
Expert Systems With Applications 243 (2024) 122668

Available online 23 November 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Strategic oscillation tabu search for improved hierarchical graph drawing

Sergio Cavero a, Eduardo G. Pardo a,*, Fred Glover b, Rafael Martí c

a Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Spain
b Entanglement, Inc., CO, USA
c Departamento de Estadística e Investigación Operativa, Universitat de València, Spain

A R T I C L E I N F O

Keywords:
Graph drawing
Arc crossing
Strategic oscillation
Tabu search
Metaheuristics

A B S T R A C T

In the last years, many areas in science, business, and engineering have experienced an enormous growth in the
amount of data that they are required to analyze. In many cases, this analysis relies intimately on data visual-
ization and, as a result, graph drawing has emerged as a new field of research. This paper addresses the challenge
of drawing hierarchical graphs, which is one of the most widely used drawing standards. We introduce a new
mathematical model to automatically represent a graph based on the alignment of long arcs, which we combine
with the classic arc crossing minimization objective in hierarchical drawings. We complement our proposal with
a heuristic algorithm that can obtain high-quality results in the short computational time required by graph
drawing systems. Our algorithm joins two methodologies, tabu search and strategic oscillation (SOS), to perform
a fast and effective exploration of the search space. We conduct extensive experimentation that integrates our
new mathematical programming formulation and the SOS tabu search that targets large instances. Our statistical
analysis confirms the effectiveness of this proposal.

1. Introduction

Graph drawing can be defined as the discipline that deals with the
representation of a graph data structure in a particular metric space
(Battista et al., 1998; Kaufmann & Wagner, 2001). A graph is made of
two sets, a vertex set, and an edge set (West, 2001), and it is often used
for modelling real systems that can be processed by a computer, where
the vertices represent the elements of the system, and the edges repre-
sent the connections among the elements. Those models usually need to
be graphically depicted, especially when they represent a solution to a
particular problem. In those situations, graph drawing appears to be an
important tool. In fact, graph drawing is applied to represent many real
applications such as: maps, circuit designs, social networks, neural
network representation, control systems, or facilities layouts, among
others (Carpano, 1980; Chen et al., 2021; Napoletano et al., 2019; Preitl,
2006; Rigatos, 2017; Tan, 2014; Zamfirache, 2023).

Solving large problems usually makes impossible to perform the
graph drawing by hand and it is mainly performed by using specialized
software such as yEd (yWorks, 2023), GraphViz (Gansner & North,
2000), dot (Gansner et al., 2015), AGD (Paulisch & Tichy, 1990), or
OGDF (Chimani et al., 2013), among others. This kind of software ap-
plies general procedures to position nodes and arcs to produce graphs

representations with desired properties.
Graphs can be represented using different standards (Battista et al.,

1998) with the aim of improving the readability of the graph. Based on
that, a wide range of applications have been developed. In this paper, we
focus on hierarchical representations. In Fig. 1(a) we depict an example
of a graph G with 10 vertices and 10 arcs, and in Fig. 1(b) we show a
hierarchical representation of the same graph with the vertices arranged
in three layers (L1, L2, and L3).

General graphs can be represented as a hierarchy using the Sugiya-
ma’s framework (Sugiyama et al., 1981), which obtains a drawing of the
graph following some aesthetic criteria, with the aim of improving its
readability, such as: the minimum number of crossings, uniform direc-
tion, and straight lines, among others. However, satisfying some of the
aesthetic criteria aforementioned is not an easy task, especially because
some of these criteria are in conflict. Furthermore, some of them
constitute difficult (NP-hard) optimization problems. However, it is well
accepted that the most important and difficult problem is arc crossing
minimization (Carpano, 1980), which has been widely studied in the
scientific literature, either from the exact (Glover et al., 2021; Jünger &
Mutzel, 2002) and heuristic (Laguna et al., 1997; Martí, 2001) points of
view.

In this research we focus on drawing of hierarchical graphs with the

* Corresponding author.
E-mail addresses: sergio.cavero@urjc.es (S. Cavero), eduardo.pardo@urjc.es (E.G. Pardo), fred@entanglement.com (F. Glover), rafael.marti@uv.es (R. Martí).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.122668
Received 6 January 2023; Received in revised form 5 July 2023; Accepted 16 November 2023

mailto:sergio.cavero@urjc.es
mailto:eduardo.pardo@urjc.es
mailto:fred@entanglement.com
mailto:rafael.marti@uv.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.122668
https://doi.org/10.1016/j.eswa.2023.122668
https://doi.org/10.1016/j.eswa.2023.122668
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.122668&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 243 (2024) 122668

2

aim of improving the readability of its representation through the
minimization of arc crossings, subject to the additional constraint
recently introduced in Glover et al. (2021), which restrict the arcs be-
tween nodes placed in non-consecutive layer (denoted as long arcs) to be
straight lines (i.e., no bends are allowed). Sugiyama’s framework is
based on replacing long arcs connecting nodes in non-consecutive layers
with chains of dummy nodes. This constraint forces them to be placed in
the same relative position in their layers, thus forming a straight long arc
with no bends.

The main contributions of this work are summarized next: First, we
propose an alternative mathematical model to minimize arc crossings
including the long arc constraint to avoid bends. As it will be shown, this
model is able to solve small problems to optimality. Second, we intro-
duce a multi-start metaheuristic to obtain high quality solutions to target
large instances. This method has two components, a constructive

method based on tabu search (Glover and Laguna, 1998) to generate
good initial solutions, and a strategic oscillation (Glover et al., 1984)
based on multiple neighborhoods to obtain improved outcomes. Finally,
both, exact and heuristic approaches are compared through extensive
computational tests over a benchmark set of test instances exhibiting
varied characteristics.

The rest of the paper is organized as follows. Section 2 formalizes the
graph drawing problem, and Section 3 presents the mathematical model
implemented to solve the problem with an exact commercial optimiza-
tion software (Gurobi). Our proposed metaheuristic procedure is intro-
duced in Section 4: first, presenting the overall scheme of our multi-start
method, followed in Section 4.1 with a detailed description of the
different constructive components. The core of the paper comes in
Section 4.2, where we introduce an intensification procedure based on
the strategic oscillation strategy (SOS), applied to improve the initial
solutions and to perform an intelligent exploration of the solution space.
Section 5 reports an extensive computational study in which we
compare the best variant of our approach with the best previous algo-
rithm in the literature. The paper ends with the customary conclusions
section in which we summarize our findings.

2. Problem statement

Formally, let H = (V,A, nl, L) and G = (V,A), be a hierarchical and a
general graph respectively, with V representing the set of vertices and A
representing the set of arcs. Also, let L(v) : V→{1,2,…, nl} be the
layering function which associates a layer (i.e., an index number) to a
node v. Therefore, L(v) − L(u) calculates the length of the arc (u, v) ∈ A.
Hence, L implicitly defines the sets of layers Lh = {v ∈ V : L(v) = h }with
h = 1,2,…, nl. We denote as long arcs to those arcs linking two nodes
placed in non-consecutive layers in H. Therefore, an arc (u, v) is a long
arc if L(v) > L(u) + 1.

We illustrate these concepts and definitions with the examples
depicted in Fig. 1. Particularly, the graph G in Fig. 1(a), is composed of
|V| = 10 and |A| = 10, where V = {1,2,3,4,5,6,7,8,9,10}, and A = {(1,
2), (1, 3), (3, 4), (5, 2), (5, 7), (6, 3), (6, 5)(9, 5), (9, 8), (10,5)}. Similarly,
Fig. 1(b) depicts a 3-layer hierarchical graph H obtained from G, where
the three layers are differentiated by a gray dashed line, where L1 =

{1,6, 9,10}, L2 = {3,5}, and L3 = {2,4,7, 8}. Observing, for example,
nodes 8 and 9, they are allocated in L3 and L1 respectively. Therefore,
L(8) = 3, L(9) = 1, and arc (9, 8) has a length of L(8) − L(9) = 3 − 1 = 2.
Since L(8) > L(9) + 1, arc (9, 8) is considered a long arc.

Since we are trying to find representations of hierarchy graphs

(a) (b)
Fig. 1. (a) Original graph G. (b) Hierarchical representation H of graph G.

Fig. 2. Proper Hierarchy graph PH of H.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

3

without bends in long arcs, we need to introduce Proper Hierarchy
Graphs (Sugiyama et al., 1981; Warfield, 1977). Particularly, given the
previous definitions, a hierarchy graph could be represented as a Proper
Hierarchy Graph, replacing long arcs in the hierarchy, AL ⊆ A, with a
series of dummy nodes in a chain, where the length of the arcs in the
chain is 1, obtaining what is called a proper hierarchy PH = (V ∪ V′,A′,
nl,L), in which the set of nodes V′ contains all the dummy nodes added in
this process. The set of arcs A′, on the other hand, contains the arcs of
length 1 in the original H, and the new arcs obtained from the chains of
arcs which replace the long arcs in A. Therefore, all the arcs in A′ are of
length 1.

