Surrogate Constraints in Integer Programming
Bezalel Gavish

Owen Graduate School of Management
Vanderbilt University

Nashville, Tennessee 37203

U.S.A.

Fred Glover

Graduate School of Business Administration
University of Colorado at Boulder

Campus Box 419

Boulder, Colorado 80309

U.S.4.

Hasan Pirkn]

College of Business

The Ohio State University

1775 College Road

Columbus, Ohio 43210

US.4.

ABSTRACT

- We present an improved algorithm for generating surrogate constraint multipliers
that constitues a hybrid approach based on integrating different procedures proposed
earlier by Glover and by Gavish and Pirkul. We demonstrate the validity of the new
procedure, give a numerical illustration, and report computational outcomes showing
the effectiveness of the procedure in gencrating surrogate constraints for 240 multiple
constraint knapsack problems drawn from an earljer study by Gavish and Pirkul.

1. INTRODUCTION

The sorrogate constraint concept was first introduced by Glover
(1965). A recent study by Gavish and Pirkul (1985) employs the surrogate
constraint approach to develop an effective solution method for solving
multiconstraint zero-one knapsack problems. Both papers propose
methods for creating surrogate constraints from multiple parent constraints
based on special procedures to generate surrogate constraints from exactly

Journal of Information & Optimization Sciences
Vol. 12 (1991), No. 2, pp. 219—228

. ©Analytic Publishing Co,

220 ‘ : GAVISH, GLOVER AND PIRKUL

two parent constraints. The Glover procedure identifies progressive exact
lower bounds for incrementing the multiplier of a violated parent cons-
traint while the Gavish and Pirkul procedure fixes one multiplier equal to
one and uses bisection to move brackets on the other multiplier until an
e-neighbourhood of an optimal value for this multiplier is determined.

Combining the perspectives of (Gavish and Pirkul 1985) and (Glover
1965) leads to a surrogate constraint generating procedure with interesting
properties. The resulting procedure is superior to the original algorithms
in a number of ways. The Gavish and Pirkul procedure does not have a
mechanism to recognize an optimal multiplier when such a multiplier is
obtained. The new algorithm, in addition to finding an e-neighbourhood
of an optimal multiplier, has the capability of recognizing an optimal
multiplier as such. In almost all problems we solved to test the algorithm
an optimal multiplier was identified. Furthermore the new procedure is
able to recognize a range over which the bound will not improve and
move the cuts further than a simple bisection algorithm would do and
therefore improve the efficiency significantly. The algorithm outlined
here also solves the potential problems that may be caused by using too
large or too small step sizes in the original procedure proposed by Glover
(1965).

In section 2 we outline basic surrogate constraint results. The new
procedure is outlined in section 3. Section 4 presents a numerical example
demonstrating the procedure. Computational results are presented in
section 5.

2. BASIC SURROGATE CONSTRAINT IDEAS

Consider the following standard 0—1 integer programming
problem :
Problem IP
Zip=Max {cx | Ax<h, x€{0, 1}}.

The surrogate relaxation of this problem is given by :

Problem S .
Zs(p)=Max {cx | w(dx -~ b)<0, x€{0, 1}}.

Here we concentrate on the iwo constraint version of the problem,
Since procedures outlined both in (Glaver 1965) and in (Gavish and
Pirkul 1985) to generate surrogate multipliers for the general problem

SURROGATE CONSTRAINTS 221

use a series of two constraint problems, the results derived here will have
implications for the general problem as well.

In (Glover 1965)a range of surrogate multipliers over which the
solution of the surrogate problem remains unchanged is determined. To
present this result we use the following simple framework. Let S denote
a surrogate constraint corresponding to a multiplier vector p and let x*
denote the solution to problem S with multiplier vector W. Taking a slight
liberty with notation, supposc S is divided into two component constraints
F and G such that S=F+G. Moreover suppose F is satisfied by x* and
G is not. Finally, let f and g be the (scalar) amounts by which x* over-
satisfies F and undersatisfies G. Then itis shown in (Glover 1965) that
the surrogate constraint represented by F+kG wiil be satisfied by x* for
0<k<flg, and will fail to be satisfied when k=flg+e, for all e>0. It is
also shown in (Glover 1965) that at most one of the constraints can be
violated by x*, and that the value Zs(w) decreases monotonically (non-
strictly) as the weight on the violated constraint is increased, until the

