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Abstract

This paper considers the multi-item dynamic lot size model where joint business volume

discount is applied for all items purchased whenever the total dollar value of an order reaches

a certain level. Multi-item discounts are prevalent in practical applications, yet the literature

has only considered limited instances of single-item models. We establish the mathematical

formulation and design an e�ective dynamic programming based heuristic. Computational

results disclose our approach obtains high quality solutions that dominate the best known

heuristic for the simpli�ed one-item case, and that proves vastly superior to the state-of-

the-art CPLEX MIP code for the multi-item case (for which no alternative heuristics have

been devised). We obtained signi�cantly better solutions than CPLEX for the more complex

problems, while running from 4,800 to over 100,000 times faster. Enhanced variants of our

method improve these outcomes further.
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1. Introduction

Cost e�ectiveness has been a key factor underlying success in logistics management, and

usually a vendor's price discount o�er is an important factor in purchasing considerations.

In traditional inventory models, to keep price-competitive, a vendor o�ers discounts based on

the quantity ordered. Buyers attempt to order an item in large quantities in spite of incurring

an associated storage cost, so as to dilute the high one time setup ordering cost and take

advantage of the discount provided by the vendor. In the case of one item, the traditional

quantity discount models have been studied extensively in the literature, for both EOQ type

models and lot sizing models (see Hadley and Whitin 1963, Johnson and Montgomery 1974,

Bu�a and Miller 1979, Silver and Peterson 1985, Federgruen and Lee 1990, Bregman 1991,

and Bregman and Silver 1993).

In the case of multiple items, the discount can be based either on the order quantity

of each item individually, or on the total dollar value of all items purchased. The �rst

type of discount is virtually the same as the quantity discount model. The second type

of discount, referred to as the Joint Business Volume Discount, can be advantageous to

both buyers and vendors. For the buyer, it can reduce the number of vendors utilized and

strengthen the purchasing power and negotiation position. For the vendor, it can simplify

the discount schedules and promote more balanced sales over multiple products. Sadrian and

Yoon (1992) compared the practical impact of the joint business volume discount with those

of traditional quantity discounts, and concluded that the joint business volume discount is

more realistic for both vendors and buyers. They presented a successful implementation of a

decision support system based on the joint business volume discount concept, and reported

savings of millions of dollars in several local telephone companies (Sadrian and Yoon 1994).

However, their model is static and fails to include important aspects such as inventory costs

and time-varied parameters.

In real world applications, a vendor usually provides two di�erent unit prices for each

item: an annual commitment price, and an as-ordered price. Schedules for discounts are

also provided separately on commitment and as-ordered bases. When an item is purchased
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on a commitment basis, the buyer makes a contract with a vendor in advance to purchase a

certain number of units of the item from that vendor, and this quantity should be purchased

during the year regardless of the possible changes in buyer's demand and/or budget. When

an item is purchased on an as-ordered basis, the buyer is not obliged to buy any particular

quantity.

The as-ordered unit prices are usually higher than those of commitment prices, and this

provides an incentive for the buyer to purchase items on a commitment basis. On the other

hand, the buyer would like to develop a 
exible purchasing plan that can be changed if the

forecasted demand changes during the year. Consequently, the buyer faces the con
icting

objectives of reducing the purchasing costs and developing a 
exible purchasing plan, and

needs to test di�erent commitment percentages for the forecasted demand and examine the

cost di�erences. It can be seen that for a �xed commitment percentage, it is not di�cult to

evaluate the discount schedules of commitment basis. However, it is not easy to apply the

discount schedules of as-ordered basis, and the outcome will depend on the order frequencies

and order quantities.

While there is some discussion in the literature of the dynamic lot sizing model with

quantity discounts (see Federgruen and Lee 1990, Bregman 1991, and Bregman and Silver

1993), these results can only be used for one-item cases. To the authors' knowledge, there is

no literature available for multiple-item cases, and this paper provides the �rst investigation

of the multi-item dynamic lot sizing model that incorporates joint business volume discounts.

We describe the problem more precisely as follows. Consider an inventory model with

�nite numbers of time periods and items, with demand known for each item at each time

period. The setup cost for each item occurs at the time the item is ordered, and inventory

costs are applied only to the inventory carried at the end of each time period. Each item

has a unit purchasing price. If the total dollar value of items purchased during a time period

reaches or exceeds the critical value of discount level, an all-unit discount rate is realized

for all items ordered during that period. Backorders, initial and trial inventories are not

allowed. The problem is to determine when and how much to order for each item, with the

objective of minimizing the total costs made up of purchasing costs, inventory costs and

setup costs. For the sake of simplicity, we use the term \discount" to mean \joint business

volume discount" in the rest of this paper. It should be pointed out that though our model
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assumes only one price break point, it can be easily extended to the case with multiple price

break points.

The rest of this paper is organized as follows. Section 2 formulates the model as a

mixed integer programming model. Section 3 describes a basic heuristic procedure based

on dynamic programming, and discusses the extension to the case of multiple price break

points. Section 4 derives some alternative decision rules that can be used in the basic heuristic

procedure. Section 5 presents two �ne tuned methods that further improve the quality of

the heuristic solution, and a speedup method that signi�cantly improves the speed of the

algorithm. Section 6 reports computational results on two sets of randomly generated test

problems which disclose the e�ectiveness of our procedure. Our algorithm performs very

favorably compared with the optimal algorithm and the best available heuristic for the

single-item cases, and produces far superior solutions for the multi-item instances than a

standard branch and bound algorithm (which is the only alternative currently available).

Section 7 summarizes with concluding remarks.

2. Mathematical Formulation

We formulate the problem as a mixed integer programming model as follows. First, we

de�ne:

Constants

dit : demand of item i at period t;

Si : one time setup cost of item i;

vi : price of item i;

hi : unit inventory holding cost of item i;

� : critical dollar value (breakpoint) of the discount level;

� : price discount rate.

Variables
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xit : the quantity of item i ordered at period t;

�it : a binary variable equal to 1 if and only if xit > 0;

Iit : the inventory of item i in period t;

yit : the quantity of item i ordered at period t that can be purchased with discount;

zt : a binary variable equal to 1 if and only if period t is the discount period.

