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Abstract

Advances in quantum computing with applications in combinatorial optimization have evolved at an in-
creasing rate in recent years. The quadratic unconstrained binary optimization (QUBO) model is at the cen-
ter of these developments and has become recognized as an effective alternative method for representing a
wide variety of combinatorial optimization problems. Additional momentum has resulted from the arrival
of quantum computers and their ability to solve the Ising spin glass problem, another form of the QUBO
model. This paper highlights advances in solving QUBO models and extensions to more general polyno-
mial unconstrained binary optimization (PUBO) models as important alternatives to traditional approaches.
Computational experience is provided that compares the performance of unique quantum-inspired meta-
heuristic solvers—the Next Generation Quantum (NGQ) solver for QUBO models and the NGQ-PUBO
solver for PUBO models—with the performance of CPLEX and the Dwave quantum advantage solver. Ex-
tensive results, including experiments with a set of large set partitioning problems representing the largest
QUBO models reported in the literature to date, along with maximum diversity and max cut problem sets,
disclose that our solvers outperform both CPLEX and Dwave by a wide margin in terms of both computa-
tional time and solution quality.

Keywords: QUBO; combinatorial optimization; integer programming; quantum computing

1. Introduction
In recent years, the unifying nature of the QUBO model (whose acronym stands for quadratic

unconstrained binary optimization) for modeling and solving many combinatorial problems has
taken on heightened importance due to the emergence of quantum computers as documented in
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studies such as Kochenberger et al. (2004), Kochenberger et al. (2014), Lucas (2014), and Anthony
et al. (2017).

The QUBO model is a mathematical framework used to represent and solve a wide range of real-
world combinatorial optimization problems that involve finding the best combination of choices
from a large set of possibilities. Examples include the traveling salesman problem, job scheduling,
protein folding, and portfolio optimization, among many others.

The quantum computing community emphasizes QUBO models because they are mathemati-
cally equivalent to a problem in physics known as the spin glass problem (Zhu et al., 2015). QUBO
problems can be directly mapped to quantum annealers, such as those provided by D-Wave Sys-
tems, or to gate-based quantum computers, like those from IBM, Google, and others. This makes
the QUBO model a natural choice for leveraging the power of quantum computing in optimization
tasks as documented in Aramon et al. (2019), Glover et al. (2019), Glover et al. (2020) and Glover
et al. (2022a, 2022b).

The QUBO model represents a significant departure from traditional modeling in exploiting the
influence of the constraints to shape the search process. Rather than impose restrictions as tradi-
tional constraints, QUBO models modify the original objective function with penalties that help
guide the search process. From the original constraints, quadratic functions are incorporated into
the objective function as penalties causing the objective function to degrade as the search process
moves into infeasible regions while having a neutral impact for feasible solutions. Traditional meth-
ods sometimes employ Lagrangian techniques to achieve similar outcomes, but these techniques
have significant drawbacks not shared by penalty approaches of the QUBO models as observed in
Glover et al. (2022a).

When incorporated into the original objective function, the quadratic penalty functions yield a
new, unconstrained function to be optimized. It is through these penalties that the influence of the
constraints impacts the search process.

Mathematically, the QUBO model is represented by:

QUBO : opt xy = x' Ox (1)

where x is a vector of binary variables, and Q is a symmetric matrix of constants.

There are many hybrid solvers that combine classical and quantum computing resources to solve
optimization problems more efficiently. By formulating problems as QUBOs, researchers can de-
velop hybrid algorithms that take advantage of quantum hardware’s unique capabilities while also
leveraging classical computing. The potential of quantum computing has motivated significant re-
search and development efforts to advance the QUBO model and develop practical algorithms for
solving QUBO problems on classical and quantum hardware. Examples of existing quantum algo-
rithms are the variational quantum eigensolver (Peruzzo et al., 2014), the quantum approximate
optimization algorithm (Farhi and Goldstone, 2014), and the quantum annealing algorithm (John-
son et al., 2011).

