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A B S T R A C T

With the advent of the era of big data, more and more complex networks and knowledge based systems
require data visualization for analysis and presentation, where graphs have become a standard representation
model. Graph drawing addresses the problems of constructing geometric representations of graphs to make
them easy to analyze. In this paper we aim to reduce the edge crossing number in the context of the
incremental graph drawing problem (IGDP), in which we want to preserve the layout of a graph over successive
drawings to present complex networks or knowledge-based systems. Specifically, we propose a metaheuristic
algorithm called multiple neighborhood solution-based tabu search (MNSB-TS) by combining a solution-based
tabu strategy and a multiple neighborhood structure for solving the incremental graph drawing problem. Our
MNSB-TS approach introduces four neighborhood operators to accompany the solution-based tabu strategy
for determining the tabu status of each neighbor solution. Extensive computational experiments on public
benchmark instances demonstrate that the proposed MNSB-TS is highly competitive in comparison with the
state-of-the-art heuristics and the exact optimization solver Gurobi. Key components of the approach are
analyzed to evaluate their impact on algorithm performance and learn which search mechanisms are better
suited for incremental graph drawing.
1. Introduction

The enormous growth in the amount of data confronted in business
and engineering analysis has brought the problem of representing
large graphs into the spotlight. For most graphs, the only information
available concerns which pairs of vertices are connected by arcs and
there are numerous ways to represent the same graph with different
arrangements of these vertices. There is accordingly a major need for
automatic layout algorithms for graph drawing to create graphs that
are more understandable, useable, and aesthetically pleasing.

The primary challenge of graph drawing is to construct geometric
representations of graphs that make them easy to analyze. Although the
criteria used to judge the quality of a drawing is quite subjective, it is
widely considered preferable to minimize the number of arc crossings
to get a clearer layout. This minimization problem has received special
attention in layered digraphs, since any graph can be transformed into
a layered graph using Sugiyama’s framework (Sugiyama et al., 1981).
Therefore, methods developed to tackle the problem of minimizing arc
crossings in layered graphs can be applied to any general graph (Fulek
& Tóth, 2020; Tiezzi et al., 2022). The problem, which is NP-Complete,
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even when the graph consists of only two layers (Garey & Johnson,
1983), is one of the most difficult ones for optimization algorithms.

Palubeckis et al. (2019) proposed an approach for solving this
problem, which combines a simulated annealing (SA) method with a
variable neighborhood search (VNS) scheme. The concept of dynamic
or incremental graph drawing can be traced back to 1991, when Eades
et al. (1991) pointed out that the user usually builds up a mental
map when reading a drawing, so he or she expects that if new ver-
tices or arcs are added, the new graph should be represented in a
way (i.e., using a layout) that resembles the original one. In a wide
variety of practical situations, it is considered helpful to maintain a so-
called ’mental picture’ of the layout from a graph over the continuous
drawings. When the vertices are deleted from or added to a graph,
users must adjust their mental map to grasp the new modified graph.
Research for dynamic graph drawing aims to minimize this effort. As
one approach to this, Martí and Estruch (2001) proposed the idea of
stability across drawing by maintaining the relative ordering invariant
among the common vertices in the original graph and new modified
graph.
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Although the general problem of minimizing arc crossing in graph
drawing problems has been studied extensively, the corresponding
problem on incremental layered graphs, called the incremental graph
drawing problem (IGDP), has received very little attention. In one of
the earlier papers devoted to this, Martí and Estruch (2001) examined
the instance of the IGDP problem containing two layers, proposing a
greedy randomized adaptive search procedure (GRASP) and an exact
algorithm based on branch and bound, that explores the set of solu-
tions (permutations of the vertices in each layer) using a search tree.
Subsequently, Martí et al. (2018b) adapted the mathematical program-
ming formulation originally proposed for the 2-layer incremental graph
drawing problem, and reported experiments with Gurobi, showing they
can solve small and medium-size instances to optimality. Sánchez-
Oro et al. (2017) addressed the incremental graph drawing problem
in hierarchical graphs not limited to bipartite graphs, and proposed
several solution strategies. Their approaches first adapted the GRASP
method to solve these problems and then introduced a procedure based
on scatter search joined with variable neighborhood search to tackle
problems with up to 20 layers. Napoletano et al. (2019) minimized the
number of edge crossings while satisfying some constraints required
to preserve the position of vertices with respect to previous drawings.
They proposed heuristic methods to obtain high-quality solutions to
this optimization problem in short computational times and presented
a mathematical programming formulation for the goal of obtaining
optimal solutions for small and medium instances.

Martí et al. (2018a) focused on a particular variant called the min–
max graph drawing problem, which minimizes the maximum crossing
among all edges — a challenging variant of the original min-sum graph
drawing problem that arises in the optimization of VLSI circuits and
the design of interactive graph drawing tools. New heuristic methods
based on strategic oscillation methodology were proposed to tackle it.
In a refinement, Pastore et al. (2020) proposed a tabu search method to
obtain high-quality solutions. After that, Wu et al. (2021) presented a
variable depth neighborhood search algorithm for solving this problem.

The solution strategies used in the present paper incorporate tabu
search, as proposed for graph drawing in Glover et al. (2021). In the
form most commonly adopted, tabu search uses a tabu list to prevent
revisiting recently encountered solutions as a means to avoid cycling
and being trapped in local optimality. Multiple neighborhood search
as used here builds on the use of multiple neighborhoods introduced
in Glover et al. (1984) and elaborated in the context of tabu search
in Glover (1986, 1997) and Xu et al. (1996, 1998). A popular form
of multiple neighborhood search called variable neighborhood search
(VNS) introduced by Mladenović and Hansen (1997) uses a different
protocol for visiting neighborhoods than employed here and recently
has been studied by joining it with strategies associated with scatter
search in Sánchez-Oro et al. (2017).

Unlike the popular attribute-based tabu search approaches which
use memory that records only a small amount of information about
solutions generated (such as the identity and values of one or two
variables that are chosen to transition from one solution to another)
solution-based tabu search, whose idea were first introduced in
Woodruff and Zemel (1993), has begun to draw attention only very
recently (Chang et al., 2021; Lai et al., 2018a; Wang et al., 2017).
In general, solution-based tabu search (also called ‘‘fine grain" tabu
search in Glover (1997)), uses hash methods to (approximately) record
complete solutions instead of the partial solution information recorded
in attribute-based tabu search. Recently, Peng et al. (2020) proposed a
tabu search method that incorporates adaptive memory to search the
solution space efficiently for a bipartite graph (two-layered hierarchy).

Although solution-based tabu strategy has been successfully applied
to various combinatorial optimization problems, e.g., the minimum
differential dispersion problem (Wang et al., 2017), the maximum
diversity problem (Liu et al., 2020), and the obnoxious 𝑝-median prob-
lem (Chang et al., 2021), research on using solution-based tabu search
2

to solve graph drawing problems is rare. Therefore in this study, we
attempt to explore combining this method with a multiple neighbor-
hood mechanism to tackle the general case (i.e., incremental graph
drawing problem) by extending the previous two-layered hierarchy to
multiple-layered hierarchy.

The main contributions of this paper are as follows:

• A novel hybrid algorithm that combines solution-based tabu
search and multiple neighborhood search for solving IGDP.

• Four neighborhood operators with corresponding fast neighbor-
hood evaluation methods that employ dedicated matrices to
record information for search intensification.

• A dynamic diversification mechanism to complement the search
intensification provided by the solution-based TS procedure.

• A performance evaluation of our proposed algorithm that com-
pares it with the best-performing heuristics and the exact solver
Gurobi for the 240 benchmark problem instances. Our computa-
tional study further examines key components and parameters of
the algorithm and identifies their impact on its performance, dis-
closing that our algorithm outperforms the best known algorithms
from the literature in a statistically significant way.

Our proposed combination of solution-based multiple neighborhood
tabu search and hash functions suitable for permutation problems is
quite general, and can be applied to solve other related optimization
problems, especially multi-layer permutation optimization problems.
The rest of the paper is organized as follows. Section 2 presents the
IGDP problem description and mathematic model. Section 3 describes
our proposed multiple neighborhood solution-based tabu search algo-
rithm. Section 4 presents the experimental protocols and parameter
tuning, and Section 5 reports experimental results and comparisons
with state-of-the-art algorithms from the literature. The effectiveness
of several key ingredients in the proposed algorithm are evaluated in
Section 6 and concluding remarks are given in Section 7.

2. Problem description and mathematic model

We represent a hierarchical graph by 𝐺 = (𝑉 , 𝐸, 𝐾, 𝐿), where
𝑉 , 𝐸 and 𝐾 identify the set of vertices, edges, and the number of
layers, respectively. The function 𝐿(𝑢) denotes the index of the layer
where each vertex 𝑢 ∈ 𝑉 resides by a mapping: 𝑉 → {1,… , 𝐾}.
We are concerned with the instance of incremental graph drawing
defined on an incremental graph 𝐼𝐺 = (𝐼𝑉 , 𝐼𝐸,𝐾,𝐿) derived from an
original hierarchical graph 𝐺 = (𝑉 ,𝐸,𝐾,𝐿) as proposed by Sánchez-
Oro et al. (2017), where the incremental graph arises by introducing
an additional set of vertices 𝐴𝑉 and their corresponding edges 𝐴𝐸.

Formally, the incremental graph is given by 𝐼𝑉 = 𝑉 ∪ 𝐴𝑉 , 𝐼𝐸 =
𝐸∪𝐴𝐸 and 𝐿(𝑢) ∶ 𝐼𝑉 → {1, 2,… , 𝐾}, with the value of 𝐿(𝑢) unchanged
for vertex 𝑢 ∈ 𝑉 . We call the vertices in 𝑉 original vertices and call the
other vertices in 𝐴𝑉 incremental vertices. The goal of IGDP is to find
a drawing that yields the minimum number of edge crossings while
preserving the ordering of the original vertices in each layer of the
incremental graph.

Figs. 1 and 2 show two drawings (i.e., solutions) of a six-layer
incremental graph for the IGDP. The black vertices denote the orig-
inal elements whose relative positions must be preserved while the
white vertices denote the new (incremental) ones added which can be
arbitrarily placed.

The first drawing in Fig. 1 that contains a lot of edge crossings
(381) gives the readers a messy feeling. The second drawing, in Fig. 2,
is optimized for the IGDP depicted in Fig. 1 by relocating the new
white nodes in positions that minimize the number of crossings while
preserving the relative position of the original nodes to yield 172 edge
crossings. It is apparent that the drawing in Fig. 2 with fewer edges

crossings is neater and more readable.
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Fig. 1. A drawing for an example (incgraph_6_0.06_5_30_1.20_1 instance) with a six-layer graph. The number of edge crossings for this drawing is 381.
To formulate the IGDP problem more precisely, we use the mathe-
matic model given by Napoletano et al. (2019), which is presented as
follows:

min
𝐾−1
∑

𝑘=1

∑

(𝑖,𝑗),(𝑝,𝑞)∈𝐼𝐸𝑘

𝐶𝑘
𝑖𝑗𝑝𝑞 (1)

1 − 𝐶𝑘
𝑖𝑗𝑝𝑞 ≤ 𝑥𝑘+1𝑞𝑗 + 𝑥𝑘𝑖𝑝 ≤ 1 + 𝐶𝑘

𝑖𝑗𝑝𝑞 ; ∀(𝑖, 𝑗), (𝑝, 𝑞) ∈ 𝐼𝐸𝑘, 𝑗 > 𝑞,∀𝑘 (2)

−𝐶𝑘
𝑖𝑗𝑝𝑞 ≤ 𝑥𝑘+1𝑗𝑞 − 𝑥𝑘𝑖𝑝 ≤ 𝐶𝑘

𝑖𝑗𝑝𝑞 ; ∀(𝑖, 𝑗), (𝑝, 𝑞) ∈ 𝐼𝐸𝑘, 𝑗 < 𝑞,∀𝑘 (3)

0 ≤ 𝑥𝑘 + 𝑥𝑘 − 𝑥𝑘 ≤ 1; ∀1 ≤ 𝑖 < 𝑗 < 𝑝 ≤ 𝑛 ,∀𝑘 (4)
3

𝑖𝑗 𝑗𝑝 𝑖𝑝 𝑘
𝑥𝑘𝑖𝑝 + 𝑥𝑘𝑝𝑖 = 1; ∀1 ≤ 𝑖 < 𝑝 ≤ 𝑛𝑘,∀𝑘 (5)

𝑥𝑘𝑖𝑗 = 1; ∀𝑖, 𝑗 ∈ 𝑉𝑘, 𝜋𝑘(𝑖) < 𝜋𝑘(𝑗),∀𝑘 (6)

