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Abstract This paper presents a new clique partitioning (CP) model for the
Group Technology (GT) problem. The new model, based on a novel 0/1 qua-
dratic programming formulation, addresses multiple objectives in GT problems
by drawing on production relationships to assign differing weights to machine/
part pairs. The use of this model, which is readily solved by a basic tabu search
heuristic, is illustrated by solving 36 standard test problems from the literature.
The efficiency of our new CP model is further illustrated by solving three large
scale problems whose linear programming relaxations are much too large to be
solved by CPLEX. An analysis of the quality of the solutions produced along
with comparisons made with other models and methods highlight both the
attractiveness and robustness of the proposed method.
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1 Introduction

Group Technology (GT) is an attractive strategy employed to achieve eco-
nomic efficiency in flexible manufacturing systems. The basic idea is to group
machines and parts together in a manner that facilitates economies in time
and cost. In flexible manufacturing settings, a machine/part pair is called an
exception if and only if the part has to visit the machine in order to complete
the processing when the part and the machine are not assigned to the same
cell in the cellular formation. A machine/part pair is called a void if the part
does not have to visit the machine but they are assigned to the same cell. In
general, the objectives for the GT problem are: to reduce the number of
duplicated machines, to reduce the number of exceptional elements and to
increase the machine utilization rates. In particular, increase in the utilization
rate of a machine can be achieved by reducing the number of voids. Increase
in manufacturing productivity can be achieved by reducing the number of
exceptions to shorten the traveling distance for materials used to produce
parts. GT has many advantages over the traditional process organization such
as shortening throughput times, providing better quality, reducing material
handling cost, keeping loads balanced, increasing capacity due to shorter setup
times, and even bringing better job satisfaction due to increased team work. In
the past four decades, many models and methods have been proposed for
addressing GT problems. Many of the key approaches are highlighted in
Table 1 below.

The perspective on solving group technology problems advanced here is to
adopt a graph theoretical point of view where nodes in the graph, representing
machines and parts, are connected by edges denoting the association of each
pair of nodes in the network. This basic approach to GT problems was first
proposed by (Rajagopalan and Batra 1975) and similar approaches have been
reported by (Chu 1995; Ham et al. 1985; King and Nakornchal 1982; Shafer
and Rogers 1993). The partitioning problem, formally defined below in Sect. 2,
is to cluster the nodes into cliques with similar characteristics. Despite the
conceptual “fit”, the clique partitioning model failed to emerge as a viable
approach in practice due to the difficulty of solving the standard 0/1 pro-
gramming model for CP. Even for modest sized GT problems, the standard
optimization model for CP explodes in size making it difficult if not impossible
to solve by standard methods. This computational difficulty has served to
preclude the broader use of the clique partitioning model as a useful tool in
the area of group technology.

The alternative model we present here for clique partitioning removes the
size and computational issues mentioned above. Our purpose in this paper is
to present this new model for clique partitioning and to show its potential
application to solving GT problems. In the sections below we first present the
classic model for clique partitioning followed by our new model. We then
present a small example illustrating the use of the new model as a tool for GT.
The model is further illustrated by applying it to 36 test problems from the
literature. This is followed by our summary and conclusions.
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Table 1 Literature review for existing methods on solving GT

Methodology

Features

References

Classification and Coding:
Production Flow
Analysis

Binary Array Clustering
Methods: Rank Order
Clustering, Modified
Rank Order Clustering,
Similarity Coefficient
with or without Seed

Multivariate Clustering
Methods: Ideal
Seed Non-hierarchical
Clustering, Single
Linkage clustering or
Average Linkage
Clustering, Bivariate
Clustering

Graphic Theoretical,
Mathematical
Programming and
Heuristic Approaches:
Artificial Neural
Network, Simulated
Annealing, Genetic
Algorithms, 0/1 integer
programming
formulation,

Multiple Criteria
Decision Making,

Column Generation, and
Cutting Plane algorithm

for standard clique

partitioning formulation.