The model is then
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Model 1

minimize
mX
i=1

nX
t=1

(Si�it + hiIit + vixit � �viyit) (1)

subject to:

xit + Ii;t�1 � Iit = dit; i = 1; : : : ; m; t = 1; : : : ; n (2)

xit � M�it; i = 1; : : : ; m; t = 1; : : : ; n (3)

mX
i=1

viyit � �zt; t = 1; : : : ; n (4)

yit � Mzt; i = 1; : : : ; m; t = 1; : : : ; n (5)

yit � xit; i = 1; : : : ; m; t = 1; : : : ; n (6)

Ii;0 = Ii;n = 0; i = 1; : : : ; m (7)

xit � 0; i = 1; : : : ; m; t = 1; : : : ; n (8)

Iit � 0; i = 1; : : : ; m; t = 1; : : : ; n (9)

yit � 0; i = 1; : : : ; m; t = 1; : : : ; n (10)

�it 2 f0; 1g; i = 1; : : : ; m; t = 1; : : : ; n (11)

zt 2 f0; 1g; t = 1; : : : ; n: (12)

In this formulation, the objective function (1) seeks to minimize the total setup costs, inven-

tory costs and purchasing costs. Constraint (2) embodies the demand balance requirements,

while (3) expresses the incidence relationship of �it and xit, where M is a \su�ciently big"

number (i.e. M > maxif
P

n

t=1
ditg). Clearly, �it = 1 if and only if xit > 0. Constraints (4)

and (5) specify the discount condition. If period t is the discount period (zt = 1), then the

joint purchase volume
P

m

i=1
vixit must equal or exceed �; if period t is not a discount period

(zt = 0), then no items at period t can be purchased at the discount prices (yit = 0).

Constraint (6) connects the discount quantity with the quantity ordered and ensures that

the discount is applied to all units. That is, at each discount period t where zt = 1 and

yit > 0, the quantity with discount, yit, will equal the total quantity ordered at this period,

xit, because of the minimization of the objective function. Thus, yit = xit when zt = 1,
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and otherwise yit = 0. Finally, constraint (7) indicates that there are no initial and �nal

inventories, and constraints (8) { (12) stipulate the non-negativity and discrete requirements

for the variables.

This model is very di�cult to solve using latest state-of-the-art integer programming

techniques, as demonstrated by computational testing subsequently reported. Even when

all zt's are �xed, the relaxed problem is still NP-hard. The existence of constraint (4)

creates an interlinking among the di�erent items and complicates the lot size model. Thus,

the design of an e�cient heuristic is of paramount importance and constitutes the key focus

of our research.

3. A Dynamic Programming Based Heuristic

We develop a dynamic programming based heuristic in this section. First, we relax the

problem by introducing lower bounds, and separate the di�cult Model 1 into m single-item

lot size models; then, we identify important properties of solutions to the single-item lot size

model, and develop basic heuristics based on these properties.

3.1. Solution Properties. Recall that the fundamental di�cult constraint in the forego-

ing Model 1 is the existence of the constraint (4), which establishes the discount condition.

It is well known that without discount, the whole model can be easily solved by solving m

separate Wagner-Whitin (1958) lot size models. We attempt to replace the di�cult con-

straint (4) by simpler conditions and disregard the discount bene�t in the objective function

so that the revised model can be easily solved by taking advantage of the simple solution

approach for the variant of the Wagner-Whitin model.

To create such a strategy, we introduce a non-mandatory lower bound Lit for xit to replace

the constraint (4):

xit � Lit if xit > 0; i = 1; : : : ; m; t = 1; : : : ; n: (13)

The value of Lit is determined by a speci�c procedure (which will be described later) and

must satisfy the following conditions:
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(C1) Lit �

P
n

k=t
dik.

(C2) For each period t, either Lit = 0 for i = 1; : : : ; m (in which case we call t a nondiscount

period) or
P

m

i=1
viLit � � (in which case we call t a discount period).

Now, for given lower bounds Lit, we determine the values of zt as follows:

zt =

(
0; if Lit = 0 for all i

1; otherwise:
t = 1; : : : ; n:

Since yit = ztxit, we can now remove the variables yit. Furthermore, note that
P

m

i=1

P
n

t=1
vixit

is constant due to constraints (2) and (7), it can thereby be dropped from (1). Consequently,

using the constaint (13) we separate the di�cult Model 1 into m single-item lot size models

as follwos:

Model 2 (Single-Item Lot Size Model for item i)

minimize
nX
t=1

(Si�it + hiIit � �ztvixit)

subject to:

xit + Ii;t�1 � Iit = dit; t = 1; : : : ; n

xit � M�it; t = 1; : : : ; n

xit � Lit if xit > 0; t = 1; : : : ; n

Ii;0 = Ii;n = 0;

xit � 0; t = 1; : : : ; n

Iit � 0; t = 1; : : : ; n

�it 2 f0; 1g; t = 1; : : : ; n:

We now present some important relationships satis�ed by the optimal solution of Model 2.

These relationships will allow us to develop an e�cient method for solving the Model 2, which

we will then apply to the original problem of Model 1. For an item i, a period t is called a

regeneration period if Ii;t�1 = 0. We have the following proposition for the Model 2:

Proposition: Consider an optimal solution of Model 2 such that t1 and t2 (t2 > t1) be

two adjacent order periods for item i, and assume that t1 is a regeneration period (i.e.,

Ii;t1�1 = 0). Then in this optimal solution, we have xit1 = maxfLit1
;
P

t2�1

t=t1
ditg:
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Proof: We consider two cases: t1 is either a non-discount period or a discount period.

CASE 1: t1 is a non-discount period. Thus, Lit1
= 0.