𝑥𝑘𝑖𝑗 , 𝐶
𝑘
𝑖𝑗𝑝𝑞 ∈ {0, 1}; ∀(𝑖, 𝑗), (𝑞, 𝑝) ∈ 𝐼𝐸𝑘,∀𝑘 (7)

where 𝐶𝑘
𝑖𝑗𝑝𝑞 denotes the crossing variable that takes the value 1 if edges

(𝑖, 𝑗) and (𝑝, 𝑞) cross. Additionally, 𝑖 and 𝑝 are vertices that reside in the
same layer 𝑘, and 𝑗, 𝑞 are vertices that reside in the next layer 𝑘+1 (𝑘 =
1, …, 𝐾 − 1), where 𝑥𝑘 takes the value 1 if vertex 𝑖 precedes vertex 𝑝
𝑖𝑝
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Fig. 2. The optimal drawing for an example (incgraph_6_0.06_5_30_1.20_1 instance) with a six-layer graph. The number of edge crossings for this drawing is 172.
and 0 otherwise. 𝐼𝐸𝑘 denotes the set of edges from the vertices in layer
𝑘 to the vertices in layer 𝑘 + 1. 𝑉𝑘 denotes the set of all the original
vertices in layer 𝑘. Constraints (2) and (3) above force 𝐶𝑘

𝑖𝑗𝑝𝑞 to take
the value of 1 if the variables 𝑥𝑘𝑖𝑝 and 𝑥𝑘𝑗𝑞 indicate an edge crossing.
Constraints (4) are the 3-dicycle inequalities, which guarantee that the
ordering variables in fact represent an ordering. Constraints (5) and (6)
preserve the ordering of the original vertices. Constraints (7) impose the
binary requirements on the problem variables. Table 1 summarizes all
the symbols and definitions introduced in this study.
4

3. Multiple neighborhood solution-based tabu search for the in-
cremental graph drawing problem

The Iterated Local Search (ILS) algorithm is a well-known meta-
heuristic algorithm used to solve combinatorial optimization problems.
It follows an iterative process that combines local search procedure
to optimize it locally and perturbation to escape the local optima.
Although the proposed MNSB-TS algorithm follows the similar idea by
combining the main search process and the dynamic diversification to
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Table 1
Symbols and definitions for incremental graph drawing problem.

Symbol Definition

𝐺 Original graph 𝐺 = (𝑉 , 𝐸, 𝐾, 𝐿)
𝑉 Set of original vertices in 𝐺
𝐸 Set of original edges in 𝐺
𝐿(𝑢) Label of the layer containing vertex 𝑢
𝜋𝑘(𝑢) Position of vertex 𝑢 in its layer 𝑘 (𝑘 = 1,. . . ,K) of 𝐺
𝐼𝐺 Incremental graph 𝐼𝐺 = (𝐼𝑉 , 𝐼𝐸, 𝐾, 𝐿)
𝑉𝑘 Set of all the original vertices in layer 𝑘 of 𝐼𝐺
𝐼𝑉𝑘 Set of all the vertices in layer 𝑘 of 𝐼𝐺, and 𝐼𝑉 =

⋃𝐾
𝑘=1 𝐼𝑉𝑘

𝐴𝑉𝑘 Set of incremental vertices in layer 𝑘 of 𝐼𝐺, and 𝐴𝑉 =
⋃𝐾

𝑘=1 𝐴𝑉𝑘
𝐴𝐸 Set of incremental edges in 𝐼𝐺

𝑛𝑘 Number of vertices in layer 𝑘 (𝑘 = 1, … , K) for 𝐼𝐺, and 𝑛 =
𝐾
∑

𝑘=1
𝑛𝑘

𝑆 Incremental drawing (i.e., solution) 𝑆 = (𝜔1, . . . , 𝜔𝐾 ) for 𝐼𝐺
𝛱𝑘(𝑢) Position of vertex 𝑢 in its layer 𝑘 of 𝐼𝐺
𝜔𝑘(𝑖) Vertex locating 𝑖th position in layer 𝑘 (𝑘 = 1, … , K) for 𝐼𝐺
𝐴(𝑢) Set of all vertices adjacent to 𝑢, i.e., 𝐴(𝑢) = {𝑣: (𝑢, 𝑣) ∈ 𝐼𝐸}
𝐼𝑀(𝑢, 𝑣) All the intermediate vertices between vertices 𝑢 and 𝑣 in the same layer

i.e., 𝐼𝑀(𝑢, 𝑣) = { 𝑢′ : 𝛱(𝑢) < 𝛱(𝑢′) < 𝛱(𝑣) or 𝛱(𝑢) > 𝛱(𝑢′) > 𝛱(𝑣); 𝐿(𝑢) = 𝐿(𝑣) = 𝐿(𝑢′)}
explore and improve solutions, the main search process of the MNSB-
TS employs various strategies, including multiple neighborhood moves,
solution-based tabu strategy based on a hash mechanism. Compared to
the simple local search component in ILS, it has the ability to perform
global search.

Specifically, the main search process of the proposed multiple neigh-
borhood solution-based tabu search provides a stronger form of in-
tensification than attribute-based tabu search, which has been shown
to be valuable for locating good local optima in certain settings. Our
solution-based tabu strategy utilizes hash functions and hash vectors to
store the information encoding a solution to make it tabu, instead of
recording a simpler solution attribute such as values assigned to one
or two variables which can prevent a range of solutions from being
re-visited. By joining the solution-based TS approach with a multiple
neighborhood strategy, we are additionally able to take advantage of
a stronger diversification ability, thereby searching a broader region of
the search space in quest of improved solutions. The key components
of our MNSB-TS algorithm are presented in the following subsections.

3.1. Form of the multiple neighborhood solution-based tabu search algo-
rithm

Algorithm 1: Framework of the multiple neighborhood solution-
based tabu search algorithm for solving incremental graph
drawing problem

Input: An incremental graph (G); The maximum computing time (𝑇𝑚𝑎𝑥)
Output: Best-found solution (𝑆𝑏𝑒𝑠𝑡)

1 𝑆 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐺) ;
2 𝑆𝑏𝑒𝑠𝑡 ← 𝑆, 𝑆∗ ← 𝑆;
3 𝜉 ← 0;
4 ‘ while The maximum computing time 𝑇𝑚𝑎𝑥 is not reached do
5 𝑆𝑝 ← 𝑆∗;
6 𝑆∗ ← 𝑀𝑎𝑖𝑛𝑆𝑒𝑎𝑟𝑐ℎ(𝑆);

// Update the best solution 𝑆𝑏𝑒𝑠𝑡 found so far, and the
counter 𝜉 of consecutive non-improving best found solution

7 if 𝑆∗ is better than 𝑆𝑏𝑒𝑠𝑡 then
8 𝑆𝑏𝑒𝑠𝑡 ← 𝑆∗ ;
9 𝜉 ← 0 ;
10 else
11 𝜉 ← 𝜉 + 1 ;
12 end
13 𝑆 ← 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑆∗,𝑆𝑝,𝜉);
4 end
5 return 𝑆𝑏𝑒𝑠𝑡

The general scheme of MNSB-TS presented in Algorithm 1 can be
escribed as follows: Starting from an initial solution created by a
edicated constructive procedure (line 1 and Section 3.2), MNSB-TS
nitializes the parameters consisting of the best-found solution 𝑆𝑏𝑒𝑠𝑡,

the locally optimal solution 𝑆∗ and the counter 𝜉 for consecutive non-
mproving best found solutions (lines 2–3). After the initial phase,
5

the method records the previous locally optimal solution 𝑆𝑝 and then
employs a 𝑀𝑎𝑖𝑛𝑆𝑒𝑎𝑟𝑐ℎ phase to reach a new local optimum 𝑆∗ (lines
5–6, Section 3.3). Then, the method updates the record of the best
solution 𝑆𝑏𝑒𝑠𝑡 found so far and the counter 𝜉 of consecutive non-
improving local optima (lines 7–12). Following this, our diversification
operator is employed to enter a new search space, determining the
diversification strength by reference to the current local optimum 𝑆∗

and the previous local optimum 𝑆𝑝. The main search phase and the dy-
namic diversification procedure iteratively alternate until the stopping
criterion (i.e., the maximum computing time 𝑇𝑚𝑎𝑥) is met, returning the
best found solution 𝑆𝑏𝑒𝑠𝑡 as the final result (line 15).

3.2. Initial solution phase

Our initial solution procedure is adapted from the construction
procedure for bipartite graphs proposed by Martí et al. (2018b) in
their tabu search algorithm for the dynamic bipartite drawing problem.
Starting from a partial solution only containing the original vertices,
the procedure iteratively inserts each incremental vertex into the initial
partial solution to make it complete, as presented in Algorithm 2.
Specifically, we first generate the initial partial solution 𝑆0 consisting of
the permutations 𝜋𝑘 (𝑘 = 1,… , 𝐾) of original vertices in each layer, and
assign incremental vertices 𝐴𝑉𝑘 of each layer to the incremental vertex
set 𝐴𝑉 (lines 1–3). After that, we iteratively insert each incremental
vertex 𝑣 from 𝐴𝑉 into the position 𝑝 of the partial solution 𝑆0 until 𝑆0
becomes complete (lines 4–10).

At each iteration, the set 𝐶𝐿 records all the pairs of remaining
vertices in 𝐴𝑉 and their corresponding feasible positions (line 5).
The restricted candidate list 𝑅𝐶𝐿 is then created, which contains the
max{1, 𝛼 ∗ |𝐶𝐿|} vertices with the minimum incremental objective
value 𝛿 in 𝐶𝐿 (line 6). We next randomly choose a vertex 𝑣𝑐 and
insert it into the determined position 𝑝𝑐 (line 7). The partial solution 𝑆0
and the remaining vertex set 𝐴𝑉 are updated in lines 8–9. When the
incremental vertex set 𝐴𝑉 becomes empty, the initial solution phase
terminates and the complete solution 𝑆0 is returned as the final solution
generated in the initial solution phase (line 11).

3.3. Main search phase of the multiple neighborhood solution-based tabu
search

Our MNSB-TS algorithm employs a hybrid search procedure by
combining a multiple neighborhood structure with the solution-based
tabu search strategy. The details of the solution-based tabu search
phase are depicted in the pseudo-code given in Algorithm 3.

The hash lists (i.e., hash vectors 𝐻𝑉𝑘 (𝑘 = 1,… , 𝐾)) are initialized
only once in the algorithm (lines 1–8). Then, we initialize two counters
of iterations (i.e., 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 and 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟) to 0 (line 9).
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Algorithm 2: Initial solution phase 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐵)
Input: An incremental graph (G);
Output: Initial solution (𝑆0)

1 Generate the permutations 𝜋𝑘 of original vertices and incremental vertices 𝐴𝑉𝑘 in
each layer in an incremental graph (G), where 𝑘 = {1,… , 𝐾};

2 𝑆0 = (𝜋1 ,… , 𝜋𝐾 ) ;
3 𝐴𝑉 ←

⋃

𝑘={1,…,𝐾}
𝐴𝑉𝑘;

4 while Solution 𝑆0 is not a complete solution i.e., |𝐴𝑉 | > 0 do
5 𝐶𝐿 ←

{(𝑣, 𝑝) ∶ 𝑣 ∈ 𝐴𝑉 , 𝑝 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣};
6 𝑅𝐶𝐿 ← {(𝑣, 𝑝) ∈ 𝐶𝐿 ∶ |{(𝑣′ , 𝑝′ ) ∶ 𝛿(𝑣′ , 𝑝′ ) ≤ 𝛿(𝑣, 𝑝)}| ≤ 𝑚𝑎𝑥{1, 𝛼 ∗

|𝐶𝐿|}}, 𝛿(𝑣, 𝑝) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒 𝑣 𝑙𝑜𝑐𝑎𝑡𝑒𝑠
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝;

7 Randomly choose a pair (𝑣𝑐 ,𝑝𝑐 ) and insert vertex 𝑣𝑐 into the position 𝑝𝑐 (i.e.,
(𝑣𝑐 , 𝑝𝑐 ) ∈ 𝑅𝐶𝐿);

8 𝑆0 ← 𝑆0 ⊕ (𝑣𝑐 , 𝑝𝑐 );
9 𝐴𝑉 ← 𝐴𝑉 ∖ {𝑣𝑐};
0 end
1 return 𝑆0

The consecutive non-improving local optima counter 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟
in the current main search determines when to end the main search
and start the next diversification procedure in Section 3.4, while the
consecutive non-improving local optima counter 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 for
ach neighborhood move determines when to end the search based
n the current neighborhood operator (such as 𝑁1 (or 𝑁2)) and start
nother type of neighborhood move (such as 𝑁2 (or 𝑁3)). The local
ptimum 𝑆∗ is initialized to the current solution, and the neighborhood
ove counter 𝑡, which is initialized to 1 identifies the 𝑁1 operator

as the first neighborhood operator (line 10). After that, the procedure
performs a series of iterations to improve the current solution until the
consecutive non-improving local optima value 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟, reaches
the maximum threshold 𝛩 (lines 11–29). At each iteration, the algo-
rithm replaces the current solution 𝑆 by a best non-tabu neighbor
solution 𝑆′ identified by the chosen neighborhood operator 𝑁𝑡(𝑆) (for 𝑡
∈ {1, 2,… , 𝑡𝑚𝑎𝑥}, where 𝑡𝑚𝑎𝑥 denotes the number of neighborhood move
operators) according to the proposed tabu rule in Section 3.3.3 (lines
12–13). During the search, the values of the counters 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟
and 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 are reset to 0, respectively, when a new local
optimum is encountered, and 𝑆∗ is updated each time a better solution
is found (lines 14–16). Otherwise, both the counters 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟
and 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 increase by 1. The neighborhoods alternate by the
token-ring pattern (i.e., 𝑁1 −𝑁2 −𝑁3 −𝑁4 −𝑁1 …) when the counter
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 reaches the threshold 𝜃𝑡 of each neighborhood op-
erator 𝑁𝑡 (lines 21–27). The objective values of the neighborhood
solutions based on the neighborhood moves are calculated according
to Eqs. (13), (14), (15) and (16). Accordingly, the hash vectors are
updated by the new solution where 𝑄 denotes the layer where the
moving vertex resides (lines 28). Finally, the algorithm terminates if
the threshold 𝛩 is reached, and then returns the best local optimum 𝑆∗

found during this search process (line 30).