We apply this method to the graph H in Fig. 1(b). The resultant
proper hierarchy is depicted in Fig. 2, where we identify two chains of
dummy nodes colored with grey. The arc (1,2) in Fig. 1(b), is replaced
with the chain {(1,11), (11,2)} in this figure. Similarly, the arc (9,8) in
Fig. 1(b) is replaced with the chain {(9,12),(12,8)}. Therefore, nodes 11
and 12, colored in grey, are dummy nodes.

Given a proper hierarchy graph, like the one in Fig. 2 our objective is
to simultaneously organize the vertices in such a way that crossings are
minimized, subject to the constraint that there are no bends in the long
arcs, producing what we call an aligned hierarchy. Fig. 3 shows an
aligned hierarchy of the graph in our example. Note that the chains of
arcs that replace the two long arcs (1, 2) and (9,8), are now aligned.

Now we introduce some basic notation to formalize this problem.
Given the proper hierarchy PH = (V ∪ V′,A′,nl,L), we denote the coor-
dinate of a node u by x(u). For example, in Fig. 3 we can see that node 5
is in layer 2 (numbering the horizontal layers from top to bottom) and
has a coordinate of 3 (numbering the columns from left to right). In
mathematical terms L(5) = 2 and x(5) = 3. Then, an aligned drawing
of PH has each vertex in the chain of vertices which replace a long arc
with the same x-coordinate. Mathematically, for each long arc (u, v) ∈
AL ∈ A modeled as the chain of arcs of length 1, AC(u, v) = {(u, u1), (u1,

u2),…, (us, v)}, and including the arcs in the chain into A′, we have
x(ui) = x(ui+1) for i = 1,…, s − 1.

Given a graph G = (V, A), when we generate a proper hierarchy
denoted by PH = (V ∪ V′,A′,nl,L), the layering function L is provided by
the y-coordinate of each node in V. Therefore, a solution to the drawing
problem is determined in PH with the x-coordinate of each node. We

therefore denote a drawing, or a solution to our problem, by the notation
(x,L). For the sake of brevity, considering that L is fixed in the hierarchy,
a solution or drawing can be simply denoted as x.

To state the problem formally, we define the alignment of a long arc
(u, v), denoted as LA(u,v), as:

LA(u, v) =
∑

(w,z)∈AC(u,v)

|x(w) − x(z) |, (1)

We can then compute the alignment of a solution x, as follows:

LA(x) =
∑

(u,v)∈AL

LA(u, v) (2)

In this paper, we consider that to obtain a valid drawing of the graph,
any feasible solution must satisfy LA(x) = 0.

For example, to calculate the alignment of the solution depicted in
Fig. 2 we compute:

LA(x) = LA(1, 2)+LA(9, 8) = 0+ 1 = 1

where,

LA(1, 2) = |x(1) − x(11) | + |x(11) − x(2) | = |1 − 1| + |1 − 1| = 0+ 0 = 0

LA(9, 8) = |x(9) − x(12) | + |x(12) − x(8) | = |2 − 3| + |3 − 3| = 0+ 1 = 1

Note that in this example LA(x) > 0, and hence this solution is infeasible
and would not represent a valid drawing.

Similarly, we can compute the alignment of the solution depicted in
Fig. 3 as follows:

LA(x) = LA(1, 2)+LA(9, 8) = 0+ 0 = 0

where,

LA(1, 2) = |x(1) − x(11) | + |x(11) − x(2) | = |1 − 1| + |1 − 1| = 0+ 0 = 0

LA(9, 8) = |x(9) − x(12) | + |x(12) − x(8) | = |3 − 3| + |3 − 3| = 0+ 0 = 0

In this case, LA(x) = 0, and hence this solution represents a feasible
solution, and therefore a valid drawing.

For the formal mathematical representation, given a solution x, the
objective function expressing the number of crossings is denoted as C(x),
and the constraint term expressing the alignment of long arcs is denoted
as LA(x). C(x) is calculated as the sum of all the crossings between any
pair of arcs (u, v), (w, z) ∈ A′ as follows:

C(x) =
∑

(u,v), (w,z)∈A′

C((u, v), (w, z)) (3)

where, C((u, v), (w, z)) takes the value 1 if there is a crossing between
both arcs. More formally:

C((u, v), (w, z)) =

⎧
⎨

⎩

1, x(u) < x(v) ∧ x(z) < x(w)
1, x(v) < x(u) ∧ x(w) < x(z)

0, otherwise.
(4)

Finally, the aim of this optimization problem is to find a solution x⋆,
among the set of all possible solutions X that minimizes Equation (3),
subject to the alignment constraint for long arcs. Specifically, it is
defined as:

x⋆←min
x∈X

C(PH, x), s.t. LA(x) = 0 (5)

For example, the solution shown in Fig. 3 has 1 crossing (C(x) = 1) and
it is aligned (LA(x) = 0), therefore identifying a feasible solution of the
problem. Our objective is to identify an optimal solution that minimizes
C(x). In this example the solution shown is optimal, and we cannot
obtain a feasible solution with no crossings. As we could observe, the
dummy nodes were necessary to determine if the long arcs were aligned

Fig. 3. Valid drawing of the proper hierarchy graph PH.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

4

or not. Once this constraint is guaranteed in the provided solution, we
can replace the dummy nodes with the original long arcs, obtaining the
final drawing, which is shown in Fig. 4.

3. Mathematical model

In this section we present the mathematical model of the arc crossing
minimization problem in graph drawing. As mentioned, the most pop-
ular method is the Sugiyama’s framework. In 1981, Sugiyama, Tagawa,
and Toda (Sugiyama et al., 1981) revolutionized the graph drawing field

by introducing a three-step algorithm that can be applied to drawing any
graph (Sugiyama, 2002; Tantau, 2013). Specifically, the framework
obtains a drawing of a general graph by first transforming it into a hi-
erarchy graph, in which vertices are arranged into parallel lines, and
then applying several algorithms to optimize certain aesthetic criteria to
increase the readability of the resulting diagram. This framework has
become a graph drawing standard that has been applied in many
different contexts (e.g., (Kaufmann & Wagner, 2001; Napoletano et al.,
2019; Pastore et al., 2020). The first step in Sugiyama’s framework is
called layer assignment, and basically consists of assigning the nodes of
the input graph to layers. The second step targets arc crossing mini-
mization. Finally, the third step of the framework relocates the nodes
within a layer without changing the order obtained in the second step.

In this paper, we focus on the second step, consisting of minimizing
the arc crossing in a graph representation. This problem has been
considered relevant by the scientific community given the attention
received. In the first implementations simple ordering rules were
applied (Carpano, 1980). However, the field of optimization has
benefited in the last two decades from the introduction of complex
metaheuristics that are able to operate with more advanced rules. For
example, Martí (1998) and Laguna & Marti (1999) proposed advanced
solution strategies based on the tabu search methodology which were
extended in Sánchez-Oro et al. (2017) and Martí et al. (2018) to target
some key applications for arc crossing minimization.

The general problem can be formulated in mathematical terms
(Jünger & Mutzel, 2002) based on binary variables cijkl which are used to
compute the objective function of the problem. Particularly, each cijkl

takes the value 1 when a crossing between arcs (i, j), (k, l) occurs. In this
model, variables xh

ij take the value 1 when node i precedes node j in layer
h; and 0 otherwise. The entire model follows

Min
∑

(i,j),(k,l)∈A
cijkl

xh
ik + xh+1

lj − cijkl ≤ 1(i, j), (k, l) ∈ A′, i < k, j ∕= l, h = 1,…, nl − 1 (6)

xh
ki + xh+1

jl − cijkl ≤ 1(i, j), (k, l) ∈ A′, i < k, j ∕= l, h = 1,…, nl − 1 (7)

Fig. 4. Optimal graph drawing for input graph G.

(a) (b)
Fig. 5. Optimal solution drawings for crossing minimization.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

5

xh
ij + xh

jk + xh
ki ≤ 21 ≤ i < j < k ≤ nh, h = 1,…, nl (8)

xh
ij + xh

ji = 11 ≤ i < j ≤ nh, h = 1,…, nl (9)

xh
ij, cijkl ∈ {0, 1}

This model has been deeply studied in the optimization literature, giving
its connections with the well-known linear ordering problem, LOP
(Martí & Reinelt, 2022) which has been established for its importance to
obtain a readable drawing. Constraints (6) and (7) above force cijkl = 1
when there is a crossing. Constraints (8) are the so-called 3-dicycle
constraints, originally proposed for the LOP (Jünger & Mutzel, 2002)
and guarantee that, together with constraint (9), the variables model a
consistent ordering.

