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A B S T R A C T   

In the last years, many areas in science, business, and engineering have experienced an enormous growth in the 
amount of data that they are required to analyze. In many cases, this analysis relies intimately on data visual-
ization and, as a result, graph drawing has emerged as a new field of research. This paper addresses the challenge 
of drawing hierarchical graphs, which is one of the most widely used drawing standards. We introduce a new 
mathematical model to automatically represent a graph based on the alignment of long arcs, which we combine 
with the classic arc crossing minimization objective in hierarchical drawings. We complement our proposal with 
a heuristic algorithm that can obtain high-quality results in the short computational time required by graph 
drawing systems. Our algorithm joins two methodologies, tabu search and strategic oscillation (SOS), to perform 
a fast and effective exploration of the search space. We conduct extensive experimentation that integrates our 
new mathematical programming formulation and the SOS tabu search that targets large instances. Our statistical 
analysis confirms the effectiveness of this proposal.   

1. Introduction 

Graph drawing can be defined as the discipline that deals with the 
representation of a graph data structure in a particular metric space 
(Battista et al., 1998; Kaufmann & Wagner, 2001). A graph is made of 
two sets, a vertex set, and an edge set (West, 2001), and it is often used 
for modelling real systems that can be processed by a computer, where 
the vertices represent the elements of the system, and the edges repre-
sent the connections among the elements. Those models usually need to 
be graphically depicted, especially when they represent a solution to a 
particular problem. In those situations, graph drawing appears to be an 
important tool. In fact, graph drawing is applied to represent many real 
applications such as: maps, circuit designs, social networks, neural 
network representation, control systems, or facilities layouts, among 
others (Carpano, 1980; Chen et al., 2021; Napoletano et al., 2019; Preitl, 
2006; Rigatos, 2017; Tan, 2014; Zamfirache, 2023). 

Solving large problems usually makes impossible to perform the 
graph drawing by hand and it is mainly performed by using specialized 
software such as yEd (yWorks, 2023), GraphViz (Gansner & North, 
2000), dot (Gansner et al., 2015), AGD (Paulisch & Tichy, 1990), or 
OGDF (Chimani et al., 2013), among others. This kind of software ap-
plies general procedures to position nodes and arcs to produce graphs 

representations with desired properties. 
Graphs can be represented using different standards (Battista et al., 

1998) with the aim of improving the readability of the graph. Based on 
that, a wide range of applications have been developed. In this paper, we 
focus on hierarchical representations. In Fig. 1(a) we depict an example 
of a graph G with 10 vertices and 10 arcs, and in Fig. 1(b) we show a 
hierarchical representation of the same graph with the vertices arranged 
in three layers (L1, L2, and L3). 

General graphs can be represented as a hierarchy using the Sugiya-
ma’s framework (Sugiyama et al., 1981), which obtains a drawing of the 
graph following some aesthetic criteria, with the aim of improving its 
readability, such as: the minimum number of crossings, uniform direc-
tion, and straight lines, among others. However, satisfying some of the 
aesthetic criteria aforementioned is not an easy task, especially because 
some of these criteria are in conflict. Furthermore, some of them 
constitute difficult (NP-hard) optimization problems. However, it is well 
accepted that the most important and difficult problem is arc crossing 
minimization (Carpano, 1980), which has been widely studied in the 
scientific literature, either from the exact (Glover et al., 2021; Jünger & 
Mutzel, 2002) and heuristic (Laguna et al., 1997; Martí, 2001) points of 
view. 

In this research we focus on drawing of hierarchical graphs with the 
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aim of improving the readability of its representation through the 
minimization of arc crossings, subject to the additional constraint 
recently introduced in Glover et al. (2021), which restrict the arcs be-
tween nodes placed in non-consecutive layer (denoted as long arcs) to be 
straight lines (i.e., no bends are allowed). Sugiyama’s framework is 
based on replacing long arcs connecting nodes in non-consecutive layers 
with chains of dummy nodes. This constraint forces them to be placed in 
the same relative position in their layers, thus forming a straight long arc 
with no bends. 

The main contributions of this work are summarized next: First, we 
propose an alternative mathematical model to minimize arc crossings 
including the long arc constraint to avoid bends. As it will be shown, this 
model is able to solve small problems to optimality. Second, we intro-
duce a multi-start metaheuristic to obtain high quality solutions to target 
large instances. This method has two components, a constructive 

method based on tabu search (Glover and Laguna, 1998) to generate 
good initial solutions, and a strategic oscillation (Glover et al., 1984) 
based on multiple neighborhoods to obtain improved outcomes. Finally, 
both, exact and heuristic approaches are compared through extensive 
computational tests over a benchmark set of test instances exhibiting 
varied characteristics. 

The rest of the paper is organized as follows. Section 2 formalizes the 
graph drawing problem, and Section 3 presents the mathematical model 
implemented to solve the problem with an exact commercial optimiza-
tion software (Gurobi). Our proposed metaheuristic procedure is intro-
duced in Section 4: first, presenting the overall scheme of our multi-start 
method, followed in Section 4.1 with a detailed description of the 
different constructive components. The core of the paper comes in 
Section 4.2, where we introduce an intensification procedure based on 
the strategic oscillation strategy (SOS), applied to improve the initial 
solutions and to perform an intelligent exploration of the solution space. 
Section 5 reports an extensive computational study in which we 
compare the best variant of our approach with the best previous algo-
rithm in the literature. The paper ends with the customary conclusions 
section in which we summarize our findings. 

2. Problem statement 

Formally, let H = (V,A, nl, L) and G = (V,A), be a hierarchical and a 
general graph respectively, with V representing the set of vertices and A 
representing the set of arcs. Also, let L(v) : V→{1,2,…, nl} be the 
layering function which associates a layer (i.e., an index number) to a 
node v. Therefore, L(v) − L(u) calculates the length of the arc (u, v) ∈ A. 
Hence, L implicitly defines the sets of layers Lh = {v ∈ V : L(v) = h }with 
h = 1,2,…, nl. We denote as long arcs to those arcs linking two nodes 
placed in non-consecutive layers in H. Therefore, an arc (u, v) is a long 
arc if L(v) > L(u) + 1. 

We illustrate these concepts and definitions with the examples 
depicted in Fig. 1. Particularly, the graph G in Fig. 1(a), is composed of 
|V| = 10 and |A| = 10, where V = {1,2,3,4,5,6,7,8,9,10}, and A = {(1,
2), (1, 3), (3, 4), (5, 2), (5, 7), (6, 3), (6, 5)(9, 5), (9, 8), (10,5)}. Similarly, 
Fig. 1(b) depicts a 3-layer hierarchical graph H obtained from G, where 
the three layers are differentiated by a gray dashed line, where L1 =

{1,6, 9,10}, L2 = {3,5}, and L3 = {2,4,7, 8}. Observing, for example, 
nodes 8 and 9, they are allocated in L3 and L1 respectively. Therefore, 
L(8) = 3, L(9) = 1, and arc (9, 8) has a length of L(8) − L(9) = 3 − 1 = 2. 
Since L(8) > L(9) + 1, arc (9, 8) is considered a long arc. 

Since we are trying to find representations of hierarchy graphs 

(a) (b)
Fig. 1. (a) Original graph G. (b) Hierarchical representation H of graph G.  