3.3.1. Neighborhood structure
To move from one solution to another, the previous work proposed

by Sánchez-Oro et al. (2017) only considerers moving one vertex from
its current position, the so-called barycenter, to its antecedent position
or posterior position (Battista et al., 1998). We consider this neighbor-
hood structure to be too limited to search efficiently and employ four
neighborhood operators based on an incremental graph 𝐼𝐺 = (𝐼𝑉 , 𝐼𝐸,
𝐾, 𝐿), as follows:

• Neighborhood operator 𝑁1: Insert an incremental vertex 𝑣𝑎 up-
wards to occupy the position of another vertex 𝑢 if vertex 𝑢 is
located above 𝑣𝑎, or insert 𝑣𝑎 downwards to occupy the position
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of 𝑢 if vertex 𝑢 is located below 𝑣𝑎. Let 𝑣𝑎 be an incremental vertex
Algorithm 3: The main search phase of MNSB-TS
Input: Initial solution 𝑆, hash vectors 𝐻𝑉𝑘 (𝑘 = 1,… , 𝐾) of length 𝜆, depth 𝛩 of

tabu search
Output: The local optima 𝑆∗ found so far
// Initialize the hash vectors once in the MNSB-TS algorithm.

1 if 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_ℎ𝑎𝑠ℎ_𝑏𝑜𝑜𝑙 is False then
2 for 𝑘 ← 1 to 𝐾 do
3 for 𝑖 ← 0 to 𝜆 − 1 do
4 𝐻𝑉𝑘[𝑖] ← 0;
5 end
6 end
7 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_ℎ𝑎𝑠ℎ_𝑏𝑜𝑜𝑙 ← True;
8 end
9 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 ← 0, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 ← 0 ;
0 𝑆∗ ← 𝑆, t ← 1;
// Main search procedure

1 while The maximum number of consecutive non-improving local optima is not reached
(i.e., 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 ≤ 𝛩) do

// Find a best neighborhood solution 𝑆′ that is not tabu.
The objective value of the neighborhood solutions based on
four neighborhood moves (i.e., 𝑁1 −𝑁4) can be calculated
according to Equations (13), (14), (15) and (16).

12 𝑆′ = {𝜔′
1 ,… , 𝜔

′
𝐾 } ←

argmin
𝑓 (𝑠)

{𝑠 = {𝜔𝑠
1 ,… , 𝜔𝑠

𝐾 } ∈ 𝑁𝑡(𝑆) ∶
∏

1≤𝑘≤𝐾
𝐻𝑉𝑘(ℎ𝑓𝑘(𝑠)) = 0};

13 𝑆 ← 𝑆′ ;
14 if 𝑓 (𝑆′ ) < 𝑓 (𝑆∗) then
15 𝑓 (𝑆∗) = 𝑓 (𝑆′ );
16 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 ← 0, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 ← 0;
17 else
18 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 ← 𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝐼𝑡𝑒𝑟 + 1;
19 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 + 1;
20 end
21 if 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 > 𝜃𝑡 then
22 t ← t + 1;
23 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐴𝑙𝑡𝑒𝑟𝐼𝑡𝑒𝑟 ← 0;
24 end
25 if 𝑡 > 𝑡𝑚𝑎𝑥 then
26 t ← 1;
27 end

// The hash function of the chosen neighborhood solution 𝑆′

can be quickly calculated according to Equations (19) and
(20), assuming that 𝑄 denotes the layer of the moving vertex
(or vertices).

28 𝐻𝑉𝑄(ℎ𝑓𝑄(𝑆′ )) = 1;
9 end
0 return 𝑆∗

and 𝑢 be any other vertex in the same layer 𝐿(𝑣𝑎). Then 𝑁1 is
defined as follows:

𝑁1(𝑆) = {𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣𝑎, 𝑢) ∶ 𝑣𝑎 ∈ 𝐴𝑉 , 𝑢 ∈ 𝐼𝑉 , 𝑣𝑎 ≠ 𝑢, 𝐿(𝑣𝑎) = 𝐿(𝑢)}

(8)

• Neighborhood operator 𝑁2: Swap the positions of two incremen-
tal vertices denoted 𝑣𝑎 and 𝑢𝑎, that are located in the same layer
by the operation:

𝑁2(𝑆) = {𝑆 ⊕ 𝑆𝑤𝑎𝑝(𝑣𝑎, 𝑢𝑎) ∶ 𝑣𝑎 ∈ 𝐴𝑉 , 𝑢𝑎 ∈ 𝐴𝑉 , 𝑣𝑎 ≠ 𝑢𝑎, 𝐿(𝑣𝑎) = 𝐿(𝑢𝑎)}

(9)

• Neighborhood operator 𝑁3: Insert an original vertex 𝑣𝑜 upwards
to occupy the position of another incremental vertex 𝑢𝑎 if vertex
𝑢𝑎 is located above 𝑣𝑜 or insert 𝑣𝑜 downwards to occupy the posi-
tion of 𝑢𝑎 if vertex 𝑢𝑎 is located below 𝑣𝑜 by keeping the relative
positions of the original vertices unchanged (i.e., satisfying the
Constraints (6)). Denoting the two vertices located in the same
layer that are to be moved by 𝑣𝑜 and 𝑢𝑎, then the corresponding
neighborhood operator can be written as follows:

𝑁3(𝑆) = {𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣𝑜, 𝑢𝑎) ∶ 𝑣𝑜 ∈ 𝑉 , 𝑢𝑎 ∈ 𝐴𝑉 ,𝐿(𝑣𝑜) = 𝐿(𝑢𝑎);

𝐼𝑀(𝑣𝑜, 𝑢𝑎) ∩ 𝑉 = ∅}

(10)
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Fig. 3. An example for one drawing for a three-layered graph with 15 vertices.

• Neighborhood operator 𝑁4: Swap the positions of one original
vertex and any chosen incremental vertex by keeping the relative
positions of original vertices unchanged (i.e., satisfying the Con-
straints (6)). Let 𝑣𝑜 be an original vertex and 𝑢𝑎 be any selected
incremental vertex in the same layer 𝐿(𝑣𝑜), then 𝑁4 is defined by:

𝑁4(𝑆) = {𝑆 ⊕ 𝑆𝑤𝑎𝑝(𝑣𝑜, 𝑢𝑎) ∶ 𝑣𝑜 ∈ 𝑉 , 𝑢𝑎 ∈ 𝐴𝑉 ,𝐿(𝑣𝑜) = 𝐿(𝑢𝑎);

𝐼𝑀(𝑣𝑜, 𝑢𝑎) ∩ 𝑉 = ∅}

(11)

It may be noted that when two vertices are adjacent, the swap move
(𝑁2 or 𝑁4) is the same as an insert move (𝑁1 or 𝑁3).

3.3.2. Incremental evaluation mechanism for the neighborhood structure
As stated above, the four proposed neighborhood moves give rise

to several candidate neighborhood solutions to be evaluated. After
making the neighborhood moves, the crossing states among most edges
in the graph remain unchanged and it is not necessary to recalculate
the sum of the crossing numbers from scratch. To efficiently evaluate
the changed objective values produced by the candidate neighborhood
moves, we utilize dedicated matrices to record the relevant information
associated with the number of edge crossings for two vertices.

Given two vertices 𝑢 and 𝑣 in the same layer of the graph, let
𝑁𝐶𝑘(𝑢, 𝑣) denote the number of crossings for the edges incident to
vertex 𝑢 and the edges incident to vertex 𝑣 when 𝑢 precedes 𝑣, where
only the vertices incident to 𝑢 and 𝑣 located in the layer 𝑘 will be
considered (i.e., 𝛱(𝑢) < 𝛱(𝑣), 𝑘 = 𝐿(𝐴(𝑣)) = 𝐿(𝐴(𝑢))) (and 𝑁𝐶𝑘(𝑣, 𝑢)
when 𝑣 precedes 𝑢). The matrices 𝑀𝑋𝑘 in the 𝑘th layer thus can be
given by:

𝑀𝑋𝑘(𝑢, 𝑣) =

⎧

⎪

⎨

⎪

⎩

𝑁𝐶𝑘+1(𝑢, 𝑣), if 𝑘 = 1;
𝑁𝐶𝑘−1(𝑢, 𝑣) +𝑁𝐶𝑘+1(𝑢, 𝑣), if 1 < 𝑘 < 𝐾 ;
𝑁𝐶𝑘−1(𝑢, 𝑣), if 𝑘 = 𝐾;

(12)

Fig. 4 depicts the matrices of the example in Fig. 3 to illustrate how
they save the information of the number of edge crossing for each pair
of vertices. The first matrix 𝑀𝑋1 records the number of crossings for
the edges incident to the vertices in the first layer. We observe that
the number of crossings for the edge incident to vertex 1 (i.e., (1, A))
and the edge incident to vertex 2 (i.e., (2, B)) is 0, since edge (1, A)
does not cross edge (2, B). Therefore, 𝑁𝐶2(1, 2) = 0 and 𝑀𝑋1(1, 2) = 0,
as shown in Fig. 4(a) (row 1, column 2 in matrix 𝑀𝑋1). On the other
hand, edge (1, A) would cross edge (2, B) if we insert vertex 2 upwards
to lie above vertex 1, (i.e., after vertex 2 precedes vertex 1). That is
why, in Fig. 4(a), the value of row 2 and column 1 in matrix 𝑀𝑋1 is
1, which means the number of crossings for the edge incident to 1 and
the edge incident to 2 is 1, when vertex 2 precedes vertex 1 in the first
layer.
7

Similarly, the second matrix 𝑀𝑋2 records the number of crossings
for the edges incident to the vertices in the second layer. 𝑁𝐶1(𝐴,𝐵) = 0
since the edge incident to vertex A (i.e., (1, A)) does not cross the edge
incident to vertex B (i.e., (2, B)) in the first layer, while the number
of crossings for two edges incident to vertex A (i.e., (A, a) and (A, b))
and the edge incident to vertex B (i.e., (B, a)) in the third layer is 1.
Therefore, 𝑁𝐶3(𝐴,𝐵) = 1 and 𝑀𝑋2(1, 2) = 𝑁𝐶1(1, 2) + 𝑁𝐶3(1, 2) = 1,
as shown in Fig. 4(b) (row 1, column 2 in matrix 𝑀𝑋2). On the other
hand, edge (B, a) would not cross edges (A, a) and (A, b) if we insert
vertex B above (before) vertex A. Edge (2, B) would cross edge (1, A)
when vertex B precedes vertex A. Therefore, the number of crossings
for the edges incident to 𝐴 and the edges incident to 𝐵 is 1. That is
why, in Fig. 4(b), the value of row 2 and column 1 in matrix 𝑀𝑋2
is 1. The third matrix is constructed in a similar way. Note that the
precedence relationships among the original vertices must be kept and
so 𝑀𝑋(𝑢, 𝑣),∀𝑢, 𝑣 ∈ 𝑉 is denoted by the symbol ‘ -’, which stands for
‘‘don’t care".

Making use of these matrices, we propose a fast neighborhood
evaluation mechanism to efficiently obtain the objective value of each
move. Next, we take an example (i.e., insert vertex 𝑣 immediately
before (above) 𝑢𝑗−1 or 𝑢𝑗) as shown in Fig. 5 to illustrate the evaluation
procedure. Comparing these two moves, the positions of the vertices
marked in the two black boxes are the same, hence we only need to con-
sider the difference between 𝑢𝑗−1 and 𝑣 to give the changed objective
value with the two neighborhood moves. The current solution can be
denoted by 𝑆 and the objective value of its neighboring solution can be
denoted by 𝑓 (𝑆⊕𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗−1)) when vertex 𝑣 is inserted immediately
before 𝑢𝑗−1. The latter becomes 𝑓 (𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗 )) after vertex 𝑣 is
inserted immediately before 𝑢𝑗 , and we calculate the objective value
𝑓 (𝑆⊕𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗 )) of the resulting solution based on the neighborhood
move 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗 ) by the following formula:

𝑓 (𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗 )) = 𝑓 (𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗−1))

− 𝑀𝑋𝐿(𝑣)(𝑢𝑗 , 𝑣) +𝑀𝑋𝐿(𝑣)(𝑣, 𝑢𝑗 ) (13)

where 𝑀𝑋𝐿(𝑣) denotes the corresponding evaluation matrix involving
vertex 𝑣.

