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Improved Linear and Integer
Programming Models for
Discriminant Analysis
Fred Glover

There is a growing recognition that a variety of classical statistical problems
can be approached advantageously using tools from the field of optimization.
Reexamination of these problems and their underlying model assumptions
can sometimes lead to refreshing new perspectives and alternative lines of
attack. Discriminant analysis is high on the list of problems of this type and
has been drawing increased attention recently because it straddles the areas of
management science and artificial intelligence as well as statistics.
Management science applications of discriminant analysis include decisions to
make or buy, lend or invest, hire or reject (see Charnes, Cooper, and
Rhodes, 1981; Kazmier, 1967; Spurr and Bonini 1976). Artificial intelligence
applications involve the challenging realm of pattern recognition, including
problems of signal differentiation, diagnostic classifications, code signatures,
and data types (see Bobrowski, 1986; Kazmier, 1967; Tou and Gonzalez,
1974; and Watanabe, 1969).

An effort to wed statistical discrimination with optimization has come
about through proposals to capture the goals of discriminant analysis in a
collection of linear programming (LP) formulations (see Freed and Glover,
1981 and 1987; and Glover, Keene, and Duea, 1988). The objectives of
initial forms of these models included minimizing the maximum deviation and
the sum of deviations of misclassified points from a reference hyperplane,
together with weighted variants of these objectives. Although the more
advanced earlier variants and their recent derivatives have gone largely
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unexplored (a condition that deserves to be remedied), empirical testing of the
simpler variants has disclosed the "minimum sum of deviations" model to be
competitive in effectiveness with the classical approach of Fisher (see
Kazmier, 1967 and Markowski and Markowski, 1985). This comparative
testing was carried out in contexts determined by the limited goals and
assumptions of classical discriminant analysis and did not examine settings
that could be advantageously exploited by the more flexible objectives of the
LP discriminant approaches. Moreover, no use was made of LP
postoptimization to re-weight borderline misclassified points to obtain refined
solutions, one of the strategic options of the LP approaches proposed with
their earliest formulations. Consequently, the effective performance of the LP
discriminant analysis models under these circumstances gave encouraging
evidence of their potential value in wider applications.

At the same time, however, empirical tests also disclosed that the LP
formulaticns gave counterintuitive and even anomalous results. Follow-up
examination of specially anomalous results demonstrated that these
formulations are attended by certain subtleties not found in other areas to
which linear programming is commonly applied (see Bajgier and Hill, 1982;
Freed and Glover, 1987; and Markowski and Markowski, 1985).

Analysis has indicated that the anomalous behavior of the LP
formulations stems from the implicit use of normalizations in order to avoid
"null solutions” that assigned zero weight to all data elements. Several
normalizations have been identified (see Freed and Glover, 1987 and Glover,
Keene, and Duea, 1988) in an attempt to overcome this difficulty. The most
recent of these has been demonstrated to exhibit desirable invariance
properties lacking in its predecessors and has produced encouraging
experimental outcomes, yielding solutions generally better than those
obtained by earlier studies (see Glover, Keene, and Duea, 1988).

In spite of these advances, however, the full power of the LP models for
discriminant analysis has not been achieved because the best normalization
proposed to date distorts the solutions in a manner not previously anticipated.
The consequences of this distortion not only inhibit the quality of "first pass”
solutions obtained by the LP formulations, but also can confound the logical
basis of obtaining more refined solutions by differential weighting of
deviations in the objective functions and LP postoptimization.

The purpose of this chapter is to remedy these defects and to demonstrate
some of the consequences for improved modeling capabilities that result. We
introduce a new normalization that eliminates the previous distortions in the
LP models and that has attractive properties enabling it to obtain
demonstrably superior solutions.

The new normalization further allows a generalization to integer
conditions and causes the integer programming problem of minimizing the
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number of misclassified points to have as its continuous relaxation the LP
problem of minimizing the cumulative deviations of misclassified points,
permitting the Jatter to serve as an approximation to the former. The value of
this approximation is reinforced by the demonstration that the new
normalization also endows the LP formulation with an integer local optimality
property, which yields a "balanced"” number of misclassified points. These
links between continuous and discrete solutions, and the lack of distortion
that attended the most effective previous normalization, give new scope to the
LP models. Finally, we show that the ability to place any desired relative
emphasis on classifying particular points correctly lzads to a conditionally
staged application of the model, called the successive goal method, for
achieving progressively more refined discrimination for both two-group and
multigroup analysis.

A HYBRID LP DISCRIMINANT MODEL

We take as our starting point the hybrid LP model of Jurs (1986), which
integrates features of the previous LP discriminant formulations (Freed and
Glover, 1981 and 1987). Attention will initially be restricted to the two-group
discriminant problem, which constitutes the main focus of our development.

We represent each data point by a row vector A;, where membership in
Group 1 or Group 2 is indicated by i € G1 ori e G2, respectively.
(Different points can have the same coordinates, and efficient adaptations for
this are indicated below in "Model Manipulation and Simplifications.")

To discriminate the points of the two groups, we seek a weighting vector
x and a scalar b, which may be interpreted as providing a hyperplane of the
form Ax = b, where A takes the role of representing A for each i. The goal is

to assure as nearly as possible that the points of Group 1 lie on one side of
the hyperplane and the points of Group 2 lie on the other, which translates
into the conditions that Ajx < bforie Gi and Ajx > b forie G2.

Refining this goal as in Glover, Keene, and Dueca (1988), we introduce
external and internal deviation variables, represented by the symbols o and
Bi, which refer to the magnitudes by which the points lie outside or inside
(and hence "violate" or "satisfy") their targeted half spaces. Upon introducing
objective function coefficients hj to discourage external deviations and ki to
encourage internal deviations and defining G = G1 U G2, we may express
the LP model as follows:
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Minimize hotlo + T hiotj —kofo— T kifj ¢))
ieG ieG

subject 10
Aix — 0o~ 0+ Po + Bi = b i€ G 2
Aix+ oo +ai~Bo-Pi=b i€ Gy (3)
0o, Bo 20 C))
o, Bi=0 ieG )
X, b unrestricted in sign (6)

Many variations of this model framework are possible. For example, in
the "€ version" of the model, the variable b that constitutes the boundary
term for the hyperplane can be replaced by b - € for Group 1 and by b + €
for Group 2, where € is a selected positive constant, to pursue the goal of
compelling elements of Group 1 and Group 2 to lie strictly inside the half
space whose boundary is demarked by b. (Different values of € may be
chosen for different points. However, under the choice of a uniform value,
the € version is also equivalent to a "one-sided € model" that replaces b by b
+ € for Group 2 only, where the € value in this case is twice as large as in
the "two-sided” case.)