_constraint is no longer violated, As observed by Greenberg and Pierskalla
(1970) this implies Zs(p) is quasi-convex, and as further noted in Gavish

and Pirkul (1985) :

1. If we let w' be a multiplier value such that solution of
Zs-(l, u'-- e) satisfies the second constraint and the solution of
Zs (1, w' —¢) violates the second constraint for any €>0, then
for 1y, Wy Such that ’
0< i <pa<p’, Zs(l, ug) = Zs(1, pa)s

2. If we let p'' be 2 multiplier value such that solution of
Zs(1, n''-+e) violates the first constraint and the solution of
Zs(1, p'' —e) satisfies the first constraint for any ¢>0, then for
e, B2 such that

plr Ly < <0, Zs(1, w)<Zs(1, v2).

The preceding relationships were used in (Gavish and Pirkul 1985)
to propose an algorithm which keeps the multiplier of the first constraint
equal to 1 and starts with two multiplier values ¢ and ;, bracketing the
optimal multiplier range for the second constraint. -This range is then
reduced through a bisection procedure. The algorithm continues bisection
cuts until the difference between the two brackets is Jess than or equal to

a prespeciﬁgd constant ¢.

222 GAVISH, GLOVER AND. PIRKUL

We now present a hybrid procedure that integrates the ideas
underlying these two different surrogate constraint generation appro-
aches,

3. THE IMPROVED PROCEDURE FOR GENERATING SURRO:
GATE CONSTRAINTS

Procedire-GGP

1. Let i, and ¢; be two multiplier values such that the solution of
Zg(1, 1) satisfies the first constraint at p=p, and does not
satisfy it at p=g.

3. Let =ty (us—u)/2. Solve Zs(1,). If in the solution to

ZS(]-: ;‘)1

(i) both constraints are satisfied STOP, (1, p-t) is an optima)
multiplier vector and an optimal solution to the original
problem (problem-IP) has been obtained.

(if) only the first constraint is satisfied, let p;=flg where fis
the amount of oversatisfaction of the first constraint and g
is the amount of undersatisfaction of the second constraint.

(#ii) only the second constraint is satisfied, let p.,,'-—-f/g where f
is the amount of undersatisfaction of the first constaint and
g is the amount of oversatisfaction of the second constraint,

3. Ifps—i; > ¢ GO TO STEP 2, otherwise STOP. If p;>p,,

(1, u) is an optimal multiplier vector, Otherwise both u; and
By are within an e-neighbourhood of an optimal multiplier for
the sscond constraint ; choose the one that corresponds to the
lowest bound as the final multxphcr

It is evident that the foregoing process will either obtain an optimal
solution at Step 2 (i) or the difference p,—p; will be diminished by -at
least half each time Step 2 is visited. (The ratio assignments of Steps
2(#1) and 2(7ii) always move in the direction of diminishing the difference
and the effect is compbunded by the bisection that determmes—[u) The
essentidl requirement is therefore to justify the assertlons of Step 3 when
the algorithm terminates.

SURROGATE CONSTRAINTS 223

THEORBM, For W; and & as determined by . the algorithm, W_henever

Pp—; < € ; the condition w; 2 1y Implies that (1, g:) is ‘an optimal
multiplier veétor, and atherwise pr and py are within an e-neighbourhood
of optimality. -

Proor. The result derives from the observations concerring the f/g
ratio outlined in section 2. There are two cases to consider,

Case 1. Only the first constraint is satisfied.

Let the multipliets be 1 and ; for the first and second constraints
respectively. Therefore F is equal fo the first constraint and G is equal

to the second constraint multiplied by ;:.

= flg==(oversatisfaction of the first coustramt)/(;.c) (undersatlsfac-
tion of the second constramt)

= F+ KG=first constraint-+(/f/g) (u) (secdnd constraint)

=> Multiplier of the second constraint=(f/g) (;)'.

