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1. OPTIMIZATION AND SURROGATE 
CONSTRAINTS 
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 Example:    

Maximize      
0x =    18x ─ 23x + 12x3  

Subject to 12x + 25x + 11x3 ≤ 160
 14− x ─ 29x   ≤ -90
 17x + 22x ─ 3x  ≤ 100
 1x    ≤ 20
  2x   ≤ 12
   3x  ≤ 12
 1,x 2,x

 
3x   ≥ 0

The constraints of the problem have been separated 
into 3 groups, showing upper and lower bounds 
separately. These bounds are not included in 
forming surrogate constraints because they are 
included directly within the surrogate constraint 
problems, as part of the problem information. 

Weight vectors for Examples on Page 4: 

1.  ω  =  (1 1 2)   2.  ω  =  (1 1 1) 
3.  ω  =  (1 2 1)   4.  ω  =  (2 1 1) 
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Surrogate Constraints 

 
Select a Weight Vector 

w = w1,…, wm   ≥    0 
The constraint is: 
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Examples 

A. Identify the surrogate constraint for each w 

vector on page 2. 

 

B. Identify the Surrogate Constraint Problem for 

each of these surrogate constraints; the problem 

where the constraints Ax ≤ b are replaced by 

(wA)x ≤ wb. 

 

C. Guess an optimal solution to each problem. 

(Variables here are allowed to be continuous 

– i.e. they do not have to be integer – i.e. 

they can take "fractional" rather than "whole 

number" values.) 
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Conversion for Surrogate Constraints 
– To Solve Easier 

 
Use upper bounds to make all cj of c nonnegative. 

 Example:  Consider the surrogate problem 

for w = (1     1     1). From page 2 we have: 

 

Maximize x x x x
x x x

To change c to c

o = − +
− + ≤
= − ≥

1 2 3

1 2 3

2

8 3 12
5 2 10 170

3 02 :
 

2 2 2 212 12 0x x y y≤ → + = ≥,  

      2 2

2 2

12 0
12 0

y x
x y
= − ≥
= − ≥

 

(using x2 bound information from page 2) 

 Substitute for x2  from expression above: 

Max x x y x
x y x

o = − − +
− − + ≤

1 2 3

1 2 3

8 3 12 12
5 2 12 10 170

( )
( )
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 What does this give after clearing terms? 

Exercise 1.1:  

A. Guess an optimal solution to this new 

problem (where y2 replaces x2). 

B. What value results for x2? 

C. How does this compare to previous 

guess?  (From Examples, Part C, on page 

4.) 

 

Exercise 1.2: 

 Convert each of the other surrogate constraint 

problems. 

 Carry out A, B & C of Exercise 1. 



 7

Exercise 1.3: 

 Can you identify a rule that will always solve a 

single constraint LP problem like this?  (Assume 

all variables are nonnegative and have upper 

bounds.) 

 

Terminology:  A single constraint LP is called a 

Continuous Knapsack Problem. 

 When the variables are integer (i.e., required to 

be integer-valued), the problem is called an Integer 

Knapsack Problem – or simply a 

Knapsack Problem 
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Exercise 1.4:  For the Continuous Knapsack 

Problems previously examined, identify one that is 

stronger than the others, in the sense of giving an 

optimum value for xo that is closer to the optimum 

value when all constraints of the original problem 

are considered (i.e. where the original problem 

itself is solved). 

Hint  1:  A surrogate constraint is always valid 
for the original problem.  Why? 

 
Hint  2:  If the surrogate constraint replaces the 

original constraints, the problem is relaxed – the set 
of feasible solutions can only increase in size, or 
stay the same.  Why? 

 
Hint  3:  The observation of Hint 2 implies that 

the optimum objective (xo) value for the surrogate 
problem will always be "Better" (≥) than for the 
original problem.  Why? 
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2.  STRONGEST SURROGATE CONSTRAINTS 
& THEIR USES 

 
 Integer programming (IP) problems are much 

harder to solve than linear programming (LP) 
problems. 

 
 It is valuable to have bounds on xo for solving 

IP problems.  It is also valuable to have bounds 
on other variables. 

 
 Surrogate constraints can be used to give such 

bounds. 
 

 Stronger surrogate constraints give tighter 
(more restrictive) bounds, and hence are more 
useful for bounding. 

 
NOTE:  How would you define a stronger 

surrogate constraint for an IP problem?  (How is 
the definition similar to, and also different from, 
the definition for an LP problem?) 
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Additional Surrogate Constraint Features  

For IP Problems 

 

 They can be used to suggest "Trial Values" for 

integer variables. 