The objective function coefficients will generally be assumed to be non-
negative, although it is possible to allow the coefficients of the variables to be
negative. In this latter variation the hybrid model represents a generalized
form of a standard goal programming model. We also stipulate that the
objective function coefficients should satisfy hj 2 kj fori=0andie G.
Otherwise, it would be possible to take any feasible solution and increase the
value of o and Bj (for hj <k;j) an indefinite amount to obtain an unbounded
optimum. More complete conditions for avoiding unbounded optimality, both
necessary and sufficient, are identified subsequently.

Frorm an interpretive standpoint, the oy, variable provides a component to
weight the "maximum external deviation," while the B, variable provides a
component to weight the "minimal internal deviation.” This interpretation is
suggestive rather than exact, however, due to the incorporation of the
individual point deviation variables, o and Bi, in the same equations as Clo
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and Bo. The effects of these variables can be segregated more fully by
introducing separate constraints of the form Ajx - tto + Bo < b fori € Gi,
and Ajx + 0 - Bo 2 b fori e G2, at the expense of enlarging the model
form. By deleting the oo and Bo variables in equations (1) through (6) or,
alternatively, by deleting the aj variables and setting the kj coefficients to

zero, the foregoing model corresponds to one of the models first proposed in
Freed and Glover (1981).

THE NORMALIZATION ISSUE

To understand the potential difficulties that underlie the preceding
discriminant analysis formulation, it is useful to review in greater detail the
history of its development and attempted application. In the form given, the
model in fact is incomplete, for it must be amended in some fashion to avoid
an optimal solution that yields the null weighting x = 0. If the two groups can
be separated by a hyperplane (or "nearly” so) and if the ki coefficients are
positive, the null weighting will be automatically ruled out, but in this case
the model must be amended to assure that it is bounded for optimality.
Broadly speaking, the more challenging applications of discriminant analysis
arise where the two groups significantly "overlap," and in these cases a
solution yielding the null weighting x = 0 typically will be optimal if it is not
somehow rendered infeasible.

The early implementations of LP formulations for discriminant analysis
undertook to avoid the null weighting by the logical expedient of setting b to a
nonzero constant. It was tacitly assumed that different choices of b would
serve only to scale the solution (provided at least the proper sign was
chosen), and the approximation to optimality in the special case where b
ideally should be O still would be reasonably good.

However, experimental tests of different LLP model variants soon
disclosed that assigning b a constant value still permitted the null weighting to
occur for certain data configurations. More generally the models responded
with nonequivalent, and sometimes poor, solutions to different translations of
the same underlying data, where each point Aj is replaced by the point Aj + ¢
for a common vector t (sec Bajgier and Hill, 1982; and Markowski and
Markowski, 1985).

These unexpected outcomes prompted the observation that setting bto a
constant value could be viewed as a "model normalization," and it was soon
discovered that other normalizations could be identified that affected the
model behavior in different ways (see Freed and Glover, 1987). Let N denote
the index set for components of the x vector. Then the first two proposals for
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alternative normalizations to remedy the problems of setting b to a constant
can be written in the following form:

b+ Xxj = aconstant
jeN
x Xj = aconstant
jeN

Of these alternatives, the latter proved in Freed and Glover (1987) to
yield solutions that were equivalent for different translations of the data, a
property not shared by the other normalizations. This advantage was not
enough tc rescue the latter normalization from defects, however. First, to use
the normalization, the LP formulation had to be solved for both signs of the
constant term to assure that the right sign was selected. Second, the variables
had to be either directly or indirectly bounded (in a sense, yielding an
auxiliary normalization) to assure bounded optimality. Third, the
normalization continued to produce nonequivalent solutions for different
rotations (in contrast to translations) of the problem data, where each point Aj
is replaced by the point AjR, and R is a rotation matrix.

The raost recent attempt to settle the normalization issue occurred in Jurs
(1986) with the "B normalization”

Bo+ EPi = 1
ieG

The need 1o allow for different signs of the constant term was eliminated with
this normalization. More significantly, it was proved that the normalization
succeeded in yielding equivalent solutions for both translations and rotations
of the problem data. Experimentation further shows that the normalization
provided solutions uniformly as good or better than solutions obtained with
previous normalizations for the problems examined. In spite of these
advances, however, this latest normalization likewise suffers undesirable
limitations, which continue to distort the solutions obtained by the LP
formulaticns.

In the following sections we illustrate the nature of the distortion inherent
in the B normalization and then show that it is compounded by a related defect
that limits the generality and flexibility of the LP model when this
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normalization is used. We then provide a new normalization that is free of
these limitations, while exhibiting the appropriate invariance properties for
transformations of data. The attributes of this normalization are explored in
results that establish additional features of the LP formulations not shared by
alternative approaches. Finally, we amplify the implications of these results
for obtaining discrimination approaches of increased power.

LIMITATIONS TO BE OVERCOME

The limitations of the B normalization will be illustrated in an example
applicable to the standard discriminant analysis context as a means of

clarifying the properties that need to be exhibited by an improved
normalization. Consider the simple case where each point Aj has a single

coordinate, and hence the weight vector x may be treated as a scalar variable.
For illustrative purposes we will use the form of the hybrid model in which
0 and By are deleted. In addition, for further simplicity, we suppose all the
kj coefficients are O.

The relevant data for the example are given in Table 16.1, indicating the
coordinates and the penalties for being classified in the wrong group.

Table 16.1. The Coordinates and the Penalties for Being
Classified in the Wrong Group

Group 1 Points Group 2 Points
Coordinates Penalties Coordinates Penalties
Al = 0 hi = 15 Ag = -1 hg = 25
Ay = 1 hy = 25 As = 0 hs = 25
A3 = -2 h3 = 25 Ag = 2 hg = 25

@l ki=0)

A graph of the points is shown in Figure 16.1, where Group 1 points are
indicated by circles and Group 2 points are indicated by squares. The
misclassification penalties are shown above each point.

The values from -2 to +2 on the line segment correspond to the values of
b. It is easy to show that the best way to separate the Group 1 and Group 2
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points on the line segment is to choose the value b =0, where Group 1 points
are counted as misclassified if they fall to the right of the selected value and
Group 2 points are counted as misclassified if they fall to the left. Then, only
A2 and A4 are misclassified, each with a deviation of 1 unit from the value b

=0, hence giving a total penalty cost of (1 x 25) + (1 x 25) = 50.

Without a normalization constraint, the LLP model falls into the trap of
finding a meaningless "optimal” solution, x = 0 and b = 0, which makes all
external deviations 0 and hence also makes the total penalty cost 0. Consider
the result of using the B normalization to overcome this limitation. We can
choose any positive constant term for the right-hand side of this
normalization, and specify the normalization to be ZBj = 4, since 4 is the sum
of the internal deviations, Bi, in the case identified as best by graphical
analysis. Indeed, we then obtainx = 1, b=0 (withag =a2 =1, B3 =P¢ =
2, all other ¢; and Bj = 0) as a feasible solution for the LP model, yielding a
total penalty cost of 50, as before.