The integer linear formulation proposed in Jünger & Mutzel, (2002)
for the minimization of arc crossing, with constraints (6)–(9), do not
consider the alignment constraints for long arcs. (Glover et al., 2021)
adapted that formulation to include these constraints. Particularly, for
each long arc (u, v), from layer h to layer h + s, and intermediate
nodesu1,u2,…,us, the alignment constraints take the form:
∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+1
xh+1

iu1
= 0

∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+2
xh+2

iu2
= 0

…
∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+s− 1
xh+s− 1

ius
= 0

∑

1≤i≤nh
xh

iu −
∑

1≤i≤nh+s− 1
xh+s

iv = 0

where the expression,
∑

1≤i≤nh
xh

iu (10)

identifies the position of node u in layer h, and corresponds to the var-

iable x(u) introduced in the previous section to represent the x-coordi-
nate of a node u.

We illustrate now how the inclusion of the alignment constraint
creates a more readable final drawing. Fig. 5(a) shows the optimal so-
lution of the original model by (Jünger & Mutzel, 2002) with 15
crossings, and Fig. 5(b) shows the optimal solution with the model
considering the alignment constraints with 23 crossings. We observe
that Fig. 5(b) provides a better drawing than Fig. 5(a), where the long
arcs are difficult to trace. For example, arcs (11,28) and (27,46) have
bends in Fig. 5(a), and are represented as straight lines in Fig. 5(b),
resulting in a cleaner and less convoluted drawing. To quantify this in
mathematical terms, we defined in Equation (2) the LA-value (Long arcs
alignment value) of a drawing. Then, we see that the LA-value of Fig. 5
(a) is 12, while the LA-value in Fig. 5(b) is 0.

Another illustration of the relevance of including alignment con-
straints is given in Fig. 6. Fig. 6(a) shows the optimal solution of the
original model (Jünger & Mutzel, 2002) and Fig. 6(b) shows the optimal
solution of our improved model of the same input graph.

The drawing in Fig. 6(b) with C = 8 crossings and alignment LA = 0
is evidently more readable than the drawing in Fig. 6(a) with C = 6
crossings and alignment LA = 8. Arcs (7,20) and (17,26) which appear
with bends in Fig. 6(a) are better depicted in terms of their readability in
Fig. 6(b) where the bends are eliminated.

The use of exact MIP solution methods can only solve small instances
with our mathematical model to optimality, requiring the introduction
of a metaheuristic approach to target large instances. The MIP proposal
introduced in Glover et al. (2021) succeeded in efficiently solving in-
stances with up to 10 layers and around 10 nodes per layer, and to find
feasible good solutions for larger instances the authors introduced a
metaheuristic approach, MS-TS. It consists of a Tabu Search algorithm
that has three steps. The first step reduces the number of crossings
without considering the alignment, allowing the procedure to move to
unfeasible solutions. Then, a short-term tabu search improves the
alignment of the solution, handling the number of crossings as a sec-
ondary objective. Finally, a local search focuses on the reduction of
crossings without deteriorating the alignment. This three-phase

(a) (b)
Fig. 6. Optimal drawings for crossing minimization, subject to the alignment constraints.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

6

procedure, MS-TS, is embedded in a multi-start framework that imple-
ments a tabu long-term memory search. As the reader may notice, this
procedure could eventually produce unfeasible solutions.

In this paper, we propose an advanced metaheuristic to provide high
quality solutions in the short computational times required by drawing
systems. From a theorical perspective, our main contribution is to merge
the two steps, crossing and alignment, into a single one. From a practical
point of view, we compare our method with two previous approaches.
The standard Sugiyama’s framework implemented in commercial graph
drawing systems, and the previous heuristic proposal in the state of the
art, specifically tailored for crossing minimization subject to long arc
constraints. The experimental comparison reported in Section 5 shows
the benefits of our proposal.

4. Multi-start memory-based approach

We propose the combination of three well-known methodologies for
solving optimization problems: tabu search (TS), strategic oscillation

(SOS), and multi-start procedures (MS). The TS is devoted to generating
an initial solution for the method. The SOS is responsible of the
improvement phase in each iteration. Finally, the MS approach lets the
method to diversify the search using multiple iterations. Therefore,
further than introducing a new methodology in the literature, we are
using the know-how captured by previously well-known optimization
methods and combine it into a powerful algorithm. The overall pro-
cedure, MS-SOS, is applied for as long as it improves the best solution
found so far, subject to stopping upon reaching a maximum number of
iterations.

Over the past decades, researchers have applied tabu search (TS) to
many difficult optimization problems, as it is the case of graph drawing
problems. Standard TS implementations typically incorporate non-
improving moves to escape from local optimality which are imple-
mented by memory structures called tabu lists to record attributes of
previously encountered solutions and moves. In this paper, we consider
the application of such strategies in the context of a constructive
method, since the constraints of graph drawing problems make the

Fig. 7. Activity diagram of the MS-SOS procedure.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

7

construction phase of the optimization procedure a key part of the
method. Although proposed in constructive settings in early TS papers,
these types of implementations have been largely overlooked in the
scientific literature and one of the discoveries of the present research is
that a properly designed constructive approach using strategic oscilla-
tion can be competitive with standard TS designs.

The general scheme of our MS-SOS method is outlined in the activity
UML diagram (Booch, 2005) depicted in Fig. 7. Each rectangle describes
a task or activity, while each diamond expresses a condition. The
method starts by initializing the general parameters of the procedure,
the best solution found and the number of iterations. Then, the method is
divided in two main phases: construction phase and improving phase. If
neither the maximum time nor the maximum number of solutions have
been reached, the construction phase is executed, followed by the
improvement phase. The construction phase produces a feasible solution
by first adding the long arcs to the solution and then the rest of the
vertices. This solution is provided to the improving phase, which ex-
plores several neighborhoods in search for a better solution. These two
phases are deeply described in Section 4.1 and Section 4.2, respectively.
When both phases finish, the procedure checks whether the solution
obtained is better than the best one found so far. If so, the best solution
found replaces the previous best solution. In addition, the number of
iterations without an improvement is reset to 0. On the contrary, the
number of iterations without improvement increases. When either the
time limit or the maximum number of iterations without improvement
are reached, the procedure ends and returns the best solution found.

To complement the previous figure, in Algorithm 1, we present the
pseudocode of the aforementioned method. Specifically, we observe that
the MS-SOS procedure receives three input parameters: a proper hier-
archy graph (PH), the maximum running time (tmax), and the maximum
number of consecutive iterations without improvement (imax). The
termination criterion of the algorithm (step 3) is determined by the
parameters tmax and imax. In each iteration, the two previously intro-
duced phases are iteratively repeated: the constructive phase and the
improving phase. The constructive phase (step 4) is described in Section
4.1, and it is based on two greedy criteria, compiled in Equations (15)
and (17). The improving phase (step 5) is described in Section 4.2, and it
is based on the exploration of two different neighborhoods, compiled in
Equations (18) and (20). The solution obtained after both phases is
compared with the best solution found in previous iterations (step 6).
When the procedure stops, the best solution found among all iterations is
returned as the output of the method (step 13).

Algorithm 1. General scheme of the multi-start procedure.
Procedure MS-SOS (PH, tmax, imax)
1. x⋆←∅
2. i←0
3. While elapsedTime < tmax and i < imax

4. x←ConstructivePhase(PH)

5. x′←ImprovingPhase(x)
6. If x′ is better than x⋆

7. x⋆←x′
8. i←0
9. Else
10. i←i + 1
11. End If
12. End While
13. Return x⋆

4.1. Constructive phase

Constructive heuristics seek to generate a feasible solution in a short
computational time utilizing problem-specific knowledge to exploit the
characteristics of the problem at hand. These heuristics are often used to
generate initial solutions for other procedures. Our constructive method
consists of two main stages: (1) generating an initial partial solution by
selecting long arcs (represented by a chain of dummy nodes) of the input
PH graph, and (2) introducing the rest of the nodes (non-dummy nodes

that are not incident with long-arcs) one by one into the partial solution.
Both stages entail the following two tasks: i) Determine the next long arc
(or node) to be added to the solution. ii) Determine the best position for
the selected long arc (or node) in the partial solution.

The first stage of our constructive procedure starts with an empty
initial solution and has the objective of allocating long arcs in the so-
lution. We introduce four different criteria for the initial task of this first
stage, whose outcomes are compared to select the most suitable one:

• Randomly selecting long arcs.
• Sorting the long arcs according to their cardinality (number of

dummy nodes), so that those with a higher cardinality are added first
to the solution.

• Sorting the long arcs in reverse order of cardinality so that those with
a lower cardinality are added first to the solution.

• Employing a greedy function gL that measures the urgency of adding
a long arc to the solution. This criterion is inspired by previous works
related to similar graph layout problems (Cavero et al., 2021; Cav-
ero, Pardo, & Duarte, 2022) and it is formally stated next.