In this paper, we report new advances for solving QUBO problems that are embodied in a spe-
cially designed quantum-inspired algorithm called the Next Generation Quantum (NGQ) solver
from Entanglement (2023), which has proved extremely successful in solving very large-scale QUBO
models. Head-to-head competition with other approaches indicates the effectiveness of the NGQ
approach in terms of both solution quality and computational time.
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In addition to QUBO models, higher-order polynomial unconstrained binary optimization
(PUBO) problems are frequently encountered in the quantum computing community and beyond.
Typical examples here include Boolean satisfiability problems, bi-clustering problems, and molecu-
lar conformation problems. These higher-order models can be solved as is, or they can be translated
as equivalent QUBO models via a quadratization transformation process as described by Rosen-
berg (1972), Boros and Hammer (2002), Boros and Gruber (2014), and Verma et al. (2021). These
procedures create an equivalent model at the cost of introducing many new variables. A modified
version of our NGQ solver, called NGQ-PUBO, solves PUBO models directly without the conver-
sion to a QUBO model, often with greater efficiency as shown in Section 4.

The rest of this paper is organized as follows. Section 2 reports large-scale QUBO testing on three
major classes of problems: set partitioning, maximum diversity problems (MDPs), and max cut
problems. Section 3 presents computational experience using a test bed of third- and fourth-order
polynomial models with comparisons to results obtained from CPLEX and Dwave Advantage.
Section 4 summarizes our findings and draws some conclusions.

2. Large-scale QUBO applications
2.1. Solving large-scale set partitioning problems in QUBO

The set partitioning problem can be formulated as

min Z CiXj, @
j:l
s.t.
Zaijszlforizl,...,m. 3)

j=1

Applying the transformation introduced by Glover et al. (2022a), the set partitioning problem
becomes a QUBO problem without introducing new variables, whose objective function takes the
following form:

min Y " cpx;+ PY (D aixi;— 1), 4)

=D i (=0

which can be re-written in the standard QUBO form as

min x’ Ox + an additive constant.

In this section, we give results obtained from CPLEX, our NGQ QUBO solver and the
Dwave Advantage solver, which is the leading hybrid quantum QUBO solver. We note that like
CPLEX and the Dwave solver, NGQ is a proprietary algorithm. As an overview, NGQ is a
quantum-inspired solver that combines different metaheuristic ideas, such as classical tabu search,
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Table 1
Next Generation Quantum (NGQ) versus CPLEX versus Dwave Advantage on medium-size problems

CPLEX Dwave Advantage NGQ

ID Vars OFV Time (s) OFV Time (s) Gap % OFV Time (s)
SPPO1la 6000 10,872 7851 11,156 124 2.61% 10,872 53
SPPO1c 6000 22,860 2598 22,917 87 0.25% 22,860 275
SPPO1d 6000 14,793 14,115 14,917 106 0.84% 14,793 12
SPP02a 8000 14,959 15,348 15,332 229 2.49% 14,959 34
SPP02b 8000 9621 18,071 10,037 253 4.32% 9621 74
SPP02c 8000 30,425 16,423 30,929 144 1.66% 30,425 95
SPP02d 8000 19,882 10,191 19,882 188 0.33% 19,816 19

diversification-driven tabu search, adaptive memory programming, scatter search, path relinking,
cross-over, and local search (Glover, 1997a; Glover 1997b). This metaheuristic combination strategy
has proven to be highly competitive in terms of both solution quality and computational efficiency
relative to other approaches for solving the QUBO model as shown in the tables below.

In the following tables, we present results on medium-size, large-size, and very large-size test
problems. Except as noted otherwise, all results were obtained on a desktop PC with 11th Gen
Intel Core 19-11900H processor at 2.50GHz and 32 GB of RAM. The Dwave Advantage results
were obtained directly from the Dwave Leap quantum cloud service Advantage quantum computer.

CPLEX was given a time limit of five hours for each problem, and the CPLEX results were de-
rived from the standard linear model for set partitioning. The NGQ and Dwave Advantage results
were obtained from the QUBO formulation of the problems. Times shown in the tables are “times
to best solution.”

2.1.1. Results for medium-sized problems

As shown in Table 1, both CPLEX and NGQ found optimal solutions for the first six of these
modest-sized problems. NGQ obtained a better solution than CPLEX on the last problem and
outperformed CPLEX on “time to best” by a wide margin on all eight problems. The Dwave Ad-
vantage performance lagged behind that of NGQ and CPLEX, both in terms of solution quality
and time to best.