Figure 16.1. Group 1 and Group 2 Points
with Misclassification Penalties

25 25 25 25
A3 A4 As Ag

| [ T
-2 -1 0 1 2

This solution turns out not to be optimal, however. Rather, the B
normalization causes the inferior solution based on x = 1 and b = -1 to appear
even better. From a graphical standpoint, the deviation variables with positive
values for this solution are ] =1, a2 =2, B3 =1, B5 =1, and Bg = 3,
which yield a total penalty cost of 65. However, the sum of the Bj variables
equals 5, and to rescale the solution to satisfy the § normalization with a

right-hand side of 4, the value of each variable must be multiplied by 4/5. The
result is to multiply the total penalty cost of 65 likewise by 4/5, yielding a
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penalty cost for the LP model of 42. This is better than the "best case” penalty
cost of 50, causing the model to favor a less desirable solution.

This outcome is made more remarkable by noting that an earlier
normalization, Xxj = a constant (in this case chose 1 as the constant), will
correctly identify the "best solution” as optimal. Yet for multidimensional
problems this earlier normalization suffers from distortions not encountered
by the B normalization, and empirical testing has found it generally to provide
solutions that are not as good as those produced by the 8 normalization.
Consequently, we are motivated to seek a new type of normalization that is
more broadly effective and reliable.

As a step toward identifying additional properties this new normalization
ideally should have, and pitfalls it should avoid, we next examine the
behavior of the normalization in the context of an integer programming
formulation.

The Integer Programming Case
An integer programming (IP) discriminant model for minimizing the

number of misclassified points can be formulated as a simple variant of the
LP model. We write the IP model as follows,

Minimize z 7 @)
ieG

subject to
Aix -Uz;+Bi=b i€ Gy 8)
Aix + Uz -Bi=b ie G )]
Bi>0 ieG (10)
zi=0or1l ieG (1
X, b unrestricted in sign (12)

The constant U is assumed to be chosen large enough that the inequality
of Ajx < b + Ugz; will be redundant for i € G] and ihe inequality of Ajx 2 b -
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Uzj will be redundant for i € G2, when zj is set equal to 1. The Bj variables

may be interpreted as slack and surplus variables for these inequalities. More
generally, the constant U can be replaced by different constants Uj for each i
in G. Likewise a constant can be added to the right-hand side of equation (8)
and subtracted from the right-hand side of equation (9) to seek a minimizing
solution for strict group separation.

To apply the B normalization to the IP formulation, we need to know
how large the U should be. From equations (8) and (9), we note the
normalization can be expressed as

Z(b-Ax+Uz)+Z(Aix-b+Uz) =1
i€ Gy i€Gy

Hence, in particular this yields:

U=[1-Z(®b-Ax)-ZAx-b)]/Zz
ieGy i€ Gy i€G

Thus, we see that the value of U depends intimately on the optimal
values oi the problem variables, which cannot be known in advance. If the IP
formulation is applied to points A; of the numerical example of Table 16.1
and Figure 16.1, the value of U must uniquely be selected to be 1/4 to permit
the optimal integer solution to be found. This serious deficiency of the
normalization from an integer programming model standpoint identifies a
further type of limitation an improved normalization should seek to
overcome.

THE NEW NORMALIZATION
The normalization we propose is
(-mZA+mEAPx=1 (N)

ieGy i€Gy

where ny and n are respectively, the number of elements in G1 and Gy, and
the right-hand side of 1 is an arbitrary scaling choice for a positive constant.
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(An alternative scaling that tends to yield xj values closer to an average
absolute value of 1 is to choose this constant to be 2n1n2.) An equivalent
form of this normalization occurs by adding nj times each equation of (1) and
subtracting n) times each equation of (3) to yield the constraint

2nin2 (Boto) +m X Bi— i) +n1 X Bi—a) =1  (N*)

i€ Gy i€Gyp

Expressing the normalization in the form (N) has certain advantages for
analysis, while expressing it in the form (N*) is convenient for incorporation
into the LP formulation {since the coefficients of the variables do not require
calculation as in (N)]. It may be noted that the weights hj and kj in the
objective function should not be chosen in proportion to the coefficients of
corresponding variables in (N*), or else the normalization effectively
constrains the objective function to equal a constant, and the minimization
goal becomes superfluous. [If the kj coefficients are proportional to
corresponding coefficients of (N*), then a similar effect occurs in the case
where it is possible to completely separate Group 1 and Group 2 points—
where all aj become 0.]

To understand the properties of the normalization given by (N) and (N*),
let di denote the net internal deviation of the point Aj from the hyperplane
generated by the discriminant model; that is

d = b - Aix forie 51

d = Aix - b forie Gy

Hence, dj is positive (or zero) if Aj lies within its targeted half space and
negative otherwise. [The "e version" of the model for seeking strict
separation replaces the quantity b by b - €, for a positive constant €, in the
definition of dj. This results in increasing the constant term of the
normalization (N) by the quantity e (n] + n2), while leaving the constant term
of the normalization (N*) unchanged.]

Note that if Group 1 and Group 2 have the same number of points and
are "separable” to any meaningful extent by a hyperplane, then the internal
deviations should sum to a larger value than the external deviations, and,
hence, the sum of all the d; values should be positive. More broadly, if
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Group 1 and Group 2 have a different number of points, then upon weighting
the d: values to give equal representations to the groups relative to their sizes
(i.e., multiplying each dj in Group 1 by n2 and each dj in Group 2 by n1), a
meaningful separation should yield a positive value for this weighted sum.
We embody this observation in the following definition.

A hyperplane creates a meaningful separation of Group 1 and Group 2 if

np 2 dj+n; Xd;>0.
i€ Gy i€ Gy

On the basis of this definition we may at once state the following result.
Theorem 1

The normalization (N) is equivalent (under scaling) to requiring a
meaningful separation and eliminates the null weighting x = 0 as a feasible
solution,

Proof. First, (N) reduces to an inconsistent equation when x = 0 and
hence renders the null solution infeasible. To see that (N) is equivalent to
requiring a meaningful separation, expand the inequality that defines a
meaningful separation by substituting the appropriate values for dj, according
to membership of i in G] or G2, thereby obtaining

X (b-Ax)+n; Z(Ax—-b)>0
ieG) ieGy

Algebraic manipulation and reduction permit this inequity to be reexpressed in
the form

- ZAx+n ZAx>0
ie Gy ie Gy

whose left-hand side corresponds to the left-hand side of (N). Given any
feasible solution to the LP formulation that satisfies this inequality, upon
dividing the values of all variables in the solution by the positive left-hand-
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side quantity, the result is again feasible for the LP problem and satisfies (N).
Hence, allowing for scaling, the solutions are equivalent. Similarly, any
feasible solution that satisfies (N) automatically sat:sfies the definition of a
meaningful separation. This completes the proof.