The greedy function gL identifies the set of nodes incident with a long
arc by defining VL = { u ∈ V : (u,v) ∈ AL ∨ (v,u) ∈ AL}. When assigning
nodes and long arcs to the partial solution under construction, we
consider the set of nodes already placed in the solution S, and the subset
of candidates UL⊂ VL of nodes incident with long arcs not yet placed in
the solution. As a basis for selecting a node from the candidate set UL to
place it and its incident long arc in the partial solution, we study its
adjacent nodes already placed in the solution.

Given a node u ∈ UL, let δ(u) be the number of nodes adjacent to u
already placed in the solution and let γL(u) be the number of nodes
adjacent to u not yet placed in the solution. Clearly, the degree of node u
in UL satisfies (u) = δ(u)+ γL(u). The cardinalities are formally given as
follows:

δ(u) = |{v ∈ S : (u, v) ∈ A ∨ (v, u) ∈ A } |, (13)

γL(u) = |{v ∈ UL : (u, v) ∈ A ∨ (v, u) ∈ A} | (14)

The greedy function gL(u, v) that computes the attractiveness of
selecting the long arc (u, v) to be placed next in the partial solution is
defined as:

gL(u, v) = wL⋅(δ(u) + δ(v)) − (1 − wL)⋅(γL(u) + γL(v)) (15)

where wL is a parameter to be experimentally tuned and satisfies
0 ≤ wL ≤ 1. The wL parameter balances the relevance of having a large
number of adjacent nodes in the solution (wL > 0.5) or a reduced
number of adjacent nodes that remain to be added (wL < 0.5). All
unassigned long arcs from the input graph are then evaluated with
equation (15) and the one with the largest gL value is chosen to be added
next.

Once a long arc has been selected, the objective of the second task of
the first stage is to determine the position in which the selected long arc
will be placed in the solution. Three criteria are proposed for this task:

• Select randomly from among the possible positions for a long arc.
• Try to place the long arc (u, v) in the median position among the

nodes adjacent to u and v that are part of the partial solution (i.e.,
that belong to S). If it is not possible to place the long arc in the
median position, place it in the closest position to the median one
that is available.

• Augment the preceding placement criterion by applying tabu search
strategies to penalize assigning a long arc to a position occupied by
that long arc in previous constructions. The effect may be viewed as a
diversification strategy that encourages the exploration of different
solutions by avoiding the repetition of previously generated
drawings.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

8

The first stage ends with a partial solution in which all long arcs (real
and dummy nodes) are part of the solution.

The second stage of the constructive method to add the remaining
nodes to the solution proceeds as follows. Two different criteria are
proposed for the first task of this stage (i.e., selecting a node to be added
next to the solution) choosing the one that yields the best final
configuration:

• Select a remaining node at random.
• Employ a greedy function gS, that is a modification of function gL

described in Equation (15), to evaluate the remaining nodes. In this
case, the function gs considers nodes instead of long arcs.

To define the greedy function gS, first we introduce the set of nodes
VS, not incident to any long arc, by defining VS = {u ∈ V : u ∕∈ VL}. Let S
denote the partial solution obtained with the application of the first
stage of the constructive procedure (so, initially S = VL) and let US⊂ VS
denote the subset of candidates of nodes not yet placed in the solution.

Given a node u ∈ US, δ(u) now identifies the number of nodes
already placed in the solution adjacent to u (see Equation (13)). Asso-
ciated with δ(u), we define γS(u) to be the number of nodes not yet
placed in the solution which are adjacent to u (d(u) = δ(u)+ γS(u)).
Hence:

γS(u) = |{v ∕∈ S : (u, v) ∈ A ∨ (v, u) ∈ A} | (16)

The greedy function gS(u) that computes the attractiveness of
selecting a node u ∈ V to be placed in the partial solution is then defined
as:

gS(u) = wS⋅δ(u) − (1 − wS)⋅γS(u) (17)

where wS is a search parameter (0 ≤ wS ≤ 1) analogous to the parameter
wL.

The first task of stage two ends when the node u ∈ US with maximum
gS-value is selected. The second task of this stage then determines the
position of node u in the partial solution. We propose three different
criteria for this task:

• A random selection among the available positions.

• The median position of the nodes adjacent to node u. Again, if the
desired position is occupied, the procedure looks for the closest
available position.

• A position that minimizes the crossings of the selected node u by
considering all the available positions in its layer and placing u in the
position that produces the smallest number of crossings.

In summary, the first stage places the long arcs and their incident
nodes in the solution (drawing), and in the second stage places the
remaining nodes in the solution. The different proposals identified for
executing these stages are discussed in our computational tests. The
construction of solutions is crucial in this problem due to the long-arc
constraints that limit the solution space customarily available to local
search methods. As subsequently noted, we find empirically that the
starting solution has an important influence in the final solution obtained.

4.2. Improvement by strategic oscillation

Strategic oscillation (SOS) is a search strategy originally proposed in
the context of tabu search as a long-term technique (Glover, 1977,
2000). It tries to find solutions of interest in a critical boundary of the
search space, and it is widely considered within the context of adaptive
memory programming methods, since it has produced good results for
many different problems such as maximally diverse problems (Gallego
et al., 2013) or the linear ordering problem (Duarte et al., 2011), among
others. We note that strategic oscillation goes beyond using constructive
and destructive phases and involves oscillation over any type of element
that is relevant to a search process. This broader notion has been the
foundation for research in the past that has interesting links to the
widely cited Variable Neighborhood Search (VNS) approach (Cavero,
Pardo, & Duarte, 2022; Cavero, Pardo, Duarte, et al., 2022).

The proposal of strategic oscillation for multiple neighborhoods can
be tracked back to (Glover et al., 1984). It consists of applying different
types of moves – for instance, organized increasingly according to the
size of the associated neighborhood – in the terminology VNS has made
popular. Simple moves were employed at first until they no longer
produced gains, and then steadily more advanced moves of several types
were employed, in a process that repeatedly cycled through these pro-
gressive stages. We make use of this form of strategic oscillation that

(a) (b)
Fig. 8. Solution x of the input graph depicted in Fig. 3.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

9

involves the idea of oscillating among alternative choice rules and
neighborhoods. These facts make the selection of strategic oscillation a
suitable procedure to explore the search space of graph drawing
problems.

In this paper, we propose two different neighborhoods based on the
classic swap move for the graph drawing problem: (1) move of a node to
another position of the layer, and (2) move of all nodes of a long arc to
another position of the layer. Beginning with (1), our SOS approach ap-
plies moves from the selected neighborhood iteratively, as in a standard
local search method, and when no further improvement is possible, we
invoke the alternative neighborhood to further apply local search with
(2). Similarly, the search returns to (1) if at least a promising solution is
found during (2). This process is repeated and thus introduces a simple
oscillation between the two neighborhoods. This design, which is a spe-
cial case of the SOS approach of (Glover et al., 1984), has more recently
been popularized under the term Variable Neighborhood Descent (VND).

The first neighborhood we propose, denoted NN, is defined as the set
of solutions that can be obtained by applying the SwNodes move, which
consists of swapping the position of two nodes in the same layer.
Formally, we define the move SwNodes for any two nodes u, v ∈ VS, such
that originally x(u) = w, x(v) = z, as the one which results in x(u) = z,
and x(v) = w after the move. Recall that a node in VS does not belong to
any chain of dummy nodes that replaces a long arc (including the
beginning and ending nodes of the chain). Considering the SwNodes
move, we now define the associated neighborhood NN as follows:

NN = {SwNodes(u, v) ∀ u, v ∈ VS : u ∕= v}. (18)

The second neighborhood, denoted NA, is defined as the set of solutions
that can be obtained by applying the SwArc move, which consists of
moving a long arc. In this instance, long arcs are replaced by a chain of
dummy nodes and, therefore, moving a long arc is equivalent to moving
all nodes which compose that chain. More precisely, the move consists of
swapping each node in the chain with the node placed in the same layer
at a predefined x-coordinate. For the sake of simplicity we denote this
x-coordinate as position p. Formally, given a long arc (u, v) (together
with its associated chain of dummy nodes AC(u,v) = {(u, u1), (u1, u2),⋯,

(us,v)}) and a position p, we define the move SwArc as follows:

SwArc((u,v), p)={SwNodes(u,w1), SwNodes(u1,w2),⋯, SwNodes(v,ws+1)

: x(w1), x(w2),⋯, x(ws+1)=p∧w1,w2,⋯,ws+1 ∈VS }.

(19)

The neighborhood NA associated with the SwArc move is defined as
follows:

Table 1
Structural properties of the instances generated.

Set name |V ∪ V′| |A′| |nl| |L| # instances

Small [9,100] [8,175] [3,10] [1,20] 200
Medium [100,250] [125,350] [10,20] [10,45] 100
Large [250,600] [300,1200] [10,55] [35,225] 50

Table 2
Configuration definition of the proposed algorithm for irace.