To efficiently evaluate all the neighboring solutions, we first calcu-
late the objective value (i.e., 𝑓 (𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢1))) of the neighboring
solution when vertex 𝑣 is moved to the previous position of vertex 𝑢1
from its current position, according to the following Equation:

𝑓 (𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢1)) = 𝑓 (𝑆) −𝑀𝑋𝐿(𝑣)(𝑢1, 𝑣) +𝑀𝑋𝐿(𝑣)(𝑣, 𝑢1) (14)

Afterwards, by making use of Eq. (13) iteratively, we can quickly
calculate other objective values when vertex 𝑣 is inserted immediately
before other vertices. Likewise, the evaluation of the objective value
produced by downward moves of vertex 𝑣 (placing it immediately after
other vertices) can be iteratively calculated in a similar manner.

As for the swap move, the move of swapping any two vertices
clearly is equivalent to two insert operations. Without loss of generality,
we assume that node 𝑢 is located above vertex 𝑣, and vertex 𝑧1 is
the adjacent vertex above vertex 𝑣, as shown in Fig. 6. The move
𝑠𝑤𝑎𝑝(𝑣, 𝑢) can be seen to result by first inserting vertex 𝑣 upwards
to lie above vertex 𝑢 (i.e., 𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢)), and then inserting vertex 𝑢
downwards to lie below vertex 𝑧1 (i.e., 𝐼𝑛𝑠𝑒𝑟𝑡(𝑢, 𝑧1)). The objective
value of the neighboring solution generated by the move 𝑠𝑤𝑎𝑝(𝑣, 𝑢) can
be calculated by:

𝑓 (𝑆 ⊕ 𝑆𝑤𝑎𝑝(𝑣, 𝑢)) = 𝑓 (𝑆 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢)⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑢, 𝑧1))

= 𝑓 (𝑆) + 𝛥𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢) + 𝛥𝑖𝑛𝑠𝑒𝑟𝑡(𝑢, 𝑧1)
(15)

where nodes 𝑣, 𝑢 and 𝑧1 are located in the same layer (i.e., 𝐿(𝑣) =
𝐿(𝑢) = 𝐿(𝑧1)), vertex 𝑧1 precedes 𝑣 (i.e., 𝛱(𝑧1) + 1 = 𝛱(𝑣)), and
𝛥𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢) denotes the incremental objective function value which can
be calculated by:
𝛥𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢) = 𝑓 (𝑆 ⊕ 𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢)) − 𝑓 (𝑆) (16)
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Fig. 4. The number of edge crossing for pairs of vertices in matrices.
Fig. 5. Insert vertex 𝑣 immediately before (above) vertex 𝑢𝑗−1 or 𝑢𝑗 .

Therefore, we can quickly evaluate the objective function value of the
neighbor solutions obtained by the insert and swap moves. Any vertex
𝑣 inserted upwards (or downwards) relative to vertex 𝑢 (depending on
the position relationship between vertices 𝑣 and 𝑢) generates at most
𝑛2𝑖 neighboring solutions, where 𝑖 denotes the layer label of vertices 𝑢
and 𝑣, because only incremental vertices can be placed in all possible
positions. Each candidate solution can be evaluated by the incremental
evaluation mechanism, utilizing the result of overlapping sub-problems.
The time complexity of the incremental evaluation mechanism for the
neighborhood structure thus is O(∑1≤𝑘≤𝐾 𝑛2𝑘).

After evaluating all the neighboring solutions based on the matrices,
only one best neighborhood move is chosen to be executed. Then,
the proposed matrix mechanism only needs to update at most three
matrices corresponding to the layer of the chosen moved vertex and its
adjacent layers, respectively. Therefore, the cost to update the matrices
is not large. Meanwhile, the computational advantage of the proposed
mechanism increases as the number of layers in the graph increases.

3.3.3. Solution-based tabu strategy
To utilize the solution-based tabu strategy to determine the tabu

status of neighborhood solutions, we employ several hash vectors 𝐻𝑉𝑘
of the same length of 𝜆 as the tabu list, where each position represents a
binary variable, and each hash vector is associated with a hash function
ℎ𝑓 . The hash functions map a candidate solution 𝑆 of the search space
8

𝑘

𝛺 to a 𝐾-dimensional index of hash vectors as follows:

ℎ𝑓 ∶ 𝑆 ∈ 𝛺 → {0, 1, 2,… , 𝜆 − 1}𝐾 (17)

Based on the hash vectors and the corresponding hash functions, we
determine the tabu status of candidate solutions by the following rule.
Given a candidate solution 𝑆 = (𝜔1,… , 𝜔𝐾 ), the hash vector 𝐻𝑉𝑘 and
the associated hash functions ℎ𝑓𝑘, 𝑆 is identified as a tabu solution
if ∏

1≤𝑘≤𝐾 𝐻𝑉𝑘(ℎ𝑓𝑘(𝑆)) = 1. Otherwise, 𝑆 is identified as a non-tabu
solution.

Hash functions previously proposed for binary decision variables in
the literature (Lai et al., 2018a, 2018b, 2018c; Wang et al., 2017) are
quite suitable for the problems they address. Unlike these binary opti-
mization problems, however, permutation problems constitute a special
class that preferably should be treated somewhat differently in order to
distinguish different solutions with a high probability while permitting
the hash values of the neighbor solutions to be easily evaluated. In this
study, we propose a simple but effective hash function for IGDP, which
is also applicable to other multi-layer permutation problems. Formally,
given a candidate solution 𝑆 = {𝜔1,… , 𝜔𝐾}, our hash function ℎ𝑓𝑘 for
each layer of solution 𝑆 can be represented by:

ℎ𝑓𝑘(𝑆) = (
𝑛𝑘
∑

𝑖=2
(𝜔𝑘(𝑖) − 𝜔𝑘(𝑖 − 1))𝛤 ) mod 𝜆 (18)

where 𝜔𝑘(𝑖) denotes the vertex located in the 𝑖th position in layer 𝑘,
parameter 𝛤 is used to define the hash function and 𝜆 is the length of
hash vector that is empirically set to 107 in this work.

For a specific solution 𝑆 and its hash values ℎ𝑓𝑘(𝑆) for all layers, it
is intuitively clear that we only need to evaluate the hash value of the
layer where the neighbor solutions are located, while the hash values
for the other layers remain unchanged. For the example depicted in
Fig. 5 (i.e., inserting vertex 𝑣 upwards above vertex 𝑢𝑗−1), a hash value
of solution 𝑆 for the layer where the 𝑖𝑛𝑠𝑒𝑟𝑡 move (𝑁1 or 𝑁3 move)
locates vertex 𝑣 can be quickly calculated according to the following
Equation:

ℎ𝑓𝐿(𝑣)(𝑆 ⊕ 𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑢𝑗−1))

= (ℎ𝑓𝐿(𝑣)(𝑆) − (𝑣 − 𝑢1)𝛤 − (𝑢0 − 𝑣)𝛤 + (𝑢0 − 𝑢1)𝛤

+ (𝑣 − 𝑢𝑗 )𝛤 + (𝑢𝑗−1 − 𝑣)𝛤 − (𝑢𝑗−1 − 𝑢𝑗 )𝛤 ) mod 𝜆

(19)

For the example illustrated in Fig. 6 (i.e., swapping vertex 𝑣 with vertex
𝑢), a hash value of solution 𝑆 for the layer where the 𝑠𝑤𝑎𝑝 move (𝑁2
or 𝑁4 move) locating can be quickly calculated by:

ℎ𝑓𝐿(𝑣)(𝑆 ⊕ 𝑠𝑤𝑎𝑝(𝑣, 𝑢)) =(ℎ𝑓𝐿(𝑣)(𝑆) − (𝑧0 − 𝑣)𝛤 − (𝑣 − 𝑧1)𝛤 − (𝑧2 − 𝑢)𝛤

− (𝑢 − 𝑧3)𝛤 + (𝑧0 − 𝑢)𝛤 + (𝑢 − 𝑧1)𝛤

+ (𝑧2 − 𝑣)𝛤 + (𝑣 − 𝑧3)𝛤 )

mod 𝜆

(20)

Thus, the time complexity of determining the tabu status of a neighbor
solution is O(𝐾).
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Fig. 6. Swap vertex 𝑣 with vertex 𝑢.
1

1

1

3.4. Dynamic diversification mechanism

The diversification procedure is called whenever no improvement in
the current solution has been made after a preset number of iterations.
The purpose of the diversification mechanism thus is to allow MNSB-
TS to escape from the current local optimum in order to discover other
local optima of better solution quality. For this, we utilize a dynamic
diversification mechanism which varies the diversification intensity,
depending on the search status.

We present the diversification phase in Algorithm 4, which first
determines the diversification strength 𝑙 according to the current search
state (lines 1–8), and then modify the current local optimum 𝑆 by
reconstructing it using the selected diversification strength 𝑙 (lines 9–
16). More precisely, the dynamic diversification phase re-initializes the
diversification strength with a weak strength 𝑙𝑚𝑖𝑛 if the search has
escaped from the previous local optimum 𝑆𝑝 (lines 1–2). However, if
the diversification phase did not succeed in escaping from the previous
optimum, the diversification strength 𝑙 is incremented by 1 and the
diversification is applied again to the current attractor (lines 3–4). A
strong diversification with a large strength value 𝑙𝑚𝑎𝑥 is carried out
only after visiting a certain number 𝜉𝑚𝑎𝑥 of local optima without any
improvement in the quality of the best solution found (lines 5–8). After
the determination of the diversification strength, we first generate a
partial solution 𝑆𝑢 by randomly removing a number 𝑙 of incremental
vertices 𝑅𝑉 from solution 𝑆, and then iteratively insert the selected
vertex into the solution 𝑆𝑢 to make it complete by using a rule similar
to the one presented in Section 3.2 (lines 10–16). The value of 𝛽 can
be set at 𝑙/𝑙𝑚𝑎𝑥 to balance the tradeoff between greedy and random
strategies according to the diversification strength. When 𝑙 is increased,
the procedure tends to be more random, and when decreased, it tends
to be greedier. We randomly choose a vertex 𝑣𝑐 and insert it into the
chosen position 𝑝𝑐 (lines 13 and 14). The partial solution 𝑆𝑢 and the
remaining vertex set 𝑅𝑉 are updated in line 15. When the vertex set
𝑅𝑉 becomes empty, the diversification procedure terminates and the
complete solution 𝑆𝑢 is returned as the final solution generated in the
diversification phase (line 17).
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Algorithm 4: Dynamic diversification operator
𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑆𝑝, 𝜉)

Input: The current solution 𝑆, the previous local optimum 𝑆𝑝, the counter 𝜉 for
consecutive non-improving best found solutions

Output: A new solution 𝑆𝑢 after diversification
// Determine the diversification strength 𝑙 adaptively

1 if 𝑆 is better than 𝑆𝑝 then
// Search escaped from the previous local optimum,
re-initialize diversification strength

2 𝑙 ← 𝑙𝑚𝑖𝑛 ;
3 else if 𝑆 is not better than 𝑆𝑝 and 𝜉 < 𝜉𝑚𝑎𝑥 then

// Search returns to the previous local optimum, increment
diversification strength

4 𝑙 ← 𝑀𝑖𝑛(𝑙 + 1, 𝑙𝑚𝑎𝑥) ;
5 else if 𝜉 ≥ 𝜉𝑚𝑎𝑥 then

// Search seems to be stagnating, strong diversification
required

6 𝑙 ← 𝑙𝑚𝑎𝑥;
7 𝜉 ← 0 ;
8 end
// Modify the current local optimum 𝑆 using the selected
diversification strength 𝑙

9 Generate a partial solution 𝑆𝑢 by randomly removing a number 𝑙 of incremental
vertices 𝑅𝑉 from solution 𝑆;

0 while the solution 𝑆𝑢 is not a complete solution, i.e., |𝑅𝑉 | > 0 do
11 𝐶𝐿 ←

{(𝑣, 𝑝) ∶ 𝑣 ∈ 𝑅𝑉 , 𝑝 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣};
12 𝑅𝐶𝐿 ← {(𝑣, 𝑝) ∈ 𝐶𝐿 ∶ |{(𝑣′ , 𝑝′ ) ∶ 𝛿(𝑣′ , 𝑝′ ) ≤ 𝛿(𝑣, 𝑝)}| ≤ 𝑚𝑎𝑥{1, 𝛽 ∗ |𝐶𝐿|}};
13 Randomly choose a pair (𝑣𝑐 , 𝑝𝑐 ) and insert the vertex 𝑣𝑐 into the position 𝑝𝑐

(i.e., (𝑣𝑐 , 𝑝𝑐 ) ∈ 𝑅𝐶𝐿);
14 𝑆𝑢 ← 𝑆𝑢 ⊕ (𝑣𝑐 , 𝑝𝑐 );
15 𝑅𝑉 ← 𝑅𝑉 ∖ {𝑣𝑐};
6 end
7 return 𝑆𝑢

In general, the proposed dynamic diversification phase is controlled
by the parameter 𝑙 of the jump magnitude by determining the num-
ber of removed vertices and the balance ratio between random and
greedy strategies in the modification procedure, i.e., the diversification
becomes stronger as the magnitude 𝑙 becomes larger.
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Table 2
Settings of the parameters used in MNSB-TS.