It is based on the shape or
function similarity among
the parts.

While two machines or
parts are grouped together
at some stages, there is no
way to retrace the steps
even if it leads to subopti-
mal clustering at the end. It
precludes formation of
better machine groups at
later stages

The machine cells and part
families are also not formed
simultaneously. The per-
formance of these algo-
rithms is associated to the
data structure of a binary
machine/part incidence
matrix, which has a limita-
tion of incorporating many
production variables such
as production volume,
material handling cost and
others.

The  graph-  theoretic
approach tends to require a
more complex implemen-
tation and longer computa-
tional time, it may produce
a  well-structured  cell
formulation

(Burbidge 1963)

King (1980a, b), Seifoddini
and Wolfc (1986)

Malakooti and  Yang
(2002), Rogers and Kulk-
arni  (2005), Seifoddini
(1988)

Gunasingh and Lashkari
(1990), Jaumard et al.
(1999), Joines et al. (1996),
Malakooti and  Yang
(2002), Malakooti and
Zhou (1998), Oosten et al.
(2001), Rajagopalan and
Batra (1975)

2 Clique partitioning

Consider a complete graph G = (V, E) with n vertices and unrestricted edge
weights. The clique partitioning problem (CP) consists of partitioning the
graph into cliques such that the sum of the edges weights over all cliques
formed is as large as possible. This is an NP-hard problem with applications
reported in many diverse areas. The standard optimization model for CP (see
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for instance, Grotschel and Wakabayashi 1989; Grotschel and Wakabayashi
1990; Chopra 1993; Oosten et al. 2001) is given by:

CP(Edge) : Max xy = Z WijXij
(if)eE (1)
st
x;j + xir —x;; <1 Vdistinet i,j,r €V
x; €{0,1}

where the w;; are unrestricted edge weights and x;; is defined to be 1 if edge
(,j) is in the partition, and equal to 0 otherwise. Note that this is an edge-based
formulation and even for modest sized graphs, this model explodes is size
having n(n-1)/2 variables and 3C5 constraints. Despite these size character-
istics, the dominate methods presented in the literature for solving CP (edge)
are exact approaches based on LP methods as illustrated by the cutting plane
approaches of Grotschel and Wakabayashi (1989) and Oosten et al. (2001),
and the column generation approach of Mehrotra and Trick (1998). These
approaches have proven to be successful on small to moderate size problems.
For larger instances, however, their application is severely limited due the
challenge presented by the large size of CP (edge). For such cases, meta-
heuristic methods, coupled with a new formulation, prove to be very effective
as illustrated below.

2.1 New formulation

The computational challenge posed by CP (edge) for large problem instances
motivates the development of a new formulation that can be readily solved by
basic metaheuristic methodologies. We first present the new model and then
describe our solution approach.

As before, n is the number of nodes (vertices) and the w;; are unrestricted
edge weights. Without loss of generality we assume here that G is a complete
graph. If necessary, artificial edges with negative (penalty) edge weights can
be introduced as needed to produce a complete graph in those cases where G
is not initially complete. In addition, define

k_max = maximum number of cliques allowed
(estimated based on domain knowledge)

and

xix = 1 if node 1 is assigned to clique k;0 otherwise

Then our model is:
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n—1 n k_max
CP (Node) : Max xg = Z Z Wij Z XikXjk
i=1 j=i+1 k=1
st (2)
k_max
Z xpg=1 i=1n
k=1

Note that the quadratic terms in the objective function imply that the
weight w;; becomes part of the partition weight only when nodes i and j are
assigned to the same clique. The constraints of (4) require that each node is
assigned to one of the cliques formed.

Several remarks about this model are in order: First of all, note that this is a
node-oriented model with many fewer variables than CP (edge) since
n(k_max) is typically much less than n(n — 1)/2. Furthermore, the number of
constraints here (n) is much smaller than the corresponding number (3C3) for
the edge-oriented model of CP (edge). While CP (edge) is a linear model and
CP (node) is quadratic, the size difference enables this quadratic alternative to
be used for large instances of clique partitioning problems where the com-
putational burden of CP (edge) precludes its practical use. As we’ll demon-
strate later in this paper, CP (node) can be effectively solved, even for large
instances, by modern meta-heuristic methods such as tabu search.