Since t1 and t2 are two adjacent order periods, xit = 0 for t = t1 + 1; : : : ; t2 � 1. Now we

show that Ii;t2�1 = 0. If this is not true, then we can construct a new feasible solution (�x; �I)

such that �xit1 = xit1 � Ii;t2�1 and �xit2 = xit2 + Ii;t2�1: The new policy therefore has the

same setup costs as the current solution, but smaller inventory costs. This contradicts the

assumption. Consequently, xit1 =
P

t2�1

t=t1
dit:

CASE 2: t1 is a discount period. We establish the result for two subcases:

Subcase 1: Lit1
�

P
t2�1

t=t1
dit.

In this case, since there is no order placed between periods t1 and t2, we must order

enough quantity for item i to meet the demands from period t1 to t2 � 1. Thus, following

directly from CASE 1, we have xit1 =
P

t2�1

t=t1
dit.

Subcase 2: Lit1
>
P

t2�1

t=t1
dit.

In this case, by the lower bound condition, we must order at least Lit1
for item i. If

xit1 > Lit1
in the current optimal solution, then we can construct a new solution as �xit1 =

Lit1
and �xit2 = xit2 + xit1 �Lit1

: It is easy to see that the new solution has the same setup

costs but lower inventory costs than the current solution. This contradicts the optimality of

the current solution. �

The proposition indicates that for two adjacent order periods t1 and t2, if t1 is a regener-

ation period, then we have xit1 = maxfLit1
;
P

t2�1

t=t1
ditg. Since Lit1

>
P

t2�1

t=t1
dit may occur, it

may be the case that Ii;t2�1 = xit1 �
P

t2�1

t=t1
dit > 0, and in which case the result of the propo-

sition will not be valid for the next two adjacent order periods t2 and t3 (i.e., xit2 <
P

t3�1

t=t2
dit

may occur). Therefore, in order to use the proposition periodically for all pairs of adjacent

order periods, we update dit2 as dit2 � Ii;t2�1 (note that the resulting dit2 may be negative).

With these updated demands, we now have the order quantity xit1 = maxfLit1
;
P

t2�1

t=t1
ditg

for any pair of adjacent order periods.

We now present the following dynamic programming recursion as a heuristic procedure

for solving the Model 2.

Procedure A



The Deterministic Multi-item Dynamic Lot Size Problem 9

Step 0 : Set g(i; 1) = 0 and t2 = 1.

Step 1 : Let t2 = t2 + 1 and calculate

g(i; t2) = min
1�t1<t2

fg(i; t1) + f(i; t1; t2)g; (14)

where for a pair of adjacent order periods t1 and t2, f(i; t1; t2) is the total cost for

item i incurred from period t1 to period t2 � 1 (including setup cost, inventory

cost and the negative discount cost if applicable), i.e.,

f(i; t1; t2) = Si +
t2�1X
t=t1

hiIit � �zt1vixit1 : (15)

The order quantity in the expression (15) is xit1 = maxfLit1
;
P

t2�1

t=t1
ditg, and the

inventories are calculated as follows:

Iit1 = xit1 � dit1 ; and Iit = Ii;t�1 � dit for t = t1 + 1; : : : ; t2 � 1;

where dit1 is the updated demand associated with g(i; t1) (see Step 2 for the

demand updating). If xit1 = 0, set f(i; t1; t) =1 (so the period t1 will not be an

order period).

Step 2 : If t2 = n+ 1, then stop.

Otherwise, update demand dit2 = dit2 � Ii;t2�1 for g(i; t2), and go to Step 1.

It can be seen that g(i; t) is the total cost for item i incurred from period 1 to period

t � 1. Notice that the order quantity xit1 = maxfLit1
;
P

t2�1

t=t1
ditg depends on the decisions

taken prior to the period t1. Therefore, the value of f(i; t1; t2) also depends on the decisions

taken prior to the period t1. Since for each item i, the procedure takes O(n2) steps, the total

complexity of Procedure A for solving m single-item lot size models of Model 2 is O(mn2).

Using this outcome, we now seek a heuristic to solve the di�cult Model 1 by designating

the discount period and the associated lower bounds. Such a procedure is described in the

following subsection.
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3.2. The Basic Heuristic. We exploit the preceding results by designing a dynamic

programming based heuristic to solve the multi-item lot size inventory model with discount.

In this basic heuristic, we determine and �x the discount periods, �nd the associated lower

bounds, and then use Procedure A to �nd the resulting solutions. Based on the solutions

obtained, we determine if the given period should be a discount period or not and identify

the next \most appropriate" discount period. The heuristic iterates until all periods are

determined to be discount or non-discount periods. We describe the heuristic as follows:

Dynamic Programming Based Heuristic (DPH)

Step 0 : For each period t, we create three types of status: free, discount, non-discount.

The status \free" is treated the same as the\non-discount" status, except that it

has the future chance to be changed to the \discount" status. Both the \discount"

and \non-discount" status are �xed, and cannot be changed later. Let n1 be the

number of discount periods, n2 be the number of �xed discount or non-discount

periods and n3 be the maximum number of discount periods. Initially, all periods

are set to \free" and

n1 = n2 = 0; n3 = b

nX
t=1

mX
i=1

vidit=�c:

Designate x = fxitg to be the current solution obtained by Procedure A and c

to be the total true cost (including the set-up cost, inventory cost and the real

discount bene�t) corresponding to x. Likewise, de�ne �x = f�xitg to be the best

solution found so far and �c to be the total true costs corresponding to �x.

Step 1 : Start with all periods \free" and all corresponding lower bounds zero. Use Pro-

cedure A to �nd the resulting solutions. Let �c = c and �x = x:

Step 2 : Calculate Vt =
P

m

i=1
vixit for t = 1; : : : ; n: Let

t0 = argmax

t is free
fVtg:

Assign t0 the discount status. Identify the lower bound Lit0 for each item i using

a speci�c procedure (which will be discussed in next section). If no quali�ed

Lit0 found, then �x t0 to the non-discount status and go to Step 6. Otherwise

determine x and c using Procedure A.
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Step 3 : Calculate new Vt0 =
P

m

i=1
vixit0 . If Vt0 � �, then go to Step 4. Otherwise, go to

Step 5.