Corollary

A meaningful separation exists if and only if there exists a hyperplane
such thatnp 2 di + n; X d; # 0.
ieGy i€ Go
It also exists if and only if there exists some component Ajj of each point
Aj, i€ G, such that np X Ajj# n; X Ay
i€ Gy ie Gy

Proof. The corollary is a direct consequence of Theorem 1 and the form
of (N).
It may be noted by the proof of Theorem 1 tkat upon choosing non-
negative scalars u;j such that 2 uj = X u; > 0, a norma’ization of the form
i€eGy i€Gy

(—Z ujAj+ X uiApx =1
ieGy i€ Gy

will correspondingly eliminate the null solution and be consistent with a
biased meaningful separation defined by the inequality

2 udi + X ud; > 0
ieGy ie Gy

Specifically, if there is reason to ensure that a weighted sum of internal
deviations should exceed a correspondingly weighted sum of external
deviations (as where particular points command more importance, and hence
larger weights, than others), then such a biased normalization can be
employed. We will not undertake to pursue the issue of these biased
normalizations further, but simply note that our subsequent results can be
readily adapted to treat them as well.

Useful additional insights into the nature of (N) &nd its consequences for
the hybrid LP discriminant formulation are provided by examining the linear
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programming dual of equations (1) through (6) with (N) attached. To create
this dual, it is convenient first to rewrite the constraint equation (2) by
multiplying it through by -1. Then, associating a variable v; with the

equations (2) and (3) for each i € G and a variable vg with (N), we obtain the
following result.

Dual Model Formulation
Maximize vo
subject to

Agvo—-Z Ajvi+ X Ajvi=0
ieG, ie Gy

hoZZVIZkO
ieG

Xvi-2vi=0
i€eG, ieGy

where

Ag=—np X Aj+n1 XA
iEGl lEGZ

Our interest is analyzing this dual is to determine circumstances that
provide a feasible dual solution and hence that assure that the LP discriminant
formulation is bounded for optimality.

Necessary conditions for bounded optimality of the formulation (1)
through (6) are immediately evident from the dual formulation, as are
necessary conditions in order for certain variables of the LP discriminant
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formulation to be nonzero at optimality. The following is established by
reference to the quality theory of linear programming.

Necessary Conditions for Bounded Opiimality

hi = ki 1€ Gandi=0,

Necessary conditions for Variables to be Nonzero

For Bo! ho < by hj
ieG

ForBo: ko > XKk
ieG

To avoid trivial solution values for dual variables, it is appropriate to
stipulate hj > kj for i € G. In general, interpretation of the inequalities for

bounded optimality in the context of the LP discriminant formulation suggests
they reasonably may be required to be strict. It may be noted that hj > kj

implies that at most one of ¢tj and Bj will be positive, an outcome that also
holds when hj = ki in the case of extreme point soluticns. (This is not true for

the B normalization.)
We seek to go beyond the foregoing observations, however, by
providing sufficient as well as necessary conditions for bounded optimality.
Theorem 2

The LP discriminant model in equations (1) - (6) with the normalization
(N) is bounded for optimality whenever

Min (ho/2, n1hy:ie G], n2hj:ie G2)

is at least as large as
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Max (ko/2, n1k]:ie G|, n2ki:ie G2)

Proof. Replace (N) by (N*) in the primal formulation, whereon the
dual problem becomes
Maximize vq
subject to
~YAyv; +XZAjvi=0

i€ Gy i€ Gy

hg = —2ninove + 2 vi 2 ko

ieG
hj 2 —novg + v 2 ki ie Gy
hj 2 —njvg + vi 2 ki ie Gy

Here v is the same variable as in the preceding dual formulation, but the
vi variables, i € G, are different. In this new dual formulation, we set vi = 0
for all i € G. The resulting partial solution satisfies the first problem
constraint and leaves the remaining inequalities in the form of bounds on vo.
Expressing these as bounds on -ninav, in each case, and then comparing
terms, yields the inequalities stated in the theorem. This completes the proof.

The sufficiency conditions of Theorem 2 are generally more restrictive
than required to assure bounded optimality. When the theorem is applied to
the model variant where o, and B, is deleted the corresponding term

involving hg or kg is deleted from its statement. Where both o or B, are
deleted, and the two groups have the same number of elements, the
conditions of the theorem simplify to Min(hj:ie G) =2 Max(kj:i€ G).

Theorem 2 has an additional attractive feature. Suppose that hj and kj
values initially have been chosen subject only to the condition that all hj
(including hy) are positive. If the inequality of Theorem 2 is not satisfied, let
R be the ratio of the Max term to the Min term of the theorem. Then upon
replacing each hj by Rhj in the objective (1), the condition of the theorem is
satisfied. This modification of the coefficients of objective (1) leaves the
relative magnitudes of the hj coefficients, and also of the kj coefficients,




Improved Linear and Integer Programming Models 381

of objective (1) to reflect any desired relative emphasis on the correct
classification of particular points, and bounded optimality can be assured by a
simple adjustment of the objective function coefficient that preserves this
relative emphasis.

Our next goal is to show that the normalization (N) is stable across
rotations and translations of problem data. For this, we employ a useful result
from Glover, Keene, and Duea (1988). Consider the following pair of related
problems:

I.  Minimize g(y)

subject to
Aix + Bi(y)=b ie G (13)
yeY

II. Minimize g(y)

subject to
(AiR+tx+Bi(y)=b ie G (14)
yeY

The terms g(y) and Bi(y) for i € G in these problems represent arbitrary
functions of y. To connect these problems to the LP and IP discriminant
formulations, the vectors A; and the variables x and b may be construed the
same as indicated previously. The vector of variables y may accordingly
include all remaining variables of the LP and IP formulations, while the
condition y € Y may summarize non-negativity and integer requirements.

It is important to note that y € Y can also incorporate the normalization
constraint (N), using the observation in the proot of Theorem 2 that
reexpresses this constraint in terms of the o and [§ variables [which similarly
leads to an expression for (N) in terms of the z and J3 variables for the IP
problem]. The objective function g(y) and the constraints function Bj(y) of I
and II may likewise encompass the associated linear functions of the LP and
IP discriminant models as a special case.

The constraints that differentiate the two problems are constraints (13)
and (14). The latter constraint set achieves the effect of transforming each
point Aj by means of a rotation matrix R and translating the point by means of
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point Aj by means of a rotation matrix R and translating the point by means of
a row vector t. More generally, we assume that R is nonsingular and
disregard the stipulation that the transpose of a rotation matrix is also its
inverse. Then we may state the following result (stability theorem—see
Glover, Keene, and Duea, 1988).