Parameter Description Candidate values Final value

𝛼 The size of the restricted candidate list in
initial solution phase

1/2, 1/3, 1/5 1/3

𝑙𝑚𝑖𝑛 Minimum diversification strength (|𝐴𝑉 |∕3, |𝐴𝑉 |/4, |𝐴𝑉 |/5) |𝐴𝑉 |/3
𝑙𝑚𝑎𝑥 Maximum diversification strength (|𝐴𝑉 |, |𝐴𝑉 |/1.3, |𝐴𝑉 |/2) |𝐴𝑉 |/1.3
𝛩 The maximum threshold of iterations without

improving the local optimum in the main
search phase

(30×n, 45×n,60×n) 45*n

𝜃1 − 𝜃4 The maximum threshold of iterations without
improving the local optima for four
neighborhoods (i.e., 𝑁1 −𝑁4), respectively

(0,1)×𝛩 [𝜃1 = 0.3846 × 𝛩,
𝜃2 = 0.51282×𝛩,
𝜃3 = 0.0513×𝛩,
𝜃4 = 0.0513×𝛩]

𝜉𝑚𝑎𝑥 The maximum threshold of iterations without
improving the best solution found

(2000,3000,4000) 3000

𝛤 The parameter in the hash function (1.2,2,4) 4
Table 3
Results for the performance of MNSB-TS compared with the reference heuristics (GRASP, VNSS and SS) and the general solver Gurobi for the first instance set with 2 layers where
the number of vertices for each instance is between 47 and 54.

Instance name Gurobi GRASP SS VNSS MNSB-TS(1 run) MNSB-TS(10 runs)

Cross Time Cross Time Cross Time Cross Time Cross Time 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 𝑇𝑎𝑣𝑔 𝐴𝑅𝐷 (%) SR(10)

incgraph_2_0.06_5_30_1.20_1 7 5.13 7 0.02 7 0.02 7 0.02 7 0 7 7 0 0 10
incgraph_2_0.06_5_30_1.20_2 11 7.36 69 0.52 69 0.03 69 0.05 11 0 11 11 0 0 10
incgraph_2_0.06_5_30_1.20_3 31 8.61 116 0.21 36 0.02 116 0.05 31 0 31 31 0 0 10
incgraph_2_0.06_5_30_1.20_4 16 7.05 20 0.1 16 0.02 19 0.02 16 0 16 16 0 0 10
incgraph_2_0.06_5_30_1.20_5 1 0.93 3 0 3 0 3 0 1 0 1 1 0 0 10
incgraph_2_0.06_5_30_1.20_6 9 8.11 36 0.68 36 0.05 16 0.05 9 0 9 9 0 0 10
incgraph_2_0.06_5_30_1.20_7 14 8.33 28 0.4 28 0.05 28 0.07 14 0 14 14 0 0 10
incgraph_2_0.06_5_30_1.20_8 0 2 2 0.01 2 0.02 2 0 0 0 0 0 0 0 10
incgraph_2_0.06_5_30_1.20_9 0 4.52 51 0.27 51 0.04 51 0.05 0 0 0 0 0 0 10
incgraph_2_0.06_5_30_1.20_10 3 3.23 11 0.01 3 0.01 3 0.02 3 0 3 3 0 0 10
incgraph_2_0.06_5_30_1.60_1 7 7.52 7 0.88 7 0.05 7 0.06 7 0 7 7 0 0 10
incgraph_2_0.06_5_30_1.60_2 11 10.09 27 0.62 27 0.18 16 0.3 11 0 11 11 0 0 10
incgraph_2_0.06_5_30_1.60_3 31 12.18 33 0.48 33 0.1 31 0.12 31 0.01 31 31 0.01 0 10
incgraph_2_0.06_5_30_1.60_4 19 9.98 21 0.83 21 0.07 21 0.07 19 0.02 19 19 0.01 0 10
incgraph_2_0.06_5_30_1.60_5 2 1.1 6 0.44 6 0.02 3 0.03 2 0 2 2 0 0 10
incgraph_2_0.06_5_30_1.60_6 9 13.3 10 0.13 10 0.17 10 0.32 9 0.01 9 9 0.01 0 10
incgraph_2_0.06_5_30_1.60_7 15 14.33 115 0.52 20 0.23 115 0.33 15 0.00 15 15 0.01 0 10
incgraph_2_0.06_5_30_1.60_8 1 2.75 1 0.65 1 0.02 1 0.02 1 0 1 1 0 0 10
incgraph_2_0.06_5_30_1.60_9 0 6.91 90 0.23 90 0.15 90 0.15 0 0 0 0 0.00 0 10
incgraph_2_0.06_5_30_1.60_10 4 4.91 5 0.18 5 0.04 5 0.07 4 0.02 4 4 0.01 0 10
incgraph_2_0.17_5_30_1.20_1 371 3.71 371 0.54 371 0.02 371 0.02 371 0 371 371 0 0 10
incgraph_2_0.17_5_30_1.20_2 396 4.77 508 0.19 508 0.06 508 0.08 396 0 396 396 0 0 10
incgraph_2_0.17_5_30_1.20_3 404 5.72 603 0.83 409 0.03 586 0.04 404 0 404 404 0 0 10
incgraph_2_0.17_5_30_1.20_4 993 6.07 1022 0.72 1003 0.03 1022 0.05 993 0 993 993 0 0 10
incgraph_2_0.17_5_30_1.20_5 12 0.49 17 0.79 17 0 17 0 12 0 12 12 0 0 10
incgraph_2_0.17_5_30_1.20_6 1316 8.78 1398 0.23 1398 0.02 1398 0.06 1316 0 1316 1316 0 0 10
incgraph_2_0.17_5_30_1.20_7 1539 10.05 1701 0.84 1562 0.1 1653 0.09 1539 0 1539 1539 0 0 10
incgraph_2_0.17_5_30_1.20_8 74 1.47 79 0.93 79 0.02 79 0.02 74 0 74 74 0 0 10
incgraph_2_0.17_5_30_1.20_9 0 2.98 51 0.78 51 0.03 51 0.04 0 0 0 0 0 0 10
incgraph_2_0.17_5_30_1.20_10 102 2.63 132 0.27 132 0.02 132 0.02 102 0 102 102 0 0 10
incgraph_2_0.17_5_30_1.60_1 727 9.23 750 0.79 744 0.12 727 0.23 727 0.05 727 727 0.02 0 10
incgraph_2_0.17_5_30_1.60_2 737 11.36 792 0.15 783 0.32 737 0.54 737 0.02 737 737 0.03 0 10
incgraph_2_0.17_5_30_1.60_3 740 13.62 802 0.47 793 0.2 740 0.29 740 0.07 740 740 0.05 0 10
incgraph_2_0.17_5_30_1.60_4 1852 13.22 1880 0.81 1875 0.2 1870 0.54 1852 0.03 1852 1852 0.21 0 10
incgraph_2_0.17_5_30_1.60_5 11 1.17 12 0.83 12 0.02 12 0.01 11 0 11 11 0 0 10
incgraph_2_0.17_5_30_1.60_6 2429 18.16 2489 0.74 2478 0.4 2435 0.49 2429 0.05 2429 2429 0.12 0 10
incgraph_2_0.17_5_30_1.60_7 2742 20.21 2916 0.88 2844 0.62 2742 1.1 2742 0.1 2742 2742 0.20 0 10
incgraph_2_0.17_5_30_1.60_8 187 3.29 187 0.39 187 0.03 187 0.04 187 0 187 187 0.01 0 10
incgraph_2_0.17_5_30_1.60_9 0 6.68 90 0.41 90 0.13 90 0.16 0 0 0 0 0 0 10
incgraph_2_0.17_5_30_1.60_10 198 5.58 200 0.06 200 0.09 200 0.15 198 0.88 198 198 0.48 0 10
incgraph_2_0.30_5_30_1.20_1 1965 6.48 1980 0.3 1970 0.05 2062 0.06 1965 0 1965 1965 0 0 10
incgraph_2_0.30_5_30_1.20_2 1863 7.47 2141 0.72 1873 0.07 2038 0.11 1863 0 1863 1863 0 0 10
incgraph_2_0.30_5_30_1.20_3 2172 8.55 2362 0.75 2362 0.03 2362 0.06 2172 0 2172 2172 0 0 10
incgraph_2_0.30_5_30_1.20_4 4180 11.22 4205 0.91 4188 0.27 4180 0.36 4180 0 4180 4180 0 0 10
incgraph_2_0.30_5_30_1.20_5 59 0.66 70 0.02 70 0.01 70 0 59 0 59 59 0 0 10
incgraph_2_0.30_5_30_1.20_6 6249 15.07 6341 0.69 6285 0.22 6266 0.13 6249 0.01 6249 6249 0 0 10
incgraph_2_0.30_5_30_1.20_7 6417 17.45 6750 0.29 6420 0.09 6649 0.14 6417 0 6417 6417 0 0 10
incgraph_2_0.30_5_30_1.20_8 571 2.34 571 0.65 571 0.03 571 0.02 571 0 571 571 0 0 10
incgraph_2_0.30_5_30_1.20_9 105 3.21 185 0.62 185 0.05 185 0.05 105 0 105 105 0 0 10
incgraph_2_0.30_5_30_1.20_10 826 3.77 910 0.87 826 0.03 906 0.04 826 0 826 826 0 0 10
incgraph_2_0.30_5_30_1.60_1 3635 13.09 3680 0.2 3671 0.27 3636 0.3 3635 0.00 3635 3635 0.01 0 10
incgraph_2_0.30_5_30_1.60_2 3349 16.25 3521 0.52 3446 0.66 3349 1.09 3349 0.08 3349 3349 0.05 0 10
incgraph_2_0.30_5_30_1.60_3 3740 18.33 3822 0.53 3795 0.32 3740 0.52 3740 0.01 3740 3740 0.02 0 10
incgraph_2_0.30_5_30_1.60_4 7341 26.03 7482 0.04 7440 0.52 7348 1.1 7341 0.5 7341 7341 0.27 0 10
incgraph_2_0.30_5_30_1.60_5 132 1.39 135 0.24 134 0.02 133 0.03 132 0 132 132 0 0 10
incgraph_2_0.30_5_30_1.60_6 10114 32.93 10398 0.69 10214 0.75 10126 0.85 10114 0.04 10114 10114 0.05 0 10
incgraph_2_0.30_5_30_1.60_7 12281 41.39 12884 0.79 12639 1.6 12305 1.62 12281 0.07 12281 12281 0.37 0 10
incgraph_2_0.30_5_30_1.60_8 1169 5.14 1250 0.7 1221 0.14 1186 0.22 1169 0.01 1169 1169 0.02 0 10
incgraph_2_0.30_5_30_1.60_9 208 7.19 230 0.6 216 0.15 209 0.29 208 0.00 208 208 0.01 0 10
incgraph_2_0.30_5_30_1.60_10 1604 8.75 1719 0.6 1685 0.17 1660 0.29 1604 0.08 1604 1604 0.11 0 10

#𝐴𝑣𝑔 1383.35 8.90 1454.9 0.49 1420.3 0.15 1419.18 0.22 1383.35 0.04 1383.35 1383.35 0.04 0.00 10
#𝐵𝑒𝑠𝑡 60 6 9 15 60 60
4. Computational studies

In this section, we report extensive computational experiments con-
ducted to assess the performance of MNSB-TS by comparing our algo-
rithm with the best performing heuristics and the exact optimization
solver Gurobi on solving public benchmark instances of IGDP.
10
4.1. Benchmark instances and experimental protocols

We employ the benchmark instances in our experimentation used in
the studies Martí and Estruch (2001) and Sánchez-Oro et al. (2017). The
hierarchical graphs were generated following the guidelines proposed
by Laguna et al. (1997). For each combination of 2, 6, 13, and 20 layers

and 0.065, 0.175 and 0.3 graph densities, 20 instances were generated.
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Table 4
Results for the performance of MNSB-TS compared with the reference heuristics (GRASP, VNSS and SS) and the general solver Gurobi for the second instance set with 6 layers
where the number of vertices for each instance is between 138 and 181.