Step 4 : If c < �c, then let �x = x; �c = c; n1 = n1 + 1; and go to Step 6. Otherwise, assign

t0 the non-discount status, set the corresponding lower bounds as Lit0 = 0, and

go to Step 6.

Step 5 : Assign t0 the non-discount status, and set the corresponding lower bounds to

Lit0 = 0. If c < �c, then let �x = x and �c = c:

Step 6 : Let n2 = n2 + 1. If n1 < n3 and n2 < n, go to Step 2. Otherwise, go to Step 7.

Step 7 : Terminate.

This heuristic initially assigns all periods \free" status in Step 0. Then it picks a free

period with the largest purchase volume Vt as a candidate discount period in Step 2. If this

candidate fails to meet the discount condition, we assign it a non-discount status in Step 5.

If this candidate satis�es the discount condition but cannot improve the solution, then we

also assign it a non-discount status in Step 4. Only those candidates that are \legitimate"

and reduce the objective function will �nally be accepted as a discount period. In Step 4 and

Step 5, we compare the cost of each legal move with the cost of the best solution available

and update the best solution if the move reduces the total cost. The heuristic terminates

when all periods are �xed as either discount or non-discount periods, or when we can not

create any more discount periods. The overall computational complexity is O(mn3).

Note that even if a period is assigned a discount status, the discount bene�t is not

\compulsory", and it can decide if it is cost-e�ective to take advantage of the discount. The

two associated scenarios for discount period t are: we can order item i to achieve a discount

by satisfying xit � Lit, or we do not order the item in this period (xit = 0). The order

policy is determined by Procedure A. Since we solve the multi-item problem separately for

each item, the joint discount condition needs to be checked in Step 3 to validate its discount

status.

It should be pointed out that though the foregoing DPH is presented for one price break-

point, the case of multiple price breakpoints is a straight forward extension. To handle the

model with K discount levels, we need to extend the status of each period to free, non-

discount, discount 1, . . . , discount K. We also need to determine the multiple lower bound

values as L1

it
; : : : ; LK

it
, corresponding to various price levels. We then attempt to assign the
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highest possible discount status to a free period with the highest business volume. If this

fails for that period, we try to assign it the next possible (lower) discount status and so on

until an appropriate discount status or non-discount status is assigned. Hence the multiple

discount problem can be solved within a framework that directly extends the simpler DPH

approach. However, the e�ectiveness of the general approach will inevitably decrease as the

number of discount levels K increases, due to the greedy nature of the DPH and the di�culty

in determining the appropriate lower bound values for multiple price breakpoints.

4. Lower Bound Lit Calculations

An important component of this heuristic is the determination of the lower bound values

Lit for discount periods. There are a variety of ways to determine the lower bound values in

order to meet the aggregate discount condition. In this section, we �rst introduce a simple

proportional calculation, then describe several more re�ned calculations.

Let t0 be the current period at which the lower bounds are to be set, xit0 the solution before

period t is assigned the discount status, and Vt0 the total purchase volume corresponding to

xit0 . Then, the simplest proportional calculation is described as follows.

Simplest Proportional Calculation (PC1) for Lower Bounds

Step 1 : Calculate Lit0 = xit0�=Vt0 for i = 1; : : : ; m:

PC1 has the appeal of being very simple and intuitive but may produce a number of

infeasible lower bounds when Vt0 < �. A more elegant and feasible lower bound calculation

is presented as follows.

Proportional Calculation (PC2) for Lower Bounds

Step 1 : If Vt0 � �, then set Lit0 = xit0�=Vt0 for i = 1; : : : ; m; and terminate.

Otherwise, go to Step 2.

Step 2 : Let Oi be the maximum possible order quantity for item i at period t0. Then we

have

Oi =
nX

t=t0

dit for i = 1; : : : ; n:
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If
P

m

i=1
viOi � �, then set

Lit0 = Oi�=
mX
i=1

viOi for i = 1; : : : ; m:

Otherwise, the calculation fails to determine lower bound values that satisfy the

discount condition. Terminate.

This calculation, while accounting for conditions beyond those considered by PC 1, may

produce infeasible lower bounds since Oi is not the true value of the maximum order quantity

for item i. If any periods after t0 have discount status and lower bound requirements, the

order with quantity Oi for item i at period t0 may be infeasible. The preceding calculation

also fails to take the item price into consideration. We favor an item with higher future

business volume viOi, by assigning it a larger lower bound, since this item is more likely to

meet a large lower bound constraint. The following more re�ned calculation addresses these

issues.

Proportional Calculation Considering Price (PC3) for Lower Bounds

Step 1 : If Vt0 � �, then set Lit0 = dxit0�=Vt0e for i = 1; : : : ; m; and terminate.

Otherwise, go to Step 2.

Step 2 : Let Oi represent the maximum order quantity for item i at period t0. Then we

have

Oi =
nX

t=t0

(dit � Lit) for i = 1; : : : ; n:

If
P

m

i=1
viOi < �, then the calculation fails to determine the lower bounds, termi-

nate. Otherwise, go to Step 3.

Step 3 : Let

i0 = argmax

1�i�m

fvi(Oi � xit0)g:

Find the period t00 which is the �rst order period for item i0 after t0 (xi0t00 > 0).

Update xi0t0 = xi0t0 + di0t00 ; xi0t00 = xi0t00 � di0t00 ; and Vt0 = Vt0 + vi0di0t00 :

If Vt0 � �, then go to Step 4. Otherwise, repeat Step 3.

Step 4 : Set Lit0 = xit0�=Vt0 for i = 1; : : : ; m: Terminate.
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PC3 considers the item price in Step 3. It aggressively assigns a relatively larger lower

bound to an item with a higher future business volume. PC3 provides a legitimate lower

bound for each item because ordering Lit0 at period t0 is feasible. However, the Oi value in

PC3 is limited to the most recent solution fxitg and is not the real maximum order quantity

for item i. In case of
P

m

i=1
viOi < � (which signals that PC3 could not determine the lower

bounds), we may decrease the order for the periods before t0 to increase Oi if Ii;t0�1 > 0.