2.2 Solving CP (node):

CP (node) could in principle be solved by any of a variety of methods
designed for nonlinear integer programmes (See for example the papers by
Hansen 1979; Hansen et al. 1993). In our work we adopt an approach that
employs a slight reformulation that enables rapid solution via modern meta-
heuristic methods we have implemented. We note that CP (node) is of the
form

Max x'Ox

subject to assignment constraints requiring that each node is assigned to one
of the K_max cliques formed. Our approach to solving this model is to first
re-cast it into the form of cardinality constrained binary quadratic program
(CBQP) which we can readily solve by the tabu search method given in
(Glover et al. 1998). This reformulated version of CP(node) takes the form

Max x'Qx (3)
subject to the single cardinality constraint
n k_max

> xw=n
i=1 k=1
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The Q matrix is modified (to yield Q) via the inclusion of penalties
ensuring that a given node is assigned to at most one clique. The single car-
dinality constraint requires that exactly n assignments will be made. Working
in concert, the penalties together with the cardinality constraint require that
each node will be assigned to exactly one clique.

Such reformulation has proven to be very fruitful in a variety of other
settings as we have reported in the survey paper (Kochenberger et al. 2004).
Our motivation here is to leverage the advances we have reported elsewhere
in the recent literature for solving unconstrained and cardinality constrained
quadratic binary programmes.

This slightly reformulated model, CBQP, can be readily solved by a basic
Tabu Search methodology designed for the generic cardinality constrained
binary quadratic programme. An overview of the heuristic is given in the
appendix of this paper. Complete details are given in (Glover et al. 1998).

2.3 Clique partitioning and the GT problem

Throughout the paper we assume that we have M machines and P parts.
Clique partitioning can be used to group parts and machines by first repre-
senting the problem as a complete graph G(V,E) where the vertex set contains
a node for each part and for each machine (i.e.,| VI = M + P). Edge weights
are determined as follows. If the part is associated with the machine, the edge
weight between the part node and the machine node is 1 and -1 otherwise.
The weight of an edge between pair of parts or between pairs of machines is 0.
This approach is illustrated by the following example taken from (Kumar
et al. 1986) with 9 machines and 15 parts (denoted as GT21 in Table 2). The
standard binary part/machine incident matrix for this example is given in Fig. 1.
The GT graph for this example has 24 nodes and allows a maximum of 9 possible
cliques. Thus, with K_max taken to be 9 we have our CP (node) model:

Max  f(x) =wi2(x11X21 + X12%22 + X13X23 + X14X24 + X15X25 + X16X26 + X17X27

+ X18%28 + X19X29) + - - - - - +W2324(X231X24.1 + X232X242

+ X233X243 + X23.4X24 4 + X235X04 5 + X23,6X24,6 + X23.7X24.7

+ X238%24.8 + X239%249)

st

X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 +X19 = 1

X041 + X042 + X043 + X044 + X045 + X046+ X047 + X048 + X049 =1
(4)
x;j€{0,1} fori=1,...24andj=1,...9

where the edge weights, w;; are 1, -1, or 0 based on the simple procedure
described at the beginning of this section. This model, which has 216 binary
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Table 2 List of the GT test problems and literature references

Name of test problems

References of test problems

GT1, GT2, GT3, GT4, GT5, GTb6,
GT7, GT8, GT9, GT10

GTI11

GT12

GT13

GT14

GT24, GT25

GT15
GT16
GT17
GT18
GT28
GT19

GT20

GT21, GT22
GT23, GT35

GT26
GT27

GT29, GT30, GT31, GT32

GT33
GT34
GT36

Boctor (1991), Sofianopoulou (1997)

Boe and Cheng (1991), Chandrasekharan and
Rajagopalan (1986), Li and Parkin (1997)