 They can be used as source constraints for 

cutting planes, i.e. for additional constraints 

implied by the integer restrictions. 

 Cutting plane inequalities, or "cuts," can be 

added to the original constraints to generate 

new (and possibly better) surrogate 

constraints. 

 

 
Additional Uses Will be Considered Soon 
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Exercise 2.1:  Apply the ideas of the exercises of 

Section 1 to reformulate the example problem in 

the form 

Minimize x cx
subject to Ax b

x
where x x c c

A A b b

o

o o

=
≥

≥ ≥
= − = −
= − = −

U 0
,
, .

 

Then transform the problem so that c o≥ , intro-

ducing "y variables" as appropriate. 

Finally, identify the surrogate constraints for the 
four w vectors of shown on page 2. 
A. Demonstrate these are equivalent to the original 

surrogate constraints. 

B. Identify optimal solutions to the resulting 

surrogate problems. 
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Exercise 2.2: 

 How does the rule for solving a continuous 

knapsack problem of the form 

  

Minimize c x
Subject to a x b x
where a wA b wb

o o

o o

≥ ≥ ≥
= =

, ,
, ,

U 0  

compare to the rule for solving the earlier 

"maximize" form? 

 
 

Heuristic Methods for Knapsack Problems 

 

 It is useful to have a very fast method to obtain 

"good" solutions to Knapsack Problems.  Such a 

heuristic method, which has the goal of obtaining 
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an optimal or near-optimal solution in many 

instances (but is not guaranteed to do so), is often 

based on the same ratio calculations used to solve 

LP Knapsack Problems. 

Exercise 2.3:  Formulate an explicit set of rules, 

expressed as a set of instructions or a flow diagram 

or a pseudo code, for two different heuristics for a 

Knapsack Problem in "Maximizing Form."  Do the 

same for a Knapsack Problem in "Minimize Form." 
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Illustrative Heuristics (for the "Maximize Form") 

Heuristic 1 (Classical "Greedy" Knapsack 

Heuristic) 

1. Order the variables so that 

1 1 2 2c a c a c ao o n on≥ ≥ ≥K  

(These ratios are sometimes called “Bang-for-

Buck” ratios.) 

Define where  to  beginJ j N xj= ∈ ={ : },1  

J = φ.  Finally, let o ob b' .=  

2. Let jnext Min j N J a boj o= ∈ − ≤( : ') 

3. If jnext does not exist (i.e., J = N or 

oj oa b j N J> ∈ −' )for   all  then stop.  Otherwise, 

add jnext to J, set o o jnextb b a' : ' ,= −  and return to 

step 2. 
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(Note, each jnext added to J is larger than 

the one added before.) 

 
Exercise 2.4  Apply Heuristic 1 to the Knapsack 

Problem where 

  c = (13 10 17 20 8 10   4   2) 

  oa = (  4   5   9 11 6   8  4   2) 

  ob = 19. 

Improved Heuristic 1:  A simple improvement of 

Heuristic 1 is as follows.  When the method stops, 

assuming J ≠ φ, let jmax = max (j ∈J).  (Hence, 

jmax was the last index added to J.)  Remove jmax 

from J, setting o o ojb b a' : ' ,max= +  and let jbest be an 

index j ≥ jmax that gives the largest cj value subject 
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to oj oa b≤ ' .  Then add jbest to J.  (At "worst," jbest 

= jmax, which is the same solution already found.) 

 
Exercise 2.5:  Apply the Improved Heuristic 1 to 

the problem of Exercise 2.4. 

Exercise 2.6:  Transform the problem of Exercise 

2.4 into a minimization problem (i.e., with the 

"Minimize Form").  Write instructions for a version 

of Heuristic 1 (including its Improved Variant) that 

applies to this "Minimize Form," and which will 

yield a solution that is the same (after converting 

the variables back to their original identities) as the 

solution obtained by Heuristic 1 for the "Maximize 

Form." 

 
 For our next heuristic we require some notation. 
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 For any number (value) v, define: 

  v  = the largest integer ≤ v 

  v  = the smallest integer ≥ v 

Example 1: 2.3 =2,     2 = 2,  -2.3 = -3. 

Example 2: 2.3 = 3,    2 = 2,  -2.3 = -2 

Define the effective coefficient ojb  associated with 

oja  by  oj o o ojb b b a= / .  Note that 

 o oj o ojb b b a= / , hence    o oj o ojb b b a=  and 

this ojb  identifies the "effective size" of oja  in terms 

of the integer number of times that oja  divides ob . 