Substituting for flg from above, the multiplier of the second cons-
traint becomes equal to oversatisfaction of the first constraint divided by
the undersatisfaction of the second constraint. Since the solution

corresponding to multiplier vector (1, w) will satisfy the surrogate coné-
traint until s reaches thlS ratio, the lower bracket (12;) can be set equal to

the ratio rather. than u
Case 2. Only-the second constraint is satisfied.

Let multipliers be land; for the first and second constraints
respectively. Therefore in this case Fis equal to the second constraint

multiplied with 1 and G is equal to the first constraint

= flg= (1) (oversatisfactfon of the second CQnstraint)/qndersatis-
faction of the first constraint '

=F +k6‘=(,;) (second constraint-+(g} (frst constraint),
Normalizing the multipliers so. that the multiplier of the first constraint
is equal to 1 '

224 GAVISH, GLOVER AND PIRKUL

Multiplier of the second constraint=(;- .

- Substituting for g/f from above, the muliiplier of the second cons-
traint becomes equal to the undersatisfaction of the first constraint
divided by the oversatisfaction of the second constraint, Since the solution

corresponding to multiplier vector (l,;.) will satisfy the surrogate
constraint until ¢ reaches this ratio, the upper bracket (1) can be set

equal to the ratio rather than ; This completes the proof. [

We next provide a numerical example and then report computational
results.
4, NUMERICAL EXAMPLE

The algorithm is demonstrated on the following simple problem from
(Gavish and Pirkul 1985) : '

c={45 57 43 44 61 35 41 54 18 22 78}
{942469 9563 2982915 9 100}
A=

26 91 35 1580 71 20 76 33 46 86
b5={351 192}.

The second constraint is the tighter of the two constraints so we fix
the multiplier of the first constraint equal to 1 and search for a mu_ltiplier
for the second constraint. Figure 1 illustrates S(I, ¢) as a function of w.

FYSUMY
260
270 -
260 -
260 4=
2404 o

7 ot 01 5 e et b v 0SS0

0.2 0.4 0.6 0.8 1.0, 12 1.4 1.6 §
Figure 1. The function of S(1, p) plotied gs a function of .

' : SURROGATE CONSTRAINTS 225

The cuts made by procedure-GGP to reach an optimal multiplier are
illustrated in Table 1, After the fifth iferation the upper bracket is

r TABLE 1
l Bisection cuts in Procedure GGP

Iter, Uy & Interval Objective Constraint Bisection
; size Sunction violated cut
| |
. 1 0. - 1.0000 250 1 1.0000
20 9817 9817 227 2 4909
3 .5882 9817 .3935 233 1 7850
4 .5882 .7273 1391 222 1 ..6578
5 .5882 .6200 0318 222 1 .6041
6

.5882 5556 —.0326

moved below the lower bracket indicating that (1, .6041) is an optimal
multiplier. Procedure 1 from (Gavish and Pirkul 1985) would not be able
to confirm an optimal multiplier. Furthermore it would take 8 cuts for
! an ¢ value of..01. The number of cuts would go up to 12 for an .« of .001.

% 5. COMPUTATIONAL RESULTS

We have tested procedure GGP on a wide range of multiple cons-
traint knapsack problems drawn from the study of (Gavish and Pirkul 1985)
to provide the basis of comparison. The program for procedure GGP
as for Procedure 1 in (Gavish and Pirkul 1985) was written in FORTRAN-
71, and the computational experiments were conducted on a PRIME 9955

were solved. The results with 150 of these problems are reported in
Table 2. For these problems, the objective function coefficients.(c,) as
o - well . as the resource consumption coefficients . (#;) defining constraints
7: were drawn from uniform distributions and were rounded -up to the
nearest integer value. The right hand side element (b;) for each constraint

minicomputer. The results of the comparative tests are summarized in -
Tables 2—4. A total of 240 problems arranged into groups of 10 problems

226 ' GAVISH, GLOVER AND PIRKUL

; TABLE 2*
Comparison of procedure GGPF and procedure 1

¢;and ay ~ Number Average Number Average Number % of Cases

are drawn of of Cuts with of Cuts with Opt. Mult,
from : Variables . Procedure | Procedure GGP Confirmed
10 8.6 . 2.1 100
50 10.6 3.0 100 .
ua, 10 100 10.8 3.3 100
200 11.0 3.9 100
300 10.5 3.6 90
10 10.4 2.1 100
T 50 10.8 3.9 ' 100
u(1, 100) 100 10.4 3.9 . 100
200 113 3.7 . . 90
300 11.2 59 ' 70
10 8.7 2.7 100
© 50 11.2 3T ' 100
U1, 1000) 100 T 108 5.6 100 -
‘ 7200 11.3 4.8 100
300 10.6 5.1 100
v (*) An e value of .001 was used in both procedures.
TABLE 3*