Boctor (1989), Burbidge (1963), Burbidge (1991),
Chan and Milner (1982), Kattan (1997),
Seifoddini and Wolfc (1986)

Burbidge (1963), Joines et al. (1996), Rogers and
Kulkarni (2005)

Cantamessa and Turroni (1997)

Malakooti and Yang (2002)

Chandrasekharan and Rajagopalan (1987), Joines et al.
(1996)

Burbidge (1963), Burbidge (1991), Kumar et al. (1986),
Oosten et al. (2001)

Kattan (1997)

King (1980a, b)

Boe and Cheng (1991), Miltenburg and Zhang (1991)

Joines et al. (1996), Kattan (1997), King and
Nakornchal (1982)

King and Nakornchal (1982)

Kumar et al. (1986)

Leskowski et al. (1987)

Masnata and Settineri (1997)

Mccormick et al. (1972)

Nair and Narendran (1996)

Seifoddini (1988)

Sule (1991)

Vannelli and Kumar (1986)

variables and 24 constraints, is too large to present in its entirety here.
Complete details are available from the authors.

This model, recast into the form of CBQP, is readily solved by our tabu
search heuristic to yield the solution displayed in Fig. 2. To compare with

machine
- T oTmmyY 0w »

part

1

6 7 8 9 10 11 12 13 14 15

1

Fig. 1 Binary part/machine incident matrix for 15 parts and 9 machines problem
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conventional CP (edge) model, we solved the same problem with CP (edge)
model using CPLEX 6.5 with MIP solver.

It is interesting to note that the aggregate weight of the groups formed in
this solution (i.e., the objective function value) is 23 which is the same value
given by the solution obtained by the conventional CP (edge) model as shown
in Fig. 3 are quite different. That is, we have alternative optimal solutions with
respect to this objective function criterion. Despite having the same aggregate
group weight, these solutions differ along several key dimensions such as
within-group compactness, number of exception cells, and the number of void
cells. The solution from CP (node) model has less number of exceptional cell
than the solution obtained by CP (edge) model. Both solutions have a larger
objective function value than the solution produced by the K-Decomposition
method in the literature (Kumar et al. 1986) as shown in Fig. 4. In general, the
comparison of alternative solutions for grouping must extend beyond a single
measure like aggregate group weight. Accordingly, in the section below on
computational experience, we employ additional measures of solution quality
to facilitate a more robust comparison of alternative solutions.

—

h

machine

@ o> WO T QO 0

Fig. 2 Group formation solution via CP (node) model

—
._.|
—

machine

W om» T g T Q 0

Fig. 3 Group formation solution via CP (edge) model
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3 Computational results

To provide a comparative assessment of the performance of CP (node)
relative to other methods, we solved 36 standard test problems from the lit-
erature. For each problem, the best solution available from the literature was
used as a benchmark of comparison for our solutions. Table 2 lists these
problems along with the appropriate references.

In an effort to provide a comprehensive comparison with other methods,
solutions were evaluated along the following three dimensions: Aggregate
Grouping Weight, Grouping Measure, and Grouping Efficiency. These mea-
sures, especially the last two, are widely used in the literature and collectively
enable objective performance comparisons to be made. In what follows we
report summary results obtained from our model and from the literature.
Detailed results of group formations for all 36 problems are available from the
authors upon request.

3.1 Aggregate grouping weight

For this assessment, the total weight of the groups formed according our
solution and the solution obtained from the literature was compared for each
problems. The resulting values are listed in Table 3. For this measure of
solution quality, our method clearly produced attractive results. For most of
the problems, the results from our model are strictly preferred to those
obtained from other models. In no case did another method produce a better
result although there were ten ties out of the 36 problems.