Fig. 2. Proper Hierarchy graph PH of H.  
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without bends in long arcs, we need to introduce Proper Hierarchy 
Graphs (Sugiyama et al., 1981; Warfield, 1977). Particularly, given the 
previous definitions, a hierarchy graph could be represented as a Proper 
Hierarchy Graph, replacing long arcs in the hierarchy, AL ⊆ A, with a 
series of dummy nodes in a chain, where the length of the arcs in the 
chain is 1, obtaining what is called a proper hierarchy PH = (V ∪ V′,A′,
nl,L), in which the set of nodes V′ contains all the dummy nodes added in 
this process. The set of arcs A′, on the other hand, contains the arcs of 
length 1 in the original H, and the new arcs obtained from the chains of 
arcs which replace the long arcs in A. Therefore, all the arcs in A′ are of 
length 1. 

We apply this method to the graph H in Fig. 1(b). The resultant 
proper hierarchy is depicted in Fig. 2, where we identify two chains of 
dummy nodes colored with grey. The arc (1,2) in Fig. 1(b), is replaced 
with the chain {(1,11), (11,2)} in this figure. Similarly, the arc (9,8) in 
Fig. 1(b) is replaced with the chain {(9,12),(12,8)}. Therefore, nodes 11 
and 12, colored in grey, are dummy nodes. 

Given a proper hierarchy graph, like the one in Fig. 2 our objective is 
to simultaneously organize the vertices in such a way that crossings are 
minimized, subject to the constraint that there are no bends in the long 
arcs, producing what we call an aligned hierarchy. Fig. 3 shows an 
aligned hierarchy of the graph in our example. Note that the chains of 
arcs that replace the two long arcs (1, 2) and (9,8), are now aligned. 

Now we introduce some basic notation to formalize this problem. 
Given the proper hierarchy PH = (V ∪ V′,A′,nl,L), we denote the coor-
dinate of a node u by x(u). For example, in Fig. 3 we can see that node 5 
is in layer 2 (numbering the horizontal layers from top to bottom) and 
has a coordinate of 3 (numbering the columns from left to right). In 
mathematical terms L(5) = 2 and x(5) = 3. Then, an aligned drawing 
of PH has each vertex in the chain of vertices which replace a long arc 
with the same x-coordinate. Mathematically, for each long arc (u, v) ∈
AL ∈ A modeled as the chain of arcs of length 1, AC(u, v) = {(u, u1), (u1,

u2 ),…, (us, v)}, and including the arcs in the chain into A′, we have 
x(ui) = x(ui+1) for i = 1,…, s − 1. 

Given a graph G = (V, A), when we generate a proper hierarchy 
denoted by PH = (V ∪ V′,A′,nl,L), the layering function L is provided by 
the y-coordinate of each node in V. Therefore, a solution to the drawing 
problem is determined in PH with the x-coordinate of each node. We 

therefore denote a drawing, or a solution to our problem, by the notation 
(x,L). For the sake of brevity, considering that L is fixed in the hierarchy, 
a solution or drawing can be simply denoted as x. 

To state the problem formally, we define the alignment of a long arc 
(u, v), denoted as LA(u,v), as: 

LA(u, v) =
∑

(w,z)∈AC(u,v)

|x(w) − x(z) |, (1)  

We can then compute the alignment of a solution x, as follows: 

LA(x) =
∑

(u,v)∈AL

LA(u, v) (2)  

In this paper, we consider that to obtain a valid drawing of the graph, 
any feasible solution must satisfy LA(x) = 0. 

For example, to calculate the alignment of the solution depicted in 
Fig. 2 we compute: 

LA(x) = LA(1, 2)+LA(9, 8) = 0+ 1 = 1  

where, 

LA(1, 2) = |x(1) − x(11) | + |x(11) − x(2) | = |1 − 1| + |1 − 1| = 0+ 0 = 0  

LA(9, 8) = |x(9) − x(12) | + |x(12) − x(8) | = |2 − 3| + |3 − 3| = 0+ 1 = 1  

Note that in this example LA(x) > 0, and hence this solution is infeasible 
and would not represent a valid drawing. 

Similarly, we can compute the alignment of the solution depicted in 
Fig. 3 as follows: 

LA(x) = LA(1, 2)+LA(9, 8) = 0+ 0 = 0  

where, 

LA(1, 2) = |x(1) − x(11) | + |x(11) − x(2) | = |1 − 1| + |1 − 1| = 0+ 0 = 0  

LA(9, 8) = |x(9) − x(12) | + |x(12) − x(8) | = |3 − 3| + |3 − 3| = 0+ 0 = 0  

In this case, LA(x) = 0, and hence this solution represents a feasible 
solution, and therefore a valid drawing. 

For the formal mathematical representation, given a solution x, the 
objective function expressing the number of crossings is denoted as C(x), 
and the constraint term expressing the alignment of long arcs is denoted 
as LA(x). C(x) is calculated as the sum of all the crossings between any 
pair of arcs (u, v), (w, z) ∈ A′ as follows: 

C(x) =
∑

(u,v), (w,z)∈A′

C((u, v), (w, z) ) (3)  

where, C((u, v), (w, z)) takes the value 1 if there is a crossing between 
both arcs. More formally: 

C((u, v), (w, z) ) =

⎧
⎨

⎩

1, x(u) < x(v) ∧ x(z) < x(w)
1, x(v) < x(u) ∧ x(w) < x(z)

0, otherwise.
(4)  

Finally, the aim of this optimization problem is to find a solution x⋆, 
among the set of all possible solutions X that minimizes Equation (3), 
subject to the alignment constraint for long arcs. Specifically, it is 
defined as: 

x⋆←min
x∈X

C(PH, x), s.t. LA(x) = 0 (5)  

For example, the solution shown in Fig. 3 has 1 crossing (C(x) = 1) and 
it is aligned (LA(x) = 0), therefore identifying a feasible solution of the 
problem. Our objective is to identify an optimal solution that minimizes 
C(x). In this example the solution shown is optimal, and we cannot 
obtain a feasible solution with no crossings. As we could observe, the 
dummy nodes were necessary to determine if the long arcs were aligned 

Fig. 3. Valid drawing of the proper hierarchy graph PH.  

S. Cavero et al.                                                                                                                                                                                                                                  
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or not. Once this constraint is guaranteed in the provided solution, we 
can replace the dummy nodes with the original long arcs, obtaining the 
final drawing, which is shown in Fig. 4. 

3. Mathematical model 

In this section we present the mathematical model of the arc crossing 
minimization problem in graph drawing. As mentioned, the most pop-
ular method is the Sugiyama’s framework. In 1981, Sugiyama, Tagawa, 
and Toda (Sugiyama et al., 1981) revolutionized the graph drawing field 

by introducing a three-step algorithm that can be applied to drawing any 
graph (Sugiyama, 2002; Tantau, 2013). Specifically, the framework 
obtains a drawing of a general graph by first transforming it into a hi-
erarchy graph, in which vertices are arranged into parallel lines, and 
then applying several algorithms to optimize certain aesthetic criteria to 
increase the readability of the resulting diagram. This framework has 
become a graph drawing standard that has been applied in many 
different contexts (e.g., (Kaufmann & Wagner, 2001; Napoletano et al., 
2019; Pastore et al., 2020). The first step in Sugiyama’s framework is 
called layer assignment, and basically consists of assigning the nodes of 
the input graph to layers. The second step targets arc crossing mini-
mization. Finally, the third step of the framework relocates the nodes 
within a layer without changing the order obtained in the second step. 