 Heuristic 2A.  (Greedy Method Using Effective 

Coefficients).  The method is the same as Heuristic 

1, except that the variables are ordered so that 

1 1 2 2c b c b c bo o n on≥ ≥ ≥K . 
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Define the effective profit for variable xj by 

 j o ojc b a .  Note, this is the profit that would 

result if xj could be assigned the integer value 

 o ojb a , which would be possible if xj was not 

bounded to satisfy xj ≤ 1.  Hereafter, we call 

 o ojb a  the effective multiple for xj, and denote it 

by mj.  Hence the effective profit for xj is cjmj. 

 Heuristic 2B.  (Greedy Method Using Effective 

Profits).  The method is the same as Heuristic 1, 

except that the variables are ordered in descending 

order of effective profits. 
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Exercise 2.7:  Show algebraically that Heuristic 2A 

and Heuristic 2B are identical (and that their 

Improved Variants are also identical). 

Exercise 2.8:  Apply Heuristic 2B to the Knapsack 

Problem of Exercise 2.4.  Also apply the Improved 

Variant. 

Exercise 2.9:  Carry out the instructions of Exercise 

2.6, replacing Heuristic 1 by Heuristic 2B.  

(However, the solution need not be the same as for 

the "Maximization.") 

 For our final illustrative heuristic, define the 

updated effective multiple jm'  to be the same as mj, 

except that the updated value ob'  replaces ob , i.e., 
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 j o ojm b a' ' .=   Correspondingly, define the 

updated effective profit to be j jmc ' . 

 Heuristic 3:  (Greedy Method Using Updated 

Effective Profits.)  The method is the same as 

Heuristic 2B, except that the variables are ordered 

in descending order of updated effective profits.  

Since the updated effective profits change each 

time ob'  changes, instead of pre-ordering the 

variables, the choice of jnext is given by 

jnext jnextc m' = Max ( j jmc ' : j ∈N - J and oj oa b≤ ' ). 

Exercise 2.10:  Apply Heuristic 3 to the problem of 

Exercise 2.4. 

Exercise 2.11:  Carry out the instructions of 

Exercise 2.9, replacing Heuristic 2B by Heuristic 3. 
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Exercise 2.12: As a rule, which of the three 

knapsack heuristics do you think is likely to be 

best?  Can you construct three different examples, 

where Heuristic 1 works best on the first, Heuristic 

2B works best on the second, and Heuristic 3 

works best on the third? 

 

 
3. HOW TO CREATE GOOD SURROGATE 

CONSTRAINTS 
 

 

 This section helps to develop intuition about 

normalizing original constraints – as one way to 

create weights to produce surrogate constraints. 

Later, page 41 gives normalization rules.   
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I. Intuitive Normalization Methods 

Consider the following three systems of 

constraints. 

A x x x

x x x
x x x

. 1 2 3

1 2 3

1 2 3

20 30 40 250

400 200 300 2500
3 2 4 25

+ + ≤
+ + ≤
+ + ≤

 

B x x
x x x

x x x x

. 1 2

1 3 4

2 3 4 5

1 1 1
1 1 1 1

1 1 1 1 1

+ ≤
+ + ≤
+ + + ≤

 

C x x
x x x

x x x x

. 1 2

1 3 4

2 3 4 5

1 1 1
1 1 1 1

1 1 1 1 1

+ ≥
+ + ≥
+ + + ≥
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Exercise 3.1:  Identify possible ways to 

"normalize" the constraints of systems A, B & C 

(multiply or divide each constraint by a positive 

quantity) so that, if the normalized constraints are 

summed, each one contributes an appropriate 

influence to the resulting surrogate constraint. 

Exercise 3.2:   

(1) How might you normalize inequalities of the 

following system 

1 2

1 3 4

2 3 4 5

1 1
1 1 1

1 1 1 1 1
1 1 5

x x O
x x x O

x x x x
where x O for jj

− ≤
+ − ≤

− + − + ≤ −
≥ ≥ = , ,K
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(2) Same question, but reverse the direction of the 

constraint inequalities. 

 

(3) How does your answer compare to the answer 

to Exercise 3.1 for system B?  Is that system 

related to this one? 

 

Exercise 3.3: How would you normalize…? 

