
Local Search and Metaheuristics

for the Traveling Salesman Problem1

César Rego and Fred Glover

Hearin Center for Enterprise Science, School of Business Administration, Uni-
versity of Mississippi, MS 38677. {crego, fglover}@bus.olemiss.edu

1 Background on Heuristic Methods

The Traveling Salesman Problem (TSP) is one of the most illustrious and ex-
tensively studied problems in the field of Combinatorial Optimization. Covering
just the period from 1993 to mid-2001 alone, the web databases of INFORMS
and Decision Sciences report more than 150 papers devoted to the TSP. The
problem can be stated in graph theory terms as follows. Let G = (V, A) be a
weighted complete graph, where V = {v1, . . . , vn} is a vertex (node) set and
A = {(vi, vj)|vi, vj ∈ V, i �= j} is an edge set. C = [c(vi, vj)] is a n ∗ n matrix
associated with A, where c(vi, vj) is a non-negative weight (distance or cost) on
edge (vi, vj) if there is an edge between vi and vj . Otherwise c(vi, vj) is infinity.

The problem is said to be symmetric (STSP) if c(vi, vj) = c(vj , vi) for all
(vi, vj) ∈ A, and asymmetric (ATSP) otherwise. Elements of A are often called
arcs (rather than edges) in the asymmetric case. The STSP (ATSP) consists
of finding the shortest Hamiltonian cycle (circuit) in G, which is often simply
called a tour. In the symmetric case, G is an undirected graph, and it is common
to refer to the edge set E = {(vi, vj)|vi, vj ∈ V, i < j} in place of A. The version
of STSP in which distances satisfy the triangle inequality (c(vi, vj)+ c(vj, vk) ≥
c(vi, vk) for all distinct vi, vj , vk ∈ V) is perhaps the most-studied special case
of the problem, notably including the particular instance where V is a set of
points in a 2-dimensional plane and c(vi, vj) is the Euclidean distance between
vi and vj .

Important variants and extensions of the TSP arise in the setting of vehicle
routing (see Laporte and Osman [48]). A variety of other interesting problems
not directly related to routing can also be modeled as TSPs, as is shown in the

1To appear in The Traveling Salesman Problem and its Variatons, G. Gutin and A. Pun-
nen, eds., Kluwer Academic Publishers, 2002. (A complete list of the book chapters is provided
in appendix.)

1

survey of Laporte [47]. Distances or costs that are symmetric and satisfy the
triangle inequality are predominantly encountered in such applications. This
chapter mainly deals with the STSP and for the sake of simplicity we will
generally refer to the problem as the TSP.

The TSP can be formulated as an integer linear programming (ILP) model,
and a number of exact algorithms are based on such a formulation. However,
there are also some advantages to representing the TSP directly as a permuta-
tion problem without transforming it into an ILP, and we will focus on such a
direct representation. Let π denote a cyclic permutation mapping so that the
sequence i, π(i), π

2
(i), . . . , π

n−1
(i) for i ∈ N = {1, . . . , n} identifies a permutation of

the elements of N , where πn
(i) = i. Let Π be the set of all such mappings. Thus,

solving a particular instance of the TSP consists of finding a cycle permutation
(tour) π∗ ∈ Π such that

n−1∑
i=1

ciπ∗
(i)

= min
π∈Π

n−1∑
i=1

ciπ(i)

The TSP is one of the classical instances of an NP-complete problem, and
therefore there is no polynomial-time algorithm able to determine π∗ for all pos-
sible instances of the problem (unless P=NP). Perhaps because of the simplicity
of its statement the TSP has been a key source of important developments in
NP-completeness theory (see e.g., Johnson and Papadimitriou, 1985). It has
also been the subject of several polyhedral studies (see Chapters 3 and 4). As
a result, although P=NP continues to be an improbable hypothesis, and hence
a polynomial-time algorithm for the TSP is not likely to be discovered, current
specialized TSP optimization codes have been solving general TSP instances
involving about three-thousand vertices. Specifically, the Concorde package of
Applegate, Bixby, Chvatal and Cook [1] solved all instances up to 3200 cities in
the 8th DIMACS TSP Challenge testbed (Johnson, McGeoch, Glover, and Rego
[41]) using its default settings, except one 3162-city random uniform Euclidian
instance for which non-default twiddling was necessary to find the optimal tour.

State-of-the-art exact solution methods (which guarantee an optimal solu-
tion if run long enough) can typically solve problems involving about 1000 ver-
tices in reasonable computation time, but encounter significant difficulties in
solving larger problems, where they generally require computational effort that
exceeds the realm of practicality. Even for modest-size problems, exact methods
require substantially greater computation time than the leading heuristic meth-
ods, which in addition are capable of finding optimal or very-close-to-optimal
solutions for instances far larger than those reasonably attempted by exact meth-
ods. An extensive empirical analysis of computational results and algorithmic
performance for several classes of TSP heuristics is described in Chapter 9.

The aim of this chapter is to present an overview of classical and modern local
search procedures for the TSP and discuss issues involved in creating more effi-
cient and effective algorithms. Heuristic algorithms for the TSP can be broadly

2

divided into two classes: tour construction procedures, which build a tour by
successively adding a new node at each step; and tour improvement procedures,
which start from an initial tour and seek a better one by iteratively moving
from one solution to another, according to adjacency relationships defined by
a given neighborhood structure. (Specialized tour construction heuristics are
treated in Chapter 9.) Combined, such approaches yield composite procedures
that attempt to obtain better solutions by applying an improvement procedure
to a solution given by a construction procedure. Often, the success of these
algorithms depends heavily on the quality of the initial solution. Iterated vari-
ants of construction and improvement procedures provide a natural means of
elaborating their basic ideas, as subsequently discussed.

Recent Developments in Overview. Recent progress in local search meth-
ods has come from designing more powerful neighborhood structures for gen-
erating moves from one solution to another. These advances have focused on
compound neighborhood structures, which encompass successions of interdepen-
dent moves, rather than on simple moves or sequences of independent moves. On
the other hand, the more sophisticated neighborhood structures entail greater
numbers of operations, and therefore an increased effort to perform each step
of the algorithm. Thus, several studies have investigated strategies to combine
neighborhoods efficiently, and thereby reduce the computational effort of gen-
erating trajectories within them. These methods are generally variable depth
methods, where the number of moves carried out at each iteration is dynami-
cally determined, and usually varies from one iteration to the next. A common
characteristic of these methods is a look ahead process where a relatively large
sequence of moves is generated, each step leading to a different trial solution, and
the compound move that yields the best trial solution (from the subsequences
beginning with the initial move) is the one chosen. Two types of variable depth
neighborhood structures have become prominent:

(1) connected neighborhood structures as represented by:

a. Variable Neighborhood Search (VNS) (Mladenović and Hansen [53],
Hansen and Mladenović [36, 35]),

b. Sequential Fan (SF) methods (Glover and Laguna [30]),

c. Filter and Fan (FF) methods (Glover [27]);

(2) disconnected neighborhood structures as represented by:

a. Lin-Kernighan (LK) methods (Lin and Kernighan [50]),

b. Chained and Iterated LK methods (Martin, Otto and Felten [51], John-
son and McGeogh [40], Applegate, Cook and Rohe [3]),

c. Ejection Chain (EC) methods (Glover [24], [25]).

In the TSP setting, connected neighborhood procedures are exemplified at a
simple level by classical k-opt and Or-opt methods which keep the Hamiltonian

3

(feasible tour) property at each step. Variable depth methods of these types
consist of component moves that directly link one tour to the next, thus gener-
ating streams of moves and associated trial solutions. Conversely, the LK and
EC methods consider sequences of moves that do not necessarily preserve the
connectivity of the tour, although they enable a feasible tour to be obtained as
a trial solution by performing an additional move. Apart from this common-
ality, Lin-Kernighan and Ejection Chains differ significantly in the form of the
intermediate (disconnected) structures that link one move to the next in the se-
quence. LK methods rely on a Hamiltonian path as an intermediate structure,
while EC methods embrace a variety of intermediate structures, each accompa-
nied by appropriate complementary moves to create feasible trial solutions. The
Lin-Kernighan procedure is described in Section 2.2. Ejection chains structures
and the moves that join and complement them are elaborated in Section 2.3,
followed by advanced variable depth methods in Section 2.4.

Local Search and Meta-Heuristic Approaches. Local search techniques
(which terminate at a local optimum) and associated meta-heuristic strategies
(which modify and guide local techniques to explore the solution space more
thoroughly) have been the focus of widespread scientific investigation during
the last decade. For more than twenty years two main ”meta models” for
heuristic techniques have been ascendant: those based on “single stream” tra-
jectories, and those based on “multiple stream” trajectories, where the latter
seek to generate new solutions from a collection (or population) of solutions.
The distinction is essentially the same as that between serial and parallel algo-
rithms, with the allowance that population-based methods can also be applied in
a serial manner, as in a serial simulation of a parallel approach. Consequently,
as may be expected, there are some overlaps among the best procedures of
these two types. Traditionally, however, population-based methods have often
been conceived from a narrower perspective that excludes strategies commonly
employed with single stream methods. Thus, more modern approaches that
embody features of both methods are often called hybrid procedures.

Some of the methods discussed in this chapter have fairly recently come
into existence as general purpose methods for a broad range of combinatorial
optimization problems, and have undergone adaptation to provide interesting
specializations for the TSP. This manifests one of the reasons for the enduring
popularity of the TSP: it often serves as a “problem of choice” for testing new
methods and algorithmic strategies.

The remainder of this chapter is organized as follows. Section 2 presents clas-
sical and more recent improvement methods that have proven effective for the
TSP. It also discusses several special cases of neighborhood structures that can
be useful for the design of more efficient heuristics. Section 3 gives an overview of
the tabu search metaheuristic, disclosing the fundamental concepts and strate-
gies that are relevant in the TSP context. Section 4 extends the exploration of

4

metaheuristics to the description and application of recent unconventional evo-
lutionary methods for the TSP. Section 5 presents some concluding observations
and discusses possible research opportunities.

2 Improvement Methods

Broadly speaking, improvement methods are procedures that start from a given
solution, and attempt to improve this solution by iterative change, usually by
manipulating relatively basic solution components. In graph theory settings,
depending on the problem and the type of algorithm used, these components can
be nodes, edges, (sub)paths or other graph-related constructions. We consider
three classes of improvement methods according to the type of neighborhood
structures used:

(1) constructive neighborhood methods, which successively add new components
to create a new solution, while keeping some components of the current
solution fixed. (These include methods that assemble components from
different solutions, and methods that simply choose different parameters
of a construction procedure using information gathered from previous it-
erations.)

(2) transition neighborhood methods, usually called local search procedures,
which iteratively move from one solution to another based on the defi-
nition of a neighborhood structure.

(3) population-based neighborhood methods, which generalize (1) and (2) by
considering neighborhoods of more than one solution as a foundation for
generating one or more new solutions.

In this section we focus our discussion on the second class of improvement
methods and specifically on those that are either considered classical or the core
of the most efficient TSP algorithms known to date.

For the following development we assume a starting TSP tour is given and
is recorded by identifying the immediate predecessor and successor of each node
vi, which we denote respectively vi− and vi+.

2.1 Basic Improvement Procedures

Fundamental neighborhood structures for the TSP (and for several other classes
of graph-based permutation problems) are based on edge-exchanges and node-
insertion procedures. Classical procedures of these types are the k-exchange
(Lin [49]) and the Or-insertion (Or [55]) which also form the core of several
more advanced procedures covered in the next sections. Before describing the
various neighborhood structures underlying these two classes of procedures, it

5

is appropriate to note that the concept of local optimality has a role in the
nomenclature of k-Opt and Or-Opt – terms sometimes used inappropriately
in the TSP literature. In a local search method a neighborhood structure is
introduced to generate moves from one solution to another and, by definition, a
local optimum is a solution that can not be improved by using the neighborhood
structure under consideration. Accordingly, a local optimum produced by an
improvement method using k-exchanges or Or-insertion yields what is called a
k-optimal (k-Opt) or a Or-optimal (Or-opt) solution, respectively.

2.1.1 k-exchange Neighborhoods

The terminology of k-exchange neighborhoods derives from methods initially
proposed by Lin [49] to find so-called “k-opt” TSP tours. The 2-exchange (2-
opt) procedure is the simplest method in this category and is frequently used in
combinatorial problems that involve the determination of optimal circuits (or
cycles) in graphs. This includes the TSP and its extensions to the wider classes
of assignment, routing and scheduling problems.

The 2-opt procedure is a local search improvement method, and a starting
feasible solution is required to initiate the approach. The method proceeds by
replacing two non-adjacent edges (vi, vi+) and (vj , vj+) by two others (vi, vj)
and (vi+, vj+), which are the only other two edges that can create a tour when
the first two are dropped. In order to maintain a consistent orientation of the
tour by the predecessor-successor relationship, one of the two subpaths remain-
ing after dropping the first two edges must be reversed. For example, upon re-
versing the subpath (vi+, . . . , vj) the subpath (vi, vi+, . . . , vj , vj+) is replaced by
(vi, vj , . . . , vi+, vj+). Finally, the solution cost change produced by a 2-exchange
move can be expressed as ∆ij = c(vi, vj) + c(vi+, vj+) − c(vi, vi+) − c(vj , vj+).
A 2-optimal (or 2-opt) solution is obtained by iteratively applying 2-exchange
moves until no possible move yields a negative ∆ value.

The 2-opt neighborhood process can be generalized to perform k-opt moves

that drop some k edges and add k new edges. There are
(

n
k

)
possible ways to

drop k edges in a tour and (k−1)!2k−1 ways to relink the disconnected subpaths
(including the initial tour) to recover the tour structure. For small values of
k, relative to n, this implies a time complexity of O(nk) for the verification
of k-optimality, and therefore the use of k-opt moves for k > 3 is considered
impractical unless special techniques for restricting the neighborhood size are
used. (To date, k = 5 is the largest value of k that has been used in algorithms
for large scale TSPs.) We now summarize some of the main advances in the
design of more efficient k-opt procedures.

6

2.1.2 Special Cases of k-opt Neighborhoods

A useful observation for implementing restricted k-opt moves is that any k-opt
move for k > 2 is equivalent to a finite sequence of 2-opt moves, assuming
the graph is fully dense. (This is a result of the easily demonstrated fact that
in such a graph any tour can be transformed into any other by a succession
of 2-opt moves.) Consequently, if no sequence of k consecutive 2-opt moves
can improve the current tour, then it is also a k-optimal tour. However, the
reverse is not necessary true – i.e. a tour can be k-optimal, but obviously there
may exist a sequence of k successive 2-opt moves that reduces the length of
the tour (since every tour can be reached in this way in a fully dense graph).
Thus, a comparative analysis of neighborhoods with successive k values provides
a foundation for designing more efficient k-opt procedures by restricting the
attention to moves that are not included within (k − 1)-opt neighborhoods.

By direct analogy to the 2-opt move, a 3-opt move consists of deleting three
edges of the current tour (instead of two) and relinking the endpoints of the re-
sulting subpaths in the best possible way. For example, letting (vi, vi+), (vj , vj+)
and (vk, vk+) denote the triplet of edges deleted from the current tour, two of
the seven possible ways to relink the three subpaths consist of (1) creating edges
(vi, vj+), (vk, vi+), and (vj , vk+); and (2) creating edges (vi, vj), (vj+, vk+), and
(vi+, vk).

An important difference between these two possibilities to create 3-opt moves
is that the orientation of the tour is preserved in (1), while in (2) the subpaths
(vi+, . . . , vj) and (vj+, . . . , vk) have to be reversed to maintain a feasible tour
orientation. The cost of a 3-opt move can be computed as ∆ijk, the sum of the
costs of the added edges minus the sum of the costs of the deleted edges, where
a negative ∆ represents an improving move. Generically, similar computations
and conditions for reversing subpaths result for any k-opt move.