In this paper, we focus on the second step, consisting of minimizing 
the arc crossing in a graph representation. This problem has been 
considered relevant by the scientific community given the attention 
received. In the first implementations simple ordering rules were 
applied (Carpano, 1980). However, the field of optimization has 
benefited in the last two decades from the introduction of complex 
metaheuristics that are able to operate with more advanced rules. For 
example, Martí (1998) and Laguna & Marti (1999) proposed advanced 
solution strategies based on the tabu search methodology which were 
extended in Sánchez-Oro et al. (2017) and Martí et al. (2018) to target 
some key applications for arc crossing minimization. 

The general problem can be formulated in mathematical terms 
(Jünger & Mutzel, 2002) based on binary variables cijkl which are used to 
compute the objective function of the problem. Particularly, each cijkl 

takes the value 1 when a crossing between arcs (i, j), (k, l) occurs. In this 
model, variables xh

ij take the value 1 when node i precedes node j in layer 
h; and 0 otherwise. The entire model follows 

Min
∑

(i,j),(k,l)∈A
cijkl  

xh
ik + xh+1

lj − cijkl ≤ 1(i, j), (k, l) ∈ A′, i < k, j ∕= l, h = 1,…, nl − 1 (6)  

xh
ki + xh+1

jl − cijkl ≤ 1(i, j), (k, l) ∈ A′, i < k, j ∕= l, h = 1,…, nl − 1 (7) 

Fig. 4. Optimal graph drawing for input graph G.  

(a) (b)
Fig. 5. Optimal solution drawings for crossing minimization.  
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xh
ij + xh

jk + xh
ki ≤ 21 ≤ i < j < k ≤ nh, h = 1,…, nl (8)  

xh
ij + xh

ji = 11 ≤ i < j ≤ nh, h = 1,…, nl (9)  

xh
ij, cijkl ∈ {0, 1}

This model has been deeply studied in the optimization literature, giving 
its connections with the well-known linear ordering problem, LOP 
(Martí & Reinelt, 2022) which has been established for its importance to 
obtain a readable drawing. Constraints (6) and (7) above force cijkl = 1 
when there is a crossing. Constraints (8) are the so-called 3-dicycle 
constraints, originally proposed for the LOP (Jünger & Mutzel, 2002) 
and guarantee that, together with constraint (9), the variables model a 
consistent ordering. 

The integer linear formulation proposed in Jünger & Mutzel, (2002) 
for the minimization of arc crossing, with constraints (6)–(9), do not 
consider the alignment constraints for long arcs. (Glover et al., 2021) 
adapted that formulation to include these constraints. Particularly, for 
each long arc (u, v), from layer h to layer h + s, and intermediate 
nodesu1,u2,…,us, the alignment constraints take the form: 
∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+1
xh+1

iu1
= 0  

∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+2
xh+2

iu2
= 0 

… 
∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+s− 1
xh+s− 1

ius
= 0  

∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+s− 1
xh+s

iv = 0  

where the expression, 
∑

1≤i≤nh
xh

iu (10)  

identifies the position of node u in layer h, and corresponds to the var-

iable x(u) introduced in the previous section to represent the x-coordi-
nate of a node u. 

We illustrate now how the inclusion of the alignment constraint 
creates a more readable final drawing. Fig. 5(a) shows the optimal so-
lution of the original model by (Jünger & Mutzel, 2002) with 15 
crossings, and Fig. 5(b) shows the optimal solution with the model 
considering the alignment constraints with 23 crossings. We observe 
that Fig. 5(b) provides a better drawing than Fig. 5(a), where the long 
arcs are difficult to trace. For example, arcs (11,28) and (27,46) have 
bends in Fig. 5(a), and are represented as straight lines in Fig. 5(b), 
resulting in a cleaner and less convoluted drawing. To quantify this in 
mathematical terms, we defined in Equation (2) the LA-value (Long arcs 
alignment value) of a drawing. Then, we see that the LA-value of Fig. 5 
(a) is 12, while the LA-value in Fig. 5(b) is 0. 

Another illustration of the relevance of including alignment con-
straints is given in Fig. 6. Fig. 6(a) shows the optimal solution of the 
original model (Jünger & Mutzel, 2002) and Fig. 6(b) shows the optimal 
solution of our improved model of the same input graph. 

The drawing in Fig. 6(b) with C = 8 crossings and alignment LA = 0 
is evidently more readable than the drawing in Fig. 6(a) with C = 6 
crossings and alignment LA = 8. Arcs (7,20) and (17,26) which appear 
with bends in Fig. 6(a) are better depicted in terms of their readability in 
Fig. 6(b) where the bends are eliminated. 

The use of exact MIP solution methods can only solve small instances 
with our mathematical model to optimality, requiring the introduction 
of a metaheuristic approach to target large instances. The MIP proposal 
introduced in Glover et al. (2021) succeeded in efficiently solving in-
stances with up to 10 layers and around 10 nodes per layer, and to find 
feasible good solutions for larger instances the authors introduced a 
metaheuristic approach, MS-TS. It consists of a Tabu Search algorithm 
that has three steps. The first step reduces the number of crossings 
without considering the alignment, allowing the procedure to move to 
unfeasible solutions. Then, a short-term tabu search improves the 
alignment of the solution, handling the number of crossings as a sec-
ondary objective. Finally, a local search focuses on the reduction of 
crossings without deteriorating the alignment. This three-phase 

(a) (b)
Fig. 6. Optimal drawings for crossing minimization, subject to the alignment constraints.  
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procedure, MS-TS, is embedded in a multi-start framework that imple-
ments a tabu long-term memory search. As the reader may notice, this 
procedure could eventually produce unfeasible solutions. 

In this paper, we propose an advanced metaheuristic to provide high 
quality solutions in the short computational times required by drawing 
systems. From a theorical perspective, our main contribution is to merge 
the two steps, crossing and alignment, into a single one. From a practical 
point of view, we compare our method with two previous approaches. 
The standard Sugiyama’s framework implemented in commercial graph 
drawing systems, and the previous heuristic proposal in the state of the 
art, specifically tailored for crossing minimization subject to long arc 
constraints. The experimental comparison reported in Section 5 shows 
the benefits of our proposal. 

4. Multi-start memory-based approach 

We propose the combination of three well-known methodologies for 
solving optimization problems: tabu search (TS), strategic oscillation 

(SOS), and multi-start procedures (MS). The TS is devoted to generating 
an initial solution for the method. The SOS is responsible of the 
improvement phase in each iteration. Finally, the MS approach lets the 
method to diversify the search using multiple iterations. Therefore, 
further than introducing a new methodology in the literature, we are 
using the know-how captured by previously well-known optimization 
methods and combine it into a powerful algorithm. The overall pro-
cedure, MS-SOS, is applied for as long as it improves the best solution 
found so far, subject to stopping upon reaching a maximum number of 
iterations. 

Over the past decades, researchers have applied tabu search (TS) to 
many difficult optimization problems, as it is the case of graph drawing 
problems. Standard TS implementations typically incorporate non- 
improving moves to escape from local optimality which are imple-
mented by memory structures called tabu lists to record attributes of 
previously encountered solutions and moves. In this paper, we consider 
the application of such strategies in the context of a constructive 
method, since the constraints of graph drawing problems make the 

Fig. 7. Activity diagram of the MS-SOS procedure.  
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construction phase of the optimization procedure a key part of the 
method. Although proposed in constructive settings in early TS papers, 
these types of implementations have been largely overlooked in the 
scientific literature and one of the discoveries of the present research is 
that a properly designed constructive approach using strategic oscilla-
tion can be competitive with standard TS designs. 