2.1.2. Results for large instances
The quantum solver, Dwave Advantage, exhibited erratic and inferior results on the larger problem
instances, failing in many cases to return a solution and otherwise giving substantially inferior
results. Accordingly, we left Dwave Advantage out of the next two tables.

Table 2 shows that NGQ quickly found best-known solutions for all 24 problems, while CPLEX
was able to find best-known solutions for only 11 of the 24 problems. NGQ had a “time to best”
advantage over CPLEX that typically ranged from 1 to 3 orders of magnitude.

2.1.3. Results from very large instances
For the very large problems of Table 3, CPLEX could not find the best-known solution to
any of these problems within the time limit of five hours. NGQ quickly provided best-known
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Table 2
CPLEX versus NGQ on large-size problems
CPLEX NGQ
Instance Vars Constraints Density % OFV Time (s) OFV Time (s)
1 10,000 1000 0.25 7292 947 7292 378.2
2 10,000 1000 50 4543 1543 4543 11.6
3 10,000 5000 25 37,968 284 37,968 5.4
4 10,000 5000 50 24,297 8683 24,297 1337
5 15,000 1500 25 10,930 66 10,930 17.5
6 15,000 1500 50 7174 2176 7047 77
7 15,000 7500 25 57,834 993 57,419 706.7
8 15,000 7500 50 37,962 2373 37,671 556.8
9 20,000 2000 25 14,900 9833 14,900 1535.1
10 20,000 2000 50 9412 369 9412 3.6
11 20,000 10,000 25 77,448 2119 77,198 1729.1
12 20,000 10,000 50 50,188 4786 50,188 5.7
13 25,000 2500 25 18,517 589 18,498 10
14 25,000 2550 50 12,008 1847 11,923 813.8
15 25,000 12,500 25 96,690 548 96,445 1474.3
16 25,000 12,500 50 63,173 18,903 63,156 98
17 30,000 3000 25 22,405 859 22,405 14.1
18 30000 3000 50 14,457 2507 14,457 1551.7
19 30,000 15,000 25 115,950 16,031 115,687 410.3
20 30,000 15,000 50 76,276 17,393 75,684 11.5
21 40,000 4000 25 30,592 2532 30,445 894.1
22 40,000 4000 50 19,815 7184 19,558 11.5
23 40,000 20,000 25 155,162 19,152 155,069 3934
24 40,000 20,000 50 101,835 10,286 101,835 12.9
Table 3
CPLEX versus NGQ on very large-size problems
CPLEX NGQ
ID Vars Constraints Density OFV Time (s) OFV Time (s)
spp50k 50,000 10,000 25 76,903 18,144 76,402 2315
spp60k 60,000 12,000 25 92,293 16,060 91,912 2876
spp70k 70,000 14,000 25 109,168 19,084 108,112 272
spp80k 80,000 16,000 25 125,139 18,600 123,890 175
spp90k 90,000 18,000 25 140,223 15,278 139,269 1804
spp100k 100,000 20,000 25 154,694 19,509 154,351 622

solutions for all problems, outperforming CPLEX in terms of solution quality and time. Note
that these QUBO models are the largest reported in the literature to date. This study con-
firms earlier successes of the QUBO model on smaller test problems for SPP reported by Lewis
et al. (2008).
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2.2. Solving large-scale MDPs via QUBO

The MDP consists of selecting a subset of m elements from a set of n elements to maximize the sum
of the distances between the chosen elements, where the definition of distance between elements is
customized to specific applications. Most applications assume that each element can be represented
by a set of attributes as follows. Let s;; be the state or value of the kth attribute of element i, where k&
=1, ..., K. Then the distance between elements i and j may be defined as

)

In this case, d;; simply constitutes the Euclidean distance between i and j. The distance values
are then used to formulate the MDP as a quadratic binary problem, where the variable x; takes the
value 1 if element i is selected and 0 otherwise, i =1, ..., n:

n—1 n
maXZ Z dfjx,-x‘,-, (6)

i=1j=itl

n
subjectto > x; =m,
i=1

x; =0,1,1 <i <n (7

As before, we can use the transformation introduced by Glover et al. (2022a) to convert this
problem to an unconstrained QUBO model. Our testing here was carried out on a set of large
instances from the MDPLIB2.0 by Marti et al. (2021). Comparisons highlight the performance of
our QUBO solver, NGQ, with that of the opposition-based memetic search (OBMA) method, a
state-of-the-art algorithm specifically for the MDP by Zhou et al. (2017), which lacks the ability to
solve other problems formulated as QUBO problems.

