the following we will refer to avariable x; as tabu-active with the
understanding that the tabu-active condition applies to a specific associated attribute [ the attribute x;
=k where k isthe last vaue previoudy assgned to x. If only one variable changesits vaue on an
iteration, a move may be classified tabu whenever it changes the vaue of atabu-active variable.
However, if two variables change their values, as where oneis set to 0 and the other to 1, then there are
severd choices. For example, the move can be designated tabu if:

@ both variables are tabu-active

(b) ether variable is tabu-active

(© the variable that changesfrom 0 to 1 is tabu-active
The possibility that the tabu status should depend on a particular change of values, asin (c), can dso be
reflected by giving tabu_tenure(i) a different vaue according to the value assgned to x.

The choice of a preferred vadue for tabu_tenure(i) is customarily based on empirica ted,
darting by consdering acommon vaue for al atributes (or for dl attributes in a specific class).
Experience shows that options can then be quickly narrowed to arange where every vaue in the range
gives good results, particularly if the value is trested as the center of asmadl interva in which
tabu_tenure(i) isvaried, either systematically or randomly. For example, the approximate outlines of

such arange can be quickly inferred by investigating vaues that are multiples of 5 or 7.
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Tabu tenure vaues for given classes of problems typicaly can be expressed as a smple function
of the total number of attributes (such as fraction or amultiple of the square root of s). For increased
refinement, such values then can be differentiated according to types of atributes [ asfor example,
according to assgnments x = 0 or 1, and according to specific types of variables. These types of
refinements can be made adaptively within the solution process itsdlf, by monitoring the consequences of
chosen dternatives. For example, Laguna et d. (1992) monitor the quality of moves associated with
particular attribute changes, and vary the tabu tenure of the attributes as they participate in moves of
greater or lesser attractiveness. In another type of approach, Kelly et d. (1991) keep track of patterns
of objective function vaue changes, and modify the tabu status of moves when the pattern suggests the
possibility of cycling. Baititi and Tecchioli (1992a) provide an effective method that uses a hashing
function as a cycling indicator, and directly modifies an overall tabu tenure vaue as the search process
continues, until thisvalue is just large enough to eiminate traces of cycling. (Thistype of approach can
be extended by taking advantage of the chunking ideas of Woodruff (1993).)

A dynamic drategy with a somewhat different foundation determines tabu Status without relying
on atabu tenure at dl, but by accounting for logical relaionshipsin the sequence of attribute changes.
Appropriate reference to these rdationships makes it possible to determine in advance if a particular
current change can produce cycling, and thus to generate tabu restrictions that are both necessary and
sufficient to keep from returning to previous solutions (Glover (1990)). A small tabu tenure introduces
extravigor into the search, since the avoidance of cycling is not the only god of recency-based memory.

(In addition, a"bounded memory span” reduces overhead and provides increased flexibility, as where it
may sometimes be preferable to revisit solutions previoudy encountered.) This means of exploiting
logical interdependencies aso providesinformation that is useful for divergfication srategies. Innovetive
implementations have been devel oped by Dammeyer and Voss (1991) and Voss (1992, 1993).

While interesting opportunities exist for applying advanced forms of recency-based memory in
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tabu search, it isto be noted that smpler forms often work quite well. This motivates the use of
graightforward types of memory as abasisfor developing initid TS implementations. Experience with
such implementations can then suggest the basis for productive eaborations. This feature of tabu
search, which makes it possible to introduce refinements by naturd stages, is particularly useful for
progressing to designs that incorporate longer term memory.

Freguency-Based Memory Structures: -- Again we consder the setting of a zero-one
optimization problem, and make reference to an attribute set S={1,...,s} that consists of indexes of 0-1
variablesx. Theform of transition memory to record the number of times x changes its value conssts
smply of keeping a counter for x that isincremented a each move where such a change occurs. Since
Xi isazero-one variable, such amemory aso discloses the number of times x changes to and from each
of its possible assigned vaues. (In more complex Situations, a matrix memory can be used to determine
numbers of trangtionsinvolving assgnments such as x = k.) However, in using this memory, pendties
and inducements are based on rel ative numbers (rather than absolute numbers) of trangitions, hence
requiring that recorded transition vaues are divided by the total number of iterations (or the total number
of trangtions).

Residence memory requires only dightly more effort to maintain than trangtion memory, by
taking advantage of the recency-based memory stored in tabu_start(i). The following gpproach can be
used to track the number of solutionsin which x = 1, thereby alowing the number of solutionsin which
xi = 0to beinferred from this. Start with residence(i) = 0 for al i. Then, whenever x changesfrom 1
to O, after updating current_iteration but before updating tabu_start(i), set

residence(i) = residence(i) + current_iteration - tabu_start(i).
Then, during iterations when x = 0, residence(i) correctly stores the number of earlier solutionsin which
xi = 1. During iterations when x = 1, the "true" value of residence(i) isthe right hand sde of the

preceding assgnment, but the update only has to be made at the indicated points when x changes from
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1toO.

Aswith trangtion memory, residence memory should be trandated into a relative messure
(dividing by the tota number of iterations, hence solutions generated), as a basis for creating penaties
and inducements. The preferred magnitude of penalties and inducements, when not preemptive, is
established by empirical test. (See, for example, Laguna and Glover (1993) and Gendreau, Soriano
and Sdlvail (1993).)

There are a number of ways of taking advantage of frequency-based memory. Toillustrate
some of the basic possibilities, we may consder dividing move attributes into Sx frequency classes,
according to whether these attributes: (1) often occur in good (or very good) solutions; (2) often occur
in poor solutions but rardly in good solutions; (3) often occur in moves to add the atribute to the current
solution, where these moves receive evauations that are high, but not "high enough to be chosen; (4)
often occur in moves to drop the attribute from the current solution, where these moves smilarly receive
evauations insufficiently attractive to be chosen; (5) often occur in the solutions actualy generated
during the search process (whether good or bad); (6) often do not occur in solutions generated.

Class (1) and (2) attributes can be used to support intensification goas by sdlecting movesto
add and drop such attributes, respectively, from solution. Class (3) and (4) attributes combine the
elements of intengfication and diversfication by these same respective strategies. Findly, inreverse,
moves that drop class (5) attributes and add class (6) attributes serve to emphasize diversification
concerns. The learning approach called target andlysis (see Section 3) may be used to define the
thresholds implied by terms such as often and good instead of resorting to arbitrary choices or
cdibration efforts based on triad and error. Other types of classifications are of course possible,
including those that involve conditiond reationships. The use of attribute-based memory in tabu search
leads naturally to the parallel concept of attribute-based evauations, as embodied in the foregoing

longer term memory Srategies.
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2.2 Consderationsfor Candidate List Strategies

Both solution speed and qudity can be sgnificantly influenced by the use of appropriate
candidate list Strategies. Perhaps surprisingly, the importance of such approaches is often overlooked,
though they are fundamenta to the TS emphasis on making judicious choices. We give examples of a
few candidate ligt srategies that are particularly useful, and that give abasis for understanding the
relevant concerns.

As dready noted, memory structures to accelerate the updating of move evauations, and to
reduce the effort of finding best and near best moves, are important to support the aggressive character
of TSmethods. A standard precept for building candidate ligts is to identify subsets of influential
moves, such asa specid collection that can be shown to contain at least one move (and preferably
more) that is essentia in order to reach an improved solution. The concept of influencein TS Sgnds
changesin structure or magnitude that are gauged essentia to break free of an unproductive trgjectory.
(The connection of thisideato that of escape distance is elaborated in Section 3.1.)

A trivid type of candidate list strategy is to randomly sample from agiven collection of moves
until enough members are evaluated to give some assurance that the lot contains some decently good
choices. Also an dementary level, one of the oldest (but often very useful) candidate list Srategiesisthe
Subdivision Srategy. This approach decomposes compound moves with the god of isolating "good
components' that are likely to be part of the best moves at the compound level. The mative for this
gpproach is that the components can often be evauated much more rapidly, and are typically far fewer
in number, than the compound moves derived from them.

For example, "swap moves' are commonly composed of "add moves' and "drop moves," as
noted earlier. The number of such swap moves generaly equas the product of the numbers of their add
and drop components, and hence an approach that seeks to evaluate an appreciable fraction of these

Swap moves can be very time consuming. On the other hand, it isusudly easy to isolate afairly smdl
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number of the "best" add and drop moves, and to restrict attention to the swap moves composed of
them. This can often identify ahigh qudity set of moves, in Spite of the fact that a swap move evauation
may not be asmple sum of the evauations of its components. The difference in effort can be
gppreciable even where the number of componentsis not large. Improved information may be obtained
by sequentia evauations, as where the evaluation of one component is conditiona upon the prior
(restricted) choice of another.

A somewhat different type of candidate list Srategy that includes a number of interesting variants
isthe Aspiration Plus strategy. This gpproach establishes an aspiration threshold for the quality of
move to be selected, based on the history of the search pattern, and examines moves until finding one
that satisfies thisthreshold. At this point, an additional number of moves is examined, equa to a
selected vadue Plus (for Plusin theinterval from 20 to 100 for example), and the best move overdl is
sdected. To assure that neither too few nor too many moves are examined in totd, thisruleis qudified
to require that a least Min moves and at most Max moves are examined, for chosen vaues of Min and
Max. (When the upper limit of Max movesis reached, before satisfying other conditions, the approach
samply sdectsthe best of the moves seen.) The vaues of Min and Max can be modified as afunction
of the number of moves required to meet the threshold.