The general scheme of our MS-SOS method is outlined in the activity 
UML diagram (Booch, 2005) depicted in Fig. 7. Each rectangle describes 
a task or activity, while each diamond expresses a condition. The 
method starts by initializing the general parameters of the procedure, 
the best solution found and the number of iterations. Then, the method is 
divided in two main phases: construction phase and improving phase. If 
neither the maximum time nor the maximum number of solutions have 
been reached, the construction phase is executed, followed by the 
improvement phase. The construction phase produces a feasible solution 
by first adding the long arcs to the solution and then the rest of the 
vertices. This solution is provided to the improving phase, which ex-
plores several neighborhoods in search for a better solution. These two 
phases are deeply described in Section 4.1 and Section 4.2, respectively. 
When both phases finish, the procedure checks whether the solution 
obtained is better than the best one found so far. If so, the best solution 
found replaces the previous best solution. In addition, the number of 
iterations without an improvement is reset to 0. On the contrary, the 
number of iterations without improvement increases. When either the 
time limit or the maximum number of iterations without improvement 
are reached, the procedure ends and returns the best solution found. 

To complement the previous figure, in Algorithm 1, we present the 
pseudocode of the aforementioned method. Specifically, we observe that 
the MS-SOS procedure receives three input parameters: a proper hier-
archy graph (PH), the maximum running time (tmax), and the maximum 
number of consecutive iterations without improvement (imax). The 
termination criterion of the algorithm (step 3) is determined by the 
parameters tmax and imax. In each iteration, the two previously intro-
duced phases are iteratively repeated: the constructive phase and the 
improving phase. The constructive phase (step 4) is described in Section 
4.1, and it is based on two greedy criteria, compiled in Equations (15) 
and (17). The improving phase (step 5) is described in Section 4.2, and it 
is based on the exploration of two different neighborhoods, compiled in 
Equations (18) and (20). The solution obtained after both phases is 
compared with the best solution found in previous iterations (step 6). 
When the procedure stops, the best solution found among all iterations is 
returned as the output of the method (step 13). 

Algorithm 1. General scheme of the multi-start procedure.  
Procedure MS-SOS (PH, tmax, imax)  
1. x⋆←∅  
2. i←0  
3. While elapsedTime < tmax and i < imax  

4. x←ConstructivePhase(PH)

5. x′←ImprovingPhase(x)
6. If x′ is better than x⋆  

7. x⋆←x′  
8. i←0  
9. Else  
10. i←i + 1  
11. End If  
12. End While  
13. Return x⋆  

4.1. Constructive phase 

Constructive heuristics seek to generate a feasible solution in a short 
computational time utilizing problem-specific knowledge to exploit the 
characteristics of the problem at hand. These heuristics are often used to 
generate initial solutions for other procedures. Our constructive method 
consists of two main stages: (1) generating an initial partial solution by 
selecting long arcs (represented by a chain of dummy nodes) of the input 
PH graph, and (2) introducing the rest of the nodes (non-dummy nodes 

that are not incident with long-arcs) one by one into the partial solution. 
Both stages entail the following two tasks: i) Determine the next long arc 
(or node) to be added to the solution. ii) Determine the best position for 
the selected long arc (or node) in the partial solution. 

The first stage of our constructive procedure starts with an empty 
initial solution and has the objective of allocating long arcs in the so-
lution. We introduce four different criteria for the initial task of this first 
stage, whose outcomes are compared to select the most suitable one:  

• Randomly selecting long arcs.  
• Sorting the long arcs according to their cardinality (number of 

dummy nodes), so that those with a higher cardinality are added first 
to the solution.  

• Sorting the long arcs in reverse order of cardinality so that those with 
a lower cardinality are added first to the solution.  

• Employing a greedy function gL that measures the urgency of adding 
a long arc to the solution. This criterion is inspired by previous works 
related to similar graph layout problems (Cavero et al., 2021; Cav-
ero, Pardo, & Duarte, 2022) and it is formally stated next. 

The greedy function gL identifies the set of nodes incident with a long 
arc by defining VL = { u ∈ V : (u,v) ∈ AL ∨ (v,u) ∈ AL}. When assigning 
nodes and long arcs to the partial solution under construction, we 
consider the set of nodes already placed in the solution S, and the subset 
of candidates UL⊂ VL of nodes incident with long arcs not yet placed in 
the solution. As a basis for selecting a node from the candidate set UL to 
place it and its incident long arc in the partial solution, we study its 
adjacent nodes already placed in the solution. 

Given a node u ∈ UL, let δ(u) be the number of nodes adjacent to u 
already placed in the solution and let γL(u) be the number of nodes 
adjacent to u not yet placed in the solution. Clearly, the degree of node u 
in UL satisfies (u) = δ(u)+ γL(u). The cardinalities are formally given as 
follows: 

δ(u) = |{v ∈ S : (u, v) ∈ A ∨ (v, u) ∈ A } |, (13)  

γL(u) = |{v ∈ UL : (u, v) ∈ A ∨ (v, u) ∈ A} | (14) 

The greedy function gL(u, v) that computes the attractiveness of 
selecting the long arc (u, v) to be placed next in the partial solution is 
defined as: 

gL(u, v) = wL⋅(δ(u) + δ(v)) − (1 − wL)⋅(γL(u) + γL(v)) (15)  

where wL is a parameter to be experimentally tuned and satisfies 
0 ≤ wL ≤ 1. The wL parameter balances the relevance of having a large 
number of adjacent nodes in the solution (wL > 0.5) or a reduced 
number of adjacent nodes that remain to be added (wL < 0.5). All 
unassigned long arcs from the input graph are then evaluated with 
equation (15) and the one with the largest gL value is chosen to be added 
next. 

Once a long arc has been selected, the objective of the second task of 
the first stage is to determine the position in which the selected long arc 
will be placed in the solution. Three criteria are proposed for this task:  

• Select randomly from among the possible positions for a long arc.  
• Try to place the long arc (u, v) in the median position among the 

nodes adjacent to u and v that are part of the partial solution (i.e., 
that belong to S). If it is not possible to place the long arc in the 
median position, place it in the closest position to the median one 
that is available.  

• Augment the preceding placement criterion by applying tabu search 
strategies to penalize assigning a long arc to a position occupied by 
that long arc in previous constructions. The effect may be viewed as a 
diversification strategy that encourages the exploration of different 
solutions by avoiding the repetition of previously generated 
drawings. 
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The first stage ends with a partial solution in which all long arcs (real 
and dummy nodes) are part of the solution. 

The second stage of the constructive method to add the remaining 
nodes to the solution proceeds as follows. Two different criteria are 
proposed for the first task of this stage (i.e., selecting a node to be added 
next to the solution) choosing the one that yields the best final 
configuration:  

• Select a remaining node at random.  
• Employ a greedy function gS, that is a modification of function gL 

described in Equation (15), to evaluate the remaining nodes. In this 
case, the function gs considers nodes instead of long arcs. 

To define the greedy function gS, first we introduce the set of nodes 
VS, not incident to any long arc, by defining VS = {u ∈ V : u ∕∈ VL}. Let S 
denote the partial solution obtained with the application of the first 
stage of the constructive procedure (so, initially S = VL) and let US⊂ VS 
denote the subset of candidates of nodes not yet placed in the solution. 