As shown in Table 4, both NGQ and OBMA produced optimal solutions for each problem in-
stance in this test bed. Times to best were more uniform for OBMA, which is a specialized solver.
However, NGQ gave substantially shorter solution times for 15 out of 20 instances.

2.3. Solving large-scale maximum cut problems in QUBO

This section reports testing carried out on some large max cut problems, which can be described as
follows: Given an undirected graph G(V, E), the maximum cut problem seeks to partition V into
two sets such that the number of edges between the two sets (the cut), is as large as possible.

This problem can be modeled as a QUBO by introducing binary variables x; = 1 if vertex j is
in one set and x; = 0 if it is in the other set. Viewing a cut as severing edges joining two sets,
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Table 4
NGAQ versus opposition-based memetic search (OBMA) on large maximum diversity problem (MDP) instances

NGQ OBMA

File N M OBMA NGQ Diff time time
MDG-c_1_n3000_m300.txt 3000 300 24,926,344 24,926,344 0 753.5 251.3
MDG-c_2_n3000_m300.txt 3000 300 24,912,546 24,912,546 0 47.6 286.6
MDG-c_3_n3000_m300.txt 3000 300 24,905,218 24,905,218 0 658.5 239.4
MDG-c_4_n3000_m300.txt 3000 300 24,909,710 24,909,710 0 82 276.2
MDG-c_5_n3000_m300.txt 3000 300 24,895,704 24,895,704 0 83.5 212.5
MDG-c_6_1n3000_m400.txt 3000 400 43,444,948 43,444,948 0 246.3 290.8
MDG-c_7_n3000_m400.txt 3000 400 43,477,267 43,477,267 0 3.6 111.7
MDG-c_8_n3000_m400.txt 3000 400 43,465,572 43,465,572 0 45.6 163.6
MDG-c_9_n3000_m400.txt 3000 400 43,448,137 43,448,137 0 153.8 72.5
MDG-c_10_n3000_m400.txt 3000 400 43,465,561 43,465,561 0 4.8 115.1
MDG-c_11_n3000_m500.txt 3000 500 67,021,132 67,021,132 0 3.7 335
MDG-c_12_n3000_m500.txt 3000 500 67,014,170 67,014,170 0 205.3 302.8
MDG-c_13_n3000_m500.txt 3000 500 67,024,373 67,024,373 0 40.4 380.1
MDG-c_14_n3000_m500.txt 3000 500 67,030,190 67,030,190 0 129.2 276.3
MDG-c_15_n3000_m500.txt 3000 500 67,056,334 67,056,334 0 109.4 269
MDG-c_16_n3000_m600.txt 3000 600 95,638,929 95,638,929 0 19.6 270.8
MDG-c_17_n3000_m600.txt 3000 600 95,571,113 95,571,113 0 80 312.8
MDG-c_18_n3000_m600.txt 3000 600 95,532,141 95,532,141 0 265.6 292.1
MDG-c_19_n3000_m600.txt 3000 600 95,599,164 95,599,164 0 469.2 343.7
MDG-c_20_n3000_m600.txt 3000 600 95,584,482 95,584,482 0 46.4 299.9

the quantity x;+ x; — 2x;x; identifies whether the edge (i, j) is in the cut. Thus, the problem of
maximizing the number of edges in the cut can be formulated as

Maximizey = Z (xi + x; — 2x;x;), (®)
(i,j)eE

which is an instance of QUBO : max y = x'Qx.

Early articles such as those by Boros and Hammer (1991), Kochenberger et al. (2013), Wang et al.
(2017), Dunning et al. (2018), and Furini and Traversi (2019) studied the maximum cut problems
and suggested the possible use of QUBO model.

The difficulty of the maximum cut problem depends on the regularity and connectivity of the
underlying graph. Following an existing trend in the optimization community, we consider the
maximum cut on random d-regular graphs, where every vertex is connected to exactly d other ver-
tices.