Another way to reduce the time complexity of 3-opt moves comes from the
observation that a 2-opt move is a special case of a 3-opt move in which a deleted
edge is added back to relink a subpath. Consequently, three of the seven possible
3-opt moves correspond to 2-opt moves. Thus, if the tour is already 2-optimal,
then these three types of 2-exchange moves need not be checked in the 3-opt
process. An additional class of 3-opt moves can be obtained as a sequence of
two (non-independent) 2-opt moves. This special case may occur when an edge
inserted by the first 2-opt move is deleted by the application of the second 2-opt
move. Three other 3-opt moves fall into this special case. Figure 1 illustrates
one of these possibilities, applied to the TSP tour given in Figure 1A. The 3-
opt move is represented in Figure 1B where the symbol e0 is used to label the
edges deleted by the move. Similarly, Figure 1C illustrates the application of
two successive 2-opt moves where e0 and e1 are the edges deleted by the first
and the second application of the move. Note that edge e1 is one of the edges
added by the first application of the 2-opt move. Figure 1D represents the TSP

7

tour that results from the application of either the 3-opt move or the indicated
sequence of two 2-opt moves.

e0

i

i+

j+
k

k+

e0

e0

j

(A)

j

i

i+

j+
k

k+
j

e0

i

i+

j+
k

k+

e0

e1

e1

(B)

(C) (D)

Figure 1: 3-opt obtained by two successive 2-opt moves.

The foregoing observations indicate that out of the seven possible 3-opt
moves only one requires a sequence of three 2-opt moves, so that only a very

small fraction of the
(

3
k

)
possible combinations need to be considered. Also,

as described in Christofides and Eilon [14] a 4-opt neighborhood (which involves
47 possible 4-opt moves) includes six 2-opt moves, sixteen sequences of two 2-
opt moves, and twenty-five sequences of three 2-opt moves. Consequently, the
consideration of sequences of three 2-opt moves derived from interconnecting
restricted 2-opt moves in successive levels is sufficient to ensure the tour is 4-
optimal. In contrast, the determination of a 5-optimal tour requires examination
of a sequence of at least five 2-opt moves, yielding significantly more combina-
torial possibilities than the sequences of three 2-opt moves required by 3-opt

8

and 4-opt neighborhoods. This provides an indication of the relatively greater
advantage of 5-opt neighborhoods over 4-opt neighborhoods when compared to
the advantages of 4-opt over 3-opt, as demonstrated by Christofides and Eilon
[14] and more recently by Helsgaun [39]. A multi-stage 2-opt approach appears
particularly useful to implement variable depth methods, as discussed in Section
2.4.

2.1.3 Special Cases of Insertion and k-Opt Neighborhoods

Another useful relationship emerges from the comparative analysis of k-opt
moves relative to several classes of insertion moves. We define two basic types
of node-based moves within the TSP setting:

(1) node insertion moves : a selected node vi is inserted between two adjacent
nodes vp and vq in the tour by adding edges (vp, vi), (vi, vq), (vi−, vi+)
and dropping edges (vp, vq), (vi−, vi), (vi, vi+).

(2) node exchange moves : two nodes vi and vj exchange positions by adding
edges (vi−, vj), (vj , vi+), (vj−, vi), (vi, vj+) and dropping edges (vi−, vi),
(vi, vi+), (vj−, vj), (vj , vj+). An exception occurs if (vi, vj) is an edge of
the tour, in which case the move is equivalent to inserting vi between vj

and vj+ (or inserting vj between vi− and vi).

Or-Opt Neighborhoods and Extensions. A generalization of the foregoing
node-based neighborhoods consists of extending these processes to insert and
exchange sequences (or subpaths) of consecutive edges in the tour. By treating
subpaths as if they were nodes this generalized process can be implemented
using operations similar to the ones defined for the node insertion/exchange
moves.

Two classical methods that seek to reduce the complexity of the 3-opt proce-
dure are Bentley’s 2.5-opt and Or-opt (Or [55]). 2.5-opt is an extension of the 2-
opt procedure that considers a single-node insertion move when 2-opt fails to im-
prove (Bentley [6]). The Or-opt heuristic proceeds as a multi-stage generalized
insertion process, which starts by considering the insertion of three-node sub-
paths (between two adjacent nodes) and then successively reduces the process
to insert two-node subpaths (hence edges) and finally to insert single nodes,
changing the type of move employed whenever a local optimum is found for the
current neighborhood. Note that node-insertion and edge-insertion moves are
special cases of 3-opt moves when a subpath between two dropped edges of the
3-opt move consists of just one node or edge, respectively. Also, as mentioned
before, most 3-opt moves do not preserve the orientation of the tour. Now, it
is easy to see that the Or-opt procedure restricts the 3-opt neighborhood to a
subclass of moves that preserves the current tour orientation. The time com-
plexity of this procedure is O(n2). However, while the Or-opt neighborhood

9

has proved relatively efficient when applied to some constrained traveling sales-
man and vehicle routing problems, the procedure does not appear to present a
competitive advantage when compared to efficient implementations of the 3-opt
procedure. (Chapter 9 provides details on efficient implementations of 3-opt.)
A possible enhancement of the classical Or-opt procedure arises from a gener-
alization based on an ejection chain framework, as we discuss in Section 2.3.2.
Such a generalization gives the procedure the ability to create a variable depth
neighborhood search similar to the one the Lin-Kernighan procedure performs
with classical k-opt moves.

Constructive/Destructive Neighborhoods for Restricting k-opt Moves.
Gendreau, Hertz, and Laporte [19] propose a generalized insertion procedure
(GENI) which may be viewed as a combination of single-node insertion moves
with 4-opt and 5-opt moves. GENI is used in the constructive phase of their
GENIUS algorithm to create a starting tour, beginning from an arbitrary cycle
of 3 vertices. The alternating use of GENI with its reverse procedure (destruc-
tively removing nodes from the tour) forms the basis of the String/Unstring
(US) neighborhood structure used in the local search phase of the GENIUS
algorithm. Thus, the successive application of Unstring and String creates a de-
structive/constructive type of neighborhood structure that typically generates
restricted forms of 8-opt, 9-opt, and 10-opt moves. The process can be viewed
as a one-step (unit depth) strategic oscillation (see Section 3.3).

The destructive Unstring neighborhood structure removes a vertex from
the current tour by replacing k edges by k − 1 other edges for k = 4 or 5.
Figure 2 depicts an example of the Unstring process where node vi is removed
from the tour. In the figure, diagrams A and C represent the initial tours
to apply an Unstring process with k = 4 and k = 5, respectively. Diagrams
B and D represent the resulting subgraphs after applying the Unstring move,
which removes the edges labeled “e” and relinks the respective subpaths as
illustrated. In this procedure, edges defined by nodes identified with different
letters generically represent subpaths having these nodes as their endpoints.

String is a constructive neighborhood structure that reverses the operations
of the Unstring procedure to insert a disconnected vertex vi between two other
vertices (not necessarily consecutive in the tour) by replacing k edges by k + 1
other edges for k = 3 or 4. Figure 2 illustrates String moves for k = 3 and
k = 4 by following the diagrams in the order from B to A and from D to C,
respectively.

Recent Results on Restricting k-Opt Neighborhoods. Useful results
for reducing computation required by k-opt procedures are provided by Glover
[26] and Helsgaun [39]. Glover’s paper shows that the best move from a sub-
collection of 4-opt moves (which embraces all 2-opt moves, an additional class of

10

(A)

i+
eiei

i-

i

j+

j

z z+

ej

i+
eiei

i-

i

j-

j

w w+

z+

z

ej ez

ew

i+
i-

i

j-

j

w w+

z+

z

ez

i+
i-

i

j+

j

z z+

(C) (D)

(B)

Figure 2: The String/Unstring Neighborhood Structure

11

3-opt moves, and two principal classes of 4-opt moves) can be found in the same
order of time required to find a best 2-opt move. The method is based on an
acyclic shortest path model underlying the creation of dynamic alternating paths
and cycles generated by an ejection chain framework as discussed in Section 2.3.
The use of ejection chains to generate special forms of alternating paths and
cycles also proves useful in the implementation of the stem-and-cycle ejection
chain method described in Rego [59] and discussed in Section 2.3.3. Helsgaun
considers the use of 5-opt moves to replace 2-opt moves in the basic step of
the classic implementation of the Lin-Kernighan (LK) procedure as discussed in
Section 2.2. In Helsgaun’s particular variant of the LK procedure 5-opt moves
are made computationally practicable by restricting the possible alternatives
using special candidate lists, in this case augmenting a “close-by neighbor” list
to include additional nodes identified by solving Lagrangean relaxations over
minimum spanning tree (1-tree) relaxations as introduced by Held and Karp
([37, 38]).

2.2 The Classical Lin-Kernighan Procedure

The Lin-Kernighan (LK) procedure (Lin and Kernighan [50]) is a strategy for
generating k-opt moves where the value of k is dynamically determined by per-
forming a sequence of 2-opt moves. Although, as noted, any k-opt move can
be represented by a sequence of 2-opt moves, the LK procedure limits attention
to a particular subset of these sequences. The goal is to restrict the neighbor-
hood search and at the same time to generate high quality k-opt moves. The
2-opt moves are generated in successive levels where a 2-opt move of level i
(i = 2, . . . , L, k = i + 1) drops one of the edges that has been added by the
2-opt move of the previous level (i − 1). An exception is made for the first
2-opt move of the sequence, which can start either from the current tour or af-
ter performing a special class of 3-opt or 4-opt moves. However, this exception
is only allowed when a sequence of 2-opt moves in the regular LK search fails
to improve the initial tour. These special cases will become clear later in the
detailed explanation of each step of the method.

The method starts by generating a 2-opt, 3-opt or 4-opt move and then
deletes an edge adjacent to the last one added to create a Hamiltonian path.
Thereafter, each new move consists of adding an edge to the degree 1 node that
was not met by the last edge added, and dropping the unique resulting edge
that again will recover a Hamiltonian path (thus completing the last add-drop
portion of a 2-opt move).

It is interesting to note that these moves (and in fact the first add-drop half of
any 2-opt move) “pass through” a stem-and-cycle structure, which is one of the
reference structures introduced by Glover [25] as a foundation for creating more
flexible and general types TSP moves. However, this structure is not identified as
relevant in the LK method, which relies solely on the Hamiltonian path structure

12

as a basis for composing its moves, and consequently is left unexploited within
the LK framework. (The expanded set of possibilities provided by the stem-
and-cycle structure is described in Section 2.3.3.)

Figure 3 illustrates the three types of starting moves for initiating the LK
approach (2, 3 and 4-opt moves).

e1

v1

h
1

e2

v3

v4

e1

v1

h1

e2

v3

v4

e3

e1

v1

v2

e2

v3

v4

e4

e3
e3 e4

2-Opt 3-Opt 4-Opt

h
2

h2

h3

h1

v5

v6

v7

v2
v2

Figure 3: Possible moves at the first level of the Lin-Kernighan process

The initial k-opt moves (k = 2, 3, 4) that are used to launch the LK procedure
can be created as follows, as illustrated by the diagrams in Figure 3, preceding:

k = 2 – The first step of the LK procedure selects the first edges e1 = (v1, v2)
and h1 = (v2, v3) to drop and add (respectively), so that they produce a cost
improvement, and hence yield a negative value of E1 = c(v2, v3) − c(v1, v2).
(Such a choice must be possible if a better tour exists.) A first level 2-opt move
is obtained by dropping edge e2 = (v3, v4) where v4 is in the tour neighbor
of v3 that is in the cycle (v2, v3, v4, . . . , v2) created when edge h1 was added.
This last edge-drop operation implicit when h1 is chosen creates a Hamiltonian
path H1 = (v1, . . . v3, v2, . . . , v4) that is used to close up the tour by adding
edge (v4, v1). Compute T1 = c(v4, v1) − c(v3, v4) and examine the solution cost
change by computing ∆1 = E1 + T1.

k = 3 – Accompanying the initial drop-add choice that removes e1 and adds
h1, drop edge e2 = (v3, v4) where v4 is adjacent to v3. There are two possibilities
to create a 3-opt move: (1) if v4 is in the cycle, the move is direct extension
of the LK process from the level 1 to level 2; (2) if v4 is the endpoint of the
path from v1 to v4, create a Hamiltonian path H2 by linking v4 to one vertex
v5 (corresponding to edge h2 = (v4, v5)) and drop one of its adjacent edges
e3 = (v5, v6) where v5 is a vertex in the cycle (v2, v3, · · · , v2). Link v6 to v1 to

13

create a tour. There are some subtleties in the way edge e3 is chosen. When
v4 is in the path, the method selects v5 by computing v5 = argmin{c(v4, v5) −
max{c(v5, v5−), c(v5, v5+)}}. Once v5 is chosen two trial values are examined to
select v6 by computing v6 = argmin{c(v6, v1) − c(v5, v6) : v6 = v5−, v5+}. (The
computation of v6 in the way just defined is equivalent to finding the better
of the two trial tours produced by adding the links (v5−, v1) and (v5+, v1), as
suggested in the original Lin and Kernighan paper.) The corresponding cost
changes are given by E2 = E1 + c(v4, v5) − c(v3, v4), T2 = c(v6, v1) − c(v5, v6),
resulting in a tour cost change of ∆2 = E2 + T2.

k = 4 – As in the k = 2 and k = 3 cases, begin by dropping e1 and adding
h1, and then drop edge e2 = (v3, v4) where v4 is adjacent to v3. There are two
possibilities to create a 4-opt move: (1) if v4 is in the cycle, the move is direct
extension of the LK process from the level 2 to level 3; (2) if v4 is the endpoint of
the path from v1 to v4, create a Hamiltonian path H3 in two steps: (i) link v4 to
a vertex v5 in the path (creating edge h2 = (v4, v5)) and drop its adjacent edges
e3 = (v5, v6) where v6 is in the path (v5, v6, . . . , v4); (ii) link v6 to one vertex v7 in
the cycle (creating h3 = (v6, v7)) and drop one of its adjacent edges e4 = (v7, v8).
Link the endpoints of the resulting Hamiltonian path H3 to create a tour. Edge
e3 is chosen by setting e3 = argmin{c(v4, v5) − max{c(v5, v5−), c(v5, v5+)} :
v6 = v5−, v5+}. Once e3 is chosen, edge e4 is selected by computing e4 =
argmin{c(v6, v7) − max{c(v7, v8−), c(v7, v8+)} : v8 = v7−, v7+}. (In this case
vertices v7 and v8 are selected at the same time simply by choosing the largest
cost edge incident at v7, which implies that only one trial tour will be examined
as suggested in the original paper.) The corresponding cost changes are given
by E3 = E1 + c(v4, v5) + c(v6, v7) − c(v3, v4), T3 = c(v8, v1) − c(v7, v8), and
consequently the tour cost change is given by ∆3 = E3 + T3.

Extending LK moves to further levels. As mentioned, the regular LK
search (which does not include the special 3-opt and 4-opt moves) consists of
generating k-opt moves (k ≥ 2) (as a sequence of 2-opt moves) in successive
levels where at each level a new vertex is selected to extend the process to the
next level by recovering a Hamiltonian path Hi (dropping the last link (v2i, v1))
and using this path as a reference structure to generate a new path Hi+1 of the
same type (by linking its endpoint to another vertex in the path and dropping
one of its adjacent vertices). Starting with E0 = 0, for a fixed vertex v2i at
a level i of the LK search, a new vertex v2i+1 is chosen in such a way that
Ei = Ei−1 + c(v2i, v2i+1) − c(v2i−1, v2i) yields a negative value. (An exception
is made for some special alternative 3-opt and 4-opt moves as explained above.)
Consequently, a trial move (that yields a trial tour) for the level i(i > 0) can be
obtained by computing Ti = c(v2i+2, v1) − c(v2i+1, v2i+2). Similarly, the total
tour cost change is given by ∆i = Ei + Ti. At each level i of the LK process,
the method keeps track of the minimum ∆ value (corresponding to the best
trial tour) and records the sequence of the vertices associated with the ei and
hi edges, which will be used to perform a move at the end of the LK search.

14

The LK procedure also considers a backtracking process which allows the
method to repeat, each time choosing a different starting vertex associated
with an untried alternative for inserting or deleting an edge hi = (vi, vi+1) or
ei = (v2i−1, v2i), respectively. Such alternatives (which include the special 3-opt
and 4-opt moves) are successively examined starting from level i and proceeding
back to level 1, where the examination of edges hi and ei is alternated so that a
candidate for edge ei is examined after exhausting all possible candidates for hi

without finding any improvement of the starting tour. Candidates for level i−1
are examined after exploring all alternatives for level i. As soon as an improve-
ment is found at some level, the backtracking process stops and the LK process
continues from that level (and its accompanying ei or hi choice), progressing
forward again to higher levels as previously described. If no improvement occurs
in the backtracking process, including those cases where alternative choices for
the vertex v1 are examined, the procedure stops and returns the best tour found
so far. (In the original paper backtracking is used only for i = 1 and 2.)