Phase Stage Parameter Alternatives

Constructive First: Long arcs Task 1 Random
Longest arc first
Shortest arc first
gL(wL = 0.78)

Task 2 Random
Median position
Median and tabu
memory (ts = 0.21)

Second: Nodes Task 1 Random
gS(wS = 0.43)

Task 2 Random
Median
Crossing

General
configuration

Iterations 1817

Improving Strategic
Oscillation

Neighborhood
exploration order

NA/ NN

NN/NA

NA exploration
strategy

First Improvement
Best Improvement

NN exploration
strategy

First Improvement
Best Improvement

Table 3
Constructive procedure without tabu memory (Cons.) and with tabu memory
(Cons. + TS).

Algorithm C Dev. (%) # Best CPU T. (s)

Cons. 242.53 4.86 5 0.71
Cons. + TS 239.16 0.73 15 0.57

Fig. 9. Average objective value C evolution of the constructive procedure on
three small instances.

Table 4
Contribution of advanced strategy to the local search.

Algorithm C Dev. (%) # Best CPU T. (s)

LS 288.16 0.00 19 1.229
ELS 288.16 0.00 19 0.005

Table 5
Performance differences between the procedure components and the full
procedure.

Algorithm C Dev. (%) # Best CPU T. (s)

LS-NN 249.53 53.28 1 60.06
LS-NA 204.53 9.07 8 60.00
SOS 173.63 0.00 19 60.02

Fig. 10. Influence of the alignment constraint in the cross minimization
objective function.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

10

NA = {SwArc((u, v), p) ∀ (u, v) ∈ AL}. (20)

The exploration of either NN or NA is performed with a local search
procedure which we implement with two well-known exploration stra-
tegies: first improvement and best improvement. In the present case, the
first improvement strategy consists of performing the first move found of

a node or arc that improves the current solution quality, while the best
improvement strategy selects the best move of each node or arc, among
all possible moves. Section 5 reports the outcomes of applying these
strategies within our proposed search procedure and examines the order
in which the considered neighborhoods (NA and NN) should be explored.

Additionally, we propose an advanced strategy to update the value of
the objective function of a solution obtained after applying
SwNodes(u, v) which considerably reduces the time needed to explore
the neighborhoods NA and NN.

We start by defining a square matrix Cl for each layer l, to store the
number of arc crossings produced by any two nodes u and v of the layer,
depending on the relative position between them within the layer.
Therefore, the number of rows and columns of the matrix Cl is equal to
the number of nodes in the layer l. Then, given any two nodes u and v
belonging to the same layer l, let cuv be the number of crossings between
arcs incident to u and arcs incident to v, under the condition where u
precedes v in its layer (i.e., x(u) < x(v)). (An arc incident to a node refers
to any incoming or outgoing arc.) We then store the value of cuv in the
matrix in the position defined by the row-index u and column-index v.

Fig. 8(a) provides an example of a solution x of the PH depicted in
Fig. 3. Since PH has three layers, it is necessary to calculate three matrices:
C1, C2 and C3, which are represented in Fig. 8(b). Focusing on layer 1,
which is composed of the nodes 1, 6, 9, and 10, we see that C1 contains four
rows and four columns. In greater detail, observing the number of cross-
ings generated between nodes 1 and 6, we obtain c1,6 = 1 for x(1) < x(6),
as in the diagram of 8(a), and would obtain c6,1 = 2 if x(6) < x(1). Simi-
larly, nodes 9 and 10 produce 0 crossings for x(10) < x(9) (to yield c10,9 =

0) as in the diagram of 8(a), and would produce 1 crossing if x(9) < x(10)
(to yield c9,10 = 1), and so on. In Fig. 8(b), we highlight with a green
background the arc crossing values corresponding to the current solution
depicted in Fig. 8(a) and use a white background to show the arc crossing
values if the order within the arc pairs were to be reversed.

Using the information stored in this matrix, the following conclusion
can be drawn: if cuv is greater than cvu, and x(u) < x(v), then swapping
the position of u and v will result in a better-quality solution.

Table 6
Comparison of MS-SOS with the best methods on small instances.

MM MS-TS MS-SOS

Instances C # Opt. C Dev. (%) # Opt. CPU T. (s) C Dev. (%) # Opt. CPU T. (s)

[0,25] 2.23 35 2.31 6.29 33 0.10 2.40 3.17 31 1.47
(25, 50] 14.92 90 17.81 23.54 26 2.02 16.28 9.38 45 5.38
(50, 75] 36.51 45 49.82 42.45 0 10.08 39.62 9.57 9 14.46
(75, 100] 85.57 30 114.43 39.75 0 30.50 93.63 10.45 0 34.29
Total 28.16 200 36.80 27.71 59 7.77 30.71 8.50 85 11.07

Fig. 11. Comparison of MS-SOS with the best methods on small instances.

Fig. 12. CPU time consumed by Gurobi w.r.t size instance.

Table 7
Comparison of MS-SOS with the best methods on medium instances.

Algorithm C Dev. (%) # Best CPU T. (s)

MS-TS 392.18 65.17 0 498.29
MS-SOS 245.43 0.00 100 29.50

Table 8
Comparison of MS-SOS with the best methods on large instances.

Algorithm C Dev. (%) # Best CPU T. (s)

MS-TS 2868.50 40.12 0 10694.74
MS-SOS 2392.42 0.00 50 63.84

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

11

Given a solution x and the solution x′ (obtained as a result of a
SwNodes move between node u and node v) the difference in solution
quality between the value of C(x) and the value of C(x′) is denoted as
ΔSwNodes. Therefore, the value of the objective function of x′ can also be
expressed as follows:

C(x′) = C(x)+ΔSwNodes(u, v) (21)

Furthermore, ΔSwNodes(u, v) can be easily updated after the operation
SwNodes(u, v) as follows:

ΔSwNodes(u, v) = cvu − cuv +
∑

cwu − cwu + cvw − cwv, ∀w ∈ V : x(w)

∈ (x(u), x(v))
(22)

Therefore, in sum, ΔSwNodes(u, v) < 0 indicates that x′ is better than x
and it is an improving move since the number of crossings has been
reduced. A key aspect in this computation is that if u and v are consec-
utive nodes in a layer (|x(u) − x(v)| = 1), the change in the total number
of crossings only depends on cvu − cuv.

To extend the illustration, consider again the solution x and the
matrix C2 in Fig. 8. Since c53 = 6 is greater than c35 = 1, and x(5) < x(3),
we are interested in swapping nodes 5 and 3. To calculate the objective
function of the resultant solution, x′ (depicted in Fig. 3), after the move
SwNodes(5, 3) we apply Equations (21) and (22) to obtain:

ΔSwNodes(5, 3) = c35 − c53 = 1 − 6 = − 5.

C(x′) = C(x)+ΔSwNodes(5, 3) = 6 − 5 = 1

Finally, we note that factorization also reduces the computation time

needed to explore the neighborhood NA since a move SwArc is defined as
a set of consecutive SwNodes.

5. Computational test

In this section, we compile the computational tests carried out in this
research. Section 5.1 presents the instances and Section 5.2 describes the
tests designed to configure our proposed MS-SOS, together with illus-
trating the contribution of the components and strategies of the final
procedure. Finally, in Section 5.3 we compare our MS-SOS method with
the best methods previously identified for the graph drawing problem.

All algorithms were coded in Java 17 and the tests were run on a 16-
core vCPU AMD EPYC7282 with a total of 16 GB RAM and Ubuntu
20.04.2 64-bit LTS operating system. We have made the source code
used in our implementations available at https://github.com/scaverod/
SOS-TS-GraphDrawing.

5.1. Instances

We have considered three sets of drawing problem instances, where
an instance is identified by its proper hierarchy graph, PH =

(V ∪ V′,A′, nl, L). Table 1 depicts the ranges of the structural properties
for each of the generated sets of instances:

The sets of instances used, and the instance generator code are
available at https://github.com/scaverod/SOS-TS-GraphDrawing.

Notice that to guarantee the robustness of our algorithms we have
used 350 different instances in our final tests. Additionally, to avoid
overtraining the algorithms, the configuration of their parameters is
performed over reduced data set of 19 out of 350 instances, named
preliminary set.

(a) (b)
Fig. 13. Optimal drawings for crossing minimization, subject to the alignment constraints.

S. Cavero et al.

https://github.com/scaverod/SOS-TS-GraphDrawing
https://github.com/scaverod/SOS-TS-GraphDrawing
https://github.com/scaverod/SOS-TS-GraphDrawing

Expert Systems With Applications 243 (2024) 122668

12

5.2. Preliminary test

To test the different configurations of the components of the MS-
SOS procedure to disclose the best variant of our method, we ran
each different variant for 60 s, which is a relatively short running time.
Notice, that one of the possible real applications of the algorithm
proposed in this paper is to be included in a graph drawings software
or library. In this sense, the user of the software might expect a quick

output and, therefore, a relatively short running time is mandatory.
Our preliminary parameter tuning was done with the irace software

introduced in López-Ibáñez et al. (2016). Table 2 summarizes the
different strategies proposed for each phase of the algorithm and the
parameters provided to irace. The configuration is divided into two
phases: constructive and improving. As previously described, the
constructive phase is further split into two stages and each stage is
split into two tasks. Different criteria are provided for each task and

(a)

(b)

Fig. 14. Optimal drawings for crossing minimization, subject to the alignment constraints.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

13

the number of constructions must be defined.
The strategic oscillation-based improvement phase requires two

main decisions: the order in which the neighborhoods will be explored
and the exploration strategy for each neighborhood. The best configu-
rations for our proposal, obtained as output of irace, are identified in
bold in Table 2.