Performance of procedures as the right hand side element
wvalues are reduced ,

The Right Hand ~ Average Number Average Number %" of Cases

Side Element - of Cuts with - of Cuts with Opt. Mult.
by equal 10 : Procedure 1 Procedure GGP Confirmed
" Tay? | 10.4 3.9 100
2 ayl4 - 10.8 ’ 41 100 -
S a6 11.0 : 4.2 100
% ayl/8 11.0 4.4 : 100 -
] ‘auflo - ‘11.3 - 4.5 : 100

" (%) An e value_ of .00l was used in both procedures. Probléms in all groups
e congisted of 100 varidbles. - : L bl

SURROGA TR CONSTRAINTS 227

TABLE 4*

Performance of the procedures on problems where objective
function coefficients are correlated to the resource
consumption coefficients

The Multiplier Average Number Average Number Y, of Ca.s';

K used to define of Cuts with of Cuts with Opt. Muit.
cjequal to: Praocedure 1 Procedure GGP Confirmed
50 11.7 8.0 100
100 11.4 1.5 80
300 11.2 6.0 80
600 11.3 6.2 100
1000 11.3 5.7 100

(*) An € vaiue of 001 was used in both procedures ‘Problems in all groups
consisted of 100 variables,

was set equal to half of the sum the resource consumption coefficients
(a;). For each group of problems, Table 2 reports the average number of
cuts using procedure GGP as well as procedure 1. Also reported is the
percent of cases where an optimal multiplier is confirmed by pro-
cedure GGP. Ascan be seen from this table, procedure GGP requires
on the average around 63 percent fewer cuts than Procedure 1. Further-
more in 145 of the 150 problems an optimal multiplier was confirmed
with this procedure, It should also be pointed out that the relative savings
will increase as we use smaller ¢ values in these procedures,

The procedures are further compared on two different sets of
problems. The first set is obtained by reducing the right hand side elemant
of constraints thus forming problems in which fewer and fewer variables
can be fixed to 1. The objective function and the resource consumption
coefficients of these problems were both drawn from a uniform distribution
between 1 and 100 and were rounded up to the nearest integer
number. Problems in all groups consisted of 100 variables. The results
with these problems which are reported in Table 3 are similar to the
results reported in Table 2. The second problem set was generated to
compare the algorithms on problems where the objective function
coefficients (¢;) are correlated with the resource consumption coefficients
(ay). Five groups of problems were generated. All problems in these
groups consisted of 100 variables. For these problems resource consump-
tion coefficients were drawn from a uniform distribution between 1 and

-y

.

‘3, " H.J. Greenberg and W.‘P. Pierskalla,

228 GAVISH, GLOVER AND PIRKUL

1000 and rounded up to the nearest integer values. The objective function
coefficients were generated as follows : :

er={(an+an)24+K*,

whete [d] represents the smallest inte
from a uniform distribution betwee
multiplier is used to generate probl

Ber greater than 4, r is random number
nO0andland K isa multiplier. This
ems with varying degrees of correla-
tion between ¢, and @;;. The results are reported in Table 4. It is
observed that, for these problems the savingsin the number of cuts is

around 41 per cent which is somewhat smaller than the savings with other
sets. .

REFERENCES

L. B. Gavish and H. Pirkul, Efficient Algorithms for Solving Multiconstraiat
Zero-One Knapsack Problems to Optimality, Mathematical Programming, Vol, 3]
(1985), pp. 78-105. :

“P. Glover, A Multiphase Dual Algorithm for the Zero-

One Integer Programming
Problem, Operations Research, Vol. 13(1965),

Pp. 879-919,

Surrogate Mathematical Programs,

Operations Research, Vol. 18 (1970), pp. 924-939,

Received January, 1990