3.2 Grouping measure
In general, the aim of employing group technology is to approximate self

contained production cells with few parts requiring processing on the
machines in other groups. Some methods for solving GT problems perform

part
5 11 6 14 1 7 13 8 9 3 4 10 15 12 2
D 1 1 1
G |1 1
H |1 1
[0
E|F 1 1
S
s|C 1 1
=)
I 1 1
A 1 1 1 1 1 1 1
B 1 1 1 1 1
E 1 1 1 1 1 1 1

Fig. 4 Group formation by K-Decomposition method from literature (Kumar et al. 1986)
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Table 3 Total grouping

weights Problem ID Result from Best result from
CP (node) other models
GT1 58 23
GT2 61 26
GT3 60 23
GT4 50 21
GTS5 72 37
GT6 76 35
GT7 78 46
GT8 61 30
GT9 87 52
GT10 70 45
GT11 80 68
GT12 72 49
GT13 103 100
GT14 157 24
GT15 348 348
GT16 55 55
GT17 177 —541
GT18 41 32
GT19 66 64
GT20 118 -947
GT21 23 23
GT22 53 8
GT23 30 29
GT24 40 40
GT25 42 42
GT26 41 37
GT27 43 43
GT28 40 -120
GT29 117 117
GT30 91 90
GT31 74 71
GT32 93 93
GT33 54 54
GT34 46 46
GT35 78 14
GT36 109 -16

reasonably well with respect to a given objective but fall short on other
dimensions of performance. Two widely proposed metrics for assessing
grouping results are within-group (cell) compactness and the number of
exceptional cells. It is generally accepted that one group formation is preferred
to another if it has greater within-group compactness and a smaller number of
exceptional cells. To compare different solution along these dimensions, we
employ the grouping metric (GM) used by Islamt and Sarker (2000) (Joglekar
et al. 2001; Miltenburg and Zhang 1991), and group efficiency metric (GE)
used by Chandrasekharan and Rajagopalan (1987). Our assessment involving
GM is given here while that involving GE follows in section c¢) below.
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The grouping measure (GM), first introduced by Miltenburg and Zhang, is
designed to calculate the difference between machine utilization rates and
parts movement rates. This metric is defined as follows:

égzéu_ém

a=1 S« / S (M. 1)

" ieM,
jeCp (5)

rieM,
je Cr

where ¢, is the grouping measure, ¢, is the machine utilization rate, which
measures within-group compactness, ¢, is the parts movement rate. a;; is
equal to 1 if the part is processed by the machine, r is the rth machine/part
group (cell) in the final group formation, M, is the number of machines in rth
group (cell) and C, is the number of parts in rth group (cell). Larger ¢, values
indicate better grouping solutions.

As an illustration, consider the two solutions to the small example from
Sect. 2.3. For the CP (node) solution (Fig.2) we have &, =24/25 = 0.96,
& =1-24/32 =025, &, =&, — &, =096 - 0.25 = 0.71 and for the solution
from Fig. 4 we have ¢, = 32/47 = 0.681, &, = 0.0 then &, = £, - ¢, = 0.681 -
0.0 = 0.681. Since the former &, value is greater than the later, we conclude
that grouping result obtained via CP (node) is preferred to that obtained from
the K-Decomposition method with respect to this metric even though the
aggregate grouping weights obtained by both methods are the same.

Table 4 reports the GM results for the 36 problems used in this study. A
comparison problem by problem shows that the performance of CP (node)
with respect to this metric is strictly preferred to that of the other solutions in
31 of the 36 cases and tied in the remaining 5 cases. In none of the 36 cases did
CP (node) produce an inferior solution based on this metric.