The following tests determine the relevance of the strategies intro-
duced in the final configuration of the method. For each test, we report
the average of the value of the objective function (C), and the deviation
to the best in the test (Dev. (%)). Also, we report the total execution time
in seconds (CPU T. (s)) and the number of best solutions found (# Best).

Our first preliminary test explores the increase in solution quality
when the constructive procedure incorporates a tabu memory. For this,
we compared the best solution found by the constructive procedure of
our final proposal (see the constructive phase in Table 3) without tabu
memory (Cons.) and with tabu memory (Cons. + TS). As it can be
observed, Cons. + TS shows a notable improvement in the quality of the
solutions generated, obtaining 15 best solutions out of 19 instances and
an average deviation closer to 0.

The next preliminary test addresses the evolution of the quality of the
best solution found in each iteration of the construction procedure,
reporting the best solution found for three preliminary small instances.
As shown in Fig. 9, the performance of the procedure dramatically im-
proves in the first 250 executions for each of the instances. A moderate
improvement occurs for up to 500 executions and marginal improve-
ments continue for up to 1500 executions. Quite likely there is still room
for improvement if the number of constructions increases beyond 1500
executions. However, irace determined that 1817 is an appropriate
number of iterations as a trade-off between the time spent on the con-
struction phase and the time spent on the improvement phase.

The last preliminary test involving the constructive phase analyzes
the number of infeasible solutions generated due to the influence of the
alignment constraints. We find that for some large instances of the
preliminary set a total of 80 % of the solutions generated are infeasible.

For the medium and small instances, the number of infeasible solutions
ranges up to 35 % of the solutions generated. This underlines the
importance of running the construction procedure multiple times in the
search for good starting solutions for the improvement procedure.

Proceeding beyond the constructive phase, we next study the ability
of the advanced strategy proposed in Section 4.2 to efficiently evaluate
neighboring solutions. For this, we compared two local search proced-
ures that start from the same random initial solution and explore
neighborhood NN following a best improvement strategy. Then, we
analyze the solutions obtained by a simple local search procedure (LS)
with a local search that implements the efficient move evaluation (ELS).
Table 4 reveals that both variants reach the same solutions quality, but
ELS consumes three order of magnitude computational time less than LS
to explore the same number of solutions.

The next preliminary test is devoted to identifying the contribution
of each of the strategies proposed for the improving phase. Based on the
output configuration of irace (see Table 2), we compare: (1) a local
search that explores NN using a first improving pattern (LS-NN), (2) a
local search that explores NA using a first improving pattern (LS-NA),
and (3) the strategic oscillation procedure that combines LS-NA and LS-
NN (SOS). All tests start from the same random solution. Upon reaching a
local optimum, a new random solution is generated which is the same
for each until a maximum time of 60 s is reached. The results obtained
are reported in Table 5. As expected, SOS is the best method in terms of
the average number of crossings, deviation and # Best solutions found.
The second-best procedure is LS-NA and the last is LS-NN.

Since we are proposing a multistart procedure, in order to evaluate
the convergence performance of our algorithm, we conducted an addi-
tional test where the best configuration of our algorithm was executed
until it performed 100 iterations without finding an improvement. For
each iteration, we reported the best solution found and compared them
with the rest of the iterations. Our analysis revealed that, on average, the
algorithm was able to find the best solution in the iteration 42. Addi-
tionally, the latest iteration where a best solution was found was the

(a) (b)
Fig. 15. Drawings obtained with the Dot and yEd software systems.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

14

iteration 96. The average time needed to find the best solution was
63.23 s. Notably, only 6 out of 19 instances needed more than 60 s.
Therefore, a combined stopping criterion which involves a maximum
time per instances and a maximum number of iterations without
improvement might be desirable. The previous results indicate a fast
convergence performance of the algorithm.

The final preliminary test is devoted to identifying the influence of
the alignment constraint in the cross minimization objective function.
To that aim, we have analyzed the number of crossings produced in the
optimal solutions of several instances. Particularly, in Fig. 10 we depict
the number of crossings for those instances in the preliminary data set
that can be solved to optimality with the mathematical model intro-
duced in Section 3. In blue, we represent the number of crossings ob-
tained by the original model and, in orange, we represent the overhead
of crossings produced by the alignment constrained model.

As expected, there is an increase in the number of crossings when the
alignment constraint is introduced. Note however that this increase is
very moderate, which supports the main point of this paper; it is worth

in terms of the final readability to marginally increase the number of
crossings in order to align the long arcs.

5.3. Comparison with previous methods

In this section, we compare our MS-SOS procedure with the two best
previous state-of-the-art methods in the literature. Particularly, the
Mathematical Model (MM) and the Multi-Start Tabu Search (MS-TS),
proposed in Glover et al. (2021). For the MS-TS comparison, we have
implemented the original source code and configuration provided by the
authors in Glover et al. (2021), using the same execution environment as
the one used for our code. Although both methods are based on the Tabu
Search framework, they are quite different. In particular, the previous
method starts from a random solution, while our approach is built from a
new greedy constructive procedure based on long term memory struc-
tures (see Section 4.1). Additionally, the improvement phase in the
previous method was composed by different local search procedures,
which we found inefficient. Instead, we introduce a single local search

(a)

(b)
Fig. 16. Drawings obtained with the Dot and yEd software systems.

S. Cavero et al.

Expert Systems With Applications 243 (2024) 122668

15

that combines several neighborhoods by implementing a Strategic
Oscillation Search (see Section 4.2). Finally, we propose an advanced
search strategy that avoids unfeasible solutions. Therefore, the new tabu
search method proposed here is not a modification or enhancement of
the previous one, but it constitutes a new design built from scratch. Their
comparison, both theoretical and empirical, reveals valuable lessons for
researchers on metaheuristic methods.

The mathematical model was implemented in Java 17 and Gurobi
and was also run in the same execution environment as the two previous
procedures, setting a maximum execution time of 1 h. On the other
hand, the stopping criterion for the MS-SOS is either 60 s or 100 itera-
tions without improvement.

Table 6 presents the results of the three procedures for the set of
small instances. We report the same indicators previously introduced
(Dev. (%), CPU T. (s), and # Opt.). Instances are grouped according to
the number of nodes and the bottom row of the table (labelled as
“Total”) reports the average for all instances.

As seen in Table 6, the MM approach (using the mathematical model
solved by the exact Gurobi method) disposes of the small instances
relatively easily, finding optimal solutions for these 200 instances within
the maximum time limit. (As will be seen, the picture changes radically
when we get beyond the small instances.) The two heuristic procedures
do not fare as well as the exact algorithm on these instances. MS-SOS has
the smallest deviation with respect to the optimum values (8.50 %),
finding the optimum for half of the instances under consideration. The
difference in computation between the two heuristic procedures is very
small. Overall, MS-SOS emerges as an efficient method to solve small
instances in a reasonable amount of computational time but does not
match the exact method for overall solution quality. We refer the reader
to https://github.com/scaverod/SOS-TS-GraphDrawing, to obtain the
individual results per instance.

The results obtained for the small instances are complemented by the
charts illustrated in Fig. 11. Fig. 11(a) shows the average crossings for
the three algorithms, MM (blue), MS-TS (orange) and MS-SOS (gray),
grouping the instances according to the number of their arcs. Fig. 11(b)
shows the average crossings for the same algorithms grouping the in-
stances by the number of layers. As can be seen in both figures, MM is the
best algorithm for dealing with small instances, followed by MS-SOS and
finally MS-TS.

Fig. 12, however, discloses information not available in the preced-
ing comparison by showing the computation time needed by Gurobi for
these small instances, identifying the average time needed to solve an
instance on the y-axis and the number of nodes of the instances on the
x-axis. As can be seen, the time abruptly grows exponentially when the
graphs exceed 80 nodes, which makes the use of MM for the solution of
graphs with more than 100 nodes totally impractical.

In Table 7 and Table 8 we present the results obtained for the sets of
medium and large instances respectively. Now the exact solution pro-
cedure Gurobi using the MM model deteriorates to the point of dropping
out of consideration as a useful alternative. Gurobi was unable to find a
single feasible solution within the allotted solution time and has been
removed from the comparison, leaving us to compare the MS-TS and MS-
SOS procedures. Since optimal solutions are unknown for the instances
considered in these tests, in this case we report the number of best values
obtained (#Best) and the deviation to this value.