To do this, we must determine lower bound quantities that can be \transferred" from the

previous orders to later ones, in order to allow the corresponding lower bound constraints

and demand constraints to remain satis�ed. An advanced calculation which incorporates

this kind of adjustment is given below.

Advanced Proportional Calculation (PC4) for Lower Bounds

Step 1 : If Vt0 � �, then set Lit0 = dxit0�=Vt0e for i = 1; : : : ; m; and terminate.

Otherwise, go to Step 2.

Step 2 : Let eit be the quantity of item i which can be transferred from the previous orders

to period t, and let t1 and t2 be two adjacent order periods, that is,

xit1 > 0; xit2 > 0; and xit = 0 for t1 < t < t2:

Thus eit2 = eit1 + xit1 �maxfLit1
;
P

t2�1

t=t1
ditg:

Start with t1 = 1 and eit1 = 0. Find t2 and calculate eit2 . If t2 = t0, go to Step 3.

Otherwise, update t1 = t2 and repeat Step 2.

Step 3 : Calculate

Oi = eit0 +
nX

t=t0

(dit � Lit):

If V =
P

m

i=1
viOi < �, then it is impossible to satisfy the discount condition,

terminate. Otherwise, go to Step 4.

Step 4 : Calculate Lit0 = xit0�=Vt0 for i = 1; : : : ; m: If all Lit0 � Oi, all lower bounds

are feasible, terminate. Otherwise, go to Step 5.

Step 5 : Set

Lit0 = minfLit0 ; Oig for i = 1; : : : ; m;



The Deterministic Multi-item Dynamic Lot Size Problem 15

V =
mX
i=1

vi(Oi � Lit0);

b = � �
mX
i=1

viLit0 :

Step 6 : Set Lit0 = Lit0 + (Oi � Lit0)b=V for i = 1; : : : ; m: Terminate.

In PC4, the sequence from Step 1 to Step 3 calculates the real Oi values, and the sequence

from Step 4 to Step 6 assigns the lower bounds according to the previous solution xit0 and

future business volume. The lower bounds are feasible, because Lit0 � Oi.

The foregoing four calculations may produce signi�cantly di�erent lower bound values

and hence impact the performance of the dynamic programming algorithm described in

Section 3. We compare the individual performance of these lower bound calculations in

Section 6.

5. Fine Tuned Solution Adjustment Approaches

and a Speedup Method

Here we introduce two �ne tuned methods to alter the solution obtained by the dynamic

programming model for each discount period. The adjustment of solutions is subject to the

discount conditions and demand balance conditions. The ideas are based on the following

observations: in discount period t1, if xit1 > 0, xit1 is either greater than Lit1
or equal to

Lit1
. In case xit1 = Lit1

, the lower bound is binding. By Proposition 2, this must occur

when Ii;t2�1 = Lit1
�

P
t2�1

t=t1
dit > 0 where t2 is the next order period after t1. On the other

hand, the existence of some items such that xit1 > Lit1
, can create some extra \credits" for

meeting the discount condition because
P

m

i=1
vixit1 >

P
m

i=1
viLit1

= �. We can decrease xit1

somewhat for binding items while still meeting the discount condition. In this way, we can

reduce the inventory costs for items by reducing the inventory costs for items by reducing

their order quantity, but will lose some discount bene�ts since smaller quantities can enjoy

the discount. We describe the �rst �ne tuned method that addresses this tradeo�.

Fine Tuned Post-Solution Method (FT1) for discount period t1

Step 1 : Let IB be the set of items whose lower bound is binding (xit1 = Lit1
). Calculate

Credit = Vt1 � �:
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Step 2 : If Credit = 0 or IB = �, terminate. Otherwise, do the following:

Let t(i) be the next order period after period t1 for item i. Choose

i0 = argmax

i2IB

fhi(t(i)� t1)� �vi + u(i)�vig;

where u(i) = 1 if t(i) is the discount period, and 0 otherwise. Calculate

q = minfCredit=vi0; Ii0t(i0)�1 g

xi0t1 = xi0t1 � q

xi0t(i0) = xi0t(i0) + q

Credit = Credit� vi0q

IB = IB � fi0g

Li0t1
= xi0t1 :

Update Ii0;t. Repeat Step 2.

FT1 chooses the item with the maximum savings that results from reducing the order

quantity by one unit. Note the savings must be positive or else we can achieve a better

solution by increasing the order quantity to
Pt(i

0
)

t=t1
di0t. We reduce the order quantity as

much as possible while satisfying the discount condition (Credit � 0) and the demand

balance condition. This process is repeated until no item that yields such a savings can be

found or no Credit is left.

The FT1 procedure can be further enhanced by the idea of oscillation. At the end of

FT1, we choose some items for which we can increase or reduce the order quantity by a

reasonable amount without a�ecting the next order period. We increase the order quantity

for one item and reduce order quantity for another item in order to reduce the total costs.

More speci�cally, we look for two items that respectively yield the maximum and minimum

savings when the order quantity is decreased by one unit. Then we �nd a feasible amount to

decrease the �rst item and increase the second while satisfying the discount condition. We

accept the changes if these two changes will reduce total cost. The details are described in

the algorithm (FT2) below. Note that FT2 is executed after FT1, thus we start at Step 3.

Enhanced Fine Tuned Method (FT2) for discount period t1 (follow FT1)
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Step 3 : Let IF be the set of items such that Ii;t(i)�1 > 0. Find

i1 = argmax

i2IF

fhi(t(i)� t1)� �vi + u(i)�vig and

i2 = argmin

i2IF

fhi(t(i)� t1)� �vi + u(i)�vig;

where u(i) = 1 if t(i) is the discount period, and 0 otherwise. If i1 = i2 terminate.