Given a node u ∈ US, δ(u) now identifies the number of nodes 
already placed in the solution adjacent to u (see Equation (13)). Asso-
ciated with δ(u), we define γS(u) to be the number of nodes not yet 
placed in the solution which are adjacent to u (d(u) = δ(u)+ γS(u)). 
Hence: 

γS(u) = |{v ∕∈ S : (u, v) ∈ A ∨ (v, u) ∈ A} | (16) 

The greedy function gS(u) that computes the attractiveness of 
selecting a node u ∈ V to be placed in the partial solution is then defined 
as: 

gS(u) = wS⋅δ(u) − (1 − wS)⋅γS(u) (17)  

where wS is a search parameter (0 ≤ wS ≤ 1) analogous to the parameter 
wL. 

The first task of stage two ends when the node u ∈ US with maximum 
gS-value is selected. The second task of this stage then determines the 
position of node u in the partial solution. We propose three different 
criteria for this task:  

• A random selection among the available positions.  

• The median position of the nodes adjacent to node u. Again, if the 
desired position is occupied, the procedure looks for the closest 
available position.  

• A position that minimizes the crossings of the selected node u by 
considering all the available positions in its layer and placing u in the 
position that produces the smallest number of crossings. 

In summary, the first stage places the long arcs and their incident 
nodes in the solution (drawing), and in the second stage places the 
remaining nodes in the solution. The different proposals identified for 
executing these stages are discussed in our computational tests. The 
construction of solutions is crucial in this problem due to the long-arc 
constraints that limit the solution space customarily available to local 
search methods. As subsequently noted, we find empirically that the 
starting solution has an important influence in the final solution obtained. 

4.2. Improvement by strategic oscillation 

Strategic oscillation (SOS) is a search strategy originally proposed in 
the context of tabu search as a long-term technique (Glover, 1977, 
2000). It tries to find solutions of interest in a critical boundary of the 
search space, and it is widely considered within the context of adaptive 
memory programming methods, since it has produced good results for 
many different problems such as maximally diverse problems (Gallego 
et al., 2013) or the linear ordering problem (Duarte et al., 2011), among 
others. We note that strategic oscillation goes beyond using constructive 
and destructive phases and involves oscillation over any type of element 
that is relevant to a search process. This broader notion has been the 
foundation for research in the past that has interesting links to the 
widely cited Variable Neighborhood Search (VNS) approach (Cavero, 
Pardo, & Duarte, 2022; Cavero, Pardo, Duarte, et al., 2022). 

The proposal of strategic oscillation for multiple neighborhoods can 
be tracked back to (Glover et al., 1984). It consists of applying different 
types of moves – for instance, organized increasingly according to the 
size of the associated neighborhood – in the terminology VNS has made 
popular. Simple moves were employed at first until they no longer 
produced gains, and then steadily more advanced moves of several types 
were employed, in a process that repeatedly cycled through these pro-
gressive stages. We make use of this form of strategic oscillation that 

(a) (b)
Fig. 8. Solution x of the input graph depicted in Fig. 3.  
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involves the idea of oscillating among alternative choice rules and 
neighborhoods. These facts make the selection of strategic oscillation a 
suitable procedure to explore the search space of graph drawing 
problems. 

In this paper, we propose two different neighborhoods based on the 
classic swap move for the graph drawing problem: (1) move of a node to 
another position of the layer, and (2) move of all nodes of a long arc to 
another position of the layer. Beginning with (1), our SOS approach ap-
plies moves from the selected neighborhood iteratively, as in a standard 
local search method, and when no further improvement is possible, we 
invoke the alternative neighborhood to further apply local search with 
(2). Similarly, the search returns to (1) if at least a promising solution is 
found during (2). This process is repeated and thus introduces a simple 
oscillation between the two neighborhoods. This design, which is a spe-
cial case of the SOS approach of (Glover et al., 1984), has more recently 
been popularized under the term Variable Neighborhood Descent (VND). 

The first neighborhood we propose, denoted NN, is defined as the set 
of solutions that can be obtained by applying the SwNodes move, which 
consists of swapping the position of two nodes in the same layer. 
Formally, we define the move SwNodes for any two nodes u, v ∈ VS, such 
that originally x(u) = w, x(v) = z, as the one which results in x(u) = z, 
and x(v) = w after the move. Recall that a node in VS does not belong to 
any chain of dummy nodes that replaces a long arc (including the 
beginning and ending nodes of the chain). Considering the SwNodes 
move, we now define the associated neighborhood NN as follows: 

NN = {SwNodes(u, v) ∀ u, v ∈ VS : u ∕= v}. (18)  

The second neighborhood, denoted NA, is defined as the set of solutions 
that can be obtained by applying the SwArc move, which consists of 
moving a long arc. In this instance, long arcs are replaced by a chain of 
dummy nodes and, therefore, moving a long arc is equivalent to moving 
all nodes which compose that chain. More precisely, the move consists of 
swapping each node in the chain with the node placed in the same layer 
at a predefined x-coordinate. For the sake of simplicity we denote this 
x-coordinate as position p. Formally, given a long arc (u, v) (together 
with its associated chain of dummy nodes AC(u,v) = {(u, u1), (u1, u2 ),⋯,

(us,v)}) and a position p, we define the move SwArc as follows: 

SwArc((u,v), p)={SwNodes(u,w1), SwNodes(u1,w2),⋯, SwNodes(v,ws+1)

: x(w1), x(w2),⋯, x(ws+1)=p∧w1,w2,⋯,ws+1 ∈VS }.

(19)  

The neighborhood NA associated with the SwArc move is defined as 
follows: 

Table 1 
Structural properties of the instances generated.  

Set name |V ∪ V′| |A′| |nl| |L| # instances 

Small [9,100] [8,175] [3,10] [1,20] 200 
Medium [100,250] [125,350] [10,20] [10,45] 100 
Large [250,600] [300,1200] [10,55] [35,225] 50  

Table 2 
Configuration definition of the proposed algorithm for irace.  

Phase Stage Parameter Alternatives 

Constructive First: Long arcs Task 1 Random   
Longest arc first   
Shortest arc first   
gL(wL = 0.78)

Task 2 Random   
Median position   
Median and tabu 
memory (ts = 0.21) 

Second: Nodes Task 1 Random   
gS(wS = 0.43)

Task 2 Random   
Median   
Crossing 

General 
configuration 

Iterations 1817 

Improving Strategic 
Oscillation 

Neighborhood 
exploration order 

NA/ NN 

NN/NA  

NA exploration 
strategy 

First Improvement 
Best Improvement   

NN exploration 
strategy 

First Improvement 
Best Improvement  

Table 3 
Constructive procedure without tabu memory (Cons.) and with tabu memory 
(Cons. + TS).  

Algorithm C Dev. (%) # Best CPU T. (s) 

Cons.  242.53  4.86 5  0.71 
Cons. + TS  239.16  0.73 15  0.57  

Fig. 9. Average objective value C evolution of the constructive procedure on 
three small instances. 

Table 4 
Contribution of advanced strategy to the local search.  

Algorithm C Dev. (%) # Best CPU T. (s) 

LS  288.16  0.00 19  1.229 
ELS  288.16  0.00 19  0.005  

Table 5 
Performance differences between the procedure components and the full 
procedure.  