A refinement of the basic LK method considers a look-ahead process where
the choice of a current hi edge takes into consideration the cost of the associated
ei+1 edge. The evaluation criterion (via this “look-ahead” rule) is the one that
minimizes Ei = Ei−1+c(v2i, v2i+1)−c(v2i+1, v2i+2) for a fixed vertex v2i(i > 1),
which gives the shortest Hamiltonian path for the next reference structure. Lin
and Kernighan mention evaluating the tour length only for this choice, but of
course there is little extra effort in evaluating the tour length for all choices and
record the best for future reference (even if it is not the one that generates the
next reference structure). Proceeding from this level a trial tour can be obtained
at each additional level of the LK process by adding an edge (v2i+2, v1) which
closes up the current Hamiltonian path adding the cost Ti = c(v2i+2, v1). Again,
the total tour cost change for the current level is given by ∆i = Ei + Ti.

Before providing the outline of the LK procedure we recall that a stan-
dard local search process involves solving a subproblem at each iteration. The
solution space for this subproblem is implicitly defined by the neighborhood
structure and the particular subset of available moves that is singled out to
identify “reasonable choices” (and hence to restrict the solution space for this
subproblem). Thus, it is relevant to keep in mind that the various minimization
functions used in neighborhood search for TSPs assume the consideration of a
neighbor list that restricts the number of choices for the vertices/edges involved
in the moves. The original paper of Lin and Kernighan suggests a neighbor list
made up of the 5 nearest neighbors of the node. However, other authors such as
Johnson and McGeoch [40] claim better results for lists of the 20 nearest neigh-
bors, and Applegate, Bixby, Chvatal, and Cook [3] use lists of different lengths
at different levels of the search. In addition, Lin and Kernighan required that
no added edges be subsequently deleted in the same k-opt move and no deleted
edges be subsequently added. Johnson and McGeoch apply only the first of
these two restrictions, which by itself is enough to insure that the search will
have no more than n levels. A general outline of the Lin-Kernighan procedure

15

is presented in Figure 4.
The Lin-Kernighan procedure introduces an important framework to gen-

erate compound moves. The wider class of variable depth methods known as
Ejection Chains methods discussed in the next section shares several character-
istics with this procedure. First, the creation of a reference structure (which
in the LK procedure is implicitly given by the path H1) makes it possible to
create moves whose depth goes significantly beyond the one that can be handled
in a practical manner with classic k-opt neighborhoods. Second, the iterative
characteristic of building the neighborhood to successive levels provides a form
of “advance look-ahead” which leads to better choices. Finally, the evaluation
of trial solutions throughout the neighborhood construction provides a way for
the method to adaptively select the most appropriate level (or depth) of the
move.

A fundamental drawback of the k-opt neighborhoods traditionally used, in-
cluding the ones constructed in the basic Lin-Kernighan approach, is that the
edges added and dropped are successively adjacent. These moves can be iden-
tified by numbering the vertices in the sequence determined by the added and
dropped edges, noting that the last vertex is always connected by a tour edge to
the first. We call these sequential neighborhoods, as opposed to non-sequential
neighborhoods where such a successive adjacency requirement is not imposed.
Sequential neighborhoods can be shown to generate a restricted instance of a
classical alternating path, as introduced in graph theory by Berge [7].

Sequential neighborhoods can fail to find certain types of improved tours
even if they are close to the current tour. This is illustrated in Figure 5, which
depicts the so-called double-bridge as an example of a move in a non-sequential
neighborhood. The tour reached by this move cannot be reached by means of
any move within a bounded sequential neighborhood. Lin and Kernighan first
identified this class of moves and suggested looking for improving double-bridge
moves as a supplement to their variable-depth moves. Subsequently, Martin,
Otto, and Felten [51] proposed using random double-bridge moves as a method
for restarting the algorithm once a local optimum had been found, and variants
on the resulting ”Chained” (or ”Iterated”) Lin-Kernighan algorithm have proved
quite successful (Applegate et al. [2], Applegate, Cook, and Rohe [3], Helsgaun
[39], Johnson and McGeoch [40]). A discussion of the performance of these
approaches in practice is provided in Chapter 9.

2.3 Ejection Chain Methods

We have noted that the LK procedure relies on a Hamiltonian path as the basic
reference structure to generate moves at each level of neighborhood construc-
tion. The fact that this structure has a configuration very close to a valid tour
is convenient for visualization, but also constitutes a limitation of the proce-
dure. More general Ejection Chain methods avoid this limitation by providing

16

Step 1. Initialization

(a) Generate a starting tour T .

(b) Set i = 1. Choose for v1 some vertex that has not taken this role since
the last best tour was found.

Step 2. Choose e1 and h1 to initiate the LK search.

(a) Set e1 = (v1, v2).

(b) Select h1 = (v2, v3) such that E1 < 0. If this is not possible, stop.

Step 3. Perform LK Search

(a) Set i = i+1. Choose ei = (v2i−1, v2i) such that v2i is in the cycle created
when hi−1 was added.

(b) Compute ∆i and keep track of the e and h edges associated with the
current Hamiltonian path Hi. Record the level i∗ associated with the
minimum ∆ value found so far.

(c) Choose hi = (v2i, v2i+1) such that Ei < 0 and ei+1 exists.
If such a hi exists, go to Step 3.

Step 4. Backtraching for Levels 1 and 2

Perform 3-opt moves:

(a) If there is at least one h2 not examined, set i = 2 and go to Step 3(c).

(b) If there is at least one e2 not examined, choose e2 = (v3, v4) such that v4

is in the path (v1, . . . , v4, v3).

(c) Choose h2 = (v4, v5) and the associated adjacent edge e3 = (v5, v6) such
that v5 is in the cycle (v2, v3, . . . , v2).

(d) Compute E2 and ∆2. If ∆2 is smaller than the best (least) ∆ value found
so far, update i∗ and the new e and h edges considered in this Step. If
E2 < 0, set i = 3 and go to Step 3(c).

Perform 4-opt moves:

(e) Choose h2 = (v4, v5) and the associated adjacent edge e3 = (v5, v6) such
that v5 is in the path (v1, . . . , v4) and e3 is in the cycle (v5, . . . , v4, v5)
created when h2 was added.

(f) Choose h3 = (v6, v7) and the associated e4 = (v7, v8) where v7 is in the
cycle (v2, v3, . . . , v2) and v8 corresponds to the largest cost edge incident
at v7.

(g) Compute E3 and ∆3. If ∆3 is smaller than the best ∆ value found so far,
update i∗ and the new e and h edges considered in this Step. If E3 < 0,
set i = 4 and go to Step 3(c).

Perform 2-opt moves:

(h) If there is at least one h1 not examined, set i = 1 and go to Step 2(b).

(i) If there is at least one e1 not examined, set i = 1 and go to Step 2(a).

(j) If there is at least one v1 not examined, go to Step 1(b). Otherwise Stop.

Figure 4: The General Lin-Kernighan Procedure

17

e1

h1 e2

e3

e4

h2

h
3

h4

h1

h2

h3

h4

Figure 5: The double-bridge neighborhood.

a wide variety of reference structures, which have the ability to generate moves
not available to neighborhood search approaches traditionally applied to TSPs.
This section explores some of these ejection chain approaches and provides a
framework for efficient implementations.

Ejection Chains are variable depth methods that generate a sequence of
interrelated simple moves to create a more complex compound move. There are
several types of ejection chains, some structured to induce successive changes in
problem variables and others structured to induce changes in particular types of
model components (such as nodes and edges of a graph). For a comprehensive
description of ejection chain methods on graphs we refer the reader to Glover
[23] and Glover ([24, 25]. Implementations and some extensions of these types
of ejection chains for the TSP can be found in Pesch and Glover [57], Rego [59]
and Glover and Punnen [33]. Applications of ejection chains to a cardinality-
constrained TSP are discussed in Cao and Glover [9].

Ejection chains have also been successfully applied to combinatorial prob-
lems other than the TSP. For example, Dorndorf and Pesch [17] and Hubscher
and Glover [24] use node-based ejection chains for clustering problems, while
Laguna et al. [44] and Yagiura, Ibaraki and Glover [66] use ejection chains
for the generalized assignment problem. Rego [60, 58], examines neighborhood
structures based on node and subpath ejections to produce highly effective re-
sults for the vehicle routing problem. Finally, Cavique, Rego, and Themido
[10] apply an ejection chain model to combine different types of moves for a
real-world crew scheduling problem.

In this section we provide basic definitions and concepts of ejection chains,
and then discuss some specialized ejection chain methods for the traveling sales-
man problem.

18

2.3.1 Ejection Chains Basics

Broadly speaking, an ejection chain consists of a succession of operations per-
formed on a given set of elements, where the kth operation changes the state
of one or more elements which are said to be ejected in the k + 1th operation.
This ejection thereby changes the state of other elements, which then lead to
further ejections, until no more operations can be made according to pre-defined
conditions. State-change steps and ejection steps typically alternate, and the
options for each depend on the cumulative effect of previous steps (usually, but
not necessarily, being influenced by the step immediately preceding).

In the ejection chain terminology, the order in which an element appears in
the chain determines its level. The conditions coordinating the ejection chain
process are called legitimacy conditions, which are guaranteed by associated
legitimacy restrictions.

We focus on ejection chain methods for carrying out operations on graphs.
The objective is to create mechanisms, namely neighborhood structures, allow-
ing one solution subgraph to be successfully transformed into another.

In this context, relative to a specific graph G, an ejection chain of L levels
consists of a succession of operations m1, . . . , mk, . . . , mL called ejection moves,
where mk transforms a subgraph Gk of G into another subgraph Gk+1 by dis-
connecting (or ejecting) specified components (nodes, edges, subpaths) and re-
linking them to other components. The number of levels L is the depth of the
ejection chain. The particular level chosen (from among the L levels generated
to provide a move executed by a local search method) usually varies from one
iteration to the next. The total number of levels L can likewise vary, and hence
ejection chains fall within the class of so-called variable depth methods. In an
ejection chain framework, the subgraph obtained at each level of the chain may
not represent a feasible solution but may be transformed into a feasible solution
by using a complementary operation called a trial move.

More formally, let Si be the current solution at iteration i of the local search
method, and let mk, tk be the ejection move and the trial move, respectively,
at a level k of the chain. A neighborhood search ejection chain process consists
of generating a sequence of moves m1, t1, . . . , mk, tk, . . . , mL, tL on Si such that
the transition from solution Si to Si+1 is given by performing a compound
move m1, m2, . . . , mk∗, tk∗, where k∗ represents the level associated with the
highest quality trial solution visited during the ejection chain construction. In
the ejection chain context we use the terms compound move and transition move
interchangeably, to specify the move leading from one solution to another in an
iteration of the local search procedure.

The effectiveness of such a procedure depends on the criterion for select-
ing component moves. More specifically, neighboring solutions obtained by an

19

ejection chain process are created by a succession of embedded neighborhoods
that lead to intermediate trial solutions at each level of the chain. However, the
evaluation of ejection moves can be made independently from the evaluation of
the trial moves, in which case trial moves are only evaluated after performing
the ejection move at the same level of the chain. In this variant of the approach,
the evaluation of an ejection move mk only depends on the cumulative effect
of the previous ejection moves, m1, . . . , mk−1, and is kept separate from the
evaluations of trial solutions encountered along the way. The trial moves are
therefore restricted to the function of finding the best trial solution that can be
obtained after performing the associated ejection move.

We stress that our preceding description of ejection chain processes simply
constitutes a taxonomic device for grouping methods that share certain useful
features. The value of the taxonomy, however, is evidenced by the role it has
played in uncovering new methods of considerable power for discrete optimiza-
tion problems across a broad range of applications. Within the TSP setting, as
will be seen, the ejection chain framework provides a foundation for methods
that embrace a variety of compound neighborhood structures with special prop-
erties for combining moves, while entailing a relatively modest computational
effort.

2.3.2 Node-based Ejection Chain Methods

Node-based ejection chain methods derive from extensions of customary single
node insertion and node exchange neighborhoods found useful in several classes
of graph problems including: machine scheduling, clustering, graph-coloring,
vertex covering, maximum clique or independent problems, vehicle routing prob-
lems, generalized and quadratic assignment problem, and the traveling salesman
problem, to cite only a few.

Since the worst case complexity of evaluating a single node-insertion and
node-exchange neighborhood is O(n2), creating compound neighborhoods by
combinations of these moves requires an effort that grows exponentially with
the number of moves considered in the combination. More precisely, the best
compound neighborhood of k moves can be generated and evaluated with O(nk)
effort. This effort can be notably reduced by using appropriate candidate lists
that we discuss in Section 3.1. Such lists also apply to several other types of
neighborhood structures, including the ones discussed in this section.

We present here ejection chain methods to implement a multi-node insertion
move and a multi-node exchange move that yield an important form of com-
binatorial leverage. Specifically, the number of moves represented by a level k
neighborhood is multiplicatively greater than the number of moves in a level
k − 1 neighborhood, but the best move from the neighborhoods at each succes-
sive level can be determined by repeating only the effort required to determine
a best first level move. In our application, for example, the moves of the first,

20

second and third levels are respectively O(n2), O(n3), and O(n4) in number, but
the best member of each can be found by repeating the O(n2) effort required
to determine the best move of the first level, so the total effort is still O(n2).
For a worst case analysis and proofs of the complexity of these ejection chain
processes see Glover [23]. Here we focus on special properties for comparative
analysis of different neighborhood structures and examine some implementation
issues for improving algorithm performance.

Figure 6 illustrates a multi-node insertion produced by an ejection chain
method. In the figure, a starting TSP tour is represented by the convex hull
of the nodes, ek denotes edges which are deleted at level k of the chain (and
which identify the associated ejected nodes). Edges shown “inside” the starting
tour are the ones that are added by the ejection chain process. To simplify the
diagrams node labels are not used, but a node vk is implicitly identified by the
two adjacent ek edges.

The ejection chain starts by identifying a node pair v0, v1 that yields the
best (highest evaluation) ejection move that disconnects node v0 from its current
position and inserts it into the position currently occupied by node v1. Thus, a
first level ejection move consists of adding edges (v0, v1−), (v0, v1+) and deleting
edges e0 and e1. This creates an intermediate structure where node v1 is tem-
porarily disconnected from the tour. However, a trial move can be performed
by creating edge (v0−, v0+), and inserting node v1 between nodes p1 and q1,
creating edges (v1, vp1), and (v1, vq1), and deleting edge t1. For the subsequent
levels, ejection moves consist of selecting a new candidate node to be ejected by
the previously ejected node, and so forth, until no other legitimate node exists
for ejection.

This move is illustrated in the second level of the ejection chain shown in
the middle diagram of Figure 6, where node v1 ejects node v2 by adding edges
(v1, v2−), (v1, v2+) and deleting edge e2. The trial move used in the first level
is not considered for the construction of further levels of the chain. Instead, the
ejection move generates a new move (of the same type) for the next level. A
trial move is then executed as previously indicated, now by linking node v2 to
nodes p2 and q2, and deleting edge t2. The corresponding level 2 trial solution
is given in diagram on the right in Figure 6.

A multi-node exchange move can be obtained at each level of the chain by
considering a trial move that simply relocates the current ejected node to occupy
the vacant position left by the node v0 that initiates the chain. This is carried
out by creating two edges (v0−, vk), (vk, v0+), where vk denotes the node ejected
at a level k of the chain.

In the multi-node insertion ejection chain method a trial move can be evalu-
ated in time O(n), but in the multi-node exchange method the move is evaluated

21

e0 e0

e1

e1

t1

e0 e0

e1

e1

t
2e2

e2

p
1

q1

p2

q2

Figure 6: Two levels of a multi-node insertion ejection chain

in constant time, O(1). Experiments with this ejection chain method for the
vehicle routing problem (VRP) have shown that multi-node insertion is usually
more efficient than multi-node exchange (Rego [60]). However, both types of
moves can be efficiently combined in the same ejection chain process to select
the best compound move at each level of the chain. Such an ejection chain
produces a more complex neighborhood which dynamically combines insertion
with exchange moves.

Figure 7 depicts this second type of ejection chain using the same ejection
moves illustrated in Figure 6. Note that the first level of the chain is a standard
single-node exchange move where nodes v0 and v1 exchange their positions.
However, this exchange move produced by the ejection chain does not necessarily
represent the highest evaluation two-node exchange move, unless we decide (for
this first level) to evaluate the ejection move and the trial move conjointly. This
decision is just a matter of preference since in this particular type of ejection
chain either criterion can be evaluated in O(n2).

e0 e0

e1

e1

e0 e0

e1

e1

e2

e2

Figure 7: Two levels of a multi-node exchange ejection chain

22

In the figure, level 1 and level 2 trial moves consist of adding edges (v0−, v1),
(v1, v0+) and edges (v0−, v2), (v2, v0+), respectively. Note that although edge
(v0−, v2) has been deleted by the second ejection move it is added back by the
associated trial move to create a tour from the intermediate structure.