3.3 Grouping efficiency

The Grouping Efficiency (GE) metric, 5, due to Chandrasekharan and
Rajagopalan (1987), is designed to measure the difference between intra-cell
utilization and inter-cell movement. This metric utilizes a weighting factor g
which can reflect specific requirements of a problem but is commonly set to 0.5
if the density of 1’s in parts/machine matrix is normal. The GE metric for M
machines and N parts is defined as follows:

@ Springer



H. Wang et al.

n=qmn+1-q)n

p= T Y w /zuw )

rieM,
jec’
(6)
doo@i—y, >, a
ieM rieM,
jEN jeC,
n=1-
(MN—EIMrICA)
r
0<g<1

Larger values of n denote better grouping results. Taking g to be 0.5 and
referring once again to our example of Sect. 2.3 we have for our CP (node)
solution 1 = 24/25 = 0.96, n, = 1-(32-24)/(135-25) = 0.9273, and 5 = 0.9437.
For the solution of Fig. 4 we get n, = 32/47 = 0.681, n, = 1-0/88 = 1, and
n = 0.8405. Since the 5 value for the former is greater that that of the later, we
conclude once again that the grouping produced by CP (node) is preferred to
the result obtained from the K-Decomposition approach.

Table 5 reports the GE results for the 36 problems considered here. Once
again, the performance of CP (node) relative to the other methods is very
attractive across the entire line up of test problems with strictly preferred
results coming on 31 cases and ties on the remaining 5 cases.

It is clear from the results displayed in Tables 3, 4, and 5 that our solutions,
across all three metrics, are very attractive compared to the solutions previ-
ously reported in the literature for these test problems. For all problems our
approach quickly finds high quality solutions. A more detailed comparative
analysis of the solutions indicates that our method strikes a nice balance
between intra-call compactness and inter-cell movement.

4 Computational efficiency

In Sect. 2 we presented the standard model for clique partitioning, CP (edge),
and we commented that this model, while conceptually sound for application
to group technology problems, is in fact flawed due to its excessive compu-
tational requirements. In this section we present computational experience
illustrating this computational burden by comparing the computational times
for the standard model, CP (edge), with those of our new model, CP (node) on
the 36 test problems. For each problem, the results from CP (edge) were
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Table 4 Grouping measure

. Problem ID Result from Best result from
E)(r}ol\tf)ll)erc;)smparlson on 36 GT CP (node) other models

GT1 0.4753 0.4675
GT2 0.5521 0.5181
GT3 0.6359 0.5317
GT4 0.4508 0.4429
GTS5 0.6929 0.5401
GT6 0.7565 0.5705
GT7 0.7163 0.5923
GT8 0.5034 0.4933
GT9 0.7463 0.587
GT10 0.6304 0.5711
GT11 0.4859 0.4135
GTI12 0.5183 0.4870
GT13 0.7646 0.7585
GT14 0.5427 -0.0241
GT15 0.8286 0.8286
GT16 0.4503 0.005
GT17 0.4064 0.1629
GT18 0.6886 0.6289
GT19 0.5015 0.2345
GT20 0.3318 0.1756
GT21 0.71 0.681
GT22 0.4447 0.2726
GT23 0.4491 0.2690
GT24 0.7654 0.7654
GT25 0.92 0.92
GT26 0.6442 0.5952
GT27 0.4954 0.4832
GT28 0.53 0.0075
GT29 0.81 0.81
GT30 0.6332 0.6318
GT31 0.5878 0.5107
GT32 0.7961 0.7961
GT33 0.7076 0.6259
GT34 0.6298 0.559
GT35 0.5941 0.2883
GT36 0.3134 0.1357

obtained by using CPLEX 6.5 and results from CP (node) were obtained from
our Tabu Search heuristic. All runs were made on a SUN Enterprise 450
server.

The results of these runs are shown in Table 6. The times listed in Table 6
for our tabu search heuristic are the times required to execute 100 SPAN
cycles. (SPAN cycles are defined in the appendix). The times shown for the
CPLEX runs are the times required to complete the tree search process.
Note that while both models and solution methods were able to successfully
solve all 36 problems, the time performance of CP (edge) is erratic and, in
most cases, excessive. In contrast to this, the performance of the CP (node)
and our tabu search heuristic is very uniform across all problems. These
results are displayed graphically in Fig. 5. In most cases, the CP (node)
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Table 5 Grouping efficiency

comparison on 36 GT Problem ID Result from Best result from
CP (node) other models
problems