Algorithm C Dev. (%) # Best CPU T. (s) 

LS-NN  249.53  53.28 1  60.06 
LS-NA  204.53  9.07 8  60.00 
SOS  173.63  0.00 19  60.02  

Fig. 10. Influence of the alignment constraint in the cross minimization 
objective function. 
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NA = {SwArc((u, v), p) ∀ (u, v) ∈ AL}. (20)  

The exploration of either NN or NA is performed with a local search 
procedure which we implement with two well-known exploration stra-
tegies: first improvement and best improvement. In the present case, the 
first improvement strategy consists of performing the first move found of 

a node or arc that improves the current solution quality, while the best 
improvement strategy selects the best move of each node or arc, among 
all possible moves. Section 5 reports the outcomes of applying these 
strategies within our proposed search procedure and examines the order 
in which the considered neighborhoods (NA and NN) should be explored. 

Additionally, we propose an advanced strategy to update the value of 
the objective function of a solution obtained after applying 
SwNodes(u, v) which considerably reduces the time needed to explore 
the neighborhoods NA and NN. 

We start by defining a square matrix Cl for each layer l, to store the 
number of arc crossings produced by any two nodes u and v of the layer, 
depending on the relative position between them within the layer. 
Therefore, the number of rows and columns of the matrix Cl is equal to 
the number of nodes in the layer l. Then, given any two nodes u and v 
belonging to the same layer l, let cuv be the number of crossings between 
arcs incident to u and arcs incident to v, under the condition where u 
precedes v in its layer (i.e., x(u) < x(v)). (An arc incident to a node refers 
to any incoming or outgoing arc.) We then store the value of cuv in the 
matrix in the position defined by the row-index u and column-index v. 

Fig. 8(a) provides an example of a solution x of the PH depicted in 
Fig. 3. Since PH has three layers, it is necessary to calculate three matrices: 
C1, C2 and C3, which are represented in Fig. 8(b). Focusing on layer 1, 
which is composed of the nodes 1, 6, 9, and 10, we see that C1 contains four 
rows and four columns. In greater detail, observing the number of cross-
ings generated between nodes 1 and 6, we obtain c1,6 = 1 for x(1) < x(6), 
as in the diagram of 8(a), and would obtain c6,1 = 2 if x(6) < x(1). Simi-
larly, nodes 9 and 10 produce 0 crossings for x(10) < x(9) (to yield c10,9 =

0) as in the diagram of 8(a), and would produce 1 crossing if x(9) < x(10)
(to yield c9,10 = 1), and so on. In Fig. 8(b), we highlight with a green 
background the arc crossing values corresponding to the current solution 
depicted in Fig. 8(a) and use a white background to show the arc crossing 
values if the order within the arc pairs were to be reversed. 

Using the information stored in this matrix, the following conclusion 
can be drawn: if cuv is greater than cvu, and x(u) < x(v), then swapping 
the position of u and v will result in a better-quality solution. 

Table 6 
Comparison of MS-SOS with the best methods on small instances.   

MM MS-TS MS-SOS 

Instances C # Opt. C Dev. (%) # Opt. CPU T. (s) C Dev. (%) # Opt. CPU T. (s) 

[0,25]  2.23 35  2.31  6.29 33  0.10  2.40  3.17 31  1.47 
(25, 50]  14.92 90  17.81  23.54 26  2.02  16.28  9.38 45  5.38 
(50, 75]  36.51 45  49.82  42.45 0  10.08  39.62  9.57 9  14.46 
(75, 100]  85.57 30  114.43  39.75 0  30.50  93.63  10.45 0  34.29 
Total  28.16 200  36.80  27.71 59  7.77  30.71  8.50 85  11.07  

Fig. 11. Comparison of MS-SOS with the best methods on small instances.  

Fig. 12. CPU time consumed by Gurobi w.r.t size instance.  

Table 7 
Comparison of MS-SOS with the best methods on medium instances.  

Algorithm C Dev. (%) # Best CPU T. (s) 

MS-TS  392.18  65.17 0  498.29 
MS-SOS  245.43  0.00 100  29.50  

Table 8 
Comparison of MS-SOS with the best methods on large instances.  

Algorithm C Dev. (%) # Best CPU T. (s) 

MS-TS  2868.50  40.12 0  10694.74 
MS-SOS  2392.42  0.00 50  63.84  
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Given a solution x and the solution x′ (obtained as a result of a 
SwNodes move between node u and node v) the difference in solution 
quality between the value of C(x) and the value of C(x′) is denoted as 
ΔSwNodes. Therefore, the value of the objective function of x′ can also be 
expressed as follows: 

C(x′) = C(x)+ΔSwNodes(u, v) (21)  

Furthermore, ΔSwNodes(u, v) can be easily updated after the operation 
SwNodes(u, v) as follows: 

ΔSwNodes(u, v) = cvu − cuv +
∑

cwu − cwu + cvw − cwv, ∀w ∈ V : x(w)

∈ (x(u), x(v))
(22)  

Therefore, in sum, ΔSwNodes(u, v) < 0 indicates that x′ is better than x 
and it is an improving move since the number of crossings has been 
reduced. A key aspect in this computation is that if u and v are consec-
utive nodes in a layer (|x(u) − x(v)| = 1), the change in the total number 
of crossings only depends on cvu − cuv. 

To extend the illustration, consider again the solution x and the 
matrix C2 in Fig. 8. Since c53 = 6 is greater than c35 = 1, and x(5) < x(3), 
we are interested in swapping nodes 5 and 3. To calculate the objective 
function of the resultant solution, x′ (depicted in Fig. 3), after the move 
SwNodes(5, 3) we apply Equations (21) and (22) to obtain: 

ΔSwNodes(5, 3) = c35 − c53 = 1 − 6 = − 5.

C(x′) = C(x)+ΔSwNodes(5, 3) = 6 − 5 = 1  

Finally, we note that factorization also reduces the computation time 

needed to explore the neighborhood NA since a move SwArc is defined as 
a set of consecutive SwNodes. 

5. Computational test 

In this section, we compile the computational tests carried out in this 
research. Section 5.1 presents the instances and Section 5.2 describes the 
tests designed to configure our proposed MS-SOS, together with illus-
trating the contribution of the components and strategies of the final 
procedure. Finally, in Section 5.3 we compare our MS-SOS method with 
the best methods previously identified for the graph drawing problem. 

All algorithms were coded in Java 17 and the tests were run on a 16- 
core vCPU AMD EPYC7282 with a total of 16 GB RAM and Ubuntu 
20.04.2 64-bit LTS operating system. We have made the source code 
used in our implementations available at https://github.com/scaverod/ 
SOS-TS-GraphDrawing. 

5.1. Instances 

We have considered three sets of drawing problem instances, where 
an instance is identified by its proper hierarchy graph, PH =

(V ∪ V′,A′, nl, L). Table 1 depicts the ranges of the structural properties 
for each of the generated sets of instances: 

The sets of instances used, and the instance generator code are 
available at https://github.com/scaverod/SOS-TS-GraphDrawing. 

Notice that to guarantee the robustness of our algorithms we have 
used 350 different instances in our final tests. Additionally, to avoid 
overtraining the algorithms, the configuration of their parameters is 
performed over reduced data set of 19 out of 350 instances, named 
preliminary set. 