Table 7 shows that the MS-SOS method finds better solutions in an
order of magnitude less time than MS-TS, reaching the best solution for
all the instances under consideration, while MS-TS is unable to find any
of these best solutions.

Similar conclusions can be drawn from the analysis in Table 8 with
an even more significant difference in efficiency for MS-SOS, which finds
the best results for all instances in three orders of magnitude less time
than MS-TS.

We complement the numerical comparisons introduced in this sec-
tion with a graphical comparison of the drawings obtained by the
original mathematical model from Jünger and Mutzel’s (2002) and the

MS-SOS heuristic method. This comparison is presented in the
Appendix A. In addition, in Appendix B, we compare the optimal solu-
tion of our proposed model with the drawing obtained with two well-
known drawing software: Dot (Gansner et al., 2015) and yEd (yWorks,
2023), that constitute a reference in the field.

6. Conclusions and future work

In this paper, we introduce a modification of Sugiyama’s graph
drawing framework by proposing the addition of long arcs constraints to
increase the readability of the drawings. In particular, our proposed
modification constrains the optimization to solutions in which long arcs
have no bends. We introduce both a mathematical model to obtain the
optimal solution to this problem for small instances, and a metaheuristic
to obtain high-quality drawings of larger graphs in a reasonable time.

Our algorithm is based on the tabu search methodology joined with
strategic oscillation (SOS) to perform a fast and effective exploration of
the search space. The method implements a multi-start framework that
integrates a constructive tabu search method with an SOS improvement
procedure that oscillates between the exploration of two neighborhoods.
The process is augmented by an efficient move value calculation to
reduce the time needed to explore these two neighborhoods.

We compare the outcomes from our new approach with a classic
design of the tabu search method recently published for this problem.
The computational comparison clearly establishes the superiority of the
new proposal, calling attention to possibilities of the tabu search
methodology that have been largely overlooked.

In the interest of exploring options that invite closer examination, we
note that the alternation between moves and evaluations helps SOS
approaches to succeed in the search process. This suggests the merit of
those forms of strategic oscillation that focus on the choice of moves and
evaluation criteria selected from a set of options, according to rules
which let the method to transition between solutions. In such applica-
tions, there is a considerable opportunity for doing multiple neighbor-
hood studies that go beyond current proposals in the VNS literature, and
that may lead to developing useful advances in solving various kinds of
problems where multiple neighborhoods are naturally available.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared a link to the data and source code used in the paper

Acknowledgement

This research has been partially supported by the Ministerio de
Ciencia e Innovación of Spain (Grant Refs. PGC2018-095322-B-C21/C22,
PID2021-125709OA-C22/OB-C21, FPU19/04098 and EST22/00444)
funded by MCIN/AEI /10.13039/501100011033/FEDER, UE. It has been
also supported by the Comunidad de Madrid and the European Regional
Development Fund (Grant Ref. P2018/TCS-4566) and by the Generalitat
Valenciana (CIAICO/2021/224). It has also been supported by Programa
Propio de la Universidad Rey Juan Carlos (Grant Ref. M2988) and
Cátedra de Innovación y Digitalización Empresarial (Ref. ID MCA06).

Appendix A: Drawing examples

We complement the numerical comparisons of Section 5.3 by making
a graphical comparison of the drawings obtained by the two main ap-
proaches compared in this paper, on some well-known examples in the
graph drawing field. Particularly, we compare the result obtained by the

S. Cavero et al.

https://github.com/scaverod/SOS-TS-GraphDrawing

Expert Systems With Applications 243 (2024) 122668

16

integer linear formulation proposed by Jünger and Mutzel’s (2002) and
the MS-SOS heuristic introduced in this paper.

The examples shown next are extracted from figures 13.2 and 13.16
respectively, in chapter “Hierarchical Drawing Algorithms” in the
“Handbook of graph drawing and visualization” by Healy and Nikolov
(2014), which are also used in Bachmaier et al. (2012), among others.

The solutions obtained for the first example are depicted in Fig. 13.
Specifically, Fig. 13(a) shows the Sugiyama framework solution ob-
tained by the MIP with 2 crossings. Fig. 13(b) shows the best solution
found by the MS-SOS procedure considering the alignment constraints,
resulting in 4 crossings but producing a clearer drawing.

In Fig. 14, we illustrate a second example of the drawings obtained
by the two methods compared. Specifically, the MIP solution is depicted
in Fig. 14(a), while the drawing obtained by the MS-SOS procedure is
depicted in Fig. 14(b). Both drawings have 9 crossings, so from the
perspective of crossing minimization the drawings are equally good.
However, in Fig. 14(b) the long arcs are aligned, making the drawing
more legible.

Appendix B: Comparison with commercial software

This appendix includes the drawings of the two examples introduced
in Appendix A obtained with two well-known commercial software, Dot
(Gansner et al., 2015) and yEd (yWorks, 2023). We compare the optimal
solution of our proposed model with the drawing obtained with these
drawing software that constitute a reference in the field. Note that they
are based on the drawing model by Sugiyama et al. and therefore this
comparison also illustrates the benefits of our model with respect to that
one.

The first example is depicted in Fig. 15. Specifically, Fig. 15(a) shows
the drawing obtained by Dot, while Fig. 15(b) shows the drawing
generated by yEd. Note that in both cases the drawings present arc
bends, and therefore as solutions of our model can be considered un-
feasible since the alignment constraint is not satisfied.

Regarding crossing minimization, both software products do a good
job since the drawings obtained have 2 and 3 crossings respectively. The
drawing obtained with our method, MS-SOS, depicted in Fig. 13(b),
presents 4 crossings and no bends. In our view, the graphical inspection
of these figures supports the assessment that a marginal increase in the
number of crossing due to the long-arcs constraint is worth it in terms of
the final readability of the drawing.

Fig. 16 represents the second example in the Appendix. Specifically,
the solution generated by Dot is depicted in Fig. 16(a), while the solution
generated by yEd is presented in Fig. 16(b). As it can be observed, the
two solutions provided by the drawing software present arc bends (i.e.,
are not feasible for our model), and a similar number of crossings (11
and 10 respectively) than our MS-SOS (10 crossings as shown in Fig. 14
(b), which is able to represent the graph with no bends. This example
clearly shows the benefits of our model and solving method that are able
to improve the readability of two well established graph drawing
systems.

References

Bachmaier, C., et al. (2012). Drawing Recurrent Hierarchies. Journal of Graph Algorithms
and Applications, 16(2), 151–198.

Battista, G. D., Eades, P., Tamassia, R., & Tollis, I. G. (1998). Graph drawing: algorithms for
the visualization of graphs (1st ed.). Prentice Hall PTR.

Booch, G. (2005). The unified modeling language user guide. Pearson Education India.
Carpano, M.-J. (1980). Automatic display of hierarchized graphs for computer-aided

decision analysis. IEEE Transactions on Systems, Man, and Cybernetics, 10(11),
705–715. https://doi.org/10.1109/TSMC.1980.4308390

Cavero, S., Pardo, E. G., & Duarte, A. (2022). A general variable neighborhood search for
the cyclic antibandwidth problem. Computational Optimization and Applications, 81
(2), 657–687. https://doi.org/10.1007/s10589-021-00334-y

Cavero, S., Pardo, E. G., Duarte, A., & Rodriguez-Tello, E. (2022). A variable
neighborhood search approach for cyclic bandwidth sum problem. Knowledge-Based
Systems, 246, Article 108680. https://doi.org/10.1016/j.knosys.2022.108680

Cavero, S., Pardo, E. G., Laguna, M., & Duarte, A. (2021). Multistart search for the Cyclic
Cutwidth Minimization Problem. Computers & Operations Research, 126, Article
105116. https://doi.org/10.1016/j.cor.2020.105116

Chen, X., Song, X., Peng, G., Feng, S., & Nie, L. (2021). Adversarial-enhanced hybrid
graph network for user identity linkage. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval (pp. 1084–1093).
https://doi.org/10.1145/3404835.3462946.

Chimani, M., Gutwenger, C., Junger, M., Klau, G. W., Klein, K., & Mutzel, P. (2013). The
Open Graph Drawing Framework (OGDF). 28.

Duarte, A., Laguna, M., & Martí, R. (2011). Tabu search for the linear ordering problem
with cumulative costs. Computational Optimization and Applications, 48, 697–715.
https://doi.org/10.1007/s10589-009-9270-5

Gallego, M., Laguna, M., Martí, R., & Duarte, A. (2013). Tabu search with strategic
oscillation for the maximally diverse grouping problem. Journal of the Operational
Research Society, 64(5), 724–734. https://doi.org/10.1057/jors.2012.66

Gansner, E. R., Koutsofios, E., & North, S. (2015). Drawing graphs with dot. https://www.
graphviz.org/pdf/dotguide.pdf.