GT1 0.9044 0.7598
GT2 0.8748 0.7776
GT3 0.91 0.7815
GT4 0.9149 0.7587
GTS5 0.8860 0.7949
GT6 0.9181 0.7988
GT7 0.8918 0.8104
GT8 0.8662 0.7739
GT9 0.9071 0.8242
GT10 0.9054 0.8103
GT11 0.8911 0.8482
GTI12 0.9082 0.7717
GT13 0.9126 0.9041
GT14 0.9226 0.6429
GT15 0.9521 0.9521
GT16 0.8891 0.5628
GT17 0.8698 0.6209
GT18 0.9594 0.8274
GT19 0.9274 0.7251
GT20 0.9124 0.5946
GT21 0.9437 0.8405
GT22 0.9035 0.6616
GT23 0.9173 0.7017
GT24 0.915 0.915
GT25 0.96 0.96
GT26 0.9167 0.8566
GT27 0.9254 0.923
GT28 0.9660 0.5933
GT29 0.9635 0.9635
GT30 0.9178 0.9050
GT31 0.9254 0.8720
GT32 0.9233 0.9233
GT33 0.8879 0.8614
GT34 0.8854 0.7795
GT35 0.9575 0.6777
GT36 0.9464 0.5679

approach produced the optimal solution in a fraction of the time required by
CPLEX and CP (edge). While CP (edge) often took several days to solve a
problem, the largest of problems was solved via CP (node) in little over
1 min.

We note that comparisons of the type made in Table 6 must be made with
appropriate caution as our tabu search approach is a heuristic and CPLEX is
an exact method. That is, one would expect a heuristic to generally have a
time advantage over an exact method. Our purpose here of using CPLEX as a
benchmark is to demonstrate that CP (edge) is very difficult for standard
commercial methods. In comparison, our approach is very efficient, effective
and robust.
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Table 6 Comparison of computational times for CP (node) and CP(edge)

Problem #of #ofedge CP (node) via tabu CP (edge) via CPLEX65
1D node search

#of Soln Time(s) #of #of Soln.  Time(s)

vars. vars. constraints
GT1 46 1035 736 58 12 1035 45540 58 610255.79
GT2 46 1035 736 61 12 1035 45540 61 11354.76
GT3 46 1035 736 60 12 1035 45540 60 2770.44
GT4 46 1035 736 50 12 1035 45540 50 476203.2
GTS 46 1035 736 72 13 1035 45540 72 783.04
GT6 46 1035 736 76 13 1035 45540 76 3.19
GT7 46 1035 736 78 13 1035 45540 78 10.09
GT8 46 1035 736 61 12 1035 45540 61 38782.30
GT9 46 1035 736 87 13 1035 45540 87 3.67
GT10 46 1035 736 70 12 1035 45540 70 3272.41
GTI11 55 1485 1100 80 25 1485 78705 80 567875.57
GT12 59 1711 944 72 18 1711 97527 72 504144.55
GT13 55 1485 550 103 53 1485 78705 103 8.11
GT14 68 2278 680 157 5.8 2278 150348 157 395441.53
GT16 43 903 80 55 15 903 37023 55 291346.09
GT18 38 703 532 41 7.4 703 25308 41 11.24
GT19 59 1711 708 66 7.6 1711 97527 66 219550.01
GT21 24 276 216 23 2.5 276 6072 23 0.17
GT22 43 903 80 53 15 903 37023 53 269368.22
GT23 38 703 494 30 6.8 703 25308 30 3269.32
GT24 25 300 250 40 33 300 6900 40 0.21
GT25 25 300 250 42 2.9 300 6900 42 0.34
GT26 35 595 350 41 4.4 595 19635 41 262.97
GT27 39 741 624 43 9.4 741 27417 43 15558.70
GT28 60 1770 1500 46 43 1770 102660 46 14106.64
GT29 64 2016 1536 117 50 2016 124992 117 6.95
GT30 64 2016 1536 91 46 2016 124992 91 269160.2
GT31 04 2016 1536 74 45 2016 124992 74 45650.82
GT32 64 2016 512 93 52 2016 124992 93 10.34
GT33 33 528 363 54 4.6 528 16368 54 141.85
GT34 31 465 341 46 41 465 13485 46 413.77
GT35 71 2485 2130 78 82 2485 171465 78 10142.38