The aspiration threshold for this gpproach can be determined in severd ways. Toilludtrate,
during a sequence of improving moves, the aspiration may specify that the next move chosen should
likewise be improving, a alevel based on other recent moves and the current objective value. During a
nonimproving sequence the aspiration will typicaly be lower, but rise toward the improving level asthe
sequence lengthens. The quality of currently examined moves can shift the threshold, as by encountering
moves that sgnificantly surpass or that uniformly fall below the threshold. As an dementary option, the
threshold can smply be afunction of the qudlity of theinitid Min moves examined on the current

iteration.
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This Aspiration Plus Strategy includes many other Strategies as specia cases. For example, a
"first improving" srategy results by setting Plus = 0 and directing the aspiration threshold to accept
moves that qudify asimproving, while ignoring the values of Min and Max. A dightly more advanced
drategy can determine Min and Max to assure some specified additiona number of moveswill be
examined dfter firg satisfying an improving threshold. In generd, in goplying the Aspiration Plus
drategy, it isimportant to assure that new moves are examined on each iteration that are not among
those just reviewed (as by starting where the previous examination left off).

Ancther ussful candidate list gpproach isthe Elite Candidate List Strategy. This approach first
buildsaMagter List by examining dl (or ardatively large number of) moves, seecting the k best moves
encountered, where k is a parameter of the process. (e.g., for k = 15t0 50). (These moves themsalves
can be identified by another strategy, such asthe Subdivison Strategy.) Then at each subsequent
iteration, the current best move from the Magter List is chosen to be executed, continuing until such a
move fdls below a given qudity threshold, or until a given number of iterations have elapsed. Thena
new Master List is constructed and the process repedts.

The evauation and precise identity of a given move on the list must be appropriately monitored,
since one or both may change as result of executing other moves from the list. Such an Elite Candidate
Ligt gtrategy can be advantageoudy extended by a variant of the Aspiration Plus strategy, alowing some
additional number of moves outside the Master List to be examined a each iteration (where those of
aufficiently high qudity may replace dements of the Magter Ligt).

A Bounded Change candidate list strategy can aso be worth considering, provided an
improved solution can be found by regtricting the domain of choices so that no solution component
changes by more than alimited degree on any step. A bound on this degree, expressed by a distance
metric appropriate to the context, is salected large enough to encompass possibilities considered

grategicdly rdevant. (The metric may dlow large changes along one dimension, but limit the changes
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aong another so that choices can be reduced and evaluated more quickly.) Such an approach offers
particular benefits as part of an intengification strategy based on decomposition, as discussed in Section
1, where the decomposition itsdf suggests the limits for bounding the changes considered.

A type of candidate ligt that is highly exploitable by parald processng isa Sequential Fan
candidate list. The basic ideaisto generate some p best dternative moves a a given step, and then to
create afan of solution streams, one for each aternative. The severd best available moves for each
stream are again examined, and only the p best moves overal (where many or no moves may be
contributed by a given stream) provide the p new streams at the next step.

In the setting of tree search methods such a sequentia fanning process is sometimes called
beam search. A useful refinement called filtered beam sear ch has been proposed and studied by Ow
and Morton (1988) and other refinements (beyond the tree search setting) have been suggested by
Glover (1989a). TS memory and restrictions can be carried forward with each stream and hence
"inherited” in the sdlected continuations. In this case, ardevant variation isto permit the search of each
stream to continue for some number of iterations until reaching anew loca optimum. Then a subset of
these can be sdlected and carried forward. Since a chosen solution can be assigned to more than one
new dream, different streams can embody different missonsin TS, as by giving different emphasisto
intengfication and diversfication.

In congtructing candidate lists such as the foregoing, we note again that the concept of move
influence isimportant to longer term considerations. Thus, for example, evauation criteria should be
periodically modified (especialy where no improving moves exist) to encourage moves thet create
sgnificant gructura changes. A limit is required on the number of influentiad moves dlowed in agiven
interval, and more particularly on their cumulative interacting effects, Snce moves of high influence can
aso be mutudly incompatible as a foundation for generating solutions of the best quaity. These

consderations are amplified in Section 3.
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2.3  Strategic Oscillation Memory Structures

Strategic ostillation offers an opportunity to make particular use of both short term and long
term frequency-based memory. Toilludrate, let A(current_iteration) denote a zero-one vector whose
the component has the value 1 if attribute | is present in the current solution and has the value O
otherwise. (The vector A can betreated "asif" it is the same as the solution vector for zero-one
problems, though implicitly it istwice aslarge, Sncex = 0 isadifferent atribute from x = 1. This
means that rules for operating on the full A must be reinterpreted for operating on the condensed form of
A.) The sum of the A vectors over the most recent t iterations provides a smple memory that combines
recency and frequency consderations. To maintain the sum requires remembering A(K), for k ranging
over thelast t iterations. Then the sum vector A* can be updated quite easly by the incrementa
caculation

A* = A* + A(current_iteration) - A(current_iteration - t + 1).

Associated frequency measures, as noted earlier, should be normdized, in this case by dividing A* by
thevaueof t. A long term form of A* does not require storing the A(k) vectors, but smply keepsa
running sum. (A* can dso be maintained by exponential smoothing.)

Such frequency-based memory is useful in drategic oscillation due to the following observation.

Instead of using a customary recency-based TS memory at each step of an oscillating pattern, greater

flexibility results by disregarding tabu redtrictions until reaching the turning point. At this point, assume a
choice ruleis applied to introduce an attribute that was not contained in any recent solution at the critica
level. If thisaitribute is maintained in the solution by making it tabu to be dropped, then upon eventudly
reaching the critica level the solution will be different from any seen over the horizon of thelast t
iterations. Thus, instead of updating A* at each step, the updating is done only for critical level
solutions, while smultaneoudy enhancing the flexibility of making choices.

In generd, the possibility occurs that no attribute exists that alows this processto be
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implemented in the form stated. That is, every dtribute may dready have a positive associated entry in
A*. Thus, & the turn around point, the rule instead is to choose a move that introduces attributes which
are leadt frequently used. (Note, "infrequently used” can mean ether "infrequently present” or
"infrequently absent,” depending upon the current direction of oscillation.)

For greater diversfication, this rule can be gpplied for r steps after reaching the turn around
point. Normaly r should be a smdl number, eg., with abasdine value of 1 or 2, which is periodicaly
increased in astandard diversification pattern. Shifting from a short term A* to along term A* createsa
globdl divergfication effect.

Thistype of memory has proved remarkably effective for solving multidimensiona knapsack
and covering problems, especialy when using choice rules based on surrogate constraint evauations

(Glover and Kochenberger (1995)). A template for this approach is given in Diagram 10.
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The approach of Diagram 10 is not symmetric. An dternative form of control isto seek
immediately to introduce alow frequency attribute upon leaving the critica leve, to increase the
likelihood thet the solution &t the next turn around will not duplicate a solution previoudy visited a that
point. Such acontrol can likewise enhance diversity, though duplication at the turn around will aready
be inhibited by starting from different solutions at the criticd leve, and when such duplication
nevertheless occurs it may not away's be undesirable,

24  Path Reinking Condderations

Peth relinking drategiesin tabu search can occasondly profit by employing different
neighborhoods and attribute definitions than used by the heurigtics for generating the reference solutions.

For example, it is sometimes convenient to use a congtructive neighborhood for path reinking asin
generating a sequence of jobs to be processed on specified machines. In this case an diteinitiating
solution can be used to give abeginning partial construction, by specifying particular atributes (such
asjobsin particular relative or absol ute sequence positions) as abasis for remaining congtructive steps.
Our comments about congtructive neighborhoods in this section can aso readily be made to apply to
destructive neighborhoods, where an initiad solution is "overloaded” with attributes donated by the
guiding solutions, and such attributes are progressively stripped away or modified until reeching a set
with an appropriate composition.

When path relinking is based on congructive neighborhoods, the guiding solution(s) provide the
attribute relationships that give options for subsequent stages of condtruction. At an extreme, afull
congruction can be produced, by making the initiating solution anull solution. (The destructive
extreme garts from a " complete set” of solution eements.) Constructive and destructive approaches
produce only a single new solution, rather than a sequence of solutions, on each "path” that leads from
the initiating solution toward the others. In this case the path will never reach the othersunless a

trangition neighborhood is used to extend the constructive neighborhood.) A characterization of such
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processes, and illudtrative rules for implementing them, are indicated in Glover (1991).

Congtructive neighborhoods can be viewed as a specid case of feasibility restoring
neighborhoods, since anull or partidly congtructed solution does not satisfy dl conditions to qualify as
feasble. A variety of methods been devised to restore infeasible solutions to feasibility, as exemplified
by flow augmentation methods in network problems, subtour eimination methods in traveling sdesman
and vehicle routing problems, aternating chain proceduresin degree-constrained subgraph problems,
and vaue incrementing and decrementing methods in covering and multidimensiona knapsack problems.

Using neighborhoods that permit restricted forms of infeasibilities to be generated, and then usng
associated neighborhoods to remove these infeasibilities, provides aform of path rdinking with useful
divergfication festures. Upon further introducing trangition neighborhoods, with the ability to generate
successive solutions with changed attribute mixes, the mechanism of path relinking also givesaway to
tunnel through infeasible regions. Application of such processes within a probabilistic TS framework,
trandating eva uations from determinigtic rules into probabilities of sdection, offer further opportunities
for variation.

A summary of the components of path relinking that embodies these ideas (in abbreviated form)

isgivenin Table 3.
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PATH RELINKING SUMMARY

Sep 1. Identify the neighborhood structure and associated solution attributes for
path relinking (possibly different from those of other TS Strategies gpplied to the problem).

Sep 2. Sdect acollection of two or more reference solutions, and identify which
members will serve astheinitiaing solution and the guiding solution(s). (For a congructive
neighborhood, identify the portion of the initiating solution, possibly null, to sart the
condruction.)

Sep 3. Move from theinitiating solution toward (or beyond) the guiding solution(s),
generating one or more intermedi ate solutions as candidates to initiate subsegquent problem
solving efforts. (If the first phase of this step cregtes an infeasible solution, apply an
associated second phase with afeasbility restoring neighborhood.)