1 2

1 3 4

2 3 4 5

1 1 1

1 1 1 2

1 1 1 1 3
1 1 5

x x
x x x

x x x x
where x O for jj

+ ≥
+ + ≥
+ + + ≥

≥ ≥ = , ,K

 

Compare your answer to that for Exercise 3.1, for 
system B.  Should these answers be related? 
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4. Multidimensional 0-1 Knapsack Problem 

 
 

Consider the problem 

 

Maximize ox cx
Ax b
x is binary

=
≤  

in detached coefficient form 

x  
c  
 

A 
 
b 
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Example 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 b 

C= 36 83 59 11 43 67 23 52 93 25  
5  9 17 23 10 12 11 15 12 15 57
3 15   5 15 11   9 15 17 10 25 61

A={ 13 21 11 25 12 23 15 12   9 10 65
            
 
A problem such as this, where c > O, b > O and  

A ≥ O, is called a Multidimensional Knapsack 

Problem. 

Exercise 4.1. Create 3 different surrogate 
constraints: 
 
 
( ) ( ),
( ) ( ),
( ) ( )

1 1 1 1
2 2 1 1
3 1 1 3

w
w
w

=
=
=
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Exercise 4.2: 

 Use two Heuristic Rules (your favorites, subject 

to not being too complex or hard to apply), to 

generate 0-1 solutions for the surrogate constraint 

Knapsack Problems from Exercise 4.1. 

(A) Check each solution to see if it is feasible 

for the original problem ─ or to see how 

much it violates feasibility. 

(B) Based on (A) and on the value of xo, pick 

the 2 solutions you like best. 
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Exercise 4.3: Transform the original problem into 
the form 

 

  

Minimize oy c y

A y b
y is binary

j j j Ny x

=

≥

= − ∈using 1 , .

 

Exercise 4.4: Apply Exercise 4.1 to the trans-

formed problem, except let w2 = 3 in (2) and (3). 

Exercise 4.5: Apply Exercise 4.2 to the surrogate 

constraint Knapsack Problems of Exercise 4.4. 

Exercise 4.6: Compare the best solutions from 

exercises 4.2 and 4.5.  Are they the same after 

being expressed in terms of x? 
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MORE ADVANCED HEURISTICS 

 
 
Exercise 4.7: 

 Start with the best infeasible solution from 

previous exercises. 

 Now consider setting xj = O for any xj that is 1 

in this best solution but = O in the 2nd best solution.  

Do this one variable at a time, using any choice 

rule you want to choose such an xj from available 

possibilities. Repeat until obtaining a feasible 

solution.  (If not enough variables can be changed 

from 1 to O by this rule to make the best solutions 

become feasible, continue by considering the 3rd 

best solution as a source for xj = O.) 
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Remark:  This is a special case of the evolutionary 

approach for combining solutions called path 

relinking. 

 

Exercise 4.8: 

 Apply Exercise 4.7, but reverse the roles of the 

best and 2nd best solutions. 
 

Conditional Surrogate Constraints 

 

 For the following, chose a (single) rule for 

generating a surrogate constraint, wi = 1/bi for each 

i∈M. 

Exercise 4.9: Use 2 rules to generate a heuristic 

solution, but then let the rules "vote" by picking 
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(A) xj = 1 for a variable xj that both rules select 

for xj = 1, if possible. 

(B) Given the priority of (A), chose xj = 1 for 

the xj that has xj = 1 in at least one 

(preferably both) solution, and which has 

the largest bang for buck ratio. 

 Do (A) and (B) just to choose a single best  

xj = 1 assignment.  Then, set this xj = 1 and thereby 

remove this xj from the problem.  (This changes b 

and removes a column from A.) 

 For each new (smaller) problem, repeat the 

process. 

 As soon as choosing xj = 1 produces an 

infeasible solution, remove this and all other 

variables that will create an infeasible solution 
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by setting xj = 1.  (Is there an easy way to 

identify them?)  Then do (A) and (B) just for 

remaining variables. 

 Once it is necessary to remove one or more 

xj variables as just described, continue to 

remove such variables that create infeasible 

solutions on each subsequent step. 

 Finally, when no xj can be set to 1, return to 

the last step where a feasible solution was 

produced by setting xj = 1.  If this xj does not 

have the largest cj among all xj that can be set 

to 1, then, change this choice by picking 

instead xj = 1 for this largest cj.  (Note:  the 

solution is feasible.) 
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Exercise 4.10: Compare this solution to the best 

feasible solution found in exercises 4.7 & 4.8. 

Exercise 4.11: List ways to reduce the computation 

effort of a strategy like Exercise 9.  (What change 

in the strategy might give about the same result, but 

faster?  When might it be ok to choose xj = 1 for 

more than a single xj?) 