In each of these methods, a legitimate structure for the ejection chain is de-
fined by the requirement that each ejected node occurs only once in the chain.
The preceding characterization of legitimacy implies that no edge will be added
or dropped more than once by the transition move associated with the ejec-
tion chain, and consequently the tour cost change created by the transition
move equals the sum of the added edges minus the sum of the dropped edges.
These relationships are useful for the goal of efficiently generating and evaluating
chains of progressively greater depth with a suitable combinatorial leverage.

Both types of node-based ejection chains can be completely determined by
the succession of ejected nodes, v0, . . . , vk, . . . , vL, which we designate by the set
ZL. Accordingly, we let ZL− and ZL+ respectively denote the set of predecessors
and the set of successors of vertices in ZL, and let WL denote the set of all the
vertices involved in the ejection chain process, WL = ZL− ∪ ZL ∪ ZL+. Thus,
the legitimacy restrictions consist of stipulating that each vertex in ZL occurs
only once in WL. However, any vertex in ZL− may reappear in ZL+ and vice
versa, without violating this restriction.

An ejection chain of L levels can be recursively evaluated by computing
the ejection values for these levels and summing them to give the trial value for
each level. We denote a legitimate neighborhood for a node vk in Zk by LN(vk),
thereby identifying a subset of nodes of G that do not violate the legitimacy
restrictions. For convenience we denote the cost of two adjacent edges (vi, vj)
and (vj , vk) as c(vi, vj , vk) = c(vi, vj) + c(vj , vk). Figure 8 provides a general
neighborhood search procedure.

As shown in Glover [23] it is possible to create other variants of these ejection
chain methods by growing the chain in the opposite direction. Thus, for a multi-
node ejection chain, the method starts by an insertion move which disconnects
one node from its current position, followed by inserting it between two others.
Then, the chain grows by selecting a node to fill the vacant position, which
in turn opens a new “hole” for the next level of the chain. This technique is
particularly relevant for using ejection chains to provide a construction method
with attractive properties. A constructive multi-node insertion ejection chain
method starts by choosing an initial single-node insertion move and making the
corresponding edge additions to generate a partial subgraph of the tour. Then,
the subgraph is extended by adding one node (external to the current subgraph)
to become the new v0 node in the chain. The process is repeated until the partial
subgraph becomes a spanning subgraph of G, thus corresponding to a TSP tour
in G. The use of the ejection chain as a construction method always assures
a legitimate TSP structure is produced. Since each new node v0 is external to
the current subgraph, it can not correspond to any of the spanning nodes of the
ejection chain.

23

Step 0. Initialization

(a) Initialize a legitimate neighborhood for all vertices.

(b) Denote the starting solution by S.

(c) Set k = 0.

Step 1. Create the first level of the ejection chain

(a) Determine a set of two initial vertices vk,vk+1 by computing:

(b) Ek = min{c(vk−, vk−1, vk+) − c(vk−1−, vk−1, vk−1+) −
c(vk−, vk, vk+) + λc(vk−1−, vk−1+) : vi, vj ∈ V }, where λ = 1 if
multi-node insertion is used and λ = 0 otherwise.

(c) Set Zk = {vk}.
Step 2. Grow the chain to further levels

(a) Set k = k + 1 and set Zk = Zk−1 ∪ {vk}.
(b) Evaluate the trial tour cost for the current level by computing the

value: ∆k = Ek + min{c(vp, vk, vp+) − c(vp, vp+) : vp ∈ V \Zk}
if multi-node insertion is used. Otherwise compute ∆k = Ek +
c(v0−, vk, v0+).

(c) Keep track of the best level k∗ that produces the best trial tour.

(d) Determine the new vertex v ∈ LN(vk) by computing: Ek = Ek−1+
min{c(vk−, vk−1, vk+) − c(vk−, vk, vk+) : vi, vj ∈ Wk−1}.

(e) Set vk+1 = v.

(f) Update the legitimate neighborhoods for each vertex vi ∈ Wk∗.

(g) If k < L and LN(vk) is not empty, return Step 2. Otherwise go to
Step 3.

Step 3. Perform the compound move

(a) Apply to S the sequence of ejection moves up to the level k∗.

(b) Complete the update of S by executing the trial move for the level
k∗ associated with multi-node insertion or multi-node exchange.

Figure 8: Neighborhood search iteration for node-based ejection chains.

24

2.3.3 Generalizing Insertion and Exchange Ejection Chain Methods

The foregoing ejection chain process can be easily extended to eject subpaths in
addition to nodes. In its simplest form the procedure can be viewed as a gener-
alization of the Or-opt neighborhood implemented in an ejection chain frame-
work. A straightforward way to implement this generalized insertion ejection
chain method is to collapse subpaths so they are essentially treated as nodes.
(These collapsed subpaths are sometimes called supernodes.) Conversely, the
method can implicitly create “holes” in subpaths and these can be possibilities
for ejecting nodes inside of subpaths.

2.3.4 Subpath Ejection Chain Methods

In a subpath ejection chain (SEC) the ejection moves involve the re-arranging
of paths rather than individual nodes. One example is the variable depth search
of the Lin-Kernighan procedure. In this section we discuss a potentially more
powerful SEC method that forms the core of one the most efficient local search
algorithms for the TSP, and whose performance is discussed in Chapter 9. The
method is based on the stem-and-cycle (S&C) reference structure, which is a
spanning subgraph of G that consists of a path ST = {vt, . . . , vr}called a stem,
attached to a cycle CY = (vr , vs1 , . . . , vs2 , vr).

The first diagram of Figure 9 illustrates the creation of an S&C reference
structure for the first level of the ejection chain process. The structure is created
by dropping one edge in the tour (denoted by e0) and linking one of the endpoints
of the resulting Hamiltonian path to a different vertex in this path (denoted by
vr). Vertex vr, which is the intersection of the stem and the cycle, is called the
root. The two vertices in the cycle adjacent to vr, denoted by vs1 and vs2 , are
called subroots. The vertex vt is called the tip of the stem.

The method starts by creating a stem-and-cycle reference structure from a
TSP tour. Then, the method proceeds by performing an ejection move which
links the tip node vt to one of the remaining nodes vp of the graph, excluding
the one that is adjacent to the tip. The root is considered as belonging to the
cycle.

We differentiate two types of ejection moves depending on whether the op-
eration is applied to the stem or to the cycle:

(1) Stem-ejection move: add an edge (vt, vp) where vp belongs to the stem.
Identify the edge (vp, vq) so that vq is a vertex on the subpath (vt, . . . , vp).
Vertex vq becomes the new tip node.

(2) Cycle-ejection move: add an edge (vt, vp) where vp belongs to the cycle.
Select an edge (vp, vq) of the cycle to be deleted where vq = vp− or vq =
vp+. Vertex vq becomes the new tip node.

25

As with other types of ejection chains, an ejection move transforms an in-
termediate structure into another of the same type, which usually does not
represent a feasible structure for the problem. The only exception is the de-
generate case where the tip vt is also the root vr and hence the stem is of
length 0 and the cycle is a tour. This can arise for instance as the result of a
cycle-ejection move where vp is a cycle-neighbor of vr. Even though the root is
fixed during one ejection chain search it is possible to change it whenever the
degenerate case occurs.

In the general case of a non-degenerate S&C structure a feasible tour can
always be obtained at each level of the chain by linking the tip node to one of
the subroots and deleting the edge that links the subroot to the root node.

Figure 9 illustrates one level of the stem-and-cycle ejection chain process
where edges that lie on the convex-hull of the vertex set are members of the
initial tour and edges “inside” the tour are those added by the component
ejection chain moves. We denote by ek and dk the edges deleted at level k by
ejection and trial moves, respectively, and denote by tk the tip node at level k.
The S&C reference structure is created in the left-hand diagram by adding a
link between two nodes in the tour and deleting one of the edges adjacent to
either one of these nodes. Hence vr becomes the root node with subroots s1

and s2, and t0 identifies the initial tip node. The middle diagram illustrates
an example of a stem-ejection move which links t0 to s2 and deletes e1, thus
making t1 the new tip node. In the example, the associated trial move consists
of adding the edge (t1, s1) and deleting edge (s1, vr). Another possible trial
move can be obtained by relinking t1 to s2 and deleting d1.

The right-hand side diagram illustrates a cycle-ejection move which links
t0 to vp (in the cycle) and deletes e1. Again, two possible trial moves can be
obtained by linking t1 to one of the subroots and deleting the associated d1. A
trial move can also be generated just after creating the S&C structure. However,
at this initial level only one trial move leads to a different tour, which in the ex-
ample consists of adding edge (t0, s1) and deleting edge (s1, vr). This restricted
possibility yields the initial 2-opt trial move considered in the LK procedure. At
each subsequent level, the two trial moves available by the S&C reference struc-
ture, and the enriched set of continuations for generating successive instances
of this structure, provide a significantly enlarged set of tours accessible to the
S&C approach by comparison to those accessible to the LK approach.

In the design of the stem-and-cycle neighborhood search procedure legit-
imacy conditions can be added with two main purposes: (1) to prevent the
method from visiting solutions already inspected during the ejection chain process;
(2) to generate special forms of alternating paths which have proved useful in
several classical graph theory problems. For the first purpose it is sufficient

26

e0

t0

e0

t0e1 t1

d1

d1

s1

s2

s1

s2

e0

t0

e1

t1

d1

d1

s1

s2

vr vr vr

vp

Figure 9: The stem-and-cycle ejection chain

to stipulate that no deleted edge is added back during the construction of the
chain. The second purpose deserves some additional consideration.

In classical alternating path methods in graph theory, and in neighborhood
search processes related to them, the customary approach is to restrict the edges
deleted to be edges of the starting solution. Methods that use this approach,
which include the classical Lin-Kernighan procedure, may be viewed as sta-
tic alternating path methods. However, certain neighboring solutions can not
be obtained except by generating alternating paths in which previously added
path edges are also candidates to be deleted. Thus, in contrast to classical ap-
proaches, this produces a dynamic alternating path. In fact, the paths provided
by the S&C structure give the ability to reach any TSP tour from any other
tour, in contrast to the situation illustrated earlier where the paths provided
by the LK approach are unable to reach some tours that differ only by 4 edges
from the current tour. Moreover, as demonstrated in Glover [25], this ability
can be assured by a simple “non-reversal” condition, which prevents an edge
from being deleted if is inserted immediately after deleting another edge that
was previously inserted. These restrictions define the legitimacy conditions for
the S&C algorithm described in Rego [59], and are also incorporated into an
enhanced version of this algorithm reported in the 8th DIMACS TSP Imple-
mentation Challenge (Johnson, McGeoch, Glover, and Rego [41]).

A general design of the stem-and-cycle neighborhood search procedure can
be described as in Figure 10, where we define a legitimate neighborhood for a
node vi, denoted by LN(vi), as the subset of nodes of G that do not violate
the legitimacy restrictions identified above. Also, as shown in Rego [59] the
maximum number of levels for a S&C ejection chain is bounded by 2n, but
since the best trial solution is usually found in a relatively lower level, L is
considered a user-supplied parameter.

27

Step 0. Initialization

(a) Denote the starting solution by S.

(b) Select the initial tip node vt0 = vr.

(c) Set k = 0.

Step 1. Generate the ejection chain

(a) Ejection Move:
Compute the value of the ejection move for each vertex vp ∈
LN(vtk) as follows: Ek = c(vtk , vp) − c(vp, vq) if vp ∈ ST ;
Ek = c(vtk , vp) − min{c(vp, vp+), c(vp, vp−)} if vp ∈ CY ;

(b) Select the vertex vp∗ that yields the minimum Ek value and keep
track of its adjacent vertex vq considered for the move.

(c) Trial Move:
Compute the value of the trial moves associated with each subroot
si(i = 1, 2) and chose the one that minimizes Tk = c(vp, vsi) −
c(vsi, vr). The trial tour cost is given by ∆k = Ek + Tk.

(d) Keep track of the level k∗ that produces the best trial tour so far
and record the subroot node involved in the trial move.

(e) Update LN .

(f) Set k = k + 1 and set vtk = vq.

(g) If k < L and LN is not empty return to Step 1. Otherwise go to
Step 2.

Step 2. Perform the compound move

(a) Apply to S each ejection move considered in the ejection chain up
to the level k∗.

(b) Complete the update of S by executing the trial move for the level
k∗.

Figure 10: An Iteration of the Stem-and-Cycle Procedure

28

2.4 New Methods for Variable Depth Search

We have illustrated how ejection chain methods can be useful to generate com-
pound neighborhood structures of several types, encompassing a variety of spe-
cial properties for the traveling salesman problem. As previously mentioned, this
framework for generating neighborhoods has proved highly effective for explor-
ing the solution space in several other hard combinatorial problems. However,
we recall that ejection chains characteristically generate moves that can not
be obtained by neighborhoods that preserve feasibility at each step. We now
discuss methods to efficiently combine other, more customary, neighborhoods
based on the creation of appropriate candidate lists, which likewise can easily
be exploited by parallel processing.

In the context of the TSP the terms candidate lists and neighbor lists are
often used interchangeably because the restricted sets of elements considered
for evaluation are usually defined by the relative distance between nodes in the
problem data space. We will examine several types of neighbor lists in Section
3.1. However, for the exposition of the methods discussed in the present sec-
tion, it is important to clearly differentiate neighbor lists from candidate lists.
While both lists are associated with strategies to reduce the neighborhood size,
neighbor lists constitute simply one possibility for creating candidate lists, and
in many settings are used to initialize a more general candidate list approach.
Neighbor lists are static, and keep neighbor elements from changing during the
search process. (Methods that temporarily change the problem data such as
space smoothing (Gu and Huang [34], Steven et al. [64]) and noising methods
(Charon and Hudry [12, 13]), can change the static relationship, however.) Con-
versely, candidate lists do not necessarily rely on the problem data but rather are
made up of solution attributes. These attributes, which can include the types
of elements used in the neighbor lists and many others, change dynamically,
based on information gathered from the search process. Candidate lists have
been chiefly proposed in association with tabu search, which exploits strategic
information embodied in memory structures. In such settings the changes in
the candidate lists are represented within an adaptive memory programming
implementation either by explicitly replacing some attributes with others or by
changing values of these attributes.

We next discuss candidate lists that offer a useful basis for creating com-
pound moves within exponential neighborhoods, while using an economical de-
gree of effort. For illustration purposes we consider standard single-node inser-
tion moves as a basic element to create more complex moves.

2.4.1 The Sequential Fan Method

This Sequential Fan method may be viewed as a natural generalization of beam
search, an approach that is extensively used in scheduling. (See Morton and
Pentico [54], for a survey of beam search and its applications.) Beam search is
applied within sequential construction methods as a restricted breadth-first tree

29

search, which progresses level by level, without backtracking, but only exploring
the most promising nodes at each level. As a schedule is constructed, beam
search progressively truncates the tree by choosing a parameter (the ”beam
width”) that determines a constant number β of nodes (partial solutions) at
each depth from the root that are permitted to generate nodes at the next
depth. A variant called filtered beam search (Ow and Morton [56]) refines this
approach by using a two-step evaluation to chose the β best moves at each level.
The method first picks some number δ (the “filter width”) of locally best moves,
and then submits these to more rigorous examination by extending each one in
a single path look-ahead to the end of the tree (choosing the locally best move
at each step of the path). The total path evaluations are used to select the β
best moves from the initial δ candidates.

By extension, the sequential fan method operates in the local search setting
as well as in the sequential construction setting, and works with complete solu-
tions in neighborhood spaces as well as with the types of partial solutions used
by beam search. It also more generally varies the width of the search strategi-
cally as a function of both the depth and the quality of the solutions generated.
In a simple application to the TSP, for example, moves that interchange their
current positions in the tour can be checked to identify a few good options, and
for each of these, follow-on options are checked by pruning the total number of
alternatives that are tracked at each level according to quality and depth.