Table3

Connections to Other Approaches: [ Path relinking derives from a population based
approach called scatter search, which generates new solutions by creating modified linear combinations
of the reference points (Glover (1977)). The reference points for scatter search, as for path relinking,
consst of dite solutions produced by other search processes, and the best combined solutions are used
to re-initiate the processes in arepesting cycle. From one perspective, the modified linear combinations
produced by scatter search can be viewed as generating paths in Euclidean vector space. Such aview
leads by naturd extension to the notion of replacing Euclidean space with neighborhood space, thus
giving the basis for the path relinking gpproach.

By reverse andogy, the solutions produced by path relinking may be viewed as " combinations’
of their reference solutions. This provides an interesting connection between proposals of tabu search
and proposals of genetic algorithms. In fact, many recently developed "crossover operators' in GA

drategies, with no apparent relation between them in the GA setting, can be shown to arise as instances
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of path relinking, by regtricting attention to two reference points (taken as parentsin GAs), and by
replacing srategic salection with a reliance on randomization.

Path Relinking Roles in Intensification and Diversification: [0 Path reinking, in common
with gtrategic oscillation, gives anaturd foundation for developing intengfication and divergfication
drategies. Intensification strategies in such gpplications typicaly choose reference solutions to be dite
solutions that lie in acommon region or that share common feaiures. Similarly, diversfication Srategies
based on path relinking characterigticaly sdlect reference solutions that come from different regions or
that exhibit contrasting features. Diversfication strategies may aso place more emphasis on paths that
go beyond the reference points. Collections of reference points that embody such conditions can be
usefully determined by dustering methods.

These dternative forms of path relinking aso offer a convenient basis for pardle processing,
contributing to the gpproaches for incorporating intengfication and diversfication tradeoffs into the
design of pardld solution processes generdly.

3. Advanced Solution Capabilities: Fundamental 1ssuesfor Improved

I mplementations.

This section describes concepts and issues that are important for effective gpplication and that
merit fuller investigation. We begin by examining the notion of influence, followed by consdering the
generation of compound moves, with particular reference to procedures called gjection chain
strategies. Then weintroduce a series of principles that motivate tabu search strategies in generd and
that are rlevant for designing better solution procedures. Probabilistic tabu search is discussed next,
with a sketch of recent findings and potentid implications for pardld processng. Findly, we consider
the learning approach caled target analysis, and indicate its uses with tabu search.

3.1 Influenceand Measures of Distance and Diversity.

Thenoetion of influence, and of influential moves, has severd dimensonsin tabu search. This
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notion is particularly relevant upon encountering an entrenched regionality phenomenon, where loca
optima ] or regions encompassing a particular collection of local optima ] are "mini black holes' that
can be |eft behind, once visited, only by particularly strong effort. Viewed from aminimization
perspective, these regions are marked by the presence of humps which can only be crossed by
choosing moves with significantly inferior evauations, or dternately by the presence of long valeys,
where the path to a better solution can only be found by along (and possibly erratic) climb. In such
cases, afaster and more direct withdrawa may be desirable.

A drategy of seeking influential moves, or an influential series of moves, becomesimportant in
such situations Glover (1989a, 1990b). The notion of influence does not Smply refer to anything that
crestes a"large change," however, but rather integrates the two key aspects of diversfication and
intengfication in tabu search by seeking change that holds indication of promise. This requires
reference to memory and/or strategic uses of probabilities while paying careful attention to evauations.

Diverdfication inits"pure’ form, which solely strives to reach a destination that is markedly
different from al others encountered, isincomplete as a basis for an effective search srategy. (Itis
nevertheless important to characterize how such a pure form would operate, in order to overlay it with
baancing consderations of intensfication. The essentiad dements of pure divergfication, and their
differences from randomization, are discussed in Glover and Laguna (1993).) The notion of influence
entersinto thisby concelving influential diversity to result when anew solution is not only different
from (or far from) others seen, but also has a notably attractive structure or objective function vdue. A
variant of this notion has also surfaced more recently in "large step” optimization approaches, though
without reference to memory. (See Johnson (1990), Martin et a. (1992), Lourengo (1993).)

From a probability standpoint, solutions that satisfy such requiremernts of attractiveness are
much rarer than those that meet the conditions of pure diverdfication, and hence in this senseinvolve a

gronger form of diversty (Kely, Lagunaand Glover (1991)). In particular, search spaces commonly

55



have the property that solutions with progressively better objective function vaues are distributed with a
"diminishing tail,” so the likelihood of encountering the better representatives of such solutionsis
rlaively smdl. Where thisis not the case, the problems are generdly somewhat easier. A drategy of
tresting high quality solutions as "improbable” is not aliability in any event. Consequently, the notion of
influence focuses on bringing about change that is smultaneoudy significant and good.

Oneway to do thisis to creste ameasure of distance that identifies the magnitude of changein
gructure or "location” of asolution. Distance can refer to change induced by asingle move or by a
collection of moves (e.g., viewed as acompound move). Natural messures of distance in different
contexts, for example, may refer to weights of eements displaced by amove, costs of € ements added
or deleted, degrees of smoothness or irregularity created in a pattern, shiftsin levels of aggregation or
disaggregation, variation in step sizes, dterationsin levels of ahierarchy, degrees of satisfying or
violaing critical congraints, and so forth.

Given aparticular distance measure, the tradeoffs between change in distance and change in
quaity embodied in the notion of influence can be addressed by partitioning distances into different
classes. Theword "class' is employed to reflect the fact that a measure may encompass more than one
of the dementsillustrated above, and different combinations invite categorica distinctions. Even where
ameasure is unidimensond, the effects of different levels of distance may not be proportiond to their
meagnitudes, which again suggests the relevance of differentiation by class.

Under conditions of entrenched regionality, where moves that involve greater distances are
likely to involve greeter deterioration in solution qudlity, the god is to determine when an evaudtion for a
given distance should in fact be regarded attractive, dthough superficidly such an evauation may appear
less attractive than an evauation for asmaller distance. Such adetermination of relative attractivenessis
highly dynamic, since it depends on the extent to which the current solution is affected by the entrenched

regiondity phenomenon [J hence, for example, by the distance it has aready moved away from alocd
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optimum. The importance of accounting for the quaity of solutions produced when retreeting from a
loca optimum isillusrated by the study of market niche clusters by Kelly (1995). Using aform of
drategic oscillation that periodicaly induces a sequence of steps which progressively degrades the
objective function, salecting moves of least degradation was far more effective than salecting moves of
greater degradation. Thus, while the notion of influence suggests that moves thet creete greater changes
are to be favored, provided they represent aternatives of comparable quality, it remains important not
to be lured by change for the sake of change aone.

Among pitfals to be avoided, a common mistake made in diversfication drategiesisto
overlook the need for diversifying steps that are mutually compatible (and thus which do not propel a
solution into an unproductive region). Thisistypicaly reflected in the fact that once alarge distance
move is made, the tradeoffs embodied in sdecting influential moves change, so that a higher degree of
quaity must be demanded of amove of a given distance (or within a given distance class) in order for it
to qualify as attractive. Another common mistake is to overlook the phenomenon where some forms of
diversfying moves require a series of Smpler supporting moves before their effects can be reasonably
determined. Often look-ahead andysis isimportant to exploit this phenomenon, deferring the choice of
adiversfying move until such extended effects have been determined for severd candidates.

Empiricd studies are cdled for to identify the degree of 1ook-ahead and the number of
candidates that should be used in applying such analysisin various settings. A drategy thet dlows
previous solutions to be revisited if athreshold of qudity is not soon achieved can serve as an
gpproximate form of look-ahead.

Empirical sudies are dso cdled for to identify tradeoffs between quaity and distance for
particular problem classes and at particular stages of diversification (whether or not look-ahead is used).

Recency-based and frequency-based memory can be used to uncover and characterize Situationsin

which evauations for large distance moves should be preferable to those of smaler distance moves.
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The learning approach of target andlysis, discussed in Section 3.8, has particular bearing on thisissue.

3.2 Compound Moves, Variable Depth and Ejection Chains

The issues of influence, and their relevance for combining the gods of intensfication and
divergfication, are not Smply manifested in isolated choices of moves with particular features, but rather
in coordinated choices of moves with interlinking properties. The theme of making such coordinated
moves leads to consderation of compound moves, fabricated from a series of Smpler components.

Procedures that incorporate compound moves are often cdled variable depth methods
(Papadimitrou and Steiglitz (1982)), based on the fact that the number of components of a compound
move generally varies from step to step. One of the Smpler approaches, for example, isto generate a
string of component moves whose eements (such as edges in agraph or jobs in a schedule) are dlowed
to be used or "repositioned” only once. Then, when the string cannot be grown any larger, or
deteriorates in quality below a certain limit, the best portion of the string (from the start to a selected end
point) provides the compound move chosen to be executed. This smple design condtitutes the usud
conception of avariable depth Strategy, but the TS perspective suggests the merit of a somewhat
broader view, permitting the string to be generated by amore flexible process. For example, by using
TS memory it is possible to avoid the narrowly constrained progression that disalows a particular type
of dement from being re-used.

Within the class of variable depth procedures, broadly defined, a specid subclass caled
gjection chain procedures has recently proved useful. Early forms of gection chain procedures are
illustrated by aternating path methods for matching and degree-consirained problems in graph theory
(see, eg., Berge (1962)). A compound move in this setting, which congists of adding and dropping
successive edges in an dternating path, not only has a variable depth but aso exhibits another
fundamental feature. Some components of the compound move create conditions that must be

"resolved” by other components. Accordingly, the move is generated by complementary stages that
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introduce certain eements and gect others. One step of the move creates a disturbance (such as
violating a node degree by adding an edge) which must be removed by a complementary step (restoring
the node baance by dropping an edge).