Exercise 4.12: How might you change the strategy 

of Exercise 4.9 if you used more than one surrogate 

constraint to generate solutions?  (Since different 

surrogate constraints give different "Bang for 

Buck" ratios, how would you modify (B) of 

Exercise 4.9?  Also, given that there are more than 

two trial solutions to "vote" on setting xj = 1, how 

else might you change the "priorities" of voting?) 
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Exercise 4.13: Use the minimization formulation of 

Exercise 4.3, and then apply a "counterpart" of 

Exercise 4.9 to this formulation.  (How do some of 

the instructions of Exercise 4.9 change?  Write 

down the changed instructions.) 
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5.  Adaptive Generation of Surrogate Constraints 

 
Problem Reduction by Logical Implications 

 It is often valuable to check problem constraints 

and surrogate constraints for logical implications 

that can simplify and "reduce" the problem.  These 

logical implications can be checked both before 

undertaking to solve the problem, and also at each 

step after assigning a value to a variable in a 

constructive (or destructive) heuristic process.  

(Depending on the problem and the stage of 

solution, several variables may be selected and 

assigned values between two successive steps of 

checking for logical implications.) 



 36

 For convenience, the following describes the 

logical implication tests for the problem in its 

original form, before assigning values to any of the 

variables, since the updated problem after making 

such assignments has this same form. 

 We consider the 0-1 problem using both the "≤ 

representation" and the "≥ representation," where 

all constraint coefficients ( )ija  are assumed non-

negative.  As already seen, any constraint can be 

given either of these representations and the non-

negativity assumption can be assured by the usual 

transformations.  Define sum( ) .i
j N

aij=
∈
Σ  
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Zero-One Logical Implications for "≤ Constraints": 

  
(A) 

 j N
ija jx ib

ija O jx
∈
∑ ≤

≥( , )all all binary
 

_________________________________________ 

1. If ib O< , the problem has no feasible 

solution. 

2. If  isum i b( ) ,≤  the constraint is redundant. 

3. If  ija b x Oi j> =, .then  

_________________________________________ 
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Zero-One Logical Implications for "≥ Constraints" 

  
(B) 

 j N
ija jx ib

ija O jx
∈
∑ ≥

≥( , )all all binary
 

_________________________________________ 

1. If sum i ib( ) ,<  the problem has no feasible 

solution. 

2. If ib O≤ , the constraint is redundant. 

3. If ija sum i ib xj> − =( ) , then 1. 
_________________________________________ 

 
Note that it is easy to keep updated values of sum(i) 

(as well as of ib ) as variables are selected and 

assigned values, to facilitate checking for 

associated logical conditions.  Removing redundant 
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constraints from consideration can be important for 

determining surrogate constraints, since redundant 

constraints should receive a O weight.  (Such 

constraints are not permanently removed from 

consideration, of course, but should be reinstated if 

the partial solution that created their redundancy is 

changed.) 

 
Linked Implications 

 Surrogate constraints can be subjected to the 

preceding tests as readily as other problem 

constraints.  If a variable is compelled to receive a 

particular value by one of the preceding tests, then 

it is possible that this may uncover new 

implications ─ by reference to a constraint that has 

not been checked since the variable was assigned 
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such a value.  Consequently, it can be useful to re-

check a constraint for a possible logical implication 

if a variable was assigned a value since the last 

time the constraint was checked. 

Note: Stronger logical implications than the 

ones illustrated above, making use of bounded 

sums of variables, are given in the original 1965 

surrogate constraint paper, and implications of 

additional strength using nested sums are given in 

the 1971 paper “Flows in Arborescences.” 

(References appear at the end of these notes.) 

 We now review the rules for creating surrogate 

constraints by normalizations, i.e., where assigning 

a normalized constraint a weight of 1 automatically 

implies an associated weight to be assigned to the 
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form of the constraint that is not subjected to 

normalization.  The rules differ according to 

whether the constraint has the form of (A) or (B) in 

the description of the tests for logical implications.   

After examining outcomes produced by these 

normalizations, we consider adaptive rules for 

generating surrogate constraints. 

Type 1 Normalization Rules: 

 The weight wi for normalizing is given by 

  wi = (∑ aij – bi) / bi      for (A) 

  wi = bi / (∑ aij – bi)      for (B) 

These rules are symmetric, in that they yield the 

same normalization regardless of whether the 

original constraint is put in the form of (A) or (B) 

(by complementing variables, as necessary). 
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The next rules considered are not symmetric. (They 

are not necessarily better or worse than the Type 1 

rules, in general. But in certain settings the Type 1 

rules can be shown to be preferable.) 