The basic construction of the Sequential Fan tree underlies the use of a
candidate list strategy based on weeding out promising moves by applying eval-
uations in successive levels of the tree search, where the moves that pass the
evaluation criteria at one level are subjected to additional evaluation criteria at
the next. The basis for the creation of the sequential fan candidate list strategy
can be described as follows. A list of moves M(k) is associated with each level
k, where list M(k) is derived by applying criterion k to evaluate the moves on
list M(k − 1). To start, list M(1) is created from the set of all available moves
or from a subset determined by another type of candidate list (e.g. a neighbor
list as commonly used in the TSP setting) and contains the α1 best of these
moves by criterion 1. List M(2) then contains the α2 best of the moves from
M(1) according to criterion 2, and so on.

More generally, subsequent lists may not merely contain moves that are
members of earlier lists, but may contain moves derived from these earlier moves.
A useful way to make successive refined evaluations is to employ a deeper look-
ahead in subsequent layers. For example, list M(1) may apply criterion 1 to
evaluate immediate moves, while M(2) may apply criterion 2 to evaluate moves
from the solutions produced by M(1) to create compound moves. More advanced
constructions of this look-ahead process may be conceived by the use of ejection
chain processes (performed from nodes at the current level) as a foundation
to determine promising component moves to dynamically update the candidate
list. Also, high evaluation trial solutions found throughout the ejection chain
can be recorded for further consideration, as we discuss in Section 4.3.

30

2.4.2 The Filter and Fan Method

The Filter and Fan method (F&F) is a combination of the filtration and sequen-
tial fan candidate list strategies used in tabu search.

By our earlier conventions, a compound move is one that can be decom-
posed into a sequence of more elementary component moves (or submoves), and
the best compound move is the best (highest evaluation) combination of these
submoves. As we have seen, a complete evaluation of simple node-insertion
and node-exchange moves in dense TSPs requires O(n2) effort, and the effort
of evaluating a combination of L of these moves is O(nL), and hence grows
exponentially with L. However, this effort can be notably reduced based on the
assumption that the best L-compound move is a combination of L submoves
such that each is one of the M(k) highest evaluation moves for the correspond-
ing level k of the tree (k = 1, . . . , L). Thus, instead of evaluating all possible
combinations of k moves the F&F method proceeds by progressively creating
new solutions for a level k(k > 0), which derive from the solutions generated in
the level k − 1 by applying a restricted subset A(k) of the highest evaluation
moves, selected from a larger set M(0) of potentially good moves, |M(0)| = η0.

The Filter and Fan Model. The F&F model can be viewed as a neighborhood
tree where branches represent submoves and nodes identify solutions produced
by these moves. An exception is made for the root node, which represents the
starting solution to which the compound move is to be applied. The maximum
number of levels considered in one sequence defines the depth of the tree. The
neighborhood tree is explored level by level in a breadth search strategy. For
each level k, the method generates η1∗η2 moves by the fan candidate list strategy,
then a subset M(k) of η2 moves is selected by the filter candidate list strategy
to generate the solutions for the next level.

An illustration of the Filter and Fan model is provided in Figure 11, where
black nodes identify a local optimum with respect to the L-neighborhood. The
method starts as a standard descent method by performing 1-moves as long as
they improve the best current solution. Once a local optimum is found (in the
descent phase) the best M(0) moves (among the M moves evaluated to establish
local optimality) are used to create the first level of the F&F neighborhood tree.
The next levels are created as follows. Letting η1 be the number of M(k) moves
for level k, the method proceeds by selecting a subset Ai(k) of η2 moves from
M(0) associated with each solution Xi(k)(i = 1, . . . , η1) to generate η = η1 ∗ η2

trial solutions for the level k+1 (as a result of applying η2 moves to each solution
at level k). For convenience we consider η1 = 4 and η2 = 2 for the example
illustrated in Figure 11. (The process of selecting η2 moves has to obey to a set
a legitimacy conditions that will be specified later.)

We define A(k) = {A1(k), A2(k), . . . , Aη1(k)}(|Ai(k)| = η2) as the set of η
moves evaluated at the level k from which the set M(k) = {m1k, m2k, . . . , mη1k}

31

is selected, M(k) ⊂ A(k), k > 0. The process is repeated by creating a set X(k+
1) of solutions obtained by applying M(k) moves to the associated solutions in
X(k) and keeping these solutions as starting points for the next level of the
F&F tree.

�
�

�
�

�
�

�
�

��
��

k=0

k=1

��
��

��
��

��
��

k=2

�
�
�
�

�
�

�
�

��
��
��
��

�
�

Filter and Fan
Neighborhood Tree

Compound Move

Descent Phase
with Single Transition Moves

k=3

k=4

Local
Optimum

Starting
Solution

X1 (1) X2 (1) X3 (1) X4 (1)

m 11 m 21 m 31 m 41

m 12 m 22 m 32 m 42

Figure 11: The Filter and Fan Model

For the purpose of illustration we consider the fan candidate list strategy
to be the one that identifies the best η2 component moves for each solution
at a level k, and the filter candidate list strategy to be the one that identifies a
subset of η1 of the η moves generated. Also, our example constitutes a variant in
which the method stops branching as soon as an improved solution is found, then
switches back to the descent phase starting with this new solution. However,
other strategies to create both types of candidate lists are possible.

More elaborate designs of the F&F method allow different types of moves for
combination at each level of the tree, so that compound moves can be obtained
by different neighborhoods applied under appropriate legitimacy conditions. By
continuing the tree search after a local optimum is found, local optimality is

32

overcome in “intermediate” levels of the F&F tree. Then the best trial solution
encountered throughout the tree is chosen to re-initiate the descent phase.

More advanced versions result by replacing the descent phase with a tabu
search phase, which, for example, can activate the F&F strategy based on the
use of critical event memory. Thus, the F&F strategy can be used either to
intensify the search in regions of high quality (elite) solutions or to diversify the
search by propelling the method to a different region of the solution space.

Generating legitimate multi-node insertion moves by an F&F strat-
egy. In order to create legitimate trial solutions when applying the F&F method
legitimacy conditions have to be defined according to the type of component
move used for the problem. We characterize legitimacy conditions for an F&F
method using single-node insertion component moves for the TSP.

A component move will be called legitimate at a level k if this move can be
performed by the usual neighborhood search rules (e.g. as a customary node
insertion) after performing the associated (k− 1)-move. Otherwise, the move is
illegitimate. By this definition, a move that is illegitimate relative to a solution
Xi(k)(1 ≤ i ≤ η1) will remain illegitimate throughout further levels of the
subtree rooted by Xi(k).

We further stipulate that the legitimacy conditions ensure the component
move evaluations do not change during the F&F neighborhood search. Thus,
the solution cost-changes associated with each move in M are carried forward
through the tree to provide information for evaluating the A(k) moves. By
doing so, the neighborhood of a solution Xi(k) can be restricted to consist of η2

potentially good moves. The M(k) moves (k > 0) are chosen according to the
quality of the trial solutions produced by the A(k) moves.

Consider an F&F process based on single node-insertion moves, which insert
a node vi between two consecutive nodes vp and vq in the tour. To maintain
the legitimacy of an L-move it is sufficient to forbid the insertion of a node vi

between nodes for which the corresponding edge (vp, vq) has been deleted in one
of the L − 1 levels of the corresponding L-move.

Additional considerations for implementation. An efficient implementa-
tion of the F&F procedure requires the identification of appropriate data struc-
tures for handling different parts of the method and speeding up the search.

The first issue in implementing the F&F method concerns the creation of
M(0) in the descent phase. Assume the simplest form of the F&F strategy
is employed, where the initial phase is a pure memoryless descent procedure.
Hence M(0) is a subset of the best M moves evaluated on the last step of the
descent (to verify that local optimality has been reached). It may be compu-
tationally more efficient to create M(0) by performing an additional iteration

33

of the local search procedure after reaching the local optimum S∗, rather than
to keep track of the η0 best moves at each iteration. A priority queue based on
a binary heap data structure can be used to identify the best η0 moves during
the neighborhood search process in O(log(η0)) time. (See, e.g., Cormen, Lier-
son, and Rivest, [15], pages 140-152.) Since the additional iteration consists of
repeating the evaluation of moves in the previous iteration, several strategies
can be used to restrict the size of the neighborhood, thus reducing the time
complexity to create M(0).

Another issue concerns the creation of Ai(k) for each solution Xi(k). Instead
of searching M(0) for the best η2 legitimate moves it can be advantageous to
consider the mjk moves (j = 1, . . . , η1k, j �= i) as the candidates for Ai(k).
The creation of this candidate list assumes that good moves in one level of the
tree are potentially good in deeper levels of the tree. However, such a strategy
increases the chance for re-generating solutions previously visited. One way to
counter this tendency is to use a tabu list of move attributes associated with
each solution Xi(k), thus introducing a further level of legitimacy. Additional
moves to complete Ai(k) can be examined in M(0) whenever the number of
legitimate moves for Xi(k) is smaller than η2. An outline of the general F&F
procedure is provided in Figure 12.

Step 0. Generate a candidate list of component moves

(a) Consider a starting solution S and perform 1-moves using a local
search method until a local optimum S∗ is found.

(b) Create a candidate list M(0) with the η0 highest evaluation moves
in the neighborhood where S∗ was found.

(c) Apply the best η1 moves in M(0) to S∗ to create the first level of
the F&F tree with solutions Xi(1)(i = 1, . . . , η1). Set k = 1.

Step 1. Generate the Filter and Fan tree

(a) Identify the best η2 legitimate moves derived from M(0) for each
solution Xi(k)(i = 1, . . . , η1) to create sets Ai(k)(j = 1, . . . , η1).

(b) Evaluate each move in Ai(k), applied to the associated solution
Xi(k), and compute the value of the corresponding trial solution.

(c) If the best trial solution found is better than S∗, perform the asso-
ciated move from Xi(k) on S and go to Step 0.

(d) Otherwise, select the A(k) moves that led to the best η1 trial solu-
tions to become the members of M(k).

(e) Apply the M(k) moves to the corresponding solutions Xi(k) to
create X(k + 1).

(f) If k = L stop. Otherwise set k = k + 1 and repeat Step 1.

Figure 12: A General Filter and Fan Procedure

34

3 Tabu Search

The Tabu Search (TS) metaheuristic has proved highly successful in solving a
wide range of challenging problems. A key feature of TS is its use of adaptive
memory, accompanied by a collection of strategies for taking advantage of this
memory in a variety of contexts. Characteristically, TS can be implemented at
multiple levels to exploit tradeoffs between ease of implementation and sophis-
tication of the search. Simpler forms of TS incorporate a restricted portion of
its adaptive memory design and are sometimes applied in preliminary analyses.
These approaches have proved useful for testing the performance of a limited
subset of TS components, and for identifying cases where more fully integrated
strategies are not required. However, versions of tabu search that include a
more comprehensive and advanced set of its elements generally prove superior
to more limited versions of the approach.

A strategic component of TS that is sometimes omitted involves maintain-
ing and analyzing a collection of high quality solutions to infer properties of
other high quality solutions. Such processes provide a connection between
Tabu Search and certain evolutionary approaches, as represented by the Scatter
Search method discussed in the next section.

So far algorithmic studies of large TSP instances have chiefly focused on iso-
lating efficient neighborhood structures (such as those based on Lin-Kernighan
and Ejection Chain procedures) and on using appropriate candidate lists. As
reported in the 8th DIMACS TSP Implementation Challenge, recent imple-
mentations of LK and EC procedures can now find near-optimal solutions for
very-large scale TSP instances in a relatively short time.

Motivated by the experiences reported in other problem settings we speculate
that still better TSP solutions may be found by including advanced features of
tabu search. In this section we discuss some key strategies in TS that deserve
special consideration to achieve improved outcomes.

3.1 Candidate List Strategies

As we have already emphasized, efficient procedures for isolating good candidate
moves are critically important for the efficiency of local search algorithms. In
the TSP setting, for example, the use of candidate lists is mandatory when large
instances have to be solved.

There are some subtleties in the ways candidate list strategies may be used.
A number of studies have observed that optimal or near optimal solutions often
can be constructed for the TSP by limiting consideration to a small number of
shortest (least cost) arcs out of each node. A natural procedure is to create a
candidate list defined by the nearest neighbor graph, giving the neighbor list
previously discussed, where some limited number of nodes closest to each given
node determines the edges permitted to be included in the tours generated.

35

However, TSP instances exist where the best solutions significantly violate this
restriction, as exemplified by the situation where vertices on a Euclidian plane
occur in separated clusters. A drawback of the nearest neighbor list is the
fact that its size is fixed and it does not exploit the geometric structure of the
problem. Consequently, more efficient approaches create moves by requiring
some but not all edges to belong to a shortest-edge collection. Reinelt [63]
suggests a candidate list approach based on the computation of a Delaunay
graph, which provides a set of edges to initialize the candidate list. Then the
list is expanded by adding an edge (vi, vk) for each pair (vi, vj) and (vj , vk) in
the initial set. It has been observed that even if this approach provides useful
edges for clustered TSP instances it misses several other important edges and
thus restricts the performance of the local search procedure.

A more efficient candidate list construction is the so-called k-quadrant neigh-
bor graph, initially proposed by Miller and Pekny [52] for a 2-matching problem
(which is a relaxation of the TSP) and first used by Johnson and McGeogh [40]
in the TSP context. In this graph, each vertex vj is the origin of a quadrant
in a Euclidian plane and the k/4 vertices closest to the origin in each quadrant
define the neighbors for vertex vj . Let qij denote the number of vertices in the
quadrant i for vertex vj . If

∑4
i=1 qij < k, then we fill out the candidate list for

vj with the k−∑4
i=1 qij nearest cities to vj not already included. This candidate

list is used in several of the most efficient implementations of local search algo-
rithms submitted to the DIMACS TSP Challenge, including implementations
of the Lin-Kernighan and Ejection Chain algorithms. A more sophisticated ap-
proach is used in Helsgaun’s variant of Lin-Kernighan [39], where the candidate
list for vi consists of its k nearest neighbors vj under a new metric produced in
a two-step derivation process from the original distances (see Chapter 9).

We conjecture that the design of efficient candidate lists for these hard TSP
instances (where vertices are not uniformly diffused but may clump and cluster)
depend in part on their amplification factor [23], which is the ratio of the total
number of arcs added by the move to the number that belong to the k-shortest
category. For a simple example, consider single node insertion and exchange
moves. Requiring that a “first added edge” in each of these moves must be
on a nearest neighbor list) instead of requiring that all added edges belong
to such lists) will achieve amplification factors of 3 and 4 respectively. The
logical conditions defining such a candidate list in the present context can be
specified more precisely as follows. For an insertion move, where a selected node
vi is repositioned to lie between nodes vp and vq, we require one of these two
added edges (vp, vi) or (vi, vq) to be among the k shortest arcs linked to node
vi. Since three edges are added by the move (including the arc joining vi− to
vi+), this single-arc requirement gives an amplification factor of 3. (More than
one of the three added edges may belong to the k-shortest category, but only
one is compelled to do so.) Given node vi, the form of the insertion move is
completely determined once either edge (vp, vi) or (vi, vq) is specified. Similarly,
for exchange moves, where nodes vi and vj interchange positions, we require only

36

one of the four added edges (vi−, vj), (vj−, vi), (vi, vj+), (vj , vi+) to belong to
the k-shortest group, yielding an amplification factor of 4. Here, a given added
edge can be used to define two different moves. By extension, the subpath
insertions and exchanges of the type described in the ejection chain method
provide a means for achieving significantly higher amplification factors.

The features attending these cases are characteristic of those exhibited by a
special type of candidate list proposed in tabu search called a preferred attribute
candidate list. In this instance, the k shortest edges of a node vi identify the
“preferred attributes” used to control the construction of moves where each
attribute (or attribute set) on the list exhibits a property expected to be found in
good solutions. For the present setting, these candidate lists can be constructed
as follows.

Consider first the case of insert moves where each preferred arc (vi, vj) gen-
erates two candidate moves: the first inserting vi between vj and vj+, and the
second inserting vj between vi and vi+, excluding the case where (vi, vj) is an
edge of the tour. Since we are dealing with the symmetric case, the preferred
edge (vi, vj) generates two insert moves in addition to those indicated. The first
inserts vi between vj and vj+, and the second inserts vj between vi− and vi. The
preferred attribute candidate list for exchange moves is similarly constructed.
Each preferred edge (vi, vj) generates four candidate exchange moves, the first
exchanging vj with vj+, the second exchanging vi with vi−, and two others
that result by treating a preferred edge in its two equivalent forms of (vi, vj)
and (vj , vi). Note that the generalization of these constructions for multi-node
insertion and exchange moves of the type considered by Or-opt neighborhoods
is straightforward.