The theme of such gpproaches generdizes naturdly to avariety of settings more complex then
that of adding and dropping edgesin graphs. The key principle isthat a strategic collection of partia
moves generates a critical (or fertile) condition to be exploited by an answering collection of other
partiad moves. Typicdly, asin dternaing paths, this occurs in stages thet trigger the gection of dements
(or dlocations, assgnments, etc.) and hence reinforces the gection chain terminology. I1n such cases,
intermediate stages of congruction fail to satisfy usud conditions of feashility, such asfulfilling structura
requirements in agraph or resource requirements in a schedule.

A prototypica example of the ateration between a critica condition and atriggered response
comes from network flows, in the classical out-of-kilter algorithm (Ford and Fulkerson (1962)). A
linked sequence of probing and adjustment steps is executed until achieving a "breskthrough,” which
triggers a chain of flow changes, and this dternation is repeated until optimality is atained. Another
example, again coming from classica methods, is provided by cutting plane procedures for integer
programming. In this case the addition of a cutting plane inequdity destroys feasibility conditions, which
are retored by an answering series of reoptimization steps, carried out in repeated dternation until
reaching convergence. (Here, improvements are measured as reductions of dudity gaps.) In contrast
to the approaches considered here, however, such examplesinvolve macro Strategies rather than
embedded strategies. More importantly, they do not encompass the freedom of choices for
intermediate steps dlowed in heurigtic procedures. Above dl, they do not involve specia memory or
probabiligtic links between successive phases to overcome loca optimality conditions when a
compound move no longer generates an improvement. (The origina characterization of variable depth

methods also gave no provision for a means to proceed when a compound move failed to improve the
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current solution.)

Within the heurigtic setting, gection chain gpproaches have recently come to be gpplied with
considerable success in severa problem areas, such as generdized assignment, clustering, planar graph
problems, traveling salesman problems and vehicle routing. (See, for example, Lagunaet d. (1991),
Dorndorf and Pesch (1994), Pesch and Glover (1995), Rego and Roucairol (1995).) Such strategies
for generating compound moves, coupled with TS processes both to control the congtruction of the
moves and to guide the master procedure that incorporates them, offer a basis for many additiona
heurigtics.

3.3 The Proximate Optimality Principle

The Proximate Optimality Principle (POP), which applies to both smple and compound moves,
is the notion that good solutions at one leved are likely to be found "close to" good solutions at an
adjacent levdl. (The chdlenge isto define levels and moves that make this rather |oose statement
usefully exploitable) Animportant part of the ideais the following intuition. In acongtructive or
destructive process [ asin generating new starting solutions, or asin gpplying strategic oscillation [ it
can be highly worthwhile to seek improvements at a given leve before going to the next leve.

Thebassfor thisintuition isasfollows. Movesthat involve (or can be interpreted as) passing
from one leve to another are based chiefly on knowledge about the solution and the level from which
the moveisinitiated, but rely on an inadequate picture of interactions at the new level. Consequently,
features can become incorporated into the solution being generated that introduce distortions or
undesirable sub-assemblies. Moreover, if these are not rectified they can build on themselves -- since
each level sets the stage for the next, i.e., awrong move at one level changes the identity of moves that
look attractive a the next level. Consequently, there will be a tendency to make additiona wrong
moves, each one reinforcing those made earlier. Eventudly, after severd leves of such aprocess, there

may be no way to dter earlier improper choices without greetly disrupting the entire condtruction. Asa
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result, even the gpplication of an improvement method to the resulting solution may find it very hard to
correct for the previous bad decisions.

This supports the idea of applying restarting strategies and strategic oscillation approaches by
pausing at periodic intervening levels of congtruction and destruction, in order to "clean up” the solution
at those levels. Such an gpproach is not limited in application to congtructive and destructive processes,
of course, but can aso be applied to other forms of strategic oscillation. Further, the process of
"pausng” at aparticular level can congst of performing atight series of strategic oscillaions at this levd.

To date, there do not seem to be any studies that have examined this type of approach
conscientioudy, to answer questions such as: (a) how often (at what levels) should clean up efforts be
applied? (b) how much work should be devoted &t different levels? (Presumably, if aclean up phaseis
gpplied at every levd, then less total work may be needed because the result at the sart of these levels
will dready be closeto what isdesired. On the other hand, the resulting solutions may become "too
tightly improved,” contrary to the notion of congenia structures discussed in the next section.) (c) how
can "attractiveness' be gppropriately measured a a given level, Snce the solution is not yet complete?
(d) what memory is useful when repeated re-starts or repeated oscillation waves are used, to help guide
the process? (€) what role should probabilities have in these decisons? (f) isit vauable to carry not just
one but a collection of severad good solutions forward a each step, asin asequentid fan candidate list
drategy? (An interesting question arisesin a pardld application, related to the sequentia fan candideate
ligt strategy: what kinds of diverdty among solutions & a given level are desirable as a base for going to
the next levd?)

Answers to the foregoing questions are rlevant for providing improved procedures for
problems in scheduling, graph partitioning, maximum weighted cliques, p-median goplications and many
others. The next sections raise consderations that yield avenues for further improvemen.

34  ThePrinciple of Congenial Structures
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An important supplement to the POP notion is provided by the Principle of Congenid
Structures. The key ideaisthat there often exist particular types of solution structures that provide
greater accessibility to solutions of highest quality 00 and, as an accompaniment, there so
frequently exist specid evauation functions (or "auxiliary objective functions') that can guide a search
process to produce solutions with these structures.

This principle is ussfully illusirated by an gpplication of tabu search in work force scheduling
(Glover and McMillan (1986)), where improved solutions were found by modifying a sandard
objective function evauation to include a"smoathing” evauation. The smoothing evauation in this case
was alowed to dominate during early-to-middle phases of generating starting solutions, and then was
gradudly phased out. However, the objective function itself was also modified by replacing an origind
linear formulation with a quadratic formulation (in particular, replacing aosolute deviations from targets
by squared deviations). The use of quadratic evauations reinforced the "smoothness' sructurein this
setting and, contrary to conventional expectation, produced solutions generdly better for the linear
objective than those obtained when this objective was used as an eva uation function.

A more recent application disclosing the importance of congenid structures occurred in
multiprocessor scheduling (Hubscher and Glover (1994)). The notion of a congenid structurein this
instance was used to guide phases of influential diversification, which made it possible to effectively
"unlock” gructures that hindered the ability to find better solutions, with the result of ultimately providing
improved outcomes.

Thisissue of gppropriately characterizing the nature of congenia structures for different problem
settings, and of identifying eva uation functions (and associated procedures) to redize these structures,
deservesfuller attention. Specific aspects of this issue are examined next.

Congenial Sructures Based on Influence

The influence concept, discussed in Section 3.1, can play an important role in identifying (and
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creating) congenid structures. This concept is manifested in a number of settings where solution
components can be viewed as faling roughly into two categories, congsting of foundation components
and crack fillers. The crack fillers are those that can rdatively easily be handled (such as jobs that are
eadly assigned good positions or variables that are easily assigned good values) once an appropriate
way of treating foundation components has been determined.

Typicdly, crack fillers represent components of rdatively smal "szes™" such as dements with
amdl weightsin bin packing problems, edges with smdl lengths in routing problems, jobs with smal
processing times in scheduling problems, variables with smal congtraint coefficients in knapsack
problems, etc. Hypotheticdly, an approach that first focuses on creating good (or balanced)
assignments of foundation elements, as by biasng moves in favor of those that introduce larger dements
into the solution, affords an improved likelihood of generating a congenia Structure. For example,
among competing exchange moves within a given interva of objective function change, those theat
involve larger dements (or that bring such dements into the solution), may be considered preferable
during phases that seek productive forms of diversity. Such moves tend to establish structures that
alow more effective "endgames,”" which are played by assigning or redistributing the crack fillers. (The
periodic endgames arise figuratively in extended search with trangtion neighborhoods, and arise literdly
in multistart methods and strategic oscillation.)

Approaches of this type, which provide asmple agpproximation to methods that seek to
characterize congenid gructures in more advanced ways, have some apped due to their rdatively
graightforward desgn. For example, a aparticularly smplelevd, if animproving move exigs, choices
may be restricted to sdecting such amove with agreatest leve of influence. More generaly, a st of
thresholds can be introduced, each representing an interva of evaluations. Then amove of greatest
influence can be selected from those thet lie in the highest nonempty evauation interva. Such

approaches motivate a quest for appropriate thresholds of objective function change versus influence
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change, particularly in different regions or phases of search. Studies that establish such thresholds can
make a val uable contribution.

Congenial Structures Based on Improving Sgnatures

Another way to generate congenid structures arises by making use of animproving signature
of a solution. Thisapproach has particular gpplication to searches that are organized as a series of
improving phases that terminate in local optimality, coupled with intervening phases thet drive the search
to new vantage points from which to initiate such phases. (The improving phases can be as smple as
local search procedures, or can consgst of tabu search methods that use aspiration criteria to permit
each sequence of improving moves to reach aloca optimum.)

As afirgt goproximation, we may conceive the improving signature 1S(x) of asolution x to be
the number of solutionsxI T N(X) that are better than x, i.e., that yield f(x() > f(x) for amaximization
objective. We conjecture that, in the process of tracing an improving path from x, the probability of
reaching a solution significantly better than x isafunction of 1S(x). More precisdy, the probability of
finding a (near) globa optimum on an improving path from x is afunction of 1S(x) and the objective
function vaue f(x). (Our comments are intended to apply to "typica” search spaces, sinceit is clearly
possible to identify spaces where such a rdationship does not hold.)