To provide insight into the computational performance of our approach on
even larger instances of GT problems, 3 new test problems were generated
and solved. These problems, which range in size from 50 machines and 200
parts to 150 machines and 1,000 parts, were modeled ala CP (node) and solved
by our Tabu Search heuristic. We note that “real” test problems of the size
considered here are not available from the literature for research purposes. As
such, we randomly generated these new test problems which are available
from the authors for others to try.

The results from these new problems are shown in Table 7. As shown there,
even the largest of the problems is readily solved. We comment that these
problems are too large to approached via the alternative CP(edge) model as
even the initial LP relaxation is too large to solve.
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5 Summary and conclusions

3000

In this paper we presented a new modeling and solution methodology, based
on clique partitioning and tabu search, for solving group technology problems.
This new approach was applied to 36 standard test problems and assessments
were made comparing our solutions with the best solutions available from the
literature. In making the comparisons, three metrics gauging solution quality
were applied. Across all 36 problems, our solutions were uniformly attractive,
surpassing the other solutions in quality in most cases and tying them in the

Table 7 Computational results for large-sized test problems via CP (node). Note that these
problems are available from the author upon request

Problem Size (M x P) # of Cells # Nodes # Vars Solution Time(s)
GT_50_200 50 x 200 7 250 2500 205 123
GT_100_700 100 x 700 8 800 8,000 704 441
GT_150_1000 150 x 1000 10 1,150 23,000 1,753 1,658
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remaining cases. In no case was an alternative solution preferred to ours on
any of the metrics.

While the computational testing reported here was carried out on binary
matrix test problems, we note that our approach is not restricted to such cases
and can be readily applied to the non-binary case. We also note that the model
given here can be easily modified to accommodate additional domain
knowledge that may be important in a given GT setting. For example, in a
parts-oriented setting, a positive edge weight could be added to the pair of
part nodes to encourage all part nodes to be grouped into a cell in the final
solution. In a similar fashion, a positive edge weight could be assigned to the
pair of machine nodes if the machines are required to be grouped. Other
special cases can be accommodated by similar constructs.

Based on the results we have presented, we conclude that the model and
solution approach advanced here represent an attractive methodology for
solving group technology problems. On on-going research addressing larger
and more difficult GT problems will be reported in future papers.

Appendix: Overview of tabu search method for CBQP

Our TS method for CBQP is centred around the use of strategic oscillation,
which constitutes one of the primary strategies of tabu search. The variant of
strategic oscillation we employ may be sketched in overview as follows.

The method alternates between constructive phases that progressively set
variables to 1 (whose steps we call ““add moves’’) and destructive phases that
progressively set variables to 0 (whose steps we call “drops moves’). To
control the underlying search process, we use a memory structure that is
updated at critical events, identified by conditions that generate a subclass of
locally optimal solutions. Solutions corresponding to critical events are called
critical solutions. For CBQP a critical event occurs during the solution process
when exactly n variables are equal to 1.

A parameter span is used to indicate the amplitude of oscillation about a
critical event. We begin with span equal to 1 and gradually increase it to some
limiting value. For each value of span, a series of alternating constructive and
destructive phases is executed before progressing to the next value. At the
limiting point, span is gradually decreased, allowing again for a series of
alternating constructive and destructive phases. When span reaches a value of
1, a complete span cycle has been completed and the next cycle is launched.

Information stored at critical events is used to influence the search process
by penalizing potentially attractive add moves (during a constructive phase)
and inducing drop moves (during a destructive phase) associated with
assignments of values to variables in recent critical solutions. Cumulative
critical event information is used to introduce a subtle long term bias into the
search process by means of additional penalties and inducements similar to
those discussed above.
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