Otherwise, calculate

q1 = Ii1;t(i1)�1:

q2 = maxfdi2;t(i2) � Ii2;t(i2)�1; 0g:

V = minfq1vi1 ; q2vi2g:

q1 = minfq1; V=vi1g:

q2 = minfq2; V=vi2g:

Step 4 : If q1[hi1(t(i1) � t1) � �vi1 + u(i1)�vi1 ] � q2[hi2(t(i2) � t1) � �vi2 + u(i2)�vi2 ],

terminate. Otherwise, let

xi1;t1 = xi1;t1 � q1

xi1;t(i1) = xi1;t(i1) + q1

xi2;t1 = xi2;t1 + q2

xi2;t(i2) = xi2;t(i2) � q2:

Update Ii1t and Ii2t, and go to Step 3.

FT2 terminates if it can not �nd two desirable items (Step 3) or the change cannot result

in a saving for total cost (Step 4). It is easily understood that the minimum savings/cost of

reducing one unit order quantity is exactly the same as the maximum savings/cost of adding

one unit order quantity to that item. In FT2, a potential problem may occur if t(i1) 6= t(i2)

and t(i2) is a discount period. The discount condition will be violated if there are not enough

\credits" at period t(i2). The solution to this is to add the following remedy to calculate the

correct q2 in Step 3:
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If t(i1) 6= t(i2) and t(i2) is the discount period, then q2 = minfq2; (Vt(i2) � �)=vi2g.

Speedup Method (SM)

When a candidate discount period is initiated in our heuristic, the dynamic programming

model must be re-solved to evaluate the candidate discount period. If we can preserve

some useful information from the previous solution, and thus reduce the work of solving

the dynamic model, the heuristic will be more e�cient. We propose a speedup method for

solving the dynamic programming model in Step 2 of the DPH. Given the candidate discount

period t0, the most recent solution xit and the solution �xit to be determined, we describe the

method as follows:

SM: If Ii;t0�1 = 0, let �xit = xit 8t = 1; : : : ; t0 � 1; and solve the Model 2 from period t0

to period n + 1 to determine the remaining �xit.

Otherwise, solve the Model 2 from period 1 to period n+ 1 to determine �xit.

Note that the speedup method based on the partial dynamic programming model is not

equivalent to the complete dynamic programming model. In SM, it is assumed that we

have to order at period t0. This assumption imposes certain restrictions on the recursion

(14), though its occurrence is rare in most applications. The tradeo� between e�ciency and

solution quality needs to be considered when applying the SM approach.

6. Computational Experiments

Computational tests have been conducted on two randomly generated problem sets of dif-

ferent sizes. These test problems are labeled as \(m � n)". The demand dit is generated

uniformly in multiples of ten from the interval [10,100]. The setup cost Si is generated uni-

formly in multiples of �ve in the interval [60,180], while the inventory cost hi is a random

integer in the interval [3,8]. The item price vi is also a random integer in the interval [1,10]. �

is set to 10%. The �rst set consists of 12 test problems for the single item case. The discount

breakpoint � for this set is de�ned by � = maxfb
nX
t=1

v1d1t� 2=nc; v1� dmaxg where dmax is

maximum demand over all periods. The second set contains 10 problems with three or �ve

items. The discount breakpoint is de�ned by � = b

P
m

i=1

P
n

t=1
vidit� 1:6=nc. We use PC2 for



The Deterministic Multi-item Dynamic Lot Size Problem 19

the basic algorithm (DPH) unless otherwise stated. We select these parameters to provide

more tradeo�s between the setup and inventory costs, and the discount bene�ts, thus to

produce more di�cult problem instances. The costs reported are total costs according to (1)

unless otherwise stated. All data can be obtained from the authors for test and comparison

purposes.

We �rst test our algorithm on a special case of the model | the one item discount

problem which is a well-studied problem. Numerous other algorithms exist in the literature.

Federgruen and Lee (1990) developed a dynamic programming algorithm which can solve

the one item discount problem to optimality. Bergman and Silver (1993) found that a

modi�cation of the Silver-Meal heuristic signi�cantly outperforms the other four heuristics

in term of the solution quality and computational time. Therefore we compare our algorithm

(DPH) with these two leading algorithms on 12 test problems in the �rst set. Note that the

inventory cost expressions in these two algorithms are slightly di�erent from that in our

model, so we adjust their algorithms accordingly to test our model. In addition, since

all three algorithms can solve the test problems in negligible time with today's computer

hardware, we only report the solution costs in Table 1. (The Federgruen and Lee algorithm

and the DPH heuristic both have complexity O(n3) while the Bergman and Silver heuristic

has complexity O(n)).

Problem DPH Federgruen & Lee Bergman & Silver

(1� 5) 2320.0 2320.0 2320.0

(1� 10) 4240.0 4240.0 4251.2

(1� 20) 12626.5 12626.5 12670.5

(1� 25) 7550.0 7550.0 7553.8

(1� 30) 7347.0 7347.0 7350.0

(1� 40) 15106.0 15106.0 15206.0

(1� 50) 15060.0 15060.0 15175.0

(1� 60) 20140.0 20140.0 20195.5

(1� 70) 11740.0 11740.0 11740.0

(1� 80) 26262.0 26262.0 26386.0

(1� 90) 21100.0 21100.0 21252.8

(1� 100) 39971.0 39924.0 40281.0

Table 1. Computational results on the �rst problem set
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From Table 1 we �nd that our DPH heuristic can produce very high quality solutions

for the single item case. Speci�cally, compared with the optimal solutions produced by the

Federgruen and Lee algorithm, it yields optimal solutions to 11 out of 12 problems and only

fails in one remaining case with very small error (around 0.1%). Compared to the Bergman

and Silver heuristic, it produces ten better solutions and ties in the remaining two cases. In

sum, the results indicate that our DHP approach, though not specially designed for the one

item discount problem, can obtain optimal or near-optimal solutions for this problem also.

We next test our DPH method for the multi-item discount problem, for which it is

designed. We concentrate all subsequent experiments on the ten test problems in problem

set 2. The evaluation of DPH is not as straightforward as in the one item case, since there

are no known heuristics available to compare against for the multi-item model. One e�ective

way to evaluate the solution quality of a heuristic is to compare it with a strong lower bound

by solving an associated problem relaxation. However, in this case, the easiest and most

commonly used LP relaxation lower bound is extremely weak. For example, for the smallest

test problem (1 � 5), the LP relaxation solution is 1593:375 while the optimal solution of

this problem is 2320.0.