Type 2 Normalization Rules:  

Normalize (A) and (B) by first dividing through by 

bi.  Then, representing the new coefficients as if 

they were the original ones, and for some power  

k ≥ 1, define  

D = ∑










∈j N ija
k

 

(i.e., the coefficients above are those after dividing 

by bi).  Then, to complete the normalization: 

Rule 1, for (A):  Multiply through by D.  

Rule 2, for (B):  Divide through by D. 
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Exercise 5.1: Identify wi for the Type 2 

Nomalization Rules 1 and 2. Show algebraically 

that the outcomes of Rules 1 and 2 are similar but 

not identical to each other. Compare the outcomes 

to the expressions for wi in the Type 1 rules.   

 

Exercise 5.2: In the Type 2 rules, choose k = 1 and 

2, and in each case apply Rules 1 and 2 to 

normalize the ≤ form and the ≥ form of each 

constraint in system B at the beginning of Section 

3.  Show that the relative sizes of wi for the 3 

constraints are similar by Rules 1 and 2, but not 

precisely the same. Apply the Type 1 rules in the 
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same way and compare their wi values to those of 

the Type 2 rules.  

 
 

Basis for Adaptive Weighting 

 
Let x* be a candidate solution for the problem, 

not necessarily feasible.  (For example, x* may be 

obtained by a surrogate constraint heuristic, with or 

without updating.) If x* is infeasible, and the 

surrogate constraint 

∑ ≤
∈j N ooja j bx  

was used to generate x*, then increase the weights 

on constraints violated by x*. 
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Exercise 5.3:  What type of rule(s) might be used to 

do this? (weights on satisfied constraints might also 

be decreased.  How would your rule(s) change in 

this case?)  Demonstrate your rules by a numerical 

example. 

Exercise 5.4:  If you generate a new x* for the new 

surrogate constraint ─ i.e., by a heuristic or 

algorithm using this constraint and repeating the 

process ─ then: 

 Can you use info from previous applications 

of the process to help choose (or restrict the 

choice of) the weights? 

 How would you decide when to stop? 

 Which surrogate constraint would you 

choose? 
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Again, demonstrate by a numerical example. 

 

 
 

An Adaptive Surrogate Constraint Method 

 

 Suppose x* is "representative" of the kinds of 

trial solutions produced by a particular method you 

are using.  For example, x* might be a weighted 

average of the r best of these trial solutions (for r = 

10, 20, 30, etc.) with a threshold t such that any jx* 

that is greater than t is rounded to give jx* .= 1   For 

present purposes, it is appropriate to set t small, 

including the possibility t = 0 (in which case 
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jx* = 1 results if jx = 1 in any solution x that is 

included in the average).   

Then, instead of normalizing the i th constraint 

by dividing or multiplying through by ( )Σ
j N ija k
∈

, 

divide or multiply through by 

Σ
j N

ija jx
k

∈







* . 

This may give a more "realistic" set of normaliza-

tions.  Explain why.  (Note that the previous 

normalization results from the new "adaptive" one 

if x* is the vector of all 1's) 

Exercise 5.5: In a method that updates the problem 

information at each step of assigning a value to a 
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variable, how might the basis for choosing x* also 

change at each step?  (Or periodically?) 

Exercise 5.6: What benefits could result from 

having several different surrogate constraints? In 

your answer consider constraints that result both by 

choosing different values of the power k and by 

choosing different ways of determining x*. How 

would you use more than one surrogate constraint 

to make decisions about values to assign to 

variables? 
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Additional "Frequency" Memory 

 

 Consider an approach that keeps track of 

feasible "good" solutions x(1), x(2),…,x(H), and for 

each solution x(h), keeps track of 

si h bi
j N

aij xj h i( ) ( ) .= −
∈
∑ for  each  

That is, si(h) is the "slack value" for constraint i in 

solution x(h). 

 

Exercise 5.7.  How might you use the si(h) values 

to weight constraints?  What is the reason for your 

rule? 
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Exercise 5.8.  Should your approach of Exercise 

5.7 also include other influences ─ as illustrated 

from previous exercises ─ to determine weights?  

Which ones? 

Exercise 5.9.  Illustrate how you would implement 

your ideas of Exercises 5.6, 5.7 and 5.8, by apply-

ing them to the multidimensional Knapsack 

Problem shown in Section 4. 
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