Stability Theorem

The optimum objective function values for Problems I and II are the
same. Moreover, if Y' and Y" represent the optimal solution sets Y for
Problems I and II, respectively, then Y' = Y".

Proof. We show more particularly that if the solution (y', x', b") is
optimal for I, then (y', R1x', b’ + tR-1x") is optimal for II, and if (y", x",
b") is optimal for II, then (y", Rx", b" - x") is optimal for I. By substituting
and rearranging terms, it is clear that the solutions claimed to be optimal for
problems I and II, given the assumed optimality of (y', x', b') and (y", x",
b"), must respectively be feasible for these two problems. By feasibility for II
we obtain g(y") 2 g(y"), and by feasibility for I we obtain g(y") = g(y").
Consequently g(y') = g(y") and the stated conclusions are established.

By our observations linking the LP and IP discriminant formulations to

Problems I and II, the Stability Theorem gives the desired result.
Theorem 3

The optimum objective function values and optimal values for the o and

B deviat.on variables in the LP discriminant formulation and for the z and 8
variables in the IP formulation, are unchanged for all rotations and
translations of the problem data.

Proof. This theorem is a direct consequence of the preceding
observations.

It may be noted that the general form of Problems I and II also makes the
foregoing results applicable to the case where strict group separation is

sought by replacing b with b - € in the constraints applicable to Group 1 and
with b + € in the constraints applicable to Group 2.

We conclude this section by observing that the defect illustrated in Table
16.1 and Figure 16.1 for the B normalization is overcome by (N). In
particular, the distortion of the solution caused by the p normalization in this
example occurred because a shift of b (from its "best value” of 0) caused the
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to satisfy the B normalization. As a result, it was impossible to hold x
constant to find the optimal b value, given x, since moving b forced x to
change as well. The normalization (N) is free of this defect for the important
reason that it is entirely possible to hold x constant and change b without any
effect on the normalization constraint. Thus, the normalization (N) gives the
same objective function values as the graphical analysis of the example of
Table 16.1 and Figure 16.1, and identifies the same solution as optimal.

MODEL MANIPULATION AND SIMPLIFICATIONS

Our primary goal will be to identify how the model (1) - (6) can be
manipulated to achieve an "equal representation” of the points in Group 1 and
Group 2. This hinges on another more basic observation, which makes it
possible to reduce the size of the model in the case where some points may
have the same coordinates as others [to avoid including a separate constraint
equation (and corresponding ¢ and B; variables) for each duplicate point].

Specifically, let S denote a collection of points all in G or all in Gy, such
that Ap = Aq for each p, qin S. If S is a subset of Gy, then the equations of
(2) corresponding to i € S can be replaced by a single representative equation
AKX - Og - 0 + Bo + By = b, where A; is the common vector Aj foraliie S.
If S is a subset of G2, the equations of (3) corresponding to i € S can
similarly be replaced by the representative equation Arx + 0o + Ot - Bo— Br =
b. In each case, assuming that the h; and k; values are chosen in accordance
with the stipulations of the preceding section and that the normalization (N) is
employed, it follows that an optimal solution before the replacement occurs
must yield the same values of o and B; for each i € §, and, hence, we are at
liberty to interpret the values received by o and 3; as representing the
common values.

To assure that the optimal solutions before and after replacement are the
same under this interpretation, it suffices to let hy and ki, respectively, equal
the sums of the hj and k;j coefficients for i € S. (It is reasonable in the
original model to give these coefficients the same two values—say, h* and
k*, for alli e S, in which case hy = h*IS| and k; = k* Sl.) The necessary and
sufficient conditions for bounded optimality identified in the previous section
will hold after the replacement if they held before the replacement.

The manner in which this model simplification can be used to achieve an
"equal representation" of Group 1 and Group 2 is as follows. If the two
groups are of different sizes, we make n2 copies of each point in G; and m;
copies of each point in Gy, so that the two groups effectively are given the
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same number of elements. The resulting representation does not enlarge the
model formulation, since by the foregoing observation we may replace each
h; and k; by nph; and nak; for i € Gi, and by njhj and nikj fori € Gp,
without requiring the creation of additional variables or constraints in order to
handle the implicitly generated copies of the original points.

By analogy with the case where all h;j (and all k;) begin with the same
value for the two groups, we may generally regard the objective function
coefficients to be unbiased with respect to the sizes of the sample groups G
and Gy, if after the indicated adjustment, X hj = X hj and X ki = X kj.

ieG, i€Gy ieGy ieGy

In the integer programming case, if the numbers of points in the two
groups are not the same, then instead of minimizing the number of
misclassified points, it may be more reasonable to minimize a weighted sum
that gives Group 1 and Group 2 equal representation in the foregoing sense.
Using the approach indicated for the LP case, we may minimize the number
of misclassifications for this adjusted problem by replacing the IP objective
(7) with

Minimize npXzi+n Xz
ieGy ieGy

On the basis of the preceding observations, we now examine connections
between the LP and IP formulations.

LINKS BETWEEN THE LP
AND IP DISCRIMINATION MODELS

Our first result link in the IP and LP formulations is to show that the LP
formulations using (N) enjoy a special property that causes an optimal
solution to "balance" the number of misclassified points across the two
groups, whenever the objective weights each point equally.

We focus attention on the Min Sum LP Model, where 0 and Bo are
deleted and the objective function takes the following simple form:

Minimize: 2 o
ieG
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It is to be emphasized that our results also apply to problems more
general than the Min Sum model by making use of the constructions of the
previous section.

We define the number of misclassified points to be balanced between

Group 1 and Group 2 if the number of points with o > () in each group does
not exceed the number of points with o = 0 in the other group. In the
absence of points with a; = 0, this condition implies the number of
misclassified points in each group will be the same.

Theorem 4

An optimal solution to the Min Sum LP model using normalization (N)
yields a balanced number of misclassified points.

Proof. Since at most one of «; and B; will be positive for each i, it
follows that a; > O for i € G1 only if Ajx > b, and that a; > 0 fori € G only

+ 0
if Ajx <b. Let n and n k, respectively denote the number of positive and
zero o fori € Gk and k=1, 2. If b is increased by a small positive value €,

then all o; > O for i € Gy are decreased by €, and all ; 2 0 fori e Gy are

. . . . + 0 +
increased by e, yielding a net increase in Zat; of (n ; +njz)e -ng €.

. . . + 0 +
Since this value must be non-negative, we conclude thatn, + np 2 ny.

4+ 0
Consideration of decreasing b by € similarly yieldsn; + nj; 2 n ; This

completes the proof.

One consequence of Theorem 4 for linking the LP and IP formulations is
that a balanced number of misclassified points must be "close" to a minimum
number of misclassified points, when x is held constant and b is allowed to
vary. This is expressed more precisely in the following result.