We can construct a better lower bound by relaxing the business volume constraint. The

relaxed problem is created in this instance by allowing the discount to be applied to all

quantities purchased. The lower bound can be obtained by solvingm one-item lot size models

separately, and then reducing the resulting cost by applying the discount. To evaluate the

quality of this lower bound, we consider a solution where the discount is disabled, i.e., the

solution to the m separate classic one-item lot-size models without involving a discount.

Obviously, this solution represents a feasible solution (or upper bound solution) for our

original problem (marked as UB), and it has the same order schedule and quantities (and

therefore the same setup and inventory costs) as the lower bound solution. For these two

solutions, let C1 be the sum of set-up and inventory costs, and C2 be the total values of all

items purchased. Then the ratio of the cost of the lower bound solution to the cost of the

feasible solution is (C1 + (1 � �)C2)=(C1 + C2) which is clearly greater than 1 � �. This

shows that the ratio of the lower bound cost to the optimal cost is approximately between

1� � and 1.0, that is, between 0.9 and 1.0 for our test problems.

For practical purposes, we also compare our heuristic solution with a feasible solution

derived by employing the commercial package CPLEX (CPLEX MIP 3.0) to solve the mixed



The Deterministic Multi-item Dynamic Lot Size Problem 21

integer programming model in Section 2. However, in the second test set, except for four very

small problems (marked by *), most problems cannot be solved optimally by CPLEX even

after running for an exceedingly long CPU time on a powerful DEC ALPHA machine with

200MHZ. For example, we ran CPLEX on a moderate multi-item problem 3 � 25 for over

200 hours (more than 8 days), but could not obtain a solution even reasonably close to the

DPH result. We therefore (pragmatically) compare the best feasible solutions obtained by

CPLEX, after allowing it to run for a signi�cant period, with the DPH solutions in Table 2.

Problem CPLEX DPH

(m� n) Solution CPU (hour) Solution CPU (second)

(3� 5) 7047.00* 0.03 7102.40 0

(3� 10) 9205.00* 0.23 9261.00 0

(3� 25) 26656.05 28.26 24513.55 0

(3� 50) 66784.00 28.5 50582.09 1.2

(3� 100) 174665.00 24.75 108238.21 18.2

(5� 5) 8136.00* 0.15 8300.00 0

(5� 10) 15945.42* 12.98 16080.00 0

(5� 25) 40097.10 40.75 29135.09 0

(5� 50) 88991.64 69.65 70190.79 2.4

(5� 100) 280928.50 103.32 195329.73 33.2

Table 2. Solutions of CPLEX and DPH on the second problem set

From Table 2, we observe that our DPH approach can get solutions that are close to the

optimal on the four small problems (the ones marked by asterisks), and solves these problems

so rapidly that the time does not even register in a fraction of a second. On the remaining

problems, DPH are signi�cantly, often dramatically, superior to those obtained by CPLEX.

Moreover, the DPH approach runs from 4,800 to over 100,000 times faster than CPLEX to

obtain these superior solutions. This suggests that the branch and bound approach employed

by CPLEX, although generally acknowledged to be among the best devised, is impractical

for real world applications of the multi-item discount problem.

We further compare our DPH solution with associated LB and UB solutions in Table 3.

In order to more accurately investigate the performance of the algorithms, we remove the

constant term (C2 =
P

m

i=1

P
n

t=1
vixit) from the total costs, since this cost is not intended for

optimization. Therefore, the revised costs now are only composed of setup and inventory

costs, and negative discount terms. We list the revised costs of DPH and UB in Table 3

(marked as DPH+ and UB+) and compare their ratios.
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Problem Lower Bound (LB) Upper Bound (UB) Revised Cost

(m� n) Solution LB/DPH Solution DPH/UB DPH+ UB+ DPH+
=UB+

(3 � 5) 6563.00 92.41 7150.00 99.33 1232.40 1280.00 96.28

(3 � 10) 8741.00 94.39 9370.00 98.84 2971.00 3080.00 96.46

(3 � 25) 23261.00 94.89 24900.00 98.45 8123.55 8510.00 95.46

(3 � 50) 48205.00 95.30 51830.00 97.59 14332.09 15580.00 91.99

(3 � 100) 101262.00 93.55 109480.00 98.87 26058.21 27300.00 95.45

(5 � 5) 7725.00 93.07 8300.00 100.00 2550.00 2550.00 100.00

(5 � 10) 15146.00 94.19 16265.00 98.86 4890.00 5075.00 96.35

(5 � 25) 27766.00 95.30 29445.00 98.95 12345.09 12655.00 97.55

(5 � 50) 66773.00 95.13 71220.00 98.55 25720.79 26750.00 96.15

(5 � 100) 182290.00 93.32 196660.00 99.32 51629.73 52960.00 97.49

Table 3. Comparisons of DPH with LB and UB

In the comparisons with the lower bound in Table 3, we �nd that the average value of

LB/DPH is 0.942. Considering that the average value of LB/CPLEX* (for the four opti-

mal cases) is 0.945, and the average value of DPH/CPLEX* (for the four optimal cases) is

1.041, we surmise that the DPH solutions are close to the optimal solutions for all problems.

Compared with the upper bound solutions which simply ignore the discounts, our DPH take

advantage of the discounts and �nds nine better solutions out of ten problems. The average

improvement is 98.88% for the total costs and 96.32% for the revised costs. (These DPH+

solutions can be further improved as we show subsequently.) These results demonstrate the

potential of DPH as a good practical heuristic.

Fine Tuned and Accelerated Versions of the DPH Method.

We now investigate the impact of various lower bound Lit calculations and �ne tuned

procedures as well as a speedup method. Again, in order to more accurately investigate

the performance, we use the revised cost subsequently, i.e., we remove the constant term

(
P

m

i=1

P
n

t=1
vixit) from the subsequent costs, since this cost is incurred by all variants of DPH.