The theoretical cut upper bound for these problems has been shown in Dembo et al. (2017) to be
calculated as

d . |d
cuty, = (Z + P \/;> n. 9)

Here, P* = 0.7632, a universal constant related to the ground state energy of the Sherrington—
Kirkpatrick model.
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Approximation d-regular MaxCut NGQ 4.0
N d ratio 0.990 A B d=3
1000 3 0.978 A~ d=5
2154 3 0.979 y’ A "
4642 3 0.977
10,000 3 0.974 0.985 - A
21,544 3 0.971 A A
46,416 3 0971 o & '\
100,000 3 0969 &
215,443 3 0.968 § 0980 -
464,159 3 0.970 g O
1,000,000 3 0968 % o
1000 5 0987 =
< 0975
2154 5 0.989 "
4642 5 0.987
10,000 5 0.987 o
21,544 5 0.985 -
: : 0.970 u
46,416 5 0.985 o
100,000 5 0.983 - »
215,443 5 0.982 3 10t 105 106
464,159 5 0.984 Number of Nodes (n)
1,000,000 5 0.982

Fig. 1. Next Generation Quantum (NGQ) approximation ratio—10 minutes.

For very large graphs up to a million variables, numerical benchmarks are unavailable. As a
result, we use an approximation ratio to measure NGQ performance on regular graphs with d = 3
and d = 5 with 10 runs of 10 minutes each.

Figure 1 shows that NGQ achieves a mean approximation ratio of 0.972 for d = 3 and 0.985 for d
= 5 for graphs of up to a million nodes, which surpasses the performance reported in the literature,
such as Schuetz et al. (2022), using physics-inspired graph neural networks.

3. PUBO problems: going beyond QUBO
While QUBO models have become widely adopted in recent years as a useful form of problem
representation, many important problems are more naturally modeled as higher-order polynomi-

als. We refer to such models as PUBO models. Formally, these Boolean nonlinear models can be
expressed as

minxg = ¢ + Z(chp:p ep), (10)
where F), is a product of components of the x vector given by

F,=]](x:ieN,). N,cN, (11)

© 2023 International Federation of Operational Research Societies.

85U8017 SUOLLLIOD 8A 18810 3deoldde ayy Aq pausenob afe saoiLe VO ‘8sn JO Se|ni Joj AfeldT8ul U0 A8]IAA UO (SLORIPUOD-PUR-SLUR)ALI0O" A3 1M ALeq U JUO//:SANY) SUORIPUOD pUe SWie | 8L 88S *[7202/0T/60] U0 AkeidiTauluo 8|1 ‘1eidi opelojod JO AsieAlun Aq 0ZrET 101/ TTTT 0T/I0pAW0D A8 im AeIq1juljuo//Sciy Wwolj pepeoiumoq ‘T 'SZ0Z ‘S66ESLYT



14 Y. Duetal / Intl. Trans. in Op. Res. 32 (2025) 6-17

Table 5
A comparison of NGQ-polynomial unconstrained binary optimization (PUBO) and CPLEX on some third-order mini-
mization problems

NGQPUBO CPLEX*

d n m Q size Obj Time Obj Time

3 200 1000 825 —1068.94 3.12 —1062.14 39.87
3 200 1000 836 —1165.5 1.706 —1156.92 19.31
3 200 1000 843 —1083.14 2.084 —1073.79 194.22
3 200 1000 829 —1037.82 2.97 —1036.64 132.88
3 200 1000 824 —1065 2.64 —1049.49 16.99
where x = (x1, X2, ..., X,)is composed of binary variables, x; € {0, 1} fori e N = {1,...,n}.

The coefficients ¢, for p € P are non-zero scalars. Each variable x; in the product-defining F,
appears only once, noting that xf.’ = x; for x; binary, which renders powers 4 of x; other than
h = 1irrelevant (Glover et al., 2011; Boros and Gruber, 2014).

Due to the limited availability of PUBO solvers, higher-order PUBO problems are typically
solved by first converting them to an equivalent QUBO model. There are many discussions in the
literature on the translation from the PUBO model to a QUBO model, notably including (Rosen-
berg, 1972; Rodriguez-Heck 2018; Boros et al., 2020). However, the conversion comes at the cost
of introducing many new variables. For the results presented in this section, the conversion to an
equivalent QUBO model was accomplished by using the well-known Rosenberg procedure. For ex-
ample, to convert a qubic function in binary variables to an equivalent quadratic function, a pair
of variables, x; and x;, are replaced by a new binary variable, y;; , in each cubic term containing
the product x;x; and a penalty term of the form P(x;x; — 2x;y;; — 2x;y;; + 3y;;) added to the ob-
jective function, where P is a suitably large scalar penalty. In this manner, each cubic term can be
converted to a quadratic term, yielding an equivalent QUBO model. Higher-order problems can be
converted to QUBOs by repeating this procedure.