We suggest that fuller advantage can be gained from the preferred candidate
list by replacing the costs c(vi, vj) by non-negative reduced costs derived by
solving 1-tree relaxation of the TSP. This will not change the move evaluations,
but typically will change the identities of the k-shortest edges of each node.
(Ties can be broken by reference to the original costs.) Additional shortest edges
may be included as determined by “modified” reduced costs, where constraints
violating the node degree are plugged in a Lagrangian function to amend the
1-tree structure.

In addition to the design of candidate list strategies, a careful organization
that saves the results of evaluations from previous iterations rather than re-
computing them from scratch, can also be valuable for reducing time. Time
saved in this way allows a chance to devote more time to the search. In the
TSP setting this objective has been chiefly achieved by the use of the so-called
don’t-look bits strategy introduced by Bentley [6]. This strategy is based on the
observation that if the base vertex, e.g. v1 in the LK procedure, and if the “tour
neighbors” of this vertex have not changed since that time, it is unlikely that the
selection of this vertex will produce an improving move. Thus, by associating

37

a binary variable (or flag) with each vertex, the neighborhood is restricted to
moves for which the base vertex v1’s associated bit is turned off. A bit for a
vertex vi is turned on the first time the selection of this vertex does not produce
an improving move. Conversely, it is turned off when one of its adjacent vertices
is used for a move.

3.2 Intensification and Diversification Strategies

Intensification and diversification in tabu search underlie the use of memory
structures which operate by reference to four main principal dimensions: re-
cency, frequency, quality, and influence. The strategic integration of different
types of memory along these dimensions is generally known as adaptive memory
programming.

Elements of memory can refer to both attributive memory and explicit mem-
ory. Attributive (or ”Attribute-based”) memory refers to either basic or cre-
ated attributes – instead of recording complete solutions – as a way to generate
strategies to guide the search. Attributive memory records information about
solution attributes that change in moving from one solution to another. For
example, in the TSP setting, attributes can consist of nodes or arcs that are
added, dropped or repositioned by the moves executed. (In more abstract prob-
lem formulations, attributes may correspond to values of variables or functions.)
Sometimes attributes are also strategically combined to create other attributes,
as by hash functions or by chunking or ”vocabulary building” methods ([30]).
Tabu search also uses explicit memory (complete solutions), usually by record-
ing a limited set of elite solutions which are analyzed to determine relationships
between attributes in these solutions.

Broadly speaking, recency/frequency and quality/influence can be viewed as
complementary dimensions. Recency-based and frequency-based memory record
timing information about the use of specific memory elements while quality
and influence classify solutions in terms of their significance for representing
promising solution characteristics (or regions in the solution space) and the
impact of certain choices on the quality of the solutions produced. The time
span considered in recency-based and frequency-based memory gives rise to an
important distinction between short-term memory and longer-term memory.

The short term memory component of tabu search, which is the start-
ing point for many tabu search implementations, characteristically embodies
a recency-based memory that modifies the solution trajectory by tabu restric-
tions (or conditions) and aspiration criteria. A tabu restriction prevents a
particular solution, or set of solutions, from being chosen as the outcome of the
next move. Most commonly used short term memory keeps track of solution
attributes that have changed during the recent past. Recency-based memory is

38

exploited by assigning a tabu-active designation to selected attributes that con-
tribute to creating a tabu restriction. This prevents certain solutions from the
recent past from belonging to the admissible neighborhood of the current solu-
tion and hence from being revisited. The process implicitly subdivides solutions
into changing ”similarity classes” whereby all solutions that share tabu-active
attributes with solutions recently visited may likewise be prevented from be-
ing visited. Aspiration levels provide a supplementary basis for controlling the
search, by allowing a move to be selected if the resulting solution is sufficiently
good or novel, in spite of being classified tabu-active. A simple aspiration crite-
rion is to allow a tabu move to be selected if it leads to a solution better than the
best one seen so far, or the best one seen within a particular region or duration
of search. Advanced forms of short-term memory may consider various types of
tabu restrictions associated with several aspiration criteria, which may be used
in conjunction to make a decision about the declination of the tabu status of a
particular move.

In the TSP context, tabu restrictions may be created, for example, by (1)
preventing a dropped edge from being subsequently added back; (2) preventing
an added edge from being subsequently dropped; (3) preventing a move that
simultaneously adds a previously dropped edge and drops a previously added
edge. Since there are generally fewer edges that can be dropped than can be
added, a tabu restriction of type (1) allows a greater degree of flexibility than
a restriction of type (2) or (3). (Still greater flexibility is provided by a re-
striction that prevents a dropped edge from being added back only if the move
simultaneously drops a previously added edge.)

Tabu restrictions remain in operation for a certain number of iterations (the
tabu tenure) which can vary according to the solution attributes involved and
the current search state. In some implementations where all attributes receive
the same tenure, the tabu restrictions are activated by placing the attributes
on a tabu list, and the size of this list identifies the tenure. (An attribute whose
tenure expires is removed from the list at the same time that a new attribute
is added.) A first level of intensification and diversification can be achieved by
changing the tabu list size. Small sizes encourage the exploration of solutions
near a local optimum, and larger ones push the search out of the vicinity of the
local optimum. Varying the tabu list size during the search provides one way
to explore such an effect, which has proved useful in a number of tabu search
applications.

A common means of implementing this type of short term memory is to cre-
ate an array which records the iteration that an attribute becomes tabu-active.
Then, the attribute remains tabu-active as long as the current iteration does
not exceed the initial iteration value by more than the tabu tenure. A special
type of tabu list results by creating “coded attributes” using hash functions.
Such a representation may be viewed as a semi-explicit memory that can be
used as an alternative to attributive memory. One variant of such an approach

39

is a special form of tabu search known as reactive tabu search (Battiti and Tec-
chiolli [5]). The goal of this technique is to differentiate more precisely among
individual solutions, by making use of a fine guage attribute memory. (Only in-
dividual solutions can pass through the mesh, if the hashing is highly effective.)
Other TS approaches usually incorporate broader gauge attribute definitions,
which implicitly differentiate among subsets of solutions rather than individual
solutions. In reactive TS, when the search appears to revisit a particular solu-
tion (by encountering its coded attributes) too often, the method introduces a
diversification step to drive the solution into a new region.

Frequency-based memory provides a type of information that complements
the information provided by recency-based memory. Frequency-based memory
has two forms: transition frequency memory and residence frequency memory.
Transition frequency relates to the number of times an attribute enters or leaves
the solutions generated (as, for example, the number of times an edge is added
or dropped). Residence frequency relates to the number of iterations during
which an attribute belongs the solutions generated (as, for example, the number
of iterations an edge belongs to a TSP tour, considering all tours generated).
Frequency based memory can also be different according to the interval (or
intervals) of time chosen for the memory. Frequency based memory that is
applied only to elite solutions gives different information and is used in different
ways than frequency based memory that is applied to all solutions (or ”average”
solutions). These memories are sometimes accompanied by extended forms of
recency-based memory.

Intensification is sometimes based on keeping track of the frequency that
attributes (assignments of elements to positions, edges of tours, fairly narrow
ranges of value assignments, etc.) occur in elite solutions, and then favoring
the inclusion of the highest frequency elements so the search can concentrate on
finding the best supporting uses (or values) of other elements.

As part of a longer term intensification strategy, elements of a solution may
be selected judiciously to be provisionally locked into the solution on the basis
of having occurred with a high frequency in the best solutions found. In that
case, choosing different mutually reinforcing sets of elements to be treated in
such a fashion can be quite beneficial. In the TSP setting where typically good
solutions have many elements in common, edges that belong to the intersection
of elite tours may be locked into the solution, in order to focus the search on
manipulating other parts of the tour. This creates a combinatorial implosion
effect (opposite to a combinatorial explosion effect) that shrinks the solution
space to a point where best solutions over the reduced space tend to be found
more readily. Such an intensification approach, where restrictions are imposed
on parts of the problem or structure is a form of intensification by decomposition
proposed in tabu search.

The backtracking mechanism used in the Lin-Kernighan procedure may be
viewed as a simple type of intensification process that attempts to find a new

40

improving solution by jumping back to successive trial solutions examined in
the first steps of the current Lin-Kernighan iteration. This is a limited form of
intensification in the sense that elite solutions chosen to restart the method are
restricted to those encountered at the immediately preceding level and therefore
are very similar to one another. In fact, since the backtracking process is only
applied when no improving solution is found during the LK move generation,
backtracking may be viewed as a perturbation mechanism locally applied to
the last local optimum found (and therefore limited to the exploration of one
elite solution at a time). The reverse extreme of this technique is the process
of restarting the method from a new initial solution generated either randomly
or by varying parameters of a constructive procedure. This represents a primi-
tive form of diversification, without reference to memory to preserve promising
characteristics of the elite solutions visited so far or to compel the generation
of solutions that differ in specific ways from those previously seen.

An important strategy used in the most efficient implementations of the
Lin-Kernighan procedure is the so-called “don’t look bits” (DLB) approach
described in Section 3.1. The strategy may be viewed as an instance of applying
a critical event tabu list structure, where the tabu-active status of an attribute
terminates as soon as a specified event occurs. In the case of the DLB approach,
the attribute under consideration is a node, which is forbidden to be involved
in a move, and hence is not examined to introduce a new edge, after it fails to
be considered for an improving move.

More precisely, the usual DLB implementation can be succinctly formulated
as a restricted application of tabu conditions, making use of TS terminology to
describe its operation, as follows. An attribute (in this case a node) is assigned
a tabu-active status as soon as a search for an improving move with that node
as the base node v1 fails. The tabu-active status of the node renders moves
that involve this node tabu, and the status is removed in the DLB approach
as soon as an improving move is found that drops an edge adjacent to the
tabu-active node, thus identifying the ”critical event” in this particular context.
More general TS designs identify unattractive attributes by frequency memory
over specified regions of the search, and then penalize such attributes during an
intensification or diversification phase. The ”region” for the Don’t Look Bits
approach is simply the domain of moves examined during an iteration when the
addition of the edge fails to produce an improving move, and the penalty is
pre-emptive, as in the more common forms of short-term TS memory.

We conjecture that the memory structure introduced by the “don’t look
bits” strategy, in conjunction with efficient candidate list constructions, provides
a key contribution to the performance of modern implementations of the Lin-
Kernighan procedure. If so, there may be advantages to using more general
types of critical event memory structures, governed by correspondingly more
general uses of frequency memory, as a basis for alternative implementations. In
this connection, it is interesting to note that the present implementations of the

41

Stem-and-Cycle ejection chain method do not incorporate any type of memory
structures (including the “don’t look bits” structure) to restrict the solution
space and guide the search process. The attractive outcomes of this ejection
chain approach compared to the LK implementations are therefore somewhat
surprising, and invite further examination of the Stem-and-Cycle and other
ejection chain structures, where consideration is given to including the types of
supplemental implementation strategies that have supported the LK procedures.

3.3 Strategic Oscillation

Strategic oscillation represents a special diversification approach in tabu search
that deserves its own discussion. An important challenge in the design of lo-
cal search algorithms is to create strategies that effectively avoid the trap of
getting stuck in local optima. It is not unusual in combinatorial optimization
for high quality local optima to lie in deep (or “large”) valleys of the solution
space, sometimes attended by numerous smaller variations in elevation along
the general valley floor. In such cases, a significant number of iterations may
be required to leave these basins of attraction in order to find new local optima
of higher quality. One way to overcome this difficulty is to change the neigh-
borhood when the telltale features of such a basin of attraction are observed.
The identification of critical levels of change required to escape from “insidious
valleys” provides the basis to implement a strategic oscillation that alternates
between different (and somewhat complementary) neighborhood structures.

A key issue often encountered in strategic oscillation is to allow the method
to cross boundaries of feasibility instead of strictly remaining within the feasible
region. In general combinatorial problems, a common technique for doing this
consists of relaxing some of the “hard” constraints and introducing penalties
associated with those that are violated as a result. Penalty values are appropri-
ately adjusted at each iteration in order to bring the search back into the feasible
region. Approaches of this type have been adopted to the heuristic context in
the tabu search algorithm of Gendreau, Hertz, and Laporte [20] for the classic
vehicle routing problem (VRP), which includes embedded TSPs. In this ap-
plication, the vehicle capacity and the route length constraints are temporarily
relaxed and handled by a penalty function as described.

In the TSP setting where constraints consist of enforcing a particular graph
structure – in this case, a Hamiltonian circuit (or cycle) – oscillation strategies
must rely upon the ability of the neighborhood structures to deal with infeasible
graph structures. Typical examples of such neighborhoods are provided by the
reference structures used in the Lin-Kernighan and Stem-and-Cycle Ejection
Chain procedures. In these approaches, as previously noted, a feasible TSP tour
chosen at one level of the move generation process is obtained by performing
a sequence of (infeasible) moves that transform one reference structure into
another, and recovering feasibility by performing a complementary trial move.

42

Another way to implement a strategic oscillation is to utilize construc-
tive/destructive neighborhoods, which follow each construction phase by de-
stroying the feasibility of the problem graph structure, and then build up a new
solution by reconnecting the solution subgraph in a different way.

The destructive process can be done either one component at a time or based
on selecting a subset of graph components as in the vocabulary building strategy
of tabu search. In either case, the destructive process yields a partial subgraph
made up of a subset of disconnected components. The aim of the constructive
process is then to efficiently re-insert the missing components into the partial
graph to create a new complete tour. The GENIUS algorithm of Gendreau,
Hertz, and Laporte [19] uses a simple one-step (unit depth) oscillation, as noted
earlier, but more advanced forms of oscillation are clearly possible.

4 Recent Unconventional Evolutionary Methods

It is useful to base the design of the constructive/destructive process on the
observation of commonalties between good TSP tours, making use of asso-
ciated tabu search memory components. Additional ways to create memory
structures to explore intensification and diversification arise in connection with
Scatter Search and Path Relinking methods which embody a population-based
approach.

4.1 Scatter Search Overview

Scatter search [22] is an evolutionary method proposed as a primal counterpart
to the dual approaches called surrogate constraint methods, which were intro-
duced as mathematical relaxation techniques for discrete optimization problems.
As opposed to eliminating constraints by plugging them into the objective func-
tion as in Lagrangean relaxations, surrogate relaxations have the goal of gen-
erating new constraints that may stand in for the original constraints. The
approach is based on the principle of capturing relevant information contained
in individual constraints and integrating it into new surrogate constraints as a
way to generate composite decision rules and new trial solutions (Glover [21]).

Scatter search combines vectors of solutions in place of the surrogate con-
straint approach of combining vectors of constraints, and likewise is organized
to capture information not contained separately in the original vectors. Also, in
common with surrogate constraint methods, SS is organized to take advantage of
auxiliary heuristic solution methods to evaluate the combinations produced and
generate new vectors. As any evolutionary procedure, the method maintains a
population of solutions that evolves in successive generations.

A number of algorithms based on the scatter search approach have recently
been proposed for various combinatorial problems (Kelly, Rangaswamy and Xu

43

[42], Fleurent et al. [18], Cung et al. [16], Laguna and Mart́ı [46], Campos
et al. [8], Glover, Løkketangen and Woodruff [32], Atan and Secomandi [4],
Laguna, Lourenço and Mart́ı [45], Xu, Chiu and Glover [65], Cavique, Rego
and Themido [11]). For tutorial descriptions of Scatter Search with examples
of different applications we refer the reader to Glover, Laguna, and Mart́ı [31],
and Rego and Leão [62].

Scatter search operates on a set of reference solutions to generate new solu-
tions by weighted linear combinations of structured subsets of solutions. The
reference set is required to be made up of high-quality and diverse solutions and
the goal is to produce weighted centers of selected subregions that project these
centers into regions of the solution space that are to be explored by auxiliary
heuristic procedures. Depending on whether convex or nonconvex combinations
are used, the projected regions can be respectively internal or external to the
selected subregions.

For problems where vector components are required to be integer, a rounding
process is used to yield integer values for such components. Rounding can be
achieved either by a generalized rounding method or iteratively, using updating
to account for conditional dependencies that can modify the rounding options.

Regardless of the type of combinations employed, the projected regions are
not required to be feasible and hence the auxiliary heuristic procedures are usu-
ally designed to incorporate a double function of mapping an infeasible point to
a feasible trial solution and then to transform this solution into one or more trial
solutions. (The auxiliary heuristic commonly includes the function of restoring
feasibility, but this is not a strict requirement since scatter search can be allowed
to operate in the infeasible solution space.) From the implementation stand-
point the scatter search method can be structured to consist of the following
subroutines:

Diversification Generation Method - Produces diverse trial solutions from
one or more arbitrary seed solutions used to initiate the method.