Corollary

Starting from an optimal LP solution, the greatest reduction in the
number of misclassified points that can be obtained by holding x constant and

+
varying b cannot exceed Min (n {, n ;).
Proof. By the reasoning of the proof of Theorem 4, if b is increased,

» . . - +
the largest possible reduction in the number of misclassified pointsisn | —
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o .. . + + .
n p, which is at most n, (as well as at most as n ;). The corresponding

conclusion for decreasing b yields the result of the corollary.

The foregoing observations also make it possible to identify a value b
that minimizes the number of misclassified points subject to holding x at its
optimal LP value. That is, instead of relying on the worst case bound of the
corollary, we may apply a method that identifies precisely the amount of
reduction in misclassified points that is possible by shifting b and that further
identifies the value of b that achieves this reduction. The method is as
follows.

Method to Optimize b, Given x

0. Begin with 6* = nT +n ;, and perform the following steps for each

Grecup k, k = 1, 2, such that n; > 0. Upon termination, 6* will be the
minimum number of misclassified points.

1. Restrict attention to those i € Gy such that o > 0, and arrange these
in ascending order, reindexing for simplicity so that 1< o < ... < 0y,
wherer=n ;

2. Examine the o, i =1, 2, ..., T in sequence, considering in turn that o, <
Oh+1 (or such that h =r1).

a. Definebp=b=opfork=1andbp=b-oa,fork=2. If bis given

0
the value by, the number of misclassified pointsis O =nj +n2 - ng

+ Ap - h, where Ay, is the number of points Aj, fori € Gk, such that
0 < B < a.
+
b. If6h < 6%, let 6* = 6y, Stop for the current value of k if 6 -ny +h
> 0*; otherwise, return to Step 2a for the next value of h <r.

The stopping criterion of step 2b is based on the observation that the
v, . . . + .
number of positive & not yet examined is ny - h, and hence this number

represer.ts an upper limit on the possible decrease in 6. The justification of
the method derives from the logic underlying the proof of Theorem 4, from
which it follows that an optimal b value is identified as the one that yields 6*.
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It is natural to ask whether a connection between the LP and IP
formulations can be established that gives an indicaticn of the quality of the
LP solution for the IP problem in a more global sense, in contrast to the local
sense of holding x constant, while b varies. The fcllowing answers this
affirmatively.

Theorem 5

Assume that Group 1 and Group 2 have a meaningful separation and that
the normalization (N) is employed. Then there exists a finite positive U* such
that for all U > U*, the Min Sum LP formulation is a valid continuous

relaxation of the IP formulation (7) - (12) under the scaling o; = Uz, i e G.

Proof. Starting with the IP formulation and substituting a;/U for z;
causes equations (8) and (9) to become the same as zquations (2) and (3),
while equation (10) becomes o = 0 or U, which relaxes to 0 < a; £ U, for i
€ G. The objective (7) then becomes Minimize (1/U) ¥, aj, and, hence,

ieG
the Min Sum LP formulation with & < U, i € G, has the same set of optimal
solutions as the IP formulation upon relaxing z;=0or 1l t0o 0<z;<1,ie G.
The key is therefore to demonstrate the existence of U* such that the IP
formulation achieves its intended purpose of minimizing the number of

positive aj, while simultaneously assuring the relaxation is valid for all U =
%
? ‘Replace the objective of the Min Sum formulation by Minimize 3,
f(ay), where f(a) = 1 if o > 0 and f(ap) = 0 otherwise. This problem h;seacr;l
optimal solution x*, b*, a:, and B i*’ i € G, under normalization (N) with
all o* finite, and we can require that at least one of ai* and B: is 0 for all i.
(To see this, minimize 'ZS o for every subset S of G, holding aj = O for i
€ S. A smallest cardi:ljlity subset that has a feasible solution yields the
indicated finite solution.) Then for U* = Max(ai*: ie G) and any U = U*, the
solution determined by setting x = x*, b = b*, and a; = U if and only if a: >
0, is optimal for the Min Sum problem subject to the edded condition o; =0
or U. This follows from the fact that increasing a: and B: by the same

* *
amount, U — a; , for all i such that a; > 0, yields a solution that continues
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to satisfy all problem constraints and the normalization (N) without changing
*
x* and b*, giving an objective function value of U ¥ f(«; ). There cannot
ieG
be a better solution to the Min Sum problem subject to o; = 0 or U, using
(N), since by reversing the preceding derivation we would thereby obtain a
soluticn better than the one assumed optimal for the problem of minimizing
¥ flaj). The proof is completed by allowing U* to increase, if necessary,
ieG
so that the constraint o; < U*, i € G, is redundant for the Min Sum LP
formulation.
We note that the crucial aspect of the preceding theorem was to establish
the ability to choose any U 2 U*, something not possible with the P
normalization. In the case of the (N) normalization, we can additionally
replace U by positive values U; 2 o;* for each i € G, provided the objective
for the LP problem is correspondingly replaced by Minimize ¥ o;/U;j. (If
ieG
this is done, the relaxation theoretically may be tightened by adding the
constraints oj < Uj fori € G, yielding progressively better relaxations as Uj

is chosen closer to a:. However, approximate knowledge of a: values, and
of relative differences between them, is not typically possible.)

The proof of Theorem 5 in fact shows that the Min Sum solution, where
the bound U 2 «; is disregarded, yields a relaxation that cannot be improved
for all U that are at least as large as the maximum @ value in the LP solution.
If this value is no larger than U*, the Min Sum relaxation is as good as
choosing U = U*,

We now show that the IP problem can be solved without knowing (or
provisionally selecting) a value for U. Consider the process of solving the IP
problem by branch and bound, where an appropriate value of U is known. A

branch that sets z; = 1, or equivalently a; = U, replaces the associated
constraint by

Aix+Bi=b+U ifie Gy

Ax-Bi=b-U ifie Gp

For U large, the effect of this replacement is simply to make the
associated constraint redundant since ¢ is not a given weight in the objective
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function and takes any value necessary to product equality. Thus, in
particular, the branch of setting aj = U can be handled by removing the
associated constraint or simply by changing the objective function coefficient
of aj to 0, which also effectively makes the constraint redundant. (The latter
has the further advantage of allowing the branch and bound process to
continue by primary feasible postoptimization.) Accompanying this change,
the variable @ is replaced by the objective function by the constant term U.
Recording this modified form of the objective can be simply a bookkeeping
formality, with no need to give a value to U.

It may also be noted that the proof of Theorem 5 implies that the Min
Sum objective in fact can be replaced by any other that weights all a;
positively, still yielding a valid relaxation of the IP problem for some set of
Uj values. This observation leads to the possibility of a postoptimizing
strategy for modifying the LP objective function coefficients to come closer to
minimizing the number of positive o;. One approach for doing this is as
follows.