Instance name Gurobi GRASP SS VNSS MNSB-TS(1 run) MNSB-TS(10 runs)

Cross Time Cross Time Cross Time Cross Time Cross Time 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 𝑇𝑎𝑣𝑔 𝐴𝑅𝐷 (%) SR(10)

incgraph_6_0.06_5_30_1.20_1 172 9.23 196 4.78 196 0.25 174 0.42 172 0.03 172 172 0.02 0.00 10
incgraph_6_0.06_5_30_1.20_2 264 11.59 278 3.62 277 0.42 269 0.83 264 0 264 264 0.01 0.00 10
incgraph_6_0.06_5_30_1.20_3 446 15.76 482 3.6 482 0.55 454 0.79 446 0.04 446 446 0.03 0.00 10
incgraph_6_0.06_5_30_1.20_4 172 10.08 204 0.87 204 0.19 189 0.25 172 0.03 172 172 0.03 0.00 10
incgraph_6_0.06_5_30_1.20_5 65 3.79 67 2.44 67 0.07 65 0.12 65 0 65 65 0 0.00 10
incgraph_6_0.06_5_30_1.20_6 326 10.32 350 2.78 348 0.26 330 0.37 326 0 326 326 0 0.00 10
incgraph_6_0.06_5_30_1.20_7 257 13.1 303 3.62 296 0.35 279 0.47 257 0.02 257 257 0.02 0.00 10
incgraph_6_0.06_5_30_1.20_8 51 3.81 54 4.72 54 0.1 54 0.12 51 0.14 51 51 0.14 0.00 10
incgraph_6_0.06_5_30_1.20_9 153 8.68 182 2.2 179 0.25 164 0.42 153 0.01 153 153 0 0.00 10
incgraph_6_0.06_5_30_1.20_10 296 8.57 321 4.42 310 0.27 306 0.32 296 0.01 296 296 0.01 0.00 10
incgraph_6_0.06_5_30_1.60_1 312 21.53 384 1.08 367 1.03 342 1.69 314 1.5 312 318.2 1.06 1.99 3
incgraph_6_0.06_5_30_1.60_2 367 26.61 407 0.46 407 2.06 394 2.55 368 2.8 367 368.5 1.24 0.41 2
incgraph_6_0.06_5_30_1.60_3 913 36.7 1067 1.33 1067 2.34 990 4.1 913 4.07 913 921.1 3.06 0.89 2
incgraph_6_0.06_5_30_1.60_4 424 23.4 534 4.9 517 1.64 498 1.92 424 2.13 424 424 1.17 0.00 10
incgraph_6_0.06_5_30_1.60_5 97 8.92 140 3.49 138 0.32 129 0.56 97 0.69 97 97.5 0.63 0.52 8
incgraph_6_0.06_5_30_1.60_6 527 24.15 698 2.57 684 2.25 575 5.31 527 1.91 527 527.6 1.67 0.11 5
incgraph_6_0.06_5_30_1.60_7 519 31.82 666 3.25 654 1.84 595 4.06 524 4.28 519 523.6 1.47 0.89 1
incgraph_6_0.06_5_30_1.60_8 151 8.74 190 0.11 187 0.36 170 1.1 151 0.14 151 151.6 0.42 0.40 8
incgraph_6_0.06_5_30_1.60_9 324 20.29 409 1.8 399 1.65 362 2.75 324 1.74 324 324.1 0.5 0.03 9
incgraph_6_0.06_5_30_1.60_10 601 20.22 768 1.78 742 1.48 639 3.76 601 0.98 601 601.9 1.04 0.15 3
incgraph_6_0.17_5_30_1.20_1 2689 14.13 2768 4.81 2747 0.27 2723 0.47 2689 0.01 2689 2689 0.01 0.00 10
incgraph_6_0.17_5_30_1.20_2 3263 17.14 3337 0.33 3322 0.55 3263 1.18 3263 0.01 3263 3263 0.01 0.00 10
incgraph_6_0.17_5_30_1.20_3 7984 28.77 8096 1.08 8061 0.77 8010 0.92 7984 0.03 7984 7984 0.03 0.00 10
incgraph_6_0.17_5_30_1.20_4 3784 16.49 3869 0.99 3851 0.49 3808 1.05 3784 0.02 3784 3784 0.01 0.00 10
incgraph_6_0.17_5_30_1.20_5 427 4.53 437 4.71 437 0.11 428 0.17 427 0 427 427 0.01 0.00 10
incgraph_6_0.17_5_30_1.20_6 3786 16.08 3921 2.33 3884 0.68 3843 0.72 3786 0.06 3786 3786 0.03 0.00 10
incgraph_6_0.17_5_30_1.20_7 4098 19.7 4201 0.24 4140 0.47 4098 0.85 4098 0.01 4098 4098 0.01 0.00 10
incgraph_6_0.17_5_30_1.20_8 894 5.53 897 2.44 895 0.17 895 0.15 894 0.01 894 894 0.02 0.00 10
incgraph_6_0.17_5_30_1.20_9 501 9.32 549 3.16 532 0.19 513 0.55 501 0 501 501 0 0.00 10
incgraph_6_0.17_5_30_1.20_10 3530 14.42 3599 0.05 3586 0.43 3557 0.5 3530 0.02 3530 3530 0.02 0.00 10
incgraph_6_0.17_5_30_1.60_1 4936 30.72 5233 3.09 5075 1.87 4961 2.56 4936 0.38 4936 4936 0.59 0.00 10
incgraph_6_0.17_5_30_1.60_2 5579 37.09 6297 3.33 6071 2.22 5757 4.63 5579 0.4 5579 5579 0.62 0.00 10
incgraph_6_0.17_5_30_1.60_3 14404 76.76 15782 3.87 15175 4.36 14592 16.91 14404 0.97 14404 14404.2 1.02 0.00 8
incgraph_6_0.17_5_30_1.60_4 6392 35.29 6810 1.78 6710 2.63 6446 4.89 6392 0.83 6392 6392.6 0.61 0.01 8
incgraph_6_0.17_5_30_1.60_5 785 10.64 836 3.26 825 0.6 817 0.7 785 0.18 785 785 0.46 0.00 10
incgraph_6_0.17_5_30_1.60_6 6484 35.53 6910 0.64 6826 2.35 6575 6.1 6484 1.16 6484 6484 0.81 0.00 10
incgraph_6_0.17_5_30_1.60_7 7281 50.08 7814 3.78 7639 2.85 7405 6.8 7282 0.17 7281 7282.1 1.12 0.02 2
incgraph_6_0.17_5_30_1.60_8 1519 12.22 1602 3.21 1581 0.59 1532 0.87 1519 1.27 1519 1519.2 0.5 0.01 8
incgraph_6_0.17_5_30_1.60_9 921 21.36 1341 3.9 1235 1.33 1068 3.23 921 0.45 921 921 0.22 0.00 10
incgraph_6_0.17_5_30_1.60_10 6479 33.03 7032 4.72 6933 1.66 6660 4.77 6479 0.86 6479 6479.4 0.63 0.01 8
incgraph_6_0.30_5_30_1.20_1 10963 26 11108 3.51 10999 0.8 10976 0.7 10963 0.05 10963 10963 0.02 0.00 10
incgraph_6_0.30_5_30_1.20_2 12601 31.21 12895 2.77 12700 1.16 12609 1.33 12601 0.03 12601 12601 0.02 0.00 10
incgraph_6_0.30_5_30_1.20_3 28283 58.38 28671 1.05 28466 1.92 28289 2 28283 0.02 28283 28283 0.02 0.00 10
incgraph_6_0.30_5_30_1.20_4 14286 32 14518 3.12 14344 0.71 14968 0.99 14286 0.11 14286 14286 0.07 0.00 10
incgraph_6_0.30_5_30_1.20_5 2179 7.37 2240 4.11 2240 0.16 2211 0.41 2179 0.01 2179 2179 0 0.00 10
incgraph_6_0.30_5_30_1.20_6 13652 30.96 14012 0.34 13754 0.92 13659 1.2 13652 0.04 13652 13652 0.02 0.00 10
incgraph_6_0.30_5_30_1.20_7 14918 36.01 15510 1.33 15259 1.19 14929 2.18 14918 0.05 14918 14918 0.07 0.00 10
incgraph_6_0.30_5_30_1.20_8 4073 10.35 4099 0.82 4098 0.28 4081 0.25 4073 0.03 4073 4073 0.02 0.00 10
incgraph_6_0.30_5_30_1.20_9 2487 12.54 2594 3.14 2554 0.49 2946 0.9 2487 0.01 2487 2487 0.01 0.00 10
incgraph_6_0.30_5_30_1.20_10 12893 29.74 13241 1.6 12934 0.61 13219 0.65 12893 0.09 12893 12893 0.03 0.00 10
incgraph_6_0.30_5_30_1.60_1 20435 601.69 20561 4.71 20133 3.67 19647 7.36 19416 1.65 19416 19416 0.78 0.00 10
incgraph_6_0.30_5_30_1.60_2 23994 602.43 24012 1.55 23837 3.31 23053 8.1 22810 1 22810 22810 1.03 0.00 10
incgraph_6_0.30_5_30_1.60_3 53944 603.5 53596 3.71 51367 5.92 50637 10.25 50496 1.99 50493 50493.7 1.67 0.00 7
incgraph_6_0.30_5_30_1.60_4 24822 91.1 25896 0.71 25739 6.15 24840 8.2 24822 0.78 24822 24822 0.35 0.00 10
incgraph_6_0.30_5_30_1.60_5 3689 15.94 3987 2.3 3944 0.65 3834 1.2 3689 0.02 3689 3689 0.07 0.00 10
incgraph_6_0.30_5_30_1.60_6 25213 602 26013 1.33 25714 4.39 24815 10.2 24658 3.87 24658 24709 1.71 0.21 7
incgraph_6_0.30_5_30_1.60_7 26836 245.46 28002 2.88 27774 6.53 26869 8.22 26836 1.14 26836 26836 0.44 0.00 10
incgraph_6_0.30_5_30_1.60_8 6853 22.37 7210 2.14 7083 0.95 6920 2.22 6853 0.37 6853 6853 0.17 0.00 10
incgraph_6_0.30_5_30_1.60_9 4320 29.16 4689 3.7 4552 2.24 4407 4.77 4320 0.04 4320 4320 0.16 0.00 10
incgraph_6_0.30_5_30_1.60_10 23998 601.72 24869 2.65 24016 2.68 23653 8.3 23173 3.02 23173 23173 1.43 0.00 10

#𝐴𝑣𝑔 7043.53 74.93 7279.23 2.55 7143.45 1.45 7008.18 2.82 6926.5 0.69 6926.3 6927.59 0.46 0.09 8.82
#𝐵𝑒𝑠𝑡 55 0 0 3 55 60
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The instances are constructed by adding vertices and edges up to pre-
established numbers. These numbers are calculated as a percentage 𝛾 of
he quantities in the original graph, where |𝐼𝑉𝑖| = 𝛾 |𝑉𝑖| and |𝐼𝐸𝑖| = 𝛾
𝐸𝑖| for each i = (1, …, 𝐾). Out of the 20 instances generated for each
ombination of number of layers and density, 10 are augmented by 20%
𝛾 = 1.2) and 10 are augmented by 60% (𝛾 = 1.6).

We coded the MNSB-TS algorithm in C++ and ran it on a PC
ith a 2.40 GHz Intel Core i5-9300HF processor with the Windows
0 operating system. We perform comparisons with the following
mplementations in the literature:

• The greedy random adaptive search procedure (GRASP) method
proposed by Martí and Estruch (2001).

• Two heuristics, i.e., scatter search (SS) and variable neighborhood
scatter search (VNSS) proposed by Sánchez-Oro et al. (2017).
Both of these algorithms were implemented in Java and were run
on a 2.8 GHz Intel Core i7 processor with 8 GB RAM.

• The (attribute-based) tabu search (ATS) method proposed
by Martí et al. (2018b), and the similar tabu strategy is also
used in Pastore et al. (2020) for another graph drawing problem
(i.e., min–max edge crossing problem). We have incorporated
the key component (attribute-based tabu strategy) into our algo-
rithm framework for the comparison, since the ATS method can
only solve the bipartite graph case. The experimental results are
presented in Section 6.2.
11
• The exact optimization solver Gurobi.1

or a fair comparison, we assume that the CPU speed of the algorithms
ested is approximately linearly proportional to the CPU frequency. The
PU speed in Sánchez-Oro et al. (2017) is faster than ours due to a

arger CPU frequency (2.7 GHz vs. 2.4 GHz). We utilize the reported
esults of the corresponding results of SS and VNSS methods presented
n Sánchez-Oro et al. (2017).

We perform 10 independent runs of MNSB-TS for each problem
nstance, with a 200-s time limit per run, while the time limit for the
urobi solver was set to 600 s in this study. Note however, that when
e compare with a previous method that was run only once, we report

he results of our method on a single run for a fair comparison.