Improvement Method - Transforms a trial solution into one or more enhanced
trial solutions. (If no improvement occurs for a given trial solution, the enhanced
solution is considered to be the same as the one submitted for improvement.)

Reference Set Update Method - Creates and maintains a set of reference
solutions that are the “best” according to the criteria under consideration. The
goal is to ensure diversity while keeping high-quality solutions as measured by
the objective function.

Subset Generation Method - Generates subsets of the reference set as a basis
for creating combined solutions.

44

Solution Combination Method - Uses structured and weighted combinations
to transform each subset of solutions produced by the subset generation method
into one or more combined solutions.

A general template for a scatter search algorithm can be organized in two
phases outlined as follows (Figure 13).

Step 0. Initial Phase

(a) Diversification Generator

(b) Improvement Method

(c) Reference Set Update Method

(d) Repeat this initial phase until producing a desirable level of high-
quality and diverse solutions.

Step 1. Scatter Search Phase

(a) Subset Generation Method

(b) Solution Combination Method

(c) Improvement Method

(d) Reference Set Update Method

(e) Repeat this scatter search phase until the reference set converges
or until a specified cutoff limit on the total number of iterations is
reached.

Figure 13: A Scatter Search Template

4.2 Scatter Search for the TSP

An important aspect in any evolutionary approach is the way solutions are
encoded as members of the population. In genetic algorithms solutions were
originally encoded as bit strings, though there have been some departures to
this practice in recent years. The disposition to use bit strings in GA methods
derives from the fact that the first GA crossover mechanism for combining so-
lutions were based on simple exchanges of bits. In the classical GA bit string
representations, continuous decision variables are usually encoded as substrings
of the solution strings and their length depends on the precision required for
these variables. Discrete decision variables are commonly encoded in these rep-
resentations as a collection of zero-one variables, each corresponding to a single
binary character in the solution string. For combinatorial problems defined on
graphs, decision variables are typically associated with nodes or edges of the
problem graph. In the TSP setting, where the number of edges is typically
much larger than the number of nodes, solutions are usually encoded as a se-
quence of nodes representing a possible permutation for the problem. However,

45

such a permutation-based representation used by GA approaches for the TSP
entails several drawbacks subsequently noted.

By contrast, the original form of Scatter Search was not restricted to a
specific type of encoding such as using bit strings, because the mechanism for
combining solutions was not constrained to the limited crossover operations
that governed the original GA formulations. In fact, SS readily incorporates
different types of solution encodings in different parts of the method. In this
section we discuss a Scatter Search approach for the TSP that utilizes such a
“differential encoding” scheme. A node-based variable representation is used
where information about the relative value of the variables is not a primary
issue, and an edge-based encoding is used otherwise.

To provide a general framework that discloses some critical features for ap-
plying scatter search to the TSP, a general design of the scatter search template
for the TSP may be stated as follows.

Initial Phase

Diversification Generator. Scatter search starts by generating an initial set
of diverse trial solutions, characteristically using a systematic procedure, which
may include a stochastic component but which is highly “strategic” as opposed
to relying chiefly on randomization.

Treating the TSP as a permutation problem, an illustrative approach for
generating diverse combinatorial objects may be described as follows. A trial
permutation P is used as a seed to generate subsequent permutations. Define
the subsequence P (h : s) to be the vector P (h : s) = (s, s + h, s + 2h, . . . , s +
rh), where r is the largest nonnegative integer such that s + rh ≤ n. Rel-
ative to this, define the permutation P (h) for h < n, to be P (h) = (P (h :
h), P (h : h − 1), . . . , P (h : 1)). In the TSP context we consider permuta-
tions as n-vectors whose components are the vertices vi ∈ V . Consider for
illustration a TSP with n = 14 vertices, h = 4, and a seed permutation
P (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) given by the sequence of vertices ordered
by their indices. The recursive application of P (4 : s) for s = 4, . . . , 1 results
in the subsequences, P = {4, 8, 12}, P = {3, 7, 11}, P = {2, 6, 10, 14}, and
P = {1, 5, 9, 13}, hence P (4) = {4, 8, 12, 3, 7, 11, 2, 6, 10, 14, 1, 5, 9, 13}. By vary-
ing h it is possible to generate up to n different permutations to initialize the
reference set. The generated permutations can themselves represent tours by
successively linking vertices in the order they appear in the permutation and
attaching the initial and ending vertices to close up the tour.

Improvement Method. The improvement method used in the initial phase
may or may not be the same method used in the scatter search phase. This
decision usually depends on the context and on the search strategy one may
want to implement. Here we consider the context of the Euclidian TSPs, where

46

distances between vertices are ordinary Euclidian distances in the plane. For
instance, since a diversification generator such as the one we are using charac-
teristically generates edges that cross in the initial tours, and such crossings are
non-optimal for Euclidian problems, a simple form of improvement method in
the initial phase can be one of eliminating possible edge crossings rather than
doing extensive local optimization. The objective is to avoid premature con-
vergence and to keep a reference set with diverse and high quality solutions at
each iteration. In this context, the use of a classical k-opt procedure (k = 2
or 3) under a first-improvement startegy, which performs a move whenever it
improves the current tour, may be appropriate for the initial phase of the SS
procedure while a more powerful technique such as Lin-Kernighan or Stem-
and-Cycle variable depth methods would be appropriate for the scatter search
phase.

Reference Set Update Method. This method is used to create and main-
tain a set of reference solutions. As in any evolutionary method, a set of so-
lutions (population of individuals) containing high evaluation combinations of
attributes replaces less promising solutions at each iteration (generation) of the
method. In genetic algorithms, for example, the updating process relies on ran-
domized selection rules which select individuals according to their relative fitness
value. In scatter search the updating process relies on the use of memory and is
organized to maintain a good balance between intensification and diversification
of the solution process. In advanced forms of scatter search reference solutions
are selected based on the use of memory which operates by reference to different
dimensions as defined in tabu search. Depending on the context and the search
strategy, different types of memory are called for. As we have seen the term
adaptive memory programming refers to the general realm of strategies for inte-
grating and managing various types of memory to achieve both intensification
and diversification. (See Glover and Laguna [30], and Rego and Alidaee [61],
for a detailed explanation of various forms and uses of memory within search
processes.) For the purpose of this discussion we consider a simple rule to up-
date the set of reference solutions, where intensification is achieved by selecting
high-quality solutions in terms of the objective function value and diversifica-
tion is induced by including diverse solutions from the current candidate set
CS. Thus the reference set RS can be defined by two distinct subsets B and
D, representing respectively the subsets of high-quality and diverse solutions,
hence RS = B ∪ D.

Denote the cardinalities of B and D by |B| = r1 and |D| = r2, which do
not need to be identical and can vary during the search. For instance, relatively
larger sizes of B (D) can be appropriate during a phase that is more strongly
characterized by an intensification (diversification) emphasis. Different schemes
can be chosen to implement these variations. A dynamic variation of these sizes
can be implemented by a perturbation scheme, for example, and a strategic
oscillation approach with critical event memory can be used as an indicator of
the order of magnitude of the relative variations.

47

It is important to distinguish the concepts of difference and distance. In
the context of the TSP, the difference between two TSP tours is defined as the
number of edges by which the two solutions differ. The distance between two
solutions X and Y is defined as the minimum number of steps (or iterations)
necessary for the local search algorithm to move from solution X to solution Y .
Thus, the distance between two TSP tours depends on the type of neighbor-
hood used in the local search algorithm and may not be directly related to the
difference between the two TSP tours.

For a visual representation consider a solution space graph Ĝ where nodes
represent solutions and arcs define direct moves from one solution to another
associated with a given neighborhood structure. The distance between two
solutions X and Y is given by the shortest path (in terms of the number of
arcs) from node X to node Y in the graph Ĝ. It is easy to see that the distance
between solutions is a more accurate measure of diversity than the difference
between them. However, for the sake of simplicity it is common to use the
difference between solutions as an indicator of their diversity, and for the same
reason this measure can be used for the selection of diverse solutions to update
D in the reference set.

Let CS denote the set of solutions generated and improved during the
method’s application. If some of these solutions produced by the diversifica-
tion generator are not sufficiently distant from each other, it is possible that
the improvement method may generate the same solution from several differ-
ent members of CS. Therefore, it can be valuable to have a fast procedure to
identify and eliminate solutions from CS that duplicate or “lie very close” to
others before creating or updating the reference set. Such an approach can be
facilitated by using an appropriate hash function.

A straightforward way to create a reference set RS consists of selecting
the r1 best solutions from CS to create B, and then to generate the set D
of r2 diverse solutions by successively selecting the solution that differs by the
greatest amount from the current members of RS. As a diversity measure we
define dij = |(Si ∪ Sj) \ (Si ∩ Sj)| as the difference between solutions Si and
Sj , which identifies the number of edges by which the two solutions differ from
each other. The dij values are computed for each pair of solutions Si ∈ RS and
Sj ∈ CS.

Candidate solutions are included in RS according to the Maxmin criterion
which maximizes the minimum distance of each candidate solution to all the
solutions currently in the reference set. The method starts with RS = B and
at each step extends RS by selecting a solution Sj ∈ CS and setting RS =
RS ∪ {Sj} and CS = CS \ {Sj}. More formally, the selection of a candidate
solution is given by Sj = argmax mini=1,...,|RS|{dij : j = 1, . . . , |CS|}. The
process is repeated until RS is filled to the desired level.

48

Scatter Search Phase

Subset Generation Method. This method consists of generating subsets of
reference solutions to create structured combinations, where subsets of solutions
are organized to cover different promising regions of the solution space. In a
spatial representation, the convex-hull of each subset delimits the solution space
in subregions containing all possible convex combinations of solutions in the
subset. In order to achieve a suitable intensification and diversification of the
solution space, three types of subsets are organized to consist of:

1) subsets containing only solutions in B,

2) subsets containing only solutions in D, and

3) subsets that mix solutions in B and D in different proportions.

Subsets defined by solutions of type 1 are conceived to intensify the search in
regions of high-quality solutions while subsets of type 2 are created to diversify
the search to unexplored regions. Finally, subsets of type 3 integrate both high-
quality and diverse solutions with the aim of exploiting solutions across these
two types of subregions.

Adaptive memory once again is useful to define combined rules for clustering
elements in the various types of subsets. This has the advantage of incorporating
additional information about the search space and problem context.

The use of sophisticated memory features is beyond the scope of this discus-
sion. However, for illustrative purposes, we may consider a simple procedure
that generates the following types of subsets:

1) All 2-element subsets.

2) 3-element subsets derived from two element subsets by augmenting each 2-
element subset to include the best solution (as measured by the objective
function value) not in this subset.

3) 4-element subsets derived from the 3-element subsets by augmenting each 3-
element subset to include the best solution (as measured by the objective
function value) not in this subset.

4) The subsets consisting of the best b elements (as measured by the objective
function value), for b = 5, . . . , |B|.

Solution Combination Method. The Solution Combination method is de-
signed to explore subregions within the convex-hull of the reference set. We
consider solutions encoded as vectors of variables xij representing edges (vi, vj).

49

New solutions are generated by weighted linear combinations which are struc-
tured by the subsets defined in the preceding step. In order to restrict the
number of solutions only one solution is generated in each subset by a convex
linear combination defined as follows. Let E be a subset of RS, |E| = r, and let
H(E) denote the convex hull of E. We generate solutions S ∈ H(E) represented
as

S =
r∑

t=1

λtSt

r∑
t=1

λt = 1

λt ≥ 0, t = 1, . . . , r

where the multiplier λt represents the weight assigned to solution St. We com-
pute these multipliers by

λt =

1
C(St)

r∑
t=1

1
C(St)

so that the better (lower cost) solutions receive higher weight than less attractive
(higher cost) solutions. Then, we calculate the score of each variable xij relative
to the solutions in E by computing

score(xij) =
r∑

t=1

(λtx
t
ij)

where xt
ij denotes that xij is an edge in the solution St. Finally as variables are

required to be binary, the final xij value is obtained by rounding its score to
give xij = 	score(xij)+ .5
. The computation of the value for each variable in E
results in creating a linear combination of the solutions in E and a new solution
can be produced using edges associated with variables xij = 1. Nevertheless, the
set of these edges. Nevertheless, the set of these edges does not necessarily (and
usually doesn’t) represent a feasible graph structure for a TSP solution, since
it typically produces a subgraph containing vertices whose degrees differ from
two. Such subgraphs can be viewed as fragments of solutions (or partial tours).
When the subgraph resulting from a linear combination contains vertices of
degree greater than two, a very straightforward technique consists of successively
dropping edges with the smallest scores in the star (incident edge set) of these
vertices until their degree becomes equal to two. By doing so, the subgraph
obtained will be either feasible or fall into the case where some of the vertices
have degree 1. At this juncture there are several possibilities to create a feasible
solution subgraph and an appropriate tradeoff has to be chosen. For example, a

50

simple possibility is to group vertices of degree 1 and use a heuristic that simply
links them two by two according to some distance measure or savings criterion.
Another possibility is to solve the linear assignment problem to match each pair
of nodes according to their relative distances.

4.3 Path Relinking

Scatter Search (SS) provides a natural evolutionary framework for adaptive
memory programming, as we have seen, by its incorporation of strategic princi-
ples that are shared with certain components of Tabu Search. Another strategy
for integrating SS and TS principles consists of replacing vector spaces with
neighborhood spaces as a basis for combining solutions, which gives raise to a
TS strategy called Path-Relinking (PR).

More particularly, while SS considers linear combinations of solution vectors,
PR combines solutions by generating paths between them using local search
neighborhoods, and selecting new solutions encountered along these paths.

This generalization of SS can be described by the same general template
outlined in Figure 13. Figure 14 provides a visual interpretation of the PR
process. The lines leaving S in the figure shows an alternative paths traced
by the path-relinking strategy having the solutions denoted by S1, S2 and S3

operate as guiding solutions, which collectively determine the path trajectory
taken from the initial solution S during the local search process. In the simplest
case, a single guiding solution can be used.

S

S2

S1

S3

Figure 14: Path Relinking

51

The process of generating paths between solutions is accomplished by select-
ing moves that introduce attributes contained in the solutions that operate as
guiding solutions. In the move generation process, these attributes are weighted
to determine which moves are given higher priority. Again, by analogy with the
SS design, each intermediate point lying in a path between solution S and a
given guiding solution S′ can be viewed as the result of a combination of these
solutions.

By extension, a number of strategies are possible for a fuller exploration
of the solution space in a path-relinking framework. Alternative paths from S
under the influence of the guiding solutions can be generated by using memory
structures of the type embodied in TS. Also, in a given collection of elite so-
lutions, the roles of initiating solution and guiding solutions can be alternated.
That is, a set of current solutions may be generated simultaneously, extending
different paths, and allowing an initiating solution to be replaced (as a guiding
solution for others) whenever its associated current solution satisfies a suffi-
ciently strong aspiration criterion. Because their roles are interchangeable, the
initiating and guiding solutions are collectively called reference solutions.

The possibility of exploring different trajectories in the neighborhood space
suggests the use of alternative neighborhood structures with the objective of
reaching solutions that might otherwise be bypassed. This strategy, denoted in
TS terminology by tunneling, offers additional possibilities to explore bound-
aries between regions of feasible and infeasible solutions as a form of strategic
oscillation.

Path-relinking provides a useful means for integrating intensification and
diversification, by reference to groups (or clusters) of elite solutions that are or-
ganized according to some measure of relative difference or distance that gives
an indicator of their diversity. Solutions declared “close” to each other according
to a given criterion typically are assigned to the same cluster and the objective
is to maintain a set of clusters along the search that differ from each other by a
significant degree. Here the concept of proximity is broad rather than restrictive
in the sense that solutions may be considered close to one another if they share
some particular characteristics relevant in the context of the problem under
consideration. In the TSP context, for example, proximate solutions may be
the ones containing edges that are common to many good solutions. In a path
relinking strategy, choosing solutions S and S′ from the same cluster stimulates
intensification (by preserving common characteristics of these solutions), while
choosing them from two different clusters stimulates diversification (by includ-
ing attributes of the guiding solutions notcontained in the initial ones). This
approach can go beyond the target solutions by extrapolation, creating an ef-
fect analogous to the creation of non-convex linear combinations allowed in the
Euclidian space. But if an attractive departure from a guided trajectory is found
along the way (using aspiration criteria), then this alternative route can also be
explored, providing a dynamic integration of intensification and diversification.