(a) (b)
Fig. 13. Optimal drawings for crossing minimization, subject to the alignment constraints.  
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5.2. Preliminary test 

To test the different configurations of the components of the MS- 
SOS procedure to disclose the best variant of our method, we ran 
each different variant for 60 s, which is a relatively short running time. 
Notice, that one of the possible real applications of the algorithm 
proposed in this paper is to be included in a graph drawings software 
or library. In this sense, the user of the software might expect a quick 

output and, therefore, a relatively short running time is mandatory. 
Our preliminary parameter tuning was done with the irace software 

introduced in López-Ibáñez et al. (2016). Table 2 summarizes the 
different strategies proposed for each phase of the algorithm and the 
parameters provided to irace. The configuration is divided into two 
phases: constructive and improving. As previously described, the 
constructive phase is further split into two stages and each stage is 
split into two tasks. Different criteria are provided for each task and 

(a)

(b)

Fig. 14. Optimal drawings for crossing minimization, subject to the alignment constraints.  
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the number of constructions must be defined. 
The strategic oscillation-based improvement phase requires two 

main decisions: the order in which the neighborhoods will be explored 
and the exploration strategy for each neighborhood. The best configu-
rations for our proposal, obtained as output of irace, are identified in 
bold in Table 2. 

The following tests determine the relevance of the strategies intro-
duced in the final configuration of the method. For each test, we report 
the average of the value of the objective function (C), and the deviation 
to the best in the test (Dev. (%)). Also, we report the total execution time 
in seconds (CPU T. (s)) and the number of best solutions found (# Best). 

Our first preliminary test explores the increase in solution quality 
when the constructive procedure incorporates a tabu memory. For this, 
we compared the best solution found by the constructive procedure of 
our final proposal (see the constructive phase in Table 3) without tabu 
memory (Cons.) and with tabu memory (Cons. + TS). As it can be 
observed, Cons. + TS shows a notable improvement in the quality of the 
solutions generated, obtaining 15 best solutions out of 19 instances and 
an average deviation closer to 0. 

The next preliminary test addresses the evolution of the quality of the 
best solution found in each iteration of the construction procedure, 
reporting the best solution found for three preliminary small instances. 
As shown in Fig. 9, the performance of the procedure dramatically im-
proves in the first 250 executions for each of the instances. A moderate 
improvement occurs for up to 500 executions and marginal improve-
ments continue for up to 1500 executions. Quite likely there is still room 
for improvement if the number of constructions increases beyond 1500 
executions. However, irace determined that 1817 is an appropriate 
number of iterations as a trade-off between the time spent on the con-
struction phase and the time spent on the improvement phase. 

The last preliminary test involving the constructive phase analyzes 
the number of infeasible solutions generated due to the influence of the 
alignment constraints. We find that for some large instances of the 
preliminary set a total of 80 % of the solutions generated are infeasible. 

For the medium and small instances, the number of infeasible solutions 
ranges up to 35 % of the solutions generated. This underlines the 
importance of running the construction procedure multiple times in the 
search for good starting solutions for the improvement procedure. 

Proceeding beyond the constructive phase, we next study the ability 
of the advanced strategy proposed in Section 4.2 to efficiently evaluate 
neighboring solutions. For this, we compared two local search proced-
ures that start from the same random initial solution and explore 
neighborhood NN following a best improvement strategy. Then, we 
analyze the solutions obtained by a simple local search procedure (LS) 
with a local search that implements the efficient move evaluation (ELS). 
Table 4 reveals that both variants reach the same solutions quality, but 
ELS consumes three order of magnitude computational time less than LS 
to explore the same number of solutions. 

The next preliminary test is devoted to identifying the contribution 
of each of the strategies proposed for the improving phase. Based on the 
output configuration of irace (see Table 2), we compare: (1) a local 
search that explores NN using a first improving pattern (LS-NN), (2) a 
local search that explores NA using a first improving pattern (LS-NA), 
and (3) the strategic oscillation procedure that combines LS-NA and LS- 
NN (SOS). All tests start from the same random solution. Upon reaching a 
local optimum, a new random solution is generated which is the same 
for each until a maximum time of 60 s is reached. The results obtained 
are reported in Table 5. As expected, SOS is the best method in terms of 
the average number of crossings, deviation and # Best solutions found. 
The second-best procedure is LS-NA and the last is LS-NN. 

Since we are proposing a multistart procedure, in order to evaluate 
the convergence performance of our algorithm, we conducted an addi-
tional test where the best configuration of our algorithm was executed 
until it performed 100 iterations without finding an improvement. For 
each iteration, we reported the best solution found and compared them 
with the rest of the iterations. Our analysis revealed that, on average, the 
algorithm was able to find the best solution in the iteration 42. Addi-
tionally, the latest iteration where a best solution was found was the 

(a) (b)
Fig. 15. Drawings obtained with the Dot and yEd software systems.  
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iteration 96. The average time needed to find the best solution was 
63.23 s. Notably, only 6 out of 19 instances needed more than 60 s. 
Therefore, a combined stopping criterion which involves a maximum 
time per instances and a maximum number of iterations without 
improvement might be desirable. The previous results indicate a fast 
convergence performance of the algorithm. 

The final preliminary test is devoted to identifying the influence of 
the alignment constraint in the cross minimization objective function. 
To that aim, we have analyzed the number of crossings produced in the 
optimal solutions of several instances. Particularly, in Fig. 10 we depict 
the number of crossings for those instances in the preliminary data set 
that can be solved to optimality with the mathematical model intro-
duced in Section 3. In blue, we represent the number of crossings ob-
tained by the original model and, in orange, we represent the overhead 
of crossings produced by the alignment constrained model. 

As expected, there is an increase in the number of crossings when the 
alignment constraint is introduced. Note however that this increase is 
very moderate, which supports the main point of this paper; it is worth 

in terms of the final readability to marginally increase the number of 
crossings in order to align the long arcs. 

5.3. Comparison with previous methods 

In this section, we compare our MS-SOS procedure with the two best 
previous state-of-the-art methods in the literature. Particularly, the 
Mathematical Model (MM) and the Multi-Start Tabu Search (MS-TS), 
proposed in Glover et al. (2021). For the MS-TS comparison, we have 
implemented the original source code and configuration provided by the 
authors in Glover et al. (2021), using the same execution environment as 
the one used for our code. Although both methods are based on the Tabu 
Search framework, they are quite different. In particular, the previous 
method starts from a random solution, while our approach is built from a 
new greedy constructive procedure based on long term memory struc-
tures (see Section 4.1). Additionally, the improvement phase in the 
previous method was composed by different local search procedures, 
which we found inefficient. Instead, we introduce a single local search 

(a)

(b)
Fig. 16. Drawings obtained with the Dot and yEd software systems.  
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that combines several neighborhoods by implementing a Strategic 
Oscillation Search (see Section 4.2). Finally, we propose an advanced 
search strategy that avoids unfeasible solutions. Therefore, the new tabu 
search method proposed here is not a modification or enhancement of 
the previous one, but it constitutes a new design built from scratch. Their 
comparison, both theoretical and empirical, reveals valuable lessons for 
researchers on metaheuristic methods. 

The mathematical model was implemented in Java 17 and Gurobi 
and was also run in the same execution environment as the two previous 
procedures, setting a maximum execution time of 1 h. On the other 
hand, the stopping criterion for the MS-SOS is either 60 s or 100 itera-
tions without improvement. 

Table 6 presents the results of the three procedures for the set of 
small instances. We report the same indicators previously introduced 
(Dev. (%), CPU T. (s), and # Opt.). Instances are grouped according to 
the number of nodes and the bottom row of the table (labelled as 
“Total”) reports the average for all instances. 