.2. Parameter tuning

Table 2 presents the settings of the MNSB-TS parameters used in
his study. To avoid over-fitting of the parameters, we adopt a subset
f 36 representative instances as the training instances to configure
he best values of key parameters of our method. The parameters
f (𝛼, 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥, 𝜃1 − 𝜃4, 𝛩, 𝜉𝑚𝑎𝑥, and 𝛤 ) were tuned with Iterated
-race (IRACE) (Birattari et al., 2010), and an automated configure

1 https://www.gurobi.com/

https://www.gurobi.com/
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Table 5
Results for the performance of MNSB-TS compared with the reference heuristics (GRASP, VNSS and SS) and the general solver Gurobi for the third instance set with 13 layers
where the number of vertices for each instance is between 311 and 382.

Instance name Gurobi GRASP SS VNSS MNSB-TS(1 run) MNSB-TS(10 runs)

Cross Time Cross Time Cross Time Cross Time Cross Time 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 𝑇𝑎𝑣𝑔 𝐴𝑅𝐷 (%) SR(10)

incgraph_13_0.06_5_30_1.20_1 795 24.01 863 10.36 828 1.72 817 2.22 795 0.49 795 795 0.64 0.00 10
incgraph_13_0.06_5_30_1.20_2 1082 29.48 1212 3.5 1123 1.82 1091 3.48 1082 0.43 1082 1082.2 0.74 0.02 8
incgraph_13_0.06_5_30_1.20_3 1052 24.17 1263 9.68 1169 1.8 1088 2.96 1052 0.16 1052 1052 0.20 0.00 10
incgraph_13_0.06_5_30_1.20_4 841 20.9 909 12.46 891 1.19 854 2.12 841 0.02 841 841 0.32 0.00 10
incgraph_13_0.06_5_30_1.20_5 532 11.59 600 3.99 584 0.71 563 1.05 532 0.18 532 532.4 0.17 0.08 7
incgraph_13_0.06_5_30_1.20_6 853 20.38 919 5.57 884 1 866 2.14 856 0.06 853 853.9 0.40 0.11 5
incgraph_13_0.06_5_30_1.20_7 826 27.1 943 12.94 890 1.33 869 2.03 832 0.17 826 828.1 0.56 0.25 5
incgraph_13_0.06_5_30_1.20_8 552 9.85 608 2.03 575 0.59 555 0.86 552 0.07 552 552 0.06 0.00 10
incgraph_13_0.06_5_30_1.20_9 534 19.65 734 0.58 684 1.41 638 1.96 534 0.97 534 534.5 0.41 0.09 7
incgraph_13_0.06_5_30_1.20_10 870 19.3 978 11.54 922 1.04 881 1.72 870 0.05 870 870 0.11 0.00 10
incgraph_13_0.06_5_30_1.60_1 1372 57.13 1874 12.27 1726 7.29 1571 20.32 1380 5.36 1373 1379.4 4.30 0.54 1
incgraph_13_0.06_5_30_1.60_2 1760 71.54 2125 6.09 1993 10.85 1865 21.52 1766 4.08 1760 1763.6 3.32 0.20 1
incgraph_13_0.06_5_30_1.60_3 1825 55.19 2560 0.95 2377 6.37 2089 18.45 1827 5.62 1825 1829.4 4.67 0.24 1
incgraph_13_0.06_5_30_1.60_4 1444 46.76 1863 2.94 1863 5.35 1652 20.96 1449 4.22 1444 1446.5 5.86 0.17 5
incgraph_13_0.06_5_30_1.60_5 984 26.4 1263 12.44 1223 3.1 1110 6.13 992 3.36 984 992 2.98 0.81 2
incgraph_13_0.06_5_30_1.60_6 1525 46.09 2203 4.01 2004 5.85 1739 21 1534 2.70 1525 1529 4.86 0.26 1
incgraph_13_0.06_5_30_1.60_7 1525 62.25 2043 8.62 1944 9.71 1747 20.35 1527 1.94 1527 1533.3 3.68 0.54 1
incgraph_13_0.06_5_30_1.60_8 980 21.21 1125 10.08 1088 2.84 1033 7.44 981 1.86 980 980.8 1.44 0.08 6
incgraph_13_0.06_5_30_1.60_9 1129 46.18 1486 1.58 1450 6.95 1224 14.99 1142 1.21 1131 1137.2 2.13 0.73 1
incgraph_13_0.06_5_30_1.60_10 1527 44.03 1840 3.88 1800 5.27 1690 13.89 1531 4.23 1529 1531.3 4.78 0.28 1
incgraph_13_0.17_5_30_1.20_1 11036 41.13 11885 10 11181 1.61 11056 2.62 11036 0.55 11036 11036 0.25 0.00 10
incgraph_13_0.17_5_30_1.20_2 15376 53.96 15833 2.44 15615 2.99 15506 5.52 15376 0.76 15376 15376.1 0.63 0.00 9
incgraph_13_0.17_5_30_1.20_3 7625 35.7 7897 5.84 7857 1.97 7671 3.15 7625 0.14 7625 7625 0.20 0.00 10
incgraph_13_0.17_5_30_1.20_4 6055 28.75 6332 1.03 6191 2.28 6136 2.03 6055 0.65 6055 6055 0.33 0.00 10
incgraph_13_0.17_5_30_1.20_5 2904 15.13 3161 8.71 3042 0.8 2973 1.61 2904 0.59 2904 2904 0.34 0.00 10
incgraph_13_0.17_5_30_1.20_6 7925 31.78 8572 10.22 8198 1.93 7950 4.83 7925 0.13 7925 7925 0.10 0.00 10
incgraph_13_0.17_5_30_1.20_7 9201 40 9756 3.88 9446 2.83 9218 4.68 9201 0.17 9201 9201 0.56 0.00 10
incgraph_13_0.17_5_30_1.20_8 2323 12.46 2550 4.2 2366 0.8 2329 1.2 2323 0.03 2323 2323 0.18 0.00 10
incgraph_13_0.17_5_30_1.20_9 2622 21.98 2937 9.8 2753 1.86 2680 3.01 2622 2.01 2622 2622.1 0.59 0.00 9
incgraph_13_0.17_5_30_1.20_10 8964 32.52 9402 5.33 9200 1.6 9045 1.74 8964 0.15 8964 8964 0.27 0.00 10
incgraph_13_0.17_5_30_1.60_1 19546 171.42 21302 14.31 20748 10.87 19862 26.69 19549 2.62 19546 19548.3 3.06 0.01 1
incgraph_13_0.17_5_30_1.60_2 28237 610.55 30979 4.65 29067 16.81 27879 46.73 27455 4.94 27413 27437.3 6.48 0.09 5
incgraph_13_0.17_5_30_1.60_3 13626 213.86 14826 2.42 14542 8.74 13902 21.11 13627 4.22 13626 13627.6 2.91 0.01 2
incgraph_13_0.17_5_30_1.60_4 10497 78.17 11890 12.73 11110 8.06 10703 19.91 10513 6.58 10497 10504.5 3.70 0.07 5
incgraph_13_0.17_5_30_1.60_5 5007 50.64 5733 4.59 5417 4.33 5167 10.23 5007 1.40 5007 5016.6 2.23 0.19 3
incgraph_13_0.17_5_30_1.60_6 13776 80.69 16142 10.32 14745 9.86 14158 23.86 13788 1.50 13776 13793.1 3.51 0.12 4
incgraph_13_0.17_5_30_1.60_7 16818 603.87 18778 5.47 17244 12.04 16398 41.13 16053 1.34 16021 16028.8 3.12 0.05 2
incgraph_13_0.17_5_30_1.60_8 4170 27.36 4949 1.95 4641 4.85 4430 7.18 4170 2.69 4170 4170 1.46 0.00 10
incgraph_13_0.17_5_30_1.60_9 4613 58.02 5259 3.3 5144 7.4 4822 18.23 4613 2.88 4613 4651.2 1.93 0.83 5
incgraph_13_0.17_5_30_1.60_10 16627 607.28 16934 12.4 16495 9.43 15948 19.41 15641 1.95 15613 15647.9 3.39 0.22 1
incgraph_13_0.30_5_30_1.20_1 38957 82.86 41728 9.9 39183 2.66 38990 3.88 38957 0.06 38957 38957 0.07 0.00 10
incgraph_13_0.30_5_30_1.20_2 54434 112.68 59914 5.67 54792 4.51 54457 7.14 54434 0.34 54434 54434.1 0.36 0.00 9
incgraph_13_0.30_5_30_1.20_3 28655 66.41 31695 6.31 29085 2.88 28913 4.49 28655 0.10 28655 28655 0.08 0.00 10
incgraph_13_0.30_5_30_1.20_4 22250 53.43 22736 1.89 22487 2.83 22286 4.45 22250 0.16 22250 22250 0.15 0.00 10
incgraph_13_0.30_5_30_1.20_5 10435 28.11 11176 11.26 10608 1.14 10540 1.49 10435 0.15 10435 10435 0.06 0.00 10
incgraph_13_0.30_5_30_1.20_6 28619 62.46 29588 6.71 28811 2.91 28668 2.27 28619 0.72 28619 28619 0.64 0.00 10
incgraph_13_0.30_5_30_1.20_7 33093 76.05 33460 13.01 33293 4.44 33142 4.13 33093 0.10 33093 33093 0.48 0.00 10
incgraph_13_0.30_5_30_1.20_8 9289 23.47 10309 10.88 9384 0.92 9307 1.99 9289 0.04 9289 9289 0.32 0.00 10
incgraph_13_0.30_5_30_1.20_9 11232 34.52 12618 7.2 11586 1.03 11283 6.39 11232 0.13 11232 11232 0.36 0.00 10
incgraph_13_0.30_5_30_1.20_10 31925 66.99 32901 13.95 32021 2.37 31936 2.47 31925 0.07 31925 31925 0.08 0.00 10
incgraph_13_0.30_5_30_1.60_1 71361 600.93 76030 10.66 72107 15.71 70239 39.22 69799 6.40 69484 69618.7 6.08 0.19 1
incgraph_13_0.30_5_30_1.60_2 98326 603.57 102688 1.18 96583 24.99 94082 66.45 93995 5.89 93995 94005.9 5.09 0.01 5
incgraph_13_0.30_5_30_1.60_3 52742 607.83 59026 4.54 53920 13.48 50960 43.68 50751 6.79 50750 50750.5 3.13 0.00 5
incgraph_13_0.30_5_30_1.60_4 41453 604.16 40858 7.29 40808 12.54 39236 40.37 39153 6.19 39139 39173.1 4.34 0.09 2
incgraph_13_0.30_5_30_1.60_5 18900 285.71 20284 14.17 19600 4.91 19054 11.43 18903 0.21 18900 18900.9 1.34 0.00 6
incgraph_13_0.30_5_30_1.60_6 53579 604.3 56744 5.49 53885 14.62 52045 42.65 51451 3.13 51423 51468.9 5.26 0.09 7
incgraph_13_0.30_5_30_1.60_7 61240 600.29 64138 10.73 60141 14.86 58623 63.38 57785 4.49 57785 57785.7 4.84 0.00 4
incgraph_13_0.30_5_30_1.60_8 17344 606.37 17393 12.18 17051 5.36 16721 10.73 16606 1.04 16535 16563 1.52 0.17 6
incgraph_13_0.30_5_30_1.60_9 19409 605.73 20568 12.5 20317 9.16 19650 19.63 19409 5.56 19409 19409 4.37 0.00 10
incgraph_13_0.30_5_30_1.60_10 59263 600.44 61645 14.33 58266 15.9 57348 22.73 56911 7.15 56909 56912.3 5.50 0.01 4

#𝐴𝑣𝑔 16524.37 163.75 17633.78 7.48 16749.13 5.74 16320.92 14.16 16169.57 2.02 16159.10 16166.62 2.01 0.11 6.45
#𝐵𝑒𝑠𝑡 49 0 0 0 34 56
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method that is part of the IRACE package (Lopez-Ibanez et al., 2016).
The tuning was performed on all the 36 training instances. For each
parameter, IRACE requires a limited set of values as input to choose
from the column (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠) presented in Table 2. The total
time budget for IRACE was set to 100 executions of MNSB-TS, with
the maximum time limit being 200 s for each instance. The parameter
settings suggested by IRACE are reported in the 𝐹 𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 column in
Table 2.

5. Comparative testing

Our comparisons of MNSB-TS with the three reference heuristics
GRASP, VNSS, and SS, and the general optimization solver Gurobi, are
presented in Table 3. The first column gives the instance name and
the next ten columns show the minimum crossing number 𝐶𝑟𝑜𝑠𝑠, the
computing time 𝑇 𝑖𝑚𝑒 in seconds produced by the compared algorithms
(i.e., Gurobi, GRASP, SS, VNSS and MNSB-TS(1 run)) in one run. To
test the robustness of MNSB-TS, the best and average results obtained
by the method are presented in the following four columns (marked as
MNSB-TS(10 runs)), including the best and average objective value 𝑓𝑏𝑒𝑠𝑡
and 𝑓𝑎𝑣𝑔 , the average running time 𝑇𝑎𝑣𝑔 , average relative deviation in
percentage 𝐴𝑅𝐷 (%) and the success times to obtain the best solution of
each reference algorithm in ten runs (𝑆𝑅(10)). The best results obtained
over all the compared methods are indicated in bold.
12

a

The row #𝐴𝑣𝑔 indicates the average value of each measure and
the row #𝐵𝑒𝑠𝑡 shows the number of instances for which the associated
lgorithm obtains the best results among all the compared algorithms.