Postoptimizing Heuristic to Minimize the
Number of Misclassifications

1. Replace the objective for the Min Sum LP problem by

Minimizing 3, hj &, where all hj are chosen to be positive
ieG

(e.g., initially Iet all h; = 1), and solve the resulting LP problem.

2. If the current LP solution yields a smaller number of positive ¢
values than any solution so far, record this as the best candidate
solution. (The first solution is automatically recorded as such a
candidate.)

3. Ifhjoj=0forallie G, the method terminates. Otherwise, select
hpap = Max(hjai: i € G), and set hp=0.

4. Postoptimize to solve the resulting LP problem, and retum to
step 2.

The motivation for this procedure is that x; = 0 must result for all i such
that h; > 0 if such a solution is feasible. The variable oy may be viewed as
one that most strongly resists being driven to 0. Hence, hp is set to 0, forcing
remaining variables o to 0. After the procedure terminates the strategy can be
reversed by choosing o, to be the smallest positive j such that hj = 0, if any
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exist, and by making hp positive. (If the process is repeated a few steps
beyond where improvement results, then the original strategy can be activated
once again.) The method can be coupled with the earlier method for
optimizing b, given x.

In applying the procedures of this section, it should be remembered that
the Min Sum formulation may give a weight of n2 to points of G} and a
weight of nj to points of G; to create an equal representation relative to size,
and the case of duplicate points can cause the h;j values to vary in additional
ways. The foregoing discussion of the Min Sum model applies to all of these
cases under the interpretation that h; = the number of times (possibly
fractional) that point i occurs. Then, in the heuristic for minimizing the
number of misclassifications, candidate solutions are evaluated by reference

to the sum of these original h; values over those { such that oj > 0. A

corresponding observation applies to the solution of IP problems where the h;
values represent costs of misclassification.

A SUCCESSIVE GOAL APPROACH

A particularly significant use of the model results by a successive
application employing hierarchically weighted deviation terms, which were
proposed for its early special cases consisting of the MMD and MSD forms in
Freed and Glover (1981 and 1987) and which can now be implemented
without distortion by reliance on (N). The relevance of the IP results to this
process derives from the fact that each stage involves a valid relaxation of a
corresponding IP formulation. Such an approach is applicable to settings
where multiple groups are to be differentiated or where two groups are treated
as multiple groups by redefining subsets of points improperly classified at
one stage of the application as new groups to be differentiated at the next. For
the multiple group case, any subset of groups can be defined to be Group 1
and the remaining subset defined to be Group 2, thus encompassing
alternatives ranging from a binary tree form of separation to a "one-at-a-time"
form of separation.

By this approach, when the two currently defined groups are
incompletely separated at a given stage, the hyperplane dividing them may be
shifted alternately in each direction (increasing and decreasing b) by an
amount sufficient to include all points of each respective group. (The
magnitude of the two shifts will be the same for the MMD model, which
minimizes both the maximum value and the sum of these shifts.) Upon
identify.ng the shift for a given group, all points of the alternate group that lie
strictly beyond the shifted hyperplane boundary become perfectly
differentiated by this means, and such perfectly differentiated points can be
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segregated from the remaining points before applying the next stage. The
number of stages devoted to creating perfect separation (before accepting the
current hyperplane, without shifting) is a decision parameter of the process.

It is important in such a process, if a superior set of differentiating
hyperplanes is sought, to retain points in the model that have been segregated
as perfectly differentiated, rather than dropping thém from consideration
during subsequent stages. To reflect the fact that these segregated points
should not inhibit the goal of differentiating among remaining points, their
deviation terms are assigned objective function weights that are hierarchically
of a lower order than are those assigned to points not yet segregated. The
relative magnitudes of these lower order weights may reasonably be scaled to
become progressively smaller for points segregated earlier in time. (In
addition, to reduce problem size, a subset of the points most recently
segregated may be discarded at each stage, where this subset is identified to
consist of points lying beyond a chosen magnified shift of b. It is easy to
shift b, for example, to a depth that excludes any selecied percentage of most
recently segregated points belonging to a specified group.)

We call this approach the successive goal method because the
introduction of hierarchical differences in deviation weights, with diminishing
weights for points segregated earlier, constitutes a natural partitioning of
problem points into subset by reference to prioritized goals. Furthermore, the
ability to manipulate weights within a given goal level (or to split out
additional hierarchies) makes it possible to treat the two groups of points that
remain unsegregated at a given stage in a nonsymmetri¢: manner.

This leads to an approach that characteristically is able to generate a
stronger set of hyperplanes, at the expense of approximately doubling the
overall computational effort. The basis of this nonsymmetric approach rests
on creating successive objectives to exclude a maximum segment of one
group from a region that contains all of the others in a series of alternating
hierarchies.

The alternating hierarchy method that results has tte property of adapting
successive hyperplanes to more closely match the distributions of the groups
and generally increases the frequency with which ezrlier hyperplanes are
permitted to be discarded as redundant. The procedure consists of solving
two problems at each stage. Each of the two groups of currently unsegregated
points is chosen in turn to be the one that lies completely within the region
assigned to it by the current hyperplane, with the associated (subordinate)
goal of excluding the maximum portion of the other group from this region.

The structure of the goals for each problem gives rise to the "alternating
hierarchy"” characterization of this procedure. Specifically, we adopt the
conviction that the group to be completely contained in its assigned region is
always designed to be Group 1. Then the problem goals are ordered as
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follows. At the highest level, only the external deviations of unsegregated
Group 1 points are incorporated into the objective (which is equivalent to
imposing the condition Ajx < b for these points). At the next level, the
external deviations of unsegregated Group 2 points are assigned
corresponding lower-order weights in the objective, thus respecting the
dominance of the level preceding. For the points of this second level, the b
term is replaced by b + € to seek strict separation. (Alternatively, a restricted
Bo variable, which appears only in the equations for the second-level points,
may be ircorporated with a positive weight.) At the third and fourth levels,
respectively, external deviations of segregated Group 1 and Group 2 points
receive weights reflecting their associated position in the hierarchy (or a
single third level may treat these segregated points uniformly). Finally, two
concluding levels incorporate internal deviations of both groups, first for
unsegregated points and then for segregated points. These last levels are
relevant to enhancing the differentiation between those groups, which are in
fact separable, and may be expected to have diminished relevance after
generating the first few hyperplanes.

The portion of unsegregated Group 2 points that are perfectly
differentiated from unsegregated Group 1 points at a given stage, and hence
that can join the set of segregated points in the stage following, may vary
sutstantially depending on which group is chosen to be Group 1. In fact, one
of the two choices for Group 1 may fail to differentiate any of the
unsegregated Group 2 points (i.e., all such points may lie in the half space
required to include the unsegregated Group 1 points). When the sets of points
differentiated by the two choices differ significantly in size, the smaller set
can be excluded form joining the segregated points on the next stage—an
exclusion that, in effect, will occur automatically if the smaller set is empty. If
both sets are empty, the process stops. Because of the alternating dominance
of the two groups in each of the problems solved, no shifting of hyperplanes
is needed in this approach. (For added refinement, after a forward pass of
generating a selected set of hyperplanes, a reverse pass can be applied to
improve the differentiation.)