An evident refinement occurs by gipulaing thet the probability of finding agloba optimum
depends on the digtribution of f(x[J) as X[ ranges over the improving solutionsin N(x). Additional
refinements result by incorporating deeper |ook-ahead information, as from a sequentid fan candidate
ligt strategy. From apractica standpoint, we stipulate that the definition of the improving Sgnature | S(x)
should be based on the leve of refinement that is convenient in a given context.

With this practicd orientation, the first observation isthat N(x) may betoo largeto dlow al its
improving solutions to be routingly identified. Consequently, we immediately replace N(x) by a subset

C(x) determined by a suitable candidate list strategy, and define |S(x) rdative to C(x). If we restrict
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C(x) to contain only improving solutions, this requires identifying values (or bounds on) f(xO) for xO 1
C(x). Consequently, in such candidate list gpproaches, knowledge of these values (aswell asthe size of
C(x)) isautomatically available as abass for characterizing 15(x).

We follow the convention that larger values of 1S(x) are those we associate with higher
probakilities of reaching aglobd optimum from x. (Hence for example, in amaximization setting, 1S(x)
may be expressed as an increasing function of f(x) and the Size of C(x), or as aweighted sum of the
vauesf(x0) - f(x) for xO T C(x).) By this design, explicit TS memory can be used to keep arecord of
solutions with largest 1S(x) vaues, permitting these solutions to be used as a basis for launching
additional improving searches. Attributive TS memory (or probabiligtic TS rules) can then be applied, as
an accompaniment, to induce gppropriate variaion in the paths examined.

Identifying and exploiting congenid structures by reference to improving signatures has
ggnificant potentia to benefit from the gpplication of target analys's, discussed in Section 3.8. In
addition, approaches based on these notions are directly relevant to the Pyramid Principle, discussed
next.

3.5 ThePyramid Principle

A natural god of search isto maximize the percentage of time devoted to exploring the most
profitable terrain. Thelack of knowledge about what such terrain consists of |eads to diffused
drategies such as those of smulated anneding, which by design spend large periods of timein
unattractive regions, and such as those of random restarting which (also by design) "aimlesdy” jump to a
new point after each improving phase is completed.

A somewhat different type of strategy is motivated by the Pyramid Principle of improving search
paths, which rests on the following observation. Consder an arbitrary improving path from agiven
garting solution to alocd optimum.  As the search gets closer to the loca optimum, the tributary

improving paths to other loca optima become fewer, since dl such paths at any given levd are

65



contained among those at each level farther from the loca optimum.

To formulate this observation and its consequences more precisealy, let LO(X) denote the set of
local optimathat can be reached on the union of al improving paths sarting from x. Also let IN(X) the
improving neighborhood of X, i.e, IN(X) ={xO T N(X): f(x(J) > f(x)} (assuming amaximizaion
objective). Findly, let IP(x) denote the collection of improving paths from x to aloca optimum. Then
LO(x) isthe union of the sts LO(x(0) for x0T IN(x), and IP(x) is the union of the sets IP(x[1), each
augmented by the link from x to x(J, for x0T IN(xO). Further,

OLOX)O £ &(OLOXD)O: xO T IN(X)),

OIPx) 03 & (OLOXO)D: xO T IN(X)).

The second of these inequdities is strict whenever thefirgt is gtrict (which usualy may be
expected), and in genera, the number of dements of IP(x) can be greatly larger than that of LO(x), a
discrepancy that grows the farther x is from any given local optimum.

The relevant relationships are completed by defining the length of an improving path to be the
number of itslinks, the distance D(x,x") from x to aloca optimum x" to be the length of the longest
improving path from x to x" (under conditions where at least one such path exists), and the level
LEV(X), to be the greatest distance D(x, X") as X" ranges over dl loca optimaaccessible by an
improving path from x. Then
LEV(X) =1+ Max (LEV(xO): x0T IN(X)), and for any given improving path, the value f(x) is strictly
decreasing function of LEV/(X). In addition, CJ1P(X)[0 is nondecreasing function of LEV(X) and a
nonincreasing function of f(x).

The Pyramid Principle then can be expressed by saying that the total number of improving paths
decreases as f(x) moves closer to aglobd optimum. 1f we view the number of such paths as the width
of aband that corresponds to different intervals of f(x) values, the band becomes progressively

narrower as f(x) gpproachesits globa maximum, hence roughly resembling the shape of a pyramid.
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Adopting the convention that

IP(x) = {x*} for each globaly optimal solution x, where x* isadummy "root" solution for these global
optima, the apex of the pyramid consigts of the point x*. For many search spaces (such as those with
moderate connectivity, and where f(x) takes on multiple values), the rate a which the pyramid narrows
as f(X) grows can be dramatic.

Mild assumptions about the structure of improving paths causes this pyramid to generate an
andogous pyramida shape, but inverted, for the probability of finding improving paths to a globa
optimum as f(x) increases. (The base of the inverted pyramid corresponds to the point where f(x)
achieves its maximum vaue, and the width of this base corresponds to the maximum probability of 1.)
Thus, for example, if the Size of IN(X) is gpproximeately randomly digtributed, or fals randomly within a
particular range for each x a any given f(x) vaue, then the inverted pyramid structure may be expected
to emerge. Under such circumstances, the search can be significantly more productive by a strategy that
undertakes to "keep close”’ to the globaly optimum vaue of f(x). (Such a srategy, of course, sandsin
marked contrast to the Strategies of smulated annedling and random restarting.)

The foregoing analysis is somewhat pessmigtic, and potentialy myopic, for it implicitly supposes
no information exists to gauge the merit of any improving move reative to any other (arting from given
leve of f(x)). Hence, according to its assumptions, dl improving moves from a " current” solution x
should be given the same evauation and the same probability of sdection. However, it is reasonable to
expect that the search spaceis not so devoid of information, and better strategies can be designed if a
sengble means can be identified to extract such information. In particular, the Pyramid Principleislikey
to benefit significantly when gpplied together with the Principle of Congenid Structures. In combination
these two principles clearly have implications for the design of parale processng strategies. Additiond
congderations relevant to such strategies derive from probabiligtic TS implementations, examined next.

3.6  Probabilistic Tabu Search [0 And Parallel Processing Uses
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Probabilistic tabu search, which isadirect extenson of deterministic tabu search, is based on
the principle that appropriately designed probabilities can substitute for certain functions of memory asa
means for guiding search (Glover (1989a)). The basic gpproach can be summarized as follows.

(A)  Create move evauations that include reference to tabu status and other relevant biases

from TS drategies (I using pendties and inducements to modify an underlying
"gandard” evauation.

(B)  Map these evduations into pogtive weights, to obtain probabilities by dividing by the
sum of weights. The highest evaluations receive weights that disproportionately favor
their sdection.

Memory continues to exert a pivotd influence through its role in generating pendties and
inducements. However, this influence is modified (and supplemented) by the incorporation of
probabilities, in some cases alowing the degree of reliance on such memory to be reduced.

Asin other gpplications of tabu search, the use of an intelligent candidate ligt strategy to isolate
an gppropriate subset of moves for congderation is particularly important in the probabilistic TS
gpproach. Although a variety of ways of mapping TS eva uations into probabilities are possible, the
following instance of the gpproach has recently been found to perform quite well.

@ Sdect the "r bet" moves from the candidate li, for achosen vaue of r, and order them

from best to worst (where "evauation ties' are broken randomly).

2 Assign a probability p to sdlecting each move as it is encountered in the ordered
sequence, Sopping as soon asamoveis chosen. (Thus, the first move is selected with
probability p, the second best with probability (1-p)p, and so forth.) Findly, choosethe
fird moveif no other moves are chosen.

The €effect of the approach can be illustrated for the choice p = 1/3. Except for the small

additiona probability for choosing move 1, the probakilities for choosing moves 1 through k are
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impliatly:
13, 2/9, 4127, 8/81, ..., 24 V/3".

The probability of not choosing one of the first k movesis (1 - p), and hence the value
p = 1/3 gives a high probability of picking one of the top moves: about .87 for picking one of the top 5
moves, and about .98 for picking one of the top 10 moves.

Experimentation with a TS method for solving 0-1 mixed integer programming problems
(Glover and Lokketangen (1994)) has found that values for p closeto 1/3, in the range from .3 to .4,
appear to work very well. In this gpplication, vaues less than .3 resulted in choosing "poorer™ moves
too often, while values greater than. 4 resulted in concentrating too heavily on the moves with highest
evaduations. Presumably, basing probabilities on rdative differences in evauations can beimportant asa
generd rule, but the smplicity of the ranking approach, which does not depend on any "deep formula,”
isappeding. (It till can be appropriate, however, to vary the vaue of p. For example, in procedures
where the number of moves available to be evauated may vary according to the stage of search, the
vaue of p should typicaly grow asthe dternaives diminish. In addition, making p afunction of the
proximity of an evauation to a current idedl shows promise of being an effective variant (Xu, Chiu and
Glover (1995)).)

Conjectures about why this gpproach has performed well suggest an interesting possibility. It
may be supposed that evaluations have a certain "noise level" that causes them to be imperfect [ so
that a"best evauation" may not correspond to a "best move." Y et the imperfection is not complete, or
else there would be no need to consider evaluations at all (except perhaps from athoroughly local
standpoint, keeping in mind that the use of memory takes the evauations beyond the "loca" context).
Theissuethenisto find away to assign probahilities that gppropriately compensates for the noise level.

A potentid germ for theory is suggested by the chdlenge of identifying an ided assgnment of

probabilities for an assumed level of noise (gppropriatdy defined). Alternative assumptions about noise

69



levels may then lead to predictions about expected numbers of eva uations (and moves) required to find
an optimal solution under various response scenarios (e.g., as abasis for suggesting how long a method
should be dlowed to run).