As previously noted, the modified version of our NGQ solver, NGQ-PUBO, solves PUBO mod-
els directly without the conversion to a QUBO model. Tables 5 and 6 show that this direct PUBO so-
lution algorithm often solves PUBO problems with greater efficiency. Computational experiments
were conducted using the PUBO/QUBO instances introduced by Verma and Lewis (2020). The
instances were generated using the number of variables n, the number of monomials m, and the
degree of the PUBO, d. The variables that belong to each monomial are chosen uniformly and
independently among the available n variables. The coefficient of each monomial is determined
independently and uniformly from the interval [—10,10].

In Table 5 below, we provide results for some third-degree polynomial problems with 200 vari-
ables and 1000 terms, showing the comparative performance of our solver with that of CPLEX.
The CPLEX results were derived from the QUBO equivalent version of each third-degree problem.
Note that the table also shows the number of variables in the resulting QUBO-converted instances.

While none of these problems proved to be difficult, Table 5 shows that across the five
problems, NGQ-PUBO outperformed CPLEX in terms of both solution quality and solution
time.
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Table 6
A comparison of NGQ-PUBO and the Dwave Advantage solver on some third- and fourth-order minimization problems

NGQPUBO DWave Kerberos

d n m Q size Obj Time Obj Time Gap %
3 400 1000 1333 —1556.24 4.478 —1284.06 17.549 —17.4893
3 400 3000 2959 —2713.74 2.526 —1975.54 25.98 —27.2023
3 400 5000 4382 —3605.82 13.828 —2601.48 56.344 —27.8532
4 400 1000 2202 —1326.15 9.512 —798.419 17.611 —39.7942
4 400 3000 5308 —2486.05 41.523 —1198.99 48.585 —51.7712
4 400 5000 7995 —3047.88 11.204 —1222.88 47.275 —59.8776

To provide further results and comparisons on PUBO problems, we ran some third- and fourth-
degree polynomial problems, providing outcomes derived from the NGQ-PUBO solver and the
quantum solver, Dwave Advantage. Again we note that NGQ-PUBO solved the third- and fourth-
order models directly, while Dwave Advantage solved the QUBO version of each problem created
by using the Rosenberg (1972) transformation. As also remarked previously, the re-casting into a
QUBO model greatly increases the size of the problem to be solved. Our results of this testing are
shown in Table 6.

As seen in Table 6, NGQ-PUBO quickly found high-quality solutions, outperforming the quan-
tum solver, Dwave Advantage, in terms of both solution quality and solution time by a wide margin
on all six problems. The Dwave Advantage solution quality is off by double digits across the board
and in the last problem by more than 50 %. These results highlight the potential advantage of
solving PUBO problems directly rather than resorting to a QUBO reduction.

4. Summary and Conclusion

The QUBO model, with a new quantum-inspired solver NGQ, has proven to be very successful
for many important problems in industry and government. We demonstrate in this paper that it
is capable of producing best-known solutions for very large set partitioning problems, max diver-
sity problems and max cut problems. Across the board, the NGQ solver quickly found best-known
solutions for all problems tested. We find similar results in other problem domains like clique parti-
tioning problems, coloring problems, scheduling problems, classification problems, and many more.
As computers and solvers, both conventional and quantum, continue to improve, the successes of
the QUBO approach will likely continue to grow.

PUBO models, solved directly by metaheuristic methods rather than reformulating them as
QUBO models, can yield significantly better outcomes than attempting to solve their QUBO coun-
terparts, which in general are substantially larger and challenging to solve. Our work here employed
the commonly used Rosenberg conversion for reducing higher-order models to equivalent QUBO
models. Other methods for such conversions, as referenced earlier, require the introduction of fewer
variables, which may to some extent reduce the advantage we currently observe of solving PUBOs
directly rather than solving the equivalent QUBO model. Exploring these alternative conversions
is part of our work in progress.
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