We continue to refer to our initial solution simply as DPH, and identify the variants by their

description labels. Since we �nd that most of these variants take the same magnitude of

computational times as the original DPH, we will not list the CPU times in these comparisons

except in the case of SM, for which speed is an important factor to consider.
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The solutions obtained by other proportional lower bound calculations (previously iden-

ti�ed as PC1, PC3, PC4) are presented in Table 4. For ease of comparison, we only report

the ratio of the corresponding solution costs to those by the original DPH approach (which

uses PC2).

Problem PC1/DPH PC3/DPH PC4/DPH

(3� 5) 1.000 0.958 1.000

(3� 10) 1.000 1.000 1.000

(3� 25) 1.000 1.006 1.000

(3� 50) 1.004 1.019 1.005

(3� 100) 1.000 0.973 1.000

(5� 5) 1.000 0.953 0.975

(5� 10) 1.000 1.000 1.000

(5� 25) 1.011 0.997 1.000

(5� 50) 1.000 0.990 0.995

(5� 100) 1.000 0.988 1.000

Table 4. Comparisons from Proportional Calculations for Lower Bounds

From Table 4, we �nd that the PC3 variant appears to be the best. We conjecture

that business volume may be an important factor in determining the lower bounds. On the

other hand, the feasibility of the lower bound is not sensitive. In our experiment, even the

simplest lower bound calculation, PC1, that has the potential to produce many infeasible

lower bounds, still obtains solutions that are consistently very close to those of PC2 (which

is the default setting for the original DPH). The more advanced procedures driven by lower

bound feasibility as embedded in PC4, do not appear necessary in practice.

We next incorporate the two FT methods in DPH and compare the results with DPH.

The outcomes are presented in Table 5.

Problem FT1/DPH FT2/DPH

(3� 5) 0.981 0.954

(3� 10) 1.000 1.000

(3� 25) 0.994 0.994

(3� 50) 0.979 0.979

(3� 100) 0.977 0.976

(5� 5) 1.000 1.000

(5� 10) 1.000 1.000

(5� 25) 0.980 0.980

(5� 50) 0.988 0.992

(5� 100) 0.982 0.984

Table 5. Solutions of Fine Tuned methods for Lower Bounds
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We see from Table 5 that both of these two �ne tuned procedures can e�ectively improve

the solution. Although FT2 is a more comprehensive heuristic than FT1, it does not always

beat FT1. This is because FT1 and FT2, are similar in nature, and can be trapped in a

local optimum. FT2 is a generally \stronger" local search method than FT1 for the relaxed

problem where the discount and non-discount status is �xed via lower bound assignment.

However, since we �x the discount or non-discount status at each iteration in DPH, the

stronger FT2 heuristic may not always yield a better �nal solution than FT1. This �nding

suggests that incorporating a more intelligent search methodology such as Tabu Search into

our DPH heuristic may be a basis for generating still better solutions.

The results of the speedup method SM are provided in Table 6. In addition to comparing

solutions, we also investigate their computation times.

Problem Cost CPU time

(m� n) SM/DPH SM / DPH

(3� 5) 1.000 1.000

(3� 10) 1.000 1.000

(3� 25) 1.000 0.677

(3� 50) 1.005 0.556

(3� 100) 1.000 0.476

(5� 5) 1.000 1.000

(5� 10) 1.000 1.000

(5� 25) 1.000 1.000

(5� 50) 0.999 0.511

(5� 100) 1.000 0.500

Table 6. Performance of the SM

Our �ndings disclose that SM can speed up DPH signi�cantly without deteriorating the

solution quality. (SM generates the worse solution than DPH in only one case, and then still

obtains outcome exceedingly close to that of DPH). Because of its speed, SM is appealing to

be employed in large planning and scheduling systems, where the multi-item lot size problem

with discount is required to be solved frequently.

It is interesting to examine the e�ects of combining the various enhanced components.

We designate HYBRID to be the dynamic programming based heuristic that incorporates

PC3, FT1 and SM, and compare this variant with the original DPH approach. The results

are presented in Table 7.
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Problem Cost CPU Time

(m� n) HYBRID DPH HYBRID=DPH HYBRID/DPH

(3� 5) 1181.00 1232.4 0.958 1.000

(3� 10) 2924.00 2971.10 0.984 1.000

(3� 25) 7993.93 8123.55 0.984 0.677

(3� 50) 14303.40 14332.09 0.998 0.556

(3� 100) 24781.00 26058.21 0.951 0.444

(5� 5) 2431.00 2550.00 0.953 1.00

(5� 10) 4890.00 4890.00 1.000 1.000

(5� 25) 12314.00 12345.09 0.997 0.750

(5� 50) 25182.86 25720.79 0.979 0.511

(5� 100) 50703.58 51629.73 0.982 0.500

Table 7. Performance of the HYBRID

From Table 7, we observe that for most test problems, HYBRID yields better solutions

than applying PC3 and FT1 separately. The results are very consistent with those in Table 4{

6. For the four small problems where the optimal solutions are known, HYBRID improves

three cases by obtaining solutions very close to the optimal costs.

7. Conclusion

This paper provides the �rst study of the deterministic dynamic multi-item lot size prob-

lem with a joint business volume discount. We formulate the problem as a mixed integer

programming model, but observe that this model cannot be solved within a reasonable time

period by current optimization procedures. To solve the problem heuristically, we introduce

a set of lower bounds to approximately replace the complicating side constraints, then solve

the revised model using a dynamic programming based approach. We show how this ap-

proach can also be extended to solve the more complicated problem of multiple discount

levels. Various lower bound calculations and solution post-optimization procedures as well

as a speedup method are proposed and their performances are investigated. The experiments

demonstrate the e�ectiveness of the heuristic and its promise as a practical tool.

Although this research focuses on the deterministic dynamic lot size model without back-

logging, it is not di�cult to apply our methodology in broader contexts, which incorporate

backlogging, non-zero trial inventories, etc. More numerical experiments are required to

validate the robustness of our heuristic in various environments.
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An interesting avenue for investigation is to embed our approach in a meta-heuristic

procedure such as Tabu Search to reduce the remaining optimality gap in cases where it still

exists.
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