Parallel Implementations

Probabiligtic TS has saverd potentid rolesin pardle solution approaches, which may be briefly
sketched as follows,

(2) The use of probahilities can produce a situation where one processor may get a good
solution somewhat earlier than other processors. The information from this solution can be used at once
to implement intengfication drategies at various levels on other processors to improve their
performance. Simple examples consst of taking the solution as a new starting solution for other
processors, and of biasing moves of other processors to favor attributes of this solution. (Thisisa
Stuation where parale gpproaches can get better than linear improvement over seria gpproaches.) In
generd, just as multiple good solutions can give vauable information for intensfication srategiesin sevid
implementations, pools of such solutions assembled from different processors can likewise be taken as
the basis for these drategiesin pardld environments.

(2) Different processors can apply different probability assgnments to embody different types of
drategies [ as where some processors are "highly aggressive’ (with probabilities that strongly favor the
best evauations), some are more moderate, and some use varying probabilities. (Probabilities can dso
be assigned to different choice rules, asin some variants of srategic oscillation.) A solution created
from one sirategy may be expected to have a somewhat different "structure” than asolution crested
from another strategy. Thus, dlowing a processor to work on a solution created by the contrasting
drategy of another processor may yield an implicit diversifying festure that leads to robust outcomes.

(3) Solution efforts are sometimes influenced materidly by the initid solutions used to launch

them. Embedding probabilistic TS within methods for generating starting solutions alows a range of
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initid solutions to be created, and the probabilistic TS choice rules may have a beneficia influence on
thisrange. Similarly, usng such rulesto generate starting solutions can be the basis for diversfication
strategies based on restarting, where given processors are allowed to restart after an unproductive
period.

At present, only the smplest instances of such ideas have been examined, and many potentia
goplications of probabilistic TSin paralel processing remain to be explored.

3.7  The Space/TimePrinciple

The Space/Time Principle is based on the observation that the manner in which spaceis
searched should affect the measure of time. This principle depends on the connectivity of neighborhood
gpace, and more precisay on the connectivity of regions that successively become the focus of the
search effort.

The idea can beilludrated by considering the hypothetica use of asmple TS gpproach for the
traveling salesman problem, which is restricted to relying on a short term recency-based memory while
applying a candidate list strategy that successvely looks at different tour segments. (A "segment” may
include more that one subpath of the tour and its composition may vary systematicaly or
probabiligticaly.) Inthisapproach, it may well be that the search activity will stay away from a
particular portion of atour for an extended duration [ that is, once a move has been made, the search
can become focused for a period in regions that lie beyond the sphere of influence of that move (i.e,
regions that have no effective interaction with the move). Then, when the search comes back to a
region within the move's sphere of influence, the tabu tenure associated with the move may have
expired! Accordingly, snce no changes have occurred in this region, the moves that were blocked by
this tabu tenure become available (asif they had never been forbidden). Under such circumstances, the
recency-based tabu memory evidently becomes ineffective. It isnot hard to see that more complex

scenarios can likewise exert an erratic influence on memory, creeting effects that Smilarly digtort its
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function and decrease its effectiveness.

In problem settings like that of the TSP, where aform of spatial decomposition or loose
coupling may accompany certain natural search strategies, the foregoing observations suggest that
messures of time and space should be interrdlated. This space/time dependency has two aspects: (1)
The clock should only "tick" for a particular solution attribute if changes occur thet affect the attribute.
(2) On alarger scale, longer term forms of memory are required to bridge events dispersed in time and
gpace. Thisincludes explicit memory that does not smply record best solutions, but also records best
"partid” (or regiond) solutions.

For example, in the TSP, after obtaining a good loca optimum for a tour segment that spans a
particular region, the procedure may continue with the outcome of producing a less attractive solution
(tour segment) in that region. Then, when improvement is subsequently obtained in another region, the
current solution that includes the current partid solution for the first region is not as good as otherwise
would be possible. (This graphicaly shows the defect of considering only short term memory and of
ignoring compound attributes))

This same sort of "loose coupling” has been observed in forestry problems by L okketangen
(1995) who proposes smilar policies for handling it. Quite likdly this Structure is characterigtic of many
large problems, and gains may be expected by recognizing and taking advantage of it.

3.8 Target Analysis

Target andysisis alearning procedure that can be used to provide more intelligent gpplications
of the foregoing principles. The gpproach is based on a preliminary study of representative problems
from agiven dass, consigting of integrated phases designed to uncover information to produce improved
decisions (Glover (1986), Glover and Greenberg (1989), Lagunaand Glover (1993)). In this sense,
target anadysisisaglobal or class-based process of learning and inference. 1t can dso providea

framework for improved applications of local or individual-problem-based learning approaches,
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which seek to adaptively modify their decison rules according to information recorded and processed
during the solution of a particular problem. In generd, target analysis can be gpplied in many
procedures, such as branch and bound and even smple local search. Its main features may be briefly
sketched by viewing the approach as a three-phase procedure, asfollows.

Phase 1 of target analysisis devoted to applying currently established methods to determine
optima or near optimal solutions to representative problems from agiven class. Thisphaseis
graightforward in its execution, athough ahigh leve of effort may be expended to assure the solutions
are of the specified qudity.

Phase 2 isthe mgjor phase of the procedure, and can be conceived as divided into three
overlgpping parts. Thefirst part uses the solutions produced by Phase 1 as targets, which become the
focus of anew set of solution passes. During these passes, each problem is solved again, thistime
scoring al avallable moves (or a high-ranking subset) on the basis of ther ahility to progress effectively
toward the target solution. (The scoring can be asimple classfication, such as "good" or "bad," or it
may capture more refined gradations. In the case where multiple best or near best solutions may
reasonably qualify as targets, the scores may be based on the target that is "closest to" the current
solution.) In some implementations, choices during this phase are biased to select movesthat have high
scores, thereby leading to atarget solution more quickly than the customary choicerules. In other
implementations, the method is smply alowed to make its regular moves. In ether case, thegod isto
generate information during this solution effort which may be useful in inferring the solution scores. That
is, the scores provide abasis for cresating modified evauations [ and more generaly, for creating new
rules to generate such evaluations in order to more closdy match them with the measures that represent
"true goodness' (for reaching the targets).

In the case of tabu search intengfication strategies such as the elite solution recovery

approaches described in Section 1.2, scores can be assigned to parameterized rules for determining the
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types of solutionsto be saved. For example, such rules may take account of characterigtics of clustering
and digperson among dlite solutions. In environments where data bases can be maintained of solutions
to related problems previoudy encountered, the scores may be assigned to rules for recovering and
exploiting particular instances of these past solutions, and for determining which new solutions will be
added to the data bases as additional problems are solved. (The latter step, which is part of the target
andlyss and not part of asolution effort, is reserved to be performed "off line") Such an gpproach is
relevant, for example, in gpplications of linear and nonlinear optimization based on smplex method
subroutines, to identify sets of variables to provide crash-bass starting solutions.

In path rdlinking strategies, scores can be gpplied to rules for matching initiating solutions with
guiding solutions. As with other types of decison rules produced by target andysis, these will
preferably include reference to parameters that distinguish different problem instances. The parameter-
based rules smilarly can be usad sdlect initiating and guiding solutions from pre-existing solution pools.
Tunnding applications of path relinking, which dlow traversd of infeasible regions, and strategic
oscillation designs that purposdly drive the search into and out of such regions, are natura
accompaniments for handling recovered solutions that may be infeasible.

The second part of Phase 2, closdly linked with the first part, constructs parameterized functions
of the information generated, with the god of finding values of the parameters to create a master
decisonrule. Thisruleisdesgned to choose moves and decison processes that score highly, in order
to achieve the goa that underlies the first part of Phase 2. 1t should be noted that the parameters
available for congtructing a master decison rule depend on the search method employed. Thus, for
example, tabu search may include parameters that embody various e ements of recency-based and
frequency-based memory, together with measures of influence linked to different classes of attributes or
to different regions from which elite solutions have been derived.

Thefind part of Phase 2 transforms the general design of the master decision rule into a specific
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design by applying amodel to determine effective vaues for its parameters. Thismoded can be asmple
set of relaionships based on intuition, or can be amore rigorous formulation based on mathematics or
datigtics (such asagoa programming or discriminant andyss moded, or even a ™ connectionist™ model
based on neura networks).

The components of Phase 2 are not entirdly digtinct, and may be iterative. On the basis of the
outcomes of this phase, the master decision rule becomes the rule that drives the method applied to the
current problem of interest. In the case of tabu search, thisrule may naturdly be evolutionary, i.e,, it
may use feedback of outcomes obtained during the solution process to modify its parameters for the
problem being solved.

Phase 3 concludes the process by gpplying the master decision rule to the origind representative
problems and to other problems from the chosen solution class to confirm its merit. The process can be
repested and nested to achieve further refinement.

Target andysis has an additiona important function. On the basis of the information generated
during its application, and particularly during its confirmation phases, the method produces empirical
frequency measures for the probabilities that decisions with high evauations will lead to an optimd (or
near-optimal) solution within a certain number of steps. These decisons are not only &t tacticd levels
but dso a drategic levels, such as when to initiate aternative solution phases, and which sources of
information to use for guiding these phases (e.g., whether from processes for tracking solution
trgectories or for recovering and analyzing solutions). By this means, target analys's can provide
inferences concerning expected solution behavior, as a supplement to classica "worst case’ complexity
andyds. Theseinferences can ad the practitioner by indicating how long to run a solution method to
achieve asolution of desired qudity (and with a specified empirica probability).

One of the useful features of target andysisis its capacity for taking advantage of human

interaction. The determination of key parameters, and the rules for connecting them, can draw directly
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on theingght of the observer as wel as on supplementary anaytica techniques. The ability to derive
inferences from pre-established knowledge of optima or near optima solutions, instead of manipulating
parameters blindly (without information about the relation of decisions to targeted outcomes), can save
ggnificant investment in time and energy. The key, of course, is to coordinate the phases of solution and
guided re-solution to obtain knowledge that has the greatest utility. Many potentid applications of target
andysis exist, and recent gpplications suggest the approach holds considerable promise for developing
improved tactica and grategic decision rulesfor difficult optimization problems.