As seen in Table 6, the MM approach (using the mathematical model 
solved by the exact Gurobi method) disposes of the small instances 
relatively easily, finding optimal solutions for these 200 instances within 
the maximum time limit. (As will be seen, the picture changes radically 
when we get beyond the small instances.) The two heuristic procedures 
do not fare as well as the exact algorithm on these instances. MS-SOS has 
the smallest deviation with respect to the optimum values (8.50 %), 
finding the optimum for half of the instances under consideration. The 
difference in computation between the two heuristic procedures is very 
small. Overall, MS-SOS emerges as an efficient method to solve small 
instances in a reasonable amount of computational time but does not 
match the exact method for overall solution quality. We refer the reader 
to https://github.com/scaverod/SOS-TS-GraphDrawing, to obtain the 
individual results per instance. 

The results obtained for the small instances are complemented by the 
charts illustrated in Fig. 11. Fig. 11(a) shows the average crossings for 
the three algorithms, MM (blue), MS-TS (orange) and MS-SOS (gray), 
grouping the instances according to the number of their arcs. Fig. 11(b) 
shows the average crossings for the same algorithms grouping the in-
stances by the number of layers. As can be seen in both figures, MM is the 
best algorithm for dealing with small instances, followed by MS-SOS and 
finally MS-TS. 

Fig. 12, however, discloses information not available in the preced-
ing comparison by showing the computation time needed by Gurobi for 
these small instances, identifying the average time needed to solve an 
instance on the y-axis and the number of nodes of the instances on the 
x-axis. As can be seen, the time abruptly grows exponentially when the 
graphs exceed 80 nodes, which makes the use of MM for the solution of 
graphs with more than 100 nodes totally impractical. 

In Table 7 and Table 8 we present the results obtained for the sets of 
medium and large instances respectively. Now the exact solution pro-
cedure Gurobi using the MM model deteriorates to the point of dropping 
out of consideration as a useful alternative. Gurobi was unable to find a 
single feasible solution within the allotted solution time and has been 
removed from the comparison, leaving us to compare the MS-TS and MS- 
SOS procedures. Since optimal solutions are unknown for the instances 
considered in these tests, in this case we report the number of best values 
obtained (#Best) and the deviation to this value. 

Table 7 shows that the MS-SOS method finds better solutions in an 
order of magnitude less time than MS-TS, reaching the best solution for 
all the instances under consideration, while MS-TS is unable to find any 
of these best solutions. 

Similar conclusions can be drawn from the analysis in Table 8 with 
an even more significant difference in efficiency for MS-SOS, which finds 
the best results for all instances in three orders of magnitude less time 
than MS-TS. 

We complement the numerical comparisons introduced in this sec-
tion with a graphical comparison of the drawings obtained by the 
original mathematical model from Jünger and Mutzel’s (2002) and the 

MS-SOS heuristic method. This comparison is presented in the 
Appendix A. In addition, in Appendix B, we compare the optimal solu-
tion of our proposed model with the drawing obtained with two well- 
known drawing software: Dot (Gansner et al., 2015) and yEd (yWorks, 
2023), that constitute a reference in the field. 

6. Conclusions and future work 

In this paper, we introduce a modification of Sugiyama’s graph 
drawing framework by proposing the addition of long arcs constraints to 
increase the readability of the drawings. In particular, our proposed 
modification constrains the optimization to solutions in which long arcs 
have no bends. We introduce both a mathematical model to obtain the 
optimal solution to this problem for small instances, and a metaheuristic 
to obtain high-quality drawings of larger graphs in a reasonable time. 

Our algorithm is based on the tabu search methodology joined with 
strategic oscillation (SOS) to perform a fast and effective exploration of 
the search space. The method implements a multi-start framework that 
integrates a constructive tabu search method with an SOS improvement 
procedure that oscillates between the exploration of two neighborhoods. 
The process is augmented by an efficient move value calculation to 
reduce the time needed to explore these two neighborhoods. 

We compare the outcomes from our new approach with a classic 
design of the tabu search method recently published for this problem. 
The computational comparison clearly establishes the superiority of the 
new proposal, calling attention to possibilities of the tabu search 
methodology that have been largely overlooked. 

In the interest of exploring options that invite closer examination, we 
note that the alternation between moves and evaluations helps SOS 
approaches to succeed in the search process. This suggests the merit of 
those forms of strategic oscillation that focus on the choice of moves and 
evaluation criteria selected from a set of options, according to rules 
which let the method to transition between solutions. In such applica-
tions, there is a considerable opportunity for doing multiple neighbor-
hood studies that go beyond current proposals in the VNS literature, and 
that may lead to developing useful advances in solving various kinds of 
problems where multiple neighborhoods are naturally available. 
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Appendix A: Drawing examples 

We complement the numerical comparisons of Section 5.3 by making 
a graphical comparison of the drawings obtained by the two main ap-
proaches compared in this paper, on some well-known examples in the 
graph drawing field. Particularly, we compare the result obtained by the 
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integer linear formulation proposed by Jünger and Mutzel’s (2002) and 
the MS-SOS heuristic introduced in this paper. 

The examples shown next are extracted from figures 13.2 and 13.16 
respectively, in chapter “Hierarchical Drawing Algorithms” in the 
“Handbook of graph drawing and visualization” by Healy and Nikolov 
(2014), which are also used in Bachmaier et al. (2012), among others. 

The solutions obtained for the first example are depicted in Fig. 13. 
Specifically, Fig. 13(a) shows the Sugiyama framework solution ob-
tained by the MIP with 2 crossings. Fig. 13(b) shows the best solution 
found by the MS-SOS procedure considering the alignment constraints, 
resulting in 4 crossings but producing a clearer drawing. 

In Fig. 14, we illustrate a second example of the drawings obtained 
by the two methods compared. Specifically, the MIP solution is depicted 
in Fig. 14(a), while the drawing obtained by the MS-SOS procedure is 
depicted in Fig. 14(b). Both drawings have 9 crossings, so from the 
perspective of crossing minimization the drawings are equally good. 
However, in Fig. 14(b) the long arcs are aligned, making the drawing 
more legible. 

Appendix B: Comparison with commercial software 

This appendix includes the drawings of the two examples introduced 
in Appendix A obtained with two well-known commercial software, Dot 
(Gansner et al., 2015) and yEd (yWorks, 2023). We compare the optimal 
solution of our proposed model with the drawing obtained with these 
drawing software that constitute a reference in the field. Note that they 
are based on the drawing model by Sugiyama et al. and therefore this 
comparison also illustrates the benefits of our model with respect to that 
one. 

The first example is depicted in Fig. 15. Specifically, Fig. 15(a) shows 
the drawing obtained by Dot, while Fig. 15(b) shows the drawing 
generated by yEd. Note that in both cases the drawings present arc 
bends, and therefore as solutions of our model can be considered un-
feasible since the alignment constraint is not satisfied. 

Regarding crossing minimization, both software products do a good 
job since the drawings obtained have 2 and 3 crossings respectively. The 
drawing obtained with our method, MS-SOS, depicted in Fig. 13(b), 
presents 4 crossings and no bends. In our view, the graphical inspection 
of these figures supports the assessment that a marginal increase in the 
number of crossing due to the long-arcs constraint is worth it in terms of 
the final readability of the drawing. 

Fig. 16 represents the second example in the Appendix. Specifically, 
the solution generated by Dot is depicted in Fig. 16(a), while the solution 
generated by yEd is presented in Fig. 16(b). As it can be observed, the 
two solutions provided by the drawing software present arc bends (i.e., 
are not feasible for our model), and a similar number of crossings (11 
and 10 respectively) than our MS-SOS (10 crossings as shown in Fig. 14 
(b), which is able to represent the graph with no bends. This example 
clearly shows the benefits of our model and solving method that are able 
to improve the readability of two well established graph drawing 
systems. 
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