52

Given that Ejection Chain methods, including the important special case
represented by the Lin-Kernighan approach, have provided some of the most ef-
ficient algorithms for the TSP, a natural possibility is to join such methods with
path relinking to provide a broader range of strategies. Such an approach, which
is currently unexplored, can also take advantage of other heuristic processes
previously described. For example, a combination of ejection chains and path
relinking, can draw upon a sequential fan method to generate paths within the
path-relinking procedure. The move components of a sequential fan candidate
list can be organized in this setting to include the attributes of the designated
guiding solutions. By applying ejection chain constructions to provide a look-
ahead process in the sequential fan method, high evaluation trial solutions can
be chosen to update the reference set (RS) of guiding solutions for a multi-
parent path-relinking strategy. In such a strategy, it is important to consider
appropriate measures of distance between the initial solution and the guiding
solutions so that solutions in RS differ by approximately the same degree from
the initial solution. By extension, if a sufficient number of ejection chain levels
is generated to reach solutions that lie at distances beyond those of the current
guiding solutions, then high quality solutions found in this extended neighbor-
hood space can be used as guiding points for an extrapolated path-relinking
process. Approaches of this form can be relevant not only for TSPs but also
for generalizations that include additional constraints and “embedded TSP”
structures.

Finally, we observe that additional metaheuristic approaches exist that offer
the potential to create useful hybrid methods for the TSP and its variants. It is
beyond the scope of this chapter to provide a detailed description of such meth-
ods, but we refer the reader to Glover and Kochenberger [29] for an extensive
coverage of these alternative procedures.

5 Conclusions and Research Opportunities

The current state-of-the-art discloses that the key to designing efficient algo-
rithms for large scale traveling salesman problems is to combine powerful neigh-
borhood structures with specialized candidate list strategies, while giving care-
ful attention to appropriate data structures for implementation. As reported
in Chapter 9, the Lin-Kernighan (LK) procedure and the Stem-and-Cycle pro-
cedure, which represent alternative instances of Ejection Chain (EC) methods,
currently provide the most effective algorithms for solving large TSPs. The merit
of the EC approaches derives from the use of reference structures to generate
compound moves from simpler components, where the evaluation of a move at
each level of construction is subdivided into independent operations to gain ef-
ficiency. The definition of the reference structure is highly important in these
methods, and more advanced reference structures (such as the doubly-rooted
loop constructions of [24], for example) invite examination in the future. Such
structures provide an opportunity to generate moves with special properties not

53

incorporated in k-opt moves generated by present TSP procedures.
Another potential strategic enhancement comes from the fact that the LK

and the Stem-and-Cycle procedures characteristically create paths in neighbor-
hood space by elaborating only a single thread of alternatives throughout suc-
cessive levels of construction. A more aggressive way to employ such processes is
to embed them in special neighborhood search trees, as described by Sequential
Fan (SF) and Filter and Fan (F&F) methods. This affords the possibility to go
beyond “greedy one-step choices” in the creation of neighborhood paths, while
utilizing mechanisms that are highly susceptible to parallel implementation.
SF and F&F approaches can also be used to merge neighborhoods of varying
characteristics within different stages and threads of the search. Coupling such
elements with more carefully designed memory-based strategies, such as those
derived from adaptive memory programming considerations, provide additional
avenues for future investigation.

Acknowledgements

We are indebted to David Johnson whose perceptive and detailed observations
have improved this chapter in a number of places.

This research was supported in part by the Office of Naval Research (ONR)
grant N000140110917.

References

[1] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. On the Solution of The Travel-
ing Salesman Problem. Documenta Mathematica, Extra Volume ICM III:645–656,
1998. Concorde code is currently available from www.math.princeton.edu/tsp.

[2] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Finding tours in the TSP.
Technical Report 99885, Research Institute for Discrete Mathematics, University
of Bonn, 1999.

[3] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large travel-
ing Salesman problems. Technical Report 99887, Research Institute for Discrete
Mathematics, University of Bonn, 1999.

[4] T. Atan and N. Secomandi. A Rollout-Based Application of Scatter Search/Path
Relinking Template to the Multi-Vehicle Routing Problem with Stochastic De-
mands and Restocking. Technical report, PROS Revenue Management, Inc. Hous-
ton, TX, 1999.

[5] R. Battiti and G. Tecchiolli. The Reactive Tabu Search. ORSA Journal on
Computing, 6(2):126–140, 1992.

[6] J.L. Bentley. Fast Algorithms for Geometric Traveling Salesman Problems. ORSA
Journal on Computing, 4:347–411, 1992.

[7] Berge C. Theory of Graphs and its Applications. Methuen, London, 1962.

54

[8] V. Campos, F. Glover, M. Laguna, and R. Mart́ı. An Experimental Evaluation
of a Scatter Search for the Linear Ordering Problem. Technical Report HCES-
06-99, Hearin Center for Enterprise Science, School of Business Administration,
University of Mississippi, MS, 1999.

[9] B. Cao and F. Glover. Tabu Search and Ejection Chains - Application to a
Node Weighted Version of the Cadinality-Constrained TSP. Management Science,
43(7):908–921, 1997.

[10] L. Cavique, C. Rego, and I. Themido. Subgraph Ejection Chains and Tabu Search
for the Crew Scheduling Problem. Journal of the Operational Research Society,
50:608–616, 1997.

[11] L. Cavique, C. Rego, and I. Themido. A Scatter Search Algorithm for the Maxi-
mum Clique Problem. In Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Boston, to appear.

[12] I. Charon and O. Hudry. The Noising Method: A New Combinatorial Optimiza-
tion Method. Operations Research Letters, 14:133–137, 1993.

[13] I. Charon and O. Hudry. Application of the Noising Method to the Traveling
Salesman Problem. European Journal of Operational Research, 125:266–177, 2000.

[14] N. Christofides and S. Eilon. Algorithms for Large-Scale Travelling Salesman
Problems. Operations Research Quarterly, 23:511–518, 1972.

[15] T.H. Cormen, C.E. Lierson, and R.L. Rivest. Introduction to Algorithms. MIT
Cambridge Press, 1990.

[16] V-D. Cung, T. Mautor, P. Michelon, and A. Tavares. Scatter Search for the
Quadratic Assignment Problem. Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, pages 165–169, 1996.

[17] U. Dorndorf and E. Pesch. Fast Clustering Algorithms. ORSA Journal on Com-
puting, 6:141–153, 1994.

[18] C. Fleurent, F. Glover, P. Michelon, and Z. Valli. A Scatter Search Approach for
Unconstrained Continuous Optimization. Proceedings of the 1996 IEEE Interna-
tional Conference on Evolutionary Computation, pages 643–648, 1996.

[19] M. Gendreau, A. Hertz, and G. Laporte. New Insertion and Postoptimization
Procedures for the Traveling Salesman Problem. Operations Research, 40:1086–
1094, 1992.

[20] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle
routing problem. Management Science, 40(10):1276–1290, 1994.

[21] F. Glover. A Multiphase-Dual Algorithm for Zero-One Integer Programming
Problems. Operations Research, 13:879–919, 1965.

[22] F. Glover. Heuristics for Integer Programming Using Surrogate Constraints. De-
cision Sciences, 8(1):156–166, 1977.

[23] F. Glover. Multilevel Tabu Search and Embedded Search Neighborhoods for the
Traveling Salesman Problem. Technical report, University of Colorado, Boulder,
1991.

[24] F. Glover. New Ejection Chain and Alternating Path Methods for Traveling
Salesman Problems. Computer Science and Operations Research, pages 449–509,
1992.

55

[25] F. Glover. Ejection Chains, Reference Structures and Alternating Path Methods
for Traveling Salesman Problems. Discrete Applied Mathematics, 65:223–253,
1996.

[26] F. Glover. Finding a Best Traveling Salesman 4-Opt Move in the Same Time as
a Best 2-Opt Move. Journal of Heuristics, 2:169–179, 1996.

[27] F. Glover. A Template for Scatter Search and Path Relinking. In Lecture Notes
in Computer Science, volume 1363, pages 13–54. Springer, Heidelberg, 1997.

[28] F. Glover. Scatter Search and Path Relinking. In New Ideas in Optimization,
pages 297–316. McGraw Hill, Berkshire, 1999.

[29] F. Glover and G. Kochenberger. State-of-the-Art Handbook in Metaheuristics.
International Series in Operations Research and Management Science. Kluwer
Academic Publishers, Boston, to appear.

[30] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
1997.

[31] F. Glover, M. Laguna, and R. Mart́ı. Scatter Search. In Theory and Applica-
tions of Evolutionary Computation: Recent Trends. Springer-Verlag, Heidelberg,
to appear.

[32] F. Glover, A. Løkketangen, and D. Woodruff. Scatter Search to Generate Diverse
MIP Solutions. Technical report, University of Colorado, Boulder, 1999.

[33] F. Glover and A.P. Punnen. The Travelling Salesman Problem: New Solvable
cases and Linkages with the Development of Approximation Algorithms. Journal
of the Operational Research Society, 48:502–510, 1997.

[34] J. Gu and X. Huang. Efficient Local Search with Search Space Smoothing: A
Case Study of the Traveling Salesman Problem. IEEE Transactions on Systems,
Man, and Cybernetics, 24(5):728–735, 1994.

[35] P. Hansen and N. Mladenović. Variable Neighborhood Search: Principles and
Applications. European Journal of Operational Research, 130:449–467, 1994.

[36] P. Hansen and N. Mladenović. An Introduction to Variable Neighborhood Search.
In Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization. Kluwer Academic Publishers, Boston, 1999.

[37] M. Held and R.M. Karp. The Traveling Salesman Problem and Minimum Span-
ning Trees. Operations Research, 18:1138–1162, 1970.

[38] M. Held and R.M. Karp. The Traveling Salesman Problem and Minimum Span-
ning Trees: Part II. Mathematical Programming, 1:6–25, 1971.

[39] K. Helsgaun. An Effective Implementation of the Lin-Kernighan Traveling
Sakesman Heuristic. European Journal of Operational Research, 126(1):106–130,
2000.

[40] D.S. Johnson and L. McGeoch. The Traveling Salesman Problem: A Case Study
in Local Optimization. In Local Search in Combinatorial Optimization. Wiley,
Chichester, 1997.

[41] D.S. Johnson, L. McGeoch, F. Glover, and C. Rego.
www.research.att.com/˜dsj/chtsp.

[42] J. Kelly, B. Rangaswamy, and J. Xu. A Scatter Search-Based Learning Algorithm
for Neural Network Training. Journal of Heuristics, 129:129–146, 1996.

56

[43] M. Laguna. Scatter Search. In Handbook of Applied Optimization. Oxford Acad-
emic Press, 2001.

[44] M. Laguna, J.P. Kelly, J.L. Gonzalez-Valarde, and F. Glover. Tabu Search for
Multilevel Generalized Assignment Problems. European Journal of Operational
Research, 82:176–189, 1995.

[45] M. Laguna, H. Lourenço, and R. Mart́ı. Assigning Proctors to Exams with Scat-
ter Search. In Computing Tools for Modeling: Optimization and Simulation,
Interfaces in Computer Science and Operations Research, pages 215–227. Kluwer
Academic Publishers, Boston, 2000.

[46] M. Laguna and R. Mart́ı. Scatter Search for the Linear Ordering Problem. In
New Ideas in Optimization, pages 331–339. McGraw Hill, Berkshire, 1999.

[47] G. Laporte. The Traveling Salesman Problem: An Overview of Exact and Ap-
proximate Algorithms. European Journal of Operational Research, 59:231–237,
1992.

[48] G. Laporte and I.H. Osman. Routing Problems: A Bibliography, volume 61.
Annals of Operations Research, 1995.

[49] S. Lin. Computer Solutions for the Traveling Salesman Problem. Bell System
Technical Journal, 44:2245–2269, 1965.

[50] S. Lin and B. Kernighan. An Effective Heuristic Algorithm for the Traveling
Salesman Problem. Operations Research, 21:498–516, 1973.

[51] O. Martin, S.W. Otto, and E.W. Fenten. Large-Step Markov Chains for the TSP
Incorporating Local Search Heuristics. Operations Research Letters, 11:219–224,
1992.

[52] D.L. Miller and J.F. Pekny. A Staged Primal-Dual Algorithm for Perfect B-
Matching with Edge Capacities. ORSA Journal on Computing, 7:298–320, 1995.

[53] N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers and
Operations Research, 24:1097–1100, 1997.

[54] T.E. Morton and D.W. Pentico. Heuristic Scheduling Systems. Wiley, Chichester,
1993.

[55] I. Or. Traveling Salesman-Type Combinatorial Problems and their Relation to
the Logistic of Regional Blood Banking. PhD thesis, Northwestern University,
Evanston, IL, 1976.

[56] P.S. Ow and T.E. Morton. Filtered Beam Search in Scheduling. International
Journal of Production Research, 26(1):35–62, 1988.

[57] E. Pesch and F. Glover. TSP Ejection Chains. Discrete Applied Mathematics,
76:165–181, 1997.

[58] C. Rego. A Subpath Ejection Method for the Vehicle Routing Problem. Manage-
ment Science, 44(10):1447–1459, 1998.

[59] C. Rego. Relaxed Tours and Path Ejections for the Traveling Salesman Problem.
European Journal of Operational Research, 106:522–538, 1998.

[60] C. Rego. Node Ejection Chains for the Vehicle Routing Problem: Sequential and
Parallel Algorithms. Parallel Computing, 27:201–222, 2001.

[61] C. Rego and B. Alidaee. Adaptive Memory and Evolution: Tabu Search and
Scatter Search. OR/CS Interfaces Series. Kluwer Academic Publishers, Boston,
to appear.

57

[62] C. Rego and P. Leão. A Scatter Search Tutorial for Graph-Based Permutation
Problems. Technical Report HCES-10-00, Hearin Center for Enterprise Science,
School of Business Administration, University of Mississippi, MS, 2000.

[63] G. Reinelt. Fast Heuristics for Large Geometric Traveling Salesman Problems.
ORSA Journal on Computing, 4:206–217, 1992.

[64] P.C. Steven, L.G. Bruce, and E.A. Wasil. A Computational Study of Smoothing
Heuristics for the Traveling Salesman Problem. European Journal of Operational
Research, 124:15–27, 1999.

[65] J. Xu, S. Chiu, and F. Glover. Tabu Search and Evolutionary Scatter Search for
’Tree-Star’ Network Problems, with Applications to Leased-Line Network Design.
In Telecommunications Optimization. Wiley, Chichester, to appear.

[66] M. Yagiura, T. Ibaraki, and F. Glover. An Ejection Chain Approach for the Gen-
eralized Assignment Problem. Technical report, Graduate School of Informatics,
Kyoto University, Japan, 2000.

58

Appendix A

Index of the book chapters

1. Introduction to symmetric and asymmetric TSP, A.P. Punnen.

2. Exact Algorithms for the Asymmetric TSP, M. Fischetti, A. Lodi and P.
Toth.

3. Polyhedral theory for the Asymmetric TSP, E. Balas and M. Fischetti.

4. Polyhedral theory and Branch-and-Cut algorithms for the Symmetric TSP,
D. Naddef.

5. Approximation algorithms for the Euclidean TSP and related topics, S.
Arora.

6. Polynomial Restriction Approach to the ATSP and STSP, G. Gutin, A.
Yeo, and A. Zverovich.

7. Probabilistic Aspects of the TSP, A. Frieze and J. Yukich.

8. Local Search and Metaheuristics, C. Rego and F. Glover.

9. Experimental analysis of heuristics for STSP, D.S. Johnson and L. Mc-
Geoch.

10. Experimental analysis of algorithms for ATSP, G. Gutin, D.S. Johnson,
L. McGeoch, A. Yeo, W. Zhang, A. Zverovich.

11. Solvable cases of the TSP, S. Kabadi.

12. Maximization TSP, A. Barvinok, E. Gimadi and A. Serdyukov.

13. Generalized TSP and Orienteering Problem, M. Fischetti, J. J. Salazer,
and P. Toth.

14. Prize Collecting TSP, E. Balas.

15. Bottleneck TSP, A.P. Punnen and SN Kabadi.

16. TSP Software, A. Lodi and A. Punnen.

Appendix A: Introduction to Graph Theory, G. Gutin.

Appendix B: Computational Complexity, A.P. Punnen.

59