3.9 Vocabulary Building

Vocabulary building, in common with scatter search and path relinking, can be interpreted as a
drategy for combining solutions. Vocabulary building inherits the scatter search orientation of alowing
multiple vectors to be united smultaneoudy, but is distinguished by a concern with components of
solution vectors, rather than with complete solutions.

The vocabulary building process joins e ementary solution attributes to yield more complex
attributes, thereby effectively representing an approach for creating solution fragments These
fragments typicaly (though not exclusively) represent attribute combinations shared in common by dlite
solutions. From this standpoint, vocabulary building provides a mechanism for supplementing TS
intengfication drategies. However, it dso provides a means of diverdfication, by generating large
numbers of solution fragments which may be joined in many different ways. The challenge of exploiting
these numerous dternatives is effectively handled by applying exact and heuristic procedures for
determining the combinations to be generated (Glover and Laguna (1993)).

One of the gnificant aspects of vocabulary building is that Srategies for integrating solution
fragments can often be based on a somewhat different type of problem than the one currently under
congderation. For example, in the context of traveling sdesman and routing problems, avocabulary

building approach can be gpplied to transform various subtour fragments into complete tours by
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specialized shortest path procedures (Glover (1992)). Ejection chain strategies, as discussed in Section
3.2, provide one of the useful ways for generating the fragments to be assembled. A notable benefit of
vocabulary building based on solving optimization modelsis the fact that the optimization can yied
combined vectors that dominate exponential numbers of dternatives, an outcome that is sometimes
cdled the combinatorial |everage phenomenon.

A recent example of the use of optimization models for vocabulary building occurs in the work
of Rochat and Taillard (1995), who use a partitioning mode to assemble component tours of avehicle
routing problem into a complete VRP solution. A related gpplication is provided by the work of Kely
and Xu (1995), who use a covering mode! for assembling components of more generd dedlivery and
routing problems. Telecommunication bandwidth packing problems as studied by Ryan and Parker
(1994) and Laguna and Glover (1995) offer another significant application, where solution fragments
conggting of routed cals can be integrated into a complete solution by a multidimensiona knapsack
modd.

Vocabulary building, in common with other gpproaches for explicitly and implicitly exploiting
memory based designs, raises important strategic consderations whose applications appear to hold
sgnificant promise.

4. Conclusion

The practica successes of tabu search have promoted useful research into ways to exploit its
underlying ideas more fully. At the same time, many facets of these ideas remain to be explored. The
issues of identifying best combinations of short and long term memory and best balances of
intengfication and diversfication strategies till contain many unexamined corners, and some of them
undoubtedly harbor important discoveries for developing more powerful solution methodsin the future,

There are evident contrasts between TS perspectives and the views currently favored by the

artificd intdligence and neurd network communities, particularly concerning the role of memory in
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search. However, there are dso useful complementarities among these views, which raise the possibility
of cregting systems that integrate their fundamental concerns. Advances are dready underway in this
realm, with the creation of tabu training and learning models (de Werra and Hertz (1989), Beyer and
Orgier (1991), Battiti and Tecchioli (1993), Gee and Prager (1994)), tabu machines (Chakrapani and
Skorin-Kapov (1993), Nemati and Sun (1994)) and tabu design procedures (Kelly and Gordon
(1994)). The outcomes from this work have shown promising consequences for supplementing
customary connectionist models and paradigms [ as by yidding leves of performance notably superior
to that of models based on Boltzmann machines, and by yielding processes for modifying network
linkages that give more reliable mappings of inputs to outputs.

Recent years have undenigbly witnessed sgnificant gainsin solving difficult optimization
problems, but it must also be acknowledged that a great ded remainsto be learned. Research in these

aressisfull of uncharted and inviting landscapes.

78



Refer ences

Battiti, R. and G. Tecchialli (1992a). "The Reactive Tabu Search,” IRST Technical Report 9303-13, to
appear in ORSA Journal on Computing.

Battiti, R. and G. Tecchiolli (1992b). "Parale Biased Search for Combinatorid Optimization: Genetic
Algorithmsand TABU," Microprocessors and Microsystems 16, 351-367.

Battiti, R. and G. Tecchioli (1993). "Training Neura Nets with the Reactive Tabu Search,” Technical
Report UTM 421, Univ. of Trento, Italy, November.

Berge, C. (1962). Theory of Graphs and its Applications, Methuen, London

Beyer, D. and R. Ogier (1991). "Tabu Learning: A Neural Network Search Method for Solving
Nonconvex Optimization Problems,” Proceedings of the International Joint Conference on
Neural Networks IEEE and INNS, Singapore.

Chakrapani, J. and Skorin-Kapov (1991). "Massively Pardld Tabu Search for the Quadratic
Assgnment Problem,” Working Paper Harriman School for Management and Policy, State
University of New York at Stony Brook.

Chakrapani, J. and Skorin-Kapov, J. (1993). "Connection Machine Implementation of a Tabu Search
Algorithm for the Traveling Sdlesman Problem,” Journal of Computing and Information
Technology - CIT 1, 1, 29-36.

Crainic, T.G., M. Gendreau, P. Soriano, and M. Toulouse (1993). "A Tabu Search Procedure for
Multicommodity Location/Allocation with Balancing Requirements,” Annals of Operations
Research, 41(1-4): 359-383.

Crainic, T.G., M. Toulouse, and M. Gendreau (1993a). "A Study of Synchronous Paraldization
Strategies for Tabu Search,” Publication 934, Centre de recherche sur les transports,
Universite de Montredl, 1993.

Crainic, T.G., M. Toulouse, and M. Gendreau (1993b). "Appraisal of Asynchronous Parallelization
Approaches for Tabu Search Algorithms,” Publication 935, Centre de recherche sur les
transports, Universite de Montreal, 1993.

Dammeyer, F. and S. Voss (1993). "Dynamic Tabu List Management Using the Reverse Elimination
Method," Annals of Operations Research 41, 31-46.

Danids, R.L. and JB. Mazzola (1993). "A Tabu Search Heuristic for the Flexible-Resource Flow
Shop Scheduling Problem,” Annals of Operations Research, Vol. 41, 207-230.

Ddl'Amico, M. and M. Trubian (1993). "Applying Tabu Search to the Job-Shop Scheduling Problem,”
Annals of Operations Research, Vol. 41, 231-252.

Dorndorf, U. and E. Pesch (1994). "Fast Clugtering Algorithms,” ORSA Journal on Computing 6,

79



141-153.
Ford, L.R. and D.R. Fulkerson (1962). Flows in Networks, Princeton University Press.

Freville, A. and G. Plateau (1986). "Heurigtics and Reduction Methods for Multiple Congtraint 0-1
Linear Programming Problems,” European Journal of Operational Research, 24, 206-215.

Freville, A. and G. Plateau (1982). "Methodes Heuristiques Performantes Pour les Problemesin
Variables 0-1 a Plussieurs Condraintes en Inegdite," Publication ANO-91, Universite des
Sciences et Techniques de Lille.

Gee, A. H. and RW. Prager (1994). "Polyhedral Combinatorics and Neura Networks," Neural
Computation 6, 161-180.

Gendreau, M. A., Hertz, and G. Laporte (1991). "A Tabu Search Heurigtic for Vehicle Routing,”
CRT-777, Centre de Recherche sur les trangports, Universite de Montreal, to appear in
Management Science.

Gendreau, M., P. Soriano, and L. Sdvail (1993). "Solving the Maximum Clique Problem Using a Tabu
Search Approach,” Annals of Operations Research, Vol. 41, 385-404.

Glover, F. (1977). "Heurigticsfor Integer Programming Using Surrogate Congraints,” Decision
Sciences, Vol. 8, No. 1, January, 156-166.

Glover, F. (1986). "Future Paths for Integer Programming and Linksto Artificid Intelligence,”
Computers and Operations Research, 13, 533-549.

Glover, F. (1989a). "Tabu Search - Part 1," ORSA Journal on Computing, 1(3), 190-206.

Glover, F. (1989b). "Candidate List Strategies and Tabu Search,” CAAI Research Report, University
of Colorado, Boulder, July.

Glover, F. (1990a). "Tabu Search-Part I1," ORSA Journal on Computing, 2, 4-32.

Glover, F. (1990b). "Tabu Search: A Tutorid,” Interfaces, Vol. 20, No. 1, 74-94.

Glover, F. (1992). "New Ejection Chain and Alternating Path Methods for Traveling Salesman
Problems" Graduate School of Business and Administration, University of Colorado, Boulder,
pp. 449-5009.

Glover, F. (1994). "Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic
Algorithms)," Discrete Applied Mathematics, 49, 231-255.

Glover, F. (1993) "Tabu Thresholding: Improved Search by Nonmonotonic Trgectories,” to gppear in
ORSA Journal on Computing.

Glover, F. and H. J. Greenberg (1989). "New approaches for heuristic search: A hilateral linkage with
atificd intdligence" European Journal of Operational Research, 39, 119-130.

80



Glover, F. and M. Laguna (1993). "Tabu Search,” Modern Heuristic Techniques for Combinatorial
Problems, C. Reeves, ed., Blackwell Scientific Publishing, 70-141.

Glover, F., M. Laguna, E. Taillard, and D. de Werra, eds. (1993) '"Tabu Search,” specid issue of the
Annals of Operations Research, Val. 41, J. C. Baltzer.

Glover, F. and A. Lokketangen (1994). "Probabilistic Tabu Search for Zero-One Mixed Integer
Programming Problems," University of Colorado, Boulder.

Glover, F. and G. Kochenberger (1995). "Critical Event Tabu Search for Multidimensional Knapsack
Problems,” University of Colorado, Boulder.