From a practical standpoint, the hierarchical levels of this approach can
be handled with greater efficiency by dividing the solution process into
stages. At the first stage, attention is restricted to the objective function
associated with the highest level until that objective is optimized. Then,
following a process analogous to that employed by Phase 1/Phase 2 LP
methods, nonbasic variables with nonzero reduced costs are fixed at their
current values, and the objective appropriate to the next level is introduced
and optimized. The process repeats until all levels are treated or all remaining
basic variables receive fixed values (thus implicitly determining solutions for
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levels not yet examined). This approach requires notably less computational
effort than an implementation which relies on large voefficient differences to
control the treatment of hierarchies. Independent of implementation details,
the approach provides an opportunity to achieve progressively improved
differentiation of the original group in both the two-group and the multiple-
group cases and opens up interesting research possibilities for determining
the best subset of points to be segregated at each stage.

CONCLUSIONS

The LP discriminant analysis formulation (1) - (6) is susceptible to a
variety of uses as a result of the ability to handle different discriminant
analysis goals by varying the coefficients of the objective function. Such uses
range from accommodating inherent differences in the need to classify
specific points correctly to employing strategies for producing greater
refinement in classification (as by the successive goal method).

Among the settings of practical relevance, situations in which there are
real dollar costs for misclassifications can be modeled in a natural and highly
appropriate manner by such a model. Many applications gain additional
realism by an integer programming interpretatior. The fact that the LP
formulation employing the normalization (N) is a direct relaxation of the
corresponding IP problem, and lends itself to convenient strategies for
closing potential gaps between LP and IP solutions, zives further motivation
for using this type of model. Related forms of postoptimizing strategies can
be applied to achieve additional goals, such as diminishing the effects of
outliers (whose identities are disclosed by the initial solution) without the risk
of being driven to "wrong solutions" when objective function coefficients are
thereby modified.

Postoptimization is also useful in the "€ version" of the model to identify
values of the € that yield different separation effects. In particular, this model
version is equivalent to introducing a translation of the B, variable by the
lower bound Po 2 €. Thus, standard sensitivity analysis on the LP solution
with By, included in the model can precisely determining the outcome of

increasing P, hence €, up to the point where a new optimal basis results,
and a postoptimization step can then move to this new basis, allowing the
analysis to repeat for larger € values. Such a mapping of the effects of
different € values provides an interesting area for optimization, and has been
studied in the context of international loan portfolios in Glover, Keene, and
Duea, 1988.
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From another perspective, the ability to weight the internal and external
deviations differently for different points, and to encompass tradeoffs
between such deviations and "minmax" and "maxmin" objectives, provides a
direct way to handle issues that are often troubling in classical discriminant
analysis. A prominent example is the type of problem in which Type I and
Type Il errors deserve different emphasis. As pointed out in Mahmood and
Lawrence (1987), in the context of identifying firms that succumb to
bankruptcy, it may be more important to be assured that a firm classed as
financially strong will in fact escape bankruptcy than to be assured that a firm
classed as financially weak will become insolvent.

Indeed, by the capacity to giver higher weights to firms that are
dramatically successful and unsuccessful, the LP formulation will tend to
position the "sure bets" more deeply inside their associated half spaces. The

" advantage of this is that it provides increased predictive accuracy: instead of

investing in a business simply on the basis of whether discriminant analysis
classifies it as financially strong or financially weak, greater confidence may
be gained by investing in a firm that lies well within the financially strong
region. The successive goal method provides an opportunity to additionally
improve the discrimination in such cases. By the ability to remove distortion
with the normalization (N), the uses of different objective function
coefficients that underlie these approaches can be applied consistently and
effectively.

NOTE

This chapter was prepared based on the author's earlier article, "Improved
Linear Programming Models for Discriminant Analysis,” in Decision Sciences,
Volume 21, Number 4, Fall 1990, pp. 771-785, by elaborating on several
aspects of the paper in further detail and adding new results on integer
programming models for discriminant analysis.

REFERENCES

Bajgier, S. M., and Hill, A. V,, "An Experimental Comparison of Statistical
and Linear Programming Approaches to the Discriminant Problem," Decisior
Sciences 13, no. 4 (October 1982); 604-618.

Bobrowski, L., "Linear Discrimination with Symmetrical Models," Pattern
Recognition 19, no. 1 (1986): 101-109.




Improved Linear and Integer Programming Models 395

Charnes, A., Cooper, W. W., and Rhodes, E., "Evaluating Program and
Managerial Efficiency: An Application of Data Envelopment Analysis to
Program Follow Through," Management Science 27 (1981): 668-687.

Freed, E. (Ned), and Glover, F., "Simple but Powerful Goal Programming
Models for Discriminant Problems,” European .Journal of Operational
Research 7, no. 1 (May 1981): 44-60.

Freed, E. (Ned), and Glover, F., "Resolving Certain Difficulties and
Improving the Classification Power of the LP Discriminant Analysis Procedure,”
Decision Sciences 17 (1987): 589-595.

Glover, F., Gordon, K., and Palmer, M., "LP Discriminant Analysis for
International Loan Portfolio Management," CAAI 89-3, University of Colorado,
April 1989.

Glover, F., Keene, S., and Duea, B.,, "A New Class of Models for the
Discriminant Problem,"” Decision Sciences 19 (1988): 269-280.

Jurs, P. C., "Pattern Recognition Used to Investizate Multivariate Data in
Analytical Chemistry," Science 232, no. 6 (June 1986): 1219-1224,

Kazmier, L., Statistical Analysis for Business and Zconomics, McGraw Hill,
New York, 1967.

Mahmood, M. A., and Lawrence, E. C., "A Ferformance Analysis of
Parametric and Nonparametric Discriminant Approaches to Business Decision
Making," Decision Sciences 19, no. 2 (Spring 1987): 308-326.

Markowski, E. P., and Markowski, C. A., "Some Difficulties and
Improvements and Applying Linear Programminz Formulations to the
Discriminant Problem," Decision Sciences 16, no. 3 (Summer 1985): 237-247.

Spurr, W., and Bonini, C., Statistical Analysis for Business Decision,
Richard D. Irwin, Homewood, IL, 1967.

Tou, J. T., and Gonzalez, R. C., Pattern Recognition Principles, Addison-
Wesley, Reading, MA, 1974,

Watanabe, S. Methodologies of Pattern Recognition, Academic Press, New
York, 1969.