Gansner, E. R., & North, S. C. (2000). An open graph visualization system and its
applications to software engineering. Software: Practice and Experience, 30(11), 1203-
1233. https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.
CO;2-N.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8(1), 156–166. https://doi.org/10.1111/j.1540-5915.1977.
tb01074.x

Glover, F. (2000). Multi-start and strategic oscillation methods—principles to exploit
adaptive memory. In En M. Laguna, & J. L. G. Velarde (Eds.), Computing tools for
modeling, optimization and simulation: interfaces in computer science and operations
research (pp. 1–23). Springer US. https://doi.org/10.1007/978-1-4615-4567-5_1.

Glover, F., Campos, V., & Martí, R. (2021). Tabu search tutorial. A graph drawing
application. TOP, 29(2), 319–350. https://doi.org/10.1007/s11750-021-00605-1

Glover, F., & Laguna, M. (1998). Tabu Search. In En D.-Z. Du, & P. M. Pardalos (Eds.),
Handbook of Combinatorial Optimization: Volume1–3 (pp. 2093–2229). Springer US.
https://doi.org/10.1007/978-1-4613-0303-9_33.

Glover, F., McMillan, C., & Glover, R. (1984). A heuristic programming approach to the
employee scheduling problem and some thoughts on “managerial robots”. Journal of
Operations Management, 4(2), 113–128. https://doi.org/10.1016/0272-6963(84)
90027-5

Healy, P., & Nikolov, N. (2014). Hierarchical drawing algorithms. In Roberto Tamassia
(Ed.), Handbook of Graph Drawing and Visualization (pp. 409–453).

Jünger, M., & Mutzel, P. (2002). 2-Layer Straightline Crossing Minimization:
Performance of Exact and Heuristic Algorithms. In En Graph Algorithms and
Applications I (pp. 3–27). World Scientific. https://doi.org/10.1142/
9789812777638_0001.

Kaufmann, M., & Wagner, D. (2001). Drawing Graphs: Methods and Models. LNCS Tutorial:
Springer.

Laguna, M., & Marti, R. (1999). GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11(1), 44–52. https://doi.
org/10.1287/ijoc.11.1.44

Laguna, M., Martí, R., & Valls, V. (1997). Arc crossing minimization in hierarchical
digraphs with tabu search. Computers & Operations Research, 24(12), 1175–1186.
https://doi.org/10.1016/S0305-0548(96)00083-4

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016).
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3, 43–58. https://doi.org/10.1016/j.orp.2016.09.002

Martí, R. (1998). A tabu search algorithm for the bipartite drawing problem. European
Journal of Operational Research, 106(2), 558–569. https://doi.org/10.1016/S0377-
2217(97)00291-9

Martí, R. (2001). Arc crossing minimization in graphs with GRASP. IIE Transactions, 33
(10), 913–919. https://doi.org/10.1080/07408170108936883

Martí, R., Martínez-Gavara, A., Sánchez-Oro, J., & Duarte, A. (2018). Tabu search for the
dynamic Bipartite Drawing Problem. Computers & Operations Research, 91, 1–12.
https://doi.org/10.1016/j.cor.2017.10.011

Martí, R., & Reinelt, G. (2022). Exact and Heuristic Methods in Combinatorial Optimization:
A Study on the Linear Ordering and the Maximum Diversity Problem. Springer.

Napoletano, A., Martínez-Gavara, A., Festa, P., Pastore, T., & Martí, R. (2019). Heuristics
for the constrained incremental graph drawing problem. European Journal of
Operational Research, 274(2), 710–729. https://doi.org/10.1016/j.ejor.2018.10.017

Pastore, T., Martínez-Gavara, A., Napoletano, A., Festa, P., & Martí, R. (2020). Tabu
search for min-max edge crossing in graphs. Computers & Operations Research, 114,
Article 104830. https://doi.org/10.1016/j.cor.2019.104830

Paulisch, F. N., & Tichy, W. F. (1990). Edge: An extendible graph editor. Software:
Practice and Experience, 20(S1), S63–S88. https://doi.org/10.1002/spe.4380201307

Preitl, Z., Precup, R. E., Tar, J. K., & Takács, M. (2006). Use of multi-parametric quadratic
programming in fuzzy control systems. Acta Polytechnica Hungarica, 3(3), 29–43.

Rigatos, G., Siano, P., Selisteanu, D., & Precup, R. E. (2017). Nonlinear optimal control of
oxygen and carbon dioxide levels in blood. Intelligent Industrial Systems, 3, 61–75.

Sánchez-Oro, J., Martínez-Gavara, A., Laguna, M., Martí, R., & Duarte, A. (2017).
Variable neighborhood scatter search for the incremental graph drawing problem.
Computational Optimization and Applications, 68(3), 775–797. https://doi.org/
10.1007/s10589-017-9926-5

Sugiyama, K. (2002). Graph Drawing and Applications for Software and Knowledge
Engineers. World Scientific.

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for visual understanding of
hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11
(2), 109–125. https://doi.org/10.1109/TSMC.1981.4308636

S. Cavero et al.

http://refhub.elsevier.com/S0957-4174(23)03170-6/sb.reference_lcp_sjz_pzb
http://refhub.elsevier.com/S0957-4174(23)03170-6/sb.reference_lcp_sjz_pzb
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0005
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0005
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0010
https://doi.org/10.1109/TSMC.1980.4308390
https://doi.org/10.1007/s10589-021-00334-y
https://doi.org/10.1016/j.knosys.2022.108680
https://doi.org/10.1016/j.cor.2020.105116
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0035
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0035
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0035
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0035
https://doi.org/10.1007/s10589-009-9270-5
https://doi.org/10.1057/jors.2012.66
https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0070
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0070
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0070
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0070
https://doi.org/10.1007/s11750-021-00605-1
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0080
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0080
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0080
https://doi.org/10.1016/0272-6963(84)90027-5
https://doi.org/10.1016/0272-6963(84)90027-5
http://refhub.elsevier.com/S0957-4174(23)03170-6/sb.reference_lvd_njz_pzb
http://refhub.elsevier.com/S0957-4174(23)03170-6/sb.reference_lvd_njz_pzb
https://doi.org/10.1142/9789812777638_0001
https://doi.org/10.1142/9789812777638_0001
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0095
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0095
https://doi.org/10.1287/ijoc.11.1.44
https://doi.org/10.1287/ijoc.11.1.44
https://doi.org/10.1016/S0305-0548(96)00083-4
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/S0377-2217(97)00291-9
https://doi.org/10.1016/S0377-2217(97)00291-9
https://doi.org/10.1080/07408170108936883
https://doi.org/10.1016/j.cor.2017.10.011
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0125
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0125
https://doi.org/10.1016/j.ejor.2018.10.017
https://doi.org/10.1016/j.cor.2019.104830
https://doi.org/10.1002/spe.4380201307
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0145
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0145
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0150
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0150
https://doi.org/10.1007/s10589-017-9926-5
https://doi.org/10.1007/s10589-017-9926-5
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0160
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0160
https://doi.org/10.1109/TSMC.1981.4308636

Expert Systems With Applications 243 (2024) 122668

17

Tan, G. W. H., Ooi, K. B., Leong, L. Y., & Lin, B. (2014). Predicting the drivers of
behavioral intention to use mobile learning: A hybrid SEM-Neural Networks
approach. Computers in Human Behavior, 36, 198–213.

Tantau, T. (2013). Graph drawing in TikZ. In W. Didimo, & M. Patrignani (Eds.), Graph
drawing (pp. 517–528). Springer, 10.1007/978-3-642-36763-2_46.

Warfield, J. N. (1977). Crossing theory and hierarchy mapping. IEEE Transactions on
Systems, Man, and Cybernetics, 7(7), 505–523. https://doi.org/10.1109/
TSMC.1977.4309760

West, D. B. (2001). Introduction to graph theory (Vol. 2). Prentice Hall Upper Saddle River.
yWorks, YEd Graph Editor (2023). YWorks, the Diagramming Experts. Online: https:

//www.yworks.com/products/yed.
Zamfirache, I. A., Precup, R. E., Roman, R. C., & Petriu, E. M. (2023). Neural network-

based control using actor-critic reinforcement learning and grey wolf optimizer with
experimental servo system validation. Expert Systems with Applications, 225, Article
120112.

S. Cavero et al.

http://refhub.elsevier.com/S0957-4174(23)03170-6/h0170
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0170
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0170
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0175
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0175
https://doi.org/10.1109/TSMC.1977.4309760
https://doi.org/10.1109/TSMC.1977.4309760
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0185
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0190
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0190
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0190
http://refhub.elsevier.com/S0957-4174(23)03170-6/h0190

	Strategic oscillation tabu search for improved hierarchical graph drawing
	1 Introduction
	2 Problem statement
	3 Mathematical model
	4 Multi-start memory-based approach
	4.1 Constructive phase
	4.2 Improvement by strategic oscillation

	5 Computational test
	5.1 Instances
	5.2 Preliminary test
	5.3 Comparison with previous methods

	6 Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A: Drawing examples
	Appendix B: Comparison with commercial software
	References