Glover, F., E. Tallard and D. de Werra (1993). "A Users Guideto Tabu Search,” Annals of
Operations Research, Vol. 41, 3-28.

Hansen, P. (1986). "The Steepest Ascent, Mildest Descent Heurigtic for Combinatoriad Programming,”
presented a the Congress on Numericd Methods in Combinatorial Optimization, Capri, Italy.

Hansen, P. and B. Jaumard (1990). "Algorithmsfor the Maximum Satifiability Problem,” Computing,
Vol. 44, 279-303.

Hansen, P., B. Jaumard, and Da Silva (1992). "Average Linkage Divisve Hierarchicad Clustering,” to
appear in Journal of Classification.

Hertz, A. and D. de Werra (1991). "The Tabu Search Metaheuristic: How We Used It," Annals of
Mathematics and Artificial Intelligence, 1, 111-121.

Hubscher, R. and F. Glover (1994). "Applying Tabu Search with Influentia Diversfication to
Multiprocessor Scheduling,” Computers and Operations Research, Vol. 21, No. 8, pp.
877-884.

Johnson, D.S. (1990). "Loca Optimization and the Traveling Sdesman Problem,” In Proc. 17th
Colloguium on Automata, Languages and Programming, pages 446-461. Springer-
Verlag.

Kdly, J. P. (1995). "Determination of Market Niches Using Tabu Search-Based Cluster
Anayss" Graduate School of Business, University of Colorado, Boulder.

Kdly, J. P., B. L. Golden, A. A. Assad (1993). "Large-Scae Controlled Rounding Using Tabu Search
with Strategic Oscillation,” Annals of Operations Research, Vol. 41, 69-84.

Kdly, J. P. and K. Gordon (1994). "Predicting the Rescheduling of World Debt: A Neural Network-
based Approach that Introduces New Congtruction and Evauation Techniques.” Working
Paper, College of Business and Adminigtration, University of Colorado, Boulder, CO  80309.

Kely, J. P, M. Lagunaand F. Glover (1991). "A Study of Diversfication Strategies for the Quadratic
Assgnment Problem,” to gppear in Computers and Oper ations Resear ch.

81



Kely, J and J. Xu (1995). "Tabu Search and Vocabulary Building for Routing Problems,” Graduate
Schoal of Business and Adminigtration, University of Colorado at Boulder.

Laguna, M. and F. Glover (1993). "Integrating Target Analysis and Tabu Search for Improved
Scheduling Sysems” Expert Systems with Applications, Vol. 6, 287-297.

Laguna, M., J. P. Kdly, J. L. Gonzadlez-Vearde, and F. Glover (1995). "Tabu Search for the
Multilevel Generdized Assgnment Problem,” European Journal of Operations Research, 82,
176-189.

Laguna, M. and F. Glover (1993). "Bandwidth Packing: A Tabu Search Approach,” Management
Science, Val. 39, No. 4, pp. 492-500.

Lokketangen, A. (1995). "Tabu Search for Forestry Problems,” University of Molde, Norway.

Lokketangen, A. and F. Glover (1995). "Tabu Search for Zero-One Mixed Integer Programming
Problems With Advanced Levd Strategies and Learning,” University of Colorado, Boulder.

Lourenco, H. (1993). "Loca Optimization and The Job-Shop Scheduling Problem,” Faculdade de
Ciéncias, Universgdade de Lisboa, Portugd.

Martin, O., SW. Otto, and E. W. Felten (1992). "Large-step markov chains for TSP incorporating
loca search heurigtics” Operations Research Letters, 11:219-224.

Moscato, P. (1993). "An Introduction to Population Approaches for Optimization and Hierarchica
Objective Functions: A Discusson on the Role of Tabu Search,” Annals of Operations
Research, Vol 41, 85-122.

Moscato, P. and F. Tinetti (1994). "Blending Heuristics with a Population-Based Approach: A
"Memetic" Algorithm for the Traveling Slesman Problem,” to appear in Discrete Applied
Mathematics.

Nemati, H. and M. Sun (1994). "A Tabu Machine for Connectionist Methods," Joint Nationd
ORSA/TIMS Mesting, Boston, MA.

Nowicki, E. and C. Smutnicki (1993). "A Fast Taboo Search Algorithm for the Job Shop Problem,”
Report 8/93, Inditute of Engineering Cybernetics, Technica University of Wroclaw.

Nowicki, E. and C. Smutnicki (1994). "A Fast Tabu Search Algorithm for the Flow Shop Problem,”
Indtitute of Engineering Cybernetics, Technica University of Wroclaw.

Osman, |.H. (1993). "Metastrategy Smulated Annedling and Tabu Search Algorithmsfor the Vehicle
Routing Problem,” Annals of Operations Research, 41:421-451.

Osman, |.H. and N. Chrigtofides (1993). "Capacitated Clustering Problems by Hybrid Smulated

Annesling and Tabu Search," Report No. UKC/IMSOR93/5. Indtitute of Mathematics and
Saidtics, University of Kent, Canterbury, UK. Forthcoming in: International Transactions

82



in Operational Research, 1994.

Ow, P.S. and C. Morton (1988). "Filtered Beam Search in Scheduling,” Int. J. Prod. Res.,
Voal. 26, No. 1, 35-62.

Pesch, E. and F. Glover (1995). "TSP Ejection Chains," Graduate School of Business,
University of Colorado, Boulder, to appear in Discrete Applied Mathematics.

Porto, S.C. and C. Ribeiro (1993). "A Tabu Search Approach to Task Scheduling on Heterogeneous
Processors Under Precedence Constraints,” Monographia em Ciécia da Computagl]o, No.
03/93, Pontificia Universidade Catdlica do Rio de Janeiro.

Reeves, C.R. (1993). "Diverdfication in Genetic Algorthms. Some Connections with Tabu Search,”
Conventry University, U.K.

Rego, C. and C. Roucairal (1994). "An Efficient Implementation of Ejection Chain Procedures for the
Vehicle Routing Problem," Research Report RR-94/44, PRISM Laboratory, University of
Versalles

Rochat, V. and A. Semet (1992). "Tabu Search Approach for Delivering Pet Food and Flour in
Switzerland," ORWP 92/9, Departement de Mathematiques, Ecole Polytechnique Federdle de
Lausanne.

Rochat, Y. and E. Talllard (1995). "Probabilistic Diversfication and Intensfication in Loca Search for
Vehicle Routing," Centre de Recherche sur les Transports, Universite de Montred, to appear in
Journal of Heuristics.

Ryan, J. and M. Parker (1994) "A Column Generation Algorithm for Bandwidth Packing,”
Telecommunications Systems, 185-195.

Ryan, J., C. Anderson and K. Jones (1993). "A Permutation-Based Tabu Search for Path Assgnment,”
Annals of Operations Research, 299-312.

Soriano, P. and M. Gendreau (1993). "Diversfication Strategies in Tabu Search Algorithms for the
Maximum Clique Problem,” Publication #940, Centre de Recherche sur les Transports,
Universite de Montredl.

Tallard, E. (1991). "Pardld Tabu Search Technique for the Job Shop Scheduling Problem,” Research
Report ORWP 91/10, Departement de Mathematiques, Ecole Polytechnique Federde de
Lausanne.

Tallard, E. (1993). "Pardld Iterative Search Methods for Vehicle Routing Problems”
Networks, Vol. 23, 661-673.

Vaessens, R, E. Aartsand JK. Lengtra (1994). "Job Shop Scheduling by Local Search," Eindhoven
University of Technology, the Netherlands.

Verdgo, V. V., R. M. Cunquero and P. Sarli (1993). "An Application of the Tabu Thresholding

83



Technigue: Minimization of the Number of Arc Craossngsin an Acydic Digraph,”
Departamento de Estadistica e Investigacion Operative, Universidad de Vaencia, Spain.

Voss, S. (1992). "Tabu Search: Applications and Prospects,” Technica report, Technische Hochshule
Darmstadt, 1992.

Voss, S. (1993). "Solving Quadratic Assgnment Problems Using the Reverse Elimination Method,”
Technische Hochschule Darmstadt, Germany.

Voss, S. (1994). "Concepts for Pardld Tabu Search,” Technische Hochschule Dormstadt, Germany.

de Werra, D. and A. Hertz (1989). "Tabu Search Techniques: A Tutoria and an Applicationsto
Neura Networks," OR Spectrum, 11, 131-141.

Woodruff, D. L. (1993). "Tabu Search and Chunking," working paper, University of Cdifornia, Davis.

Woodruff, D.L. and E. Zemd (1993). "Hashing Vectorsfor Tabu Search,” Annals of Operations
Research, Vol. 41, 123-138.

Xu, J,, S. Chiu and F Glover (1995). "Probabilistic Tabu Search for Telecom- munications
Network Design," Graduate School of Business, University of Colorado, Boulder.

Xu, J. and J. P. Kdly (1995). "A Robust Network Flow-Based Tabu Search Approach for the Vehicle
Routing Problem,” Graduate School of Business, University of Colorado, Boulder.

84



Fil enanme: Tabu Search Fundanental & Uses. doc

Directory: G \ wpc\ WPCSTAFF\ GLOVER\ TABU

Tenpl at e: C.\Program Fil es\M crosoft
O fice\ Tenpl at es\ Nor mal . dot

Title:

Subj ect :

Aut hor : Bartl ey

Keywor ds:

Comment s:

Creation Date: 02/22/00 11:23 AM

Change Nunber: 51

Last Saved On: 03/28/00 8:33 AM

Last Saved By: Wnnie Bartl ey

Total Editing Time: 520 M nutes

Last Printed On: 04/ 10/ 00 11: 34 AM

As of Last Conplete Printing
Nunmber of Pages: 84
Nurmber of Words: 21,925 (approx.)
Number of Characters: 124,978

(approx.)