Table 3 shows that our MNSB-TS algorithm significantly outper-
orms the other three reference algorithms. In particular, for both the
ingle-run track and ten-run track, MNSB-TS can obtain the best results
1383.35 and 0.04 s) in terms of both the minimum crossing number
𝑟𝑜𝑠𝑠 and the computing time 𝑇 𝑖𝑚𝑒 among the compared solvers. The
xperimental results show MNSB-TS is the only heuristic to find the
ptimal solutions for all 60 instances of two layered graphs, whose
ptimality is proven by Gurobi within 600 s. The average computing
ime of MNSB-TS is much lower than Gurobi (0.04 s vs. 8.90 s),
ndicating that MNSB-TS also has a high computational efficiency on
his group of benchmark instances.

Table 4 reports 60 instances in the second test set consisting of
roblems with 6 layers. Here the MNSB-TS algorithm achieves the best
esults among the compared algorithms in most instances, obtaining
etter results in terms of the minimum crossing number than the best
eference heuristic VNSS (6926.3 vs. 7008.18) with less computing time
0.46 s vs. 2.82 s). More significantly, MNSB-TS finds the best solutions
or all the 60 instances while VNSS finds the best solutions only for

out of 60 instances. For this group of problems, Gurobi finds (and
erifies) the optimal solutions for all but 5 of the instances, within the

llotted 600-s time limit. Compared with the general solver Gurobi,



Expert Systems With Applications 237 (2024) 121477B. Peng et al.
Table 6
Results for the performance of MNSB-TS compared with the reference heuristics (GRASP, VNSS and SS) and the general solver Gurobi for the fourth instance set with 20 layers
where the number of vertices for each instance is between 510 and 559.

Instance name Gurobi GRASP SS VNSS MNSB-TS(1 run) MNSB-TS(10 runs)

Cross Time Cross Time Cross Time Cross Time Cross Time 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 𝑇𝑎𝑣𝑔 𝐴𝑅𝐷 (%) SR(10)

incgraph_20_0.06_5_30_1.20_1 1952 42.55 2094 16.81 2050 2.83 1977 7.28 1952 0.507 1952 1955.2 0.77 0.16 1
incgraph_20_0.06_5_30_1.20_2 1766 39.41 1983 27.1 1846 3.72 1791 7.18 1766 0.45 1766 1766.6 1.56 0.03 7
incgraph_20_0.06_5_30_1.20_3 1524 35.05 1803 16.17 1692 3.03 1593 7.21 1526 0.136 1524 1525.2 0.91 0.08 6
incgraph_20_0.06_5_30_1.20_4 1373 36.27 1556 15.57 1477 3.37 1408 6.64 1373 0.756 1373 1374.3 0.49 0.09 7
incgraph_20_0.06_5_30_1.20_5 1126 21.29 1310 29.98 1213 1.65 1167 2.84 1126 0.257 1126 1126.1 0.98 0.01 9
incgraph_20_0.06_5_30_1.20_6 1419 30.64 1524 22.73 1513 2.65 1457 4.81 1419 0.375 1419 1419.2 0.68 0.01 8
incgraph_20_0.06_5_30_1.20_7 1357 37.62 1625 13.98 1529 3.59 1397 8.03 1357 0.276 1357 1358.0 0.84 0.07 4
incgraph_20_0.06_5_30_1.20_8 1310 25.79 1481 11.41 1364 2.2 1321 3.38 1311 0.205 1310 1310.6 0.25 0.05 5
incgraph_20_0.06_5_30_1.20_9 1429 30.53 1627 21.63 1519 3.69 1444 5.99 1429 1.108 1429 1429.1 0.32 0.01 9
incgraph_20_0.06_5_30_1.20_10 1401 27.03 1473 23.03 1452 2.36 1406 4.65 1401 0.058 1401 1401.0 0.04 0.00 10
incgraph_20_0.06_5_30_1.60_1 3489 97.17 4070 22.23 3817 23.62 3641 65.14 3498 4.565 3495 3503.7 4.90 0.42 1
incgraph_20_0.06_5_30_1.60_2 3164 87.9 3734 23.47 3704 22.21 3388 81.17 3169 5.691 3166 3182.9 4.33 0.60 1
incgraph_20_0.06_5_30_1.60_3 2854 79.64 3630 12.02 3620 12.61 3133 39.53 2918 4.898 2862 2885.5 6.32 1.10 1
incgraph_20_0.06_5_30_1.60_4 2673 83.31 3233 24.51 3146 12.79 2868 45.38 2720 6.739 2678 2693.7 5.96 0.77 2
incgraph_20_0.06_5_30_1.60_5 1839 49.59 2471 13.66 2324 9.89 2113 28.62 1859 3.15 1844 1854.7 3.78 0.85 1
incgraph_20_0.06_5_30_1.60_6 2672 71.81 3483 17.05 3273 12.24 2957 47.86 2688 4.87 2684 2691.5 3.32 0.73 1
incgraph_20_0.06_5_30_1.60_7 2367 88.39 3260 28.65 3132 22.87 2725 77.61 2382 5.288 2367 2375.6 7.89 0.36 2
incgraph_20_0.06_5_30_1.60_8 2301 60.3 2685 15.08 2654 11.56 2457 36.88 2319 3.025 2303 2319.0 4.71 0.78 1
incgraph_20_0.06_5_30_1.60_9 2382 72.13 3058 28.04 2846 18.84 2598 46.46 2388 6.861 2388 2396.5 4.64 0.61 2
incgraph_20_0.06_5_30_1.60_10 2374 62.71 2814 18.69 2761 10.33 2573 31.83 2428 1.445 2385 2409.6 3.41 1.50 1
incgraph_20_0.17_5_30_1.20_1 25355 79.64 25959 11.68 25715 5.51 25474 10.28 25355 0.361 25355 25355.4 0.72 0.00 9
incgraph_20_0.17_5_30_1.20_2 17715 65.15 18479 25.67 17893 4.37 17752 8.89 17715 1.716 17715 17715.5 1.31 0.00 8
incgraph_20_0.17_5_30_1.20_3 9191 47.72 10253 25.63 9411 4.26 9300 8.14 9191 2.317 9191 9191.6 0.44 0.01 8
incgraph_20_0.17_5_30_1.20_4 13018 55.8 13861 17.42 13229 4.32 13076 7.76 13019 0.605 13018 13018.1 2.09 0.00 9
incgraph_20_0.17_5_30_1.20_5 6295 30.29 6439 28.43 6408 2.04 6334 3.25 6295 0.291 6295 6295.0 0.27 0.00 10
incgraph_20_0.17_5_30_1.20_6 11525 47.93 12643 23.15 11841 3.51 11656 7.88 11525 1.098 11525 11525.4 0.56 0.00 9
incgraph_20_0.17_5_30_1.20_7 12156 55.89 12487 16.3 12445 5 12236 10.05 12156 0.513 12156 12156.0 0.88 0.00 10
incgraph_20_0.17_5_30_1.20_8 9707 40.68 10056 23 9848 3.32 9720 6.69 9707 4.445 9707 9707.0 1.03 0.00 10
incgraph_20_0.17_5_30_1.20_9 6767 40.04 7610 28.68 7097 3.62 6971 7.65 6767 0.191 6767 6767.0 0.26 0.00 10
incgraph_20_0.17_5_30_1.20_10 10205 42.18 11045 13.59 10302 3.45 10205 7.22 10205 0.02 10205 10205.0 0.04 0.00 10
incgraph_20_0.17_5_30_1.60_1 45878 602.31 49371 24.61 46814 26.75 45315 118.87 44438 14.127 44398 44421.8 12.58 0.05 1
incgraph_20_0.17_5_30_1.60_2 31349 245.21 35042 12.47 33616 28.42 31749 129.4 31352 7.349 31349 31369.6 5.26 0.07 4
incgraph_20_0.17_5_30_1.60_3 16522 136.95 17586 14.54 17521 17.78 16794 46.68 16522 7.421 16522 16530.1 5.87 0.05 1
incgraph_20_0.17_5_30_1.60_4 22820 265.99 26361 14.26 24642 22.14 23568 65.06 22831 1.804 22820 22822.9 6.45 0.01 3
incgraph_20_0.17_5_30_1.60_5 11020 88.38 12097 28.73 11882 11.35 11401 25.09 11047 4.648 11020 11031.0 3.59 0.10 1
incgraph_20_0.17_5_30_1.60_6 20514 400.07 22087 22.02 22066 21.34 21018 61.69 20641 6.022 20482 20525.1 6.72 0.21 1
incgraph_20_0.17_5_30_1.60_7 21169 176.61 24383 14.95 23096 25.05 21620 127.65 21179 12.742 21169 21175.2 11.77 0.03 2
incgraph_20_0.17_5_30_1.60_8 16387 107.38 17624 14.11 17551 15.41 16793 45.55 16403 4.819 16387 16398.7 7.94 0.07 1
incgraph_20_0.17_5_30_1.60_9 12397 96.66 14834 15.92 13610 20.85 12908 55.21 12398 9.293 12397 12405.8 9.63 0.07 1
incgraph_20_0.17_5_30_1.60_10 17849 341.59 20398 13.82 19183 17.23 18194 62.85 17929 16.473 17849 17868.0 11.54 0.11 2
incgraph_20_0.30_5_30_1.20_1 88290 170.24 91612 19.17 88885 8.5 88391 14.54 88290 2.146 88290 88290.0 0.51 0.00 10
incgraph_20_0.30_5_30_1.20_2 63685 132.96 64777 13.88 64593 8.25 63753 17.46 63685 0.971 63685 63685.1 1.16 0.00 9
incgraph_20_0.30_5_30_1.20_3 35728 86.74 37739 22.77 36190 6.97 35826 12.46 35728 1.211 35728 35728.1 0.77 0.00 9
incgraph_20_0.30_5_30_1.20_4 47165 106.41 50964 26.91 47809 6.56 47322 15.56 47165 0.819 47165 47165.5 0.65 0.00 9
incgraph_20_0.30_5_30_1.20_5 23907 56.46 25548 26.91 24176 3.87 24018 4.43 23907 0.253 23907 23907.0 0.24 0.00 10
incgraph_20_0.30_5_30_1.20_6 42705 94.67 45372 15.1 42990 5.74 42760 7.83 42705 0.914 42705 42705.0 0.51 0.00 10
incgraph_20_0.30_5_30_1.20_7 44585 104.45 48842 17.53 45061 6.09 44711 12.95 44586 0.311 44585 44585.4 0.26 0.00 7
incgraph_20_0.30_5_30_1.20_8 35463 79.97 38308 23.66 35748 4.45 35598 5.27 35463 1.076 35463 35463.0 1.66 0.00 10
incgraph_20_0.30_5_30_1.20_9 27240 70.26 29359 20.44 27716 5.46 27358 14.16 27240 1.476 27240 27240.0 0.41 0.00 10
incgraph_20_0.30_5_30_1.20_10 37395 81.1 39819 26.56 37674 5.16 37469 7.45 37395 0.731 37395 37395.1 0.73 0.00 9
incgraph_20_0.30_5_30_1.60_1 159703 611.38 164423 25.34 159779 47.11 155985 130.7 155486 12.067 155419 155541.1 9.63 0.08 2
incgraph_20_0.30_5_30_1.60_2 116536 608.78 122963 17.58 115439 36.02 112116 126.89 111709 15.185 111709 111714.7 9.58 0.01 6
incgraph_20_0.30_5_30_1.60_3 65915 605.1 71878 29.19 65864 26.55 63965 67.62 62827 8.97 62825 62834.4 7.52 0.01 2
incgraph_20_0.30_5_30_1.60_4 85849 606.75 93479 24.99 87303 38.57 84894 106.49 83541 14.641 83502 83685.4 8.16 0.22 1
incgraph_20_0.30_5_30_1.60_5 44342 603.72 43417 17.38 42898 17.58 42145 34.46 42083 4.457 42083 42104.0 3.12 0.05 5
incgraph_20_0.30_5_30_1.60_6 77885 606.1 78585 26.34 77759 25.08 75164 75.9 74394 9.085 74315 74325.4 8.10 0.01 2
incgraph_20_0.30_5_30_1.60_7 83052 605.49 83829 10.25 83336 31.92 80014 101.16 79520 7.325 79351 79460.2 8.47 0.14 1
incgraph_20_0.30_5_30_1.60_8 64949 604.9 70084 18.27 64746 27.75 62803 70.95 62408 9.59 62368 62401.4 7.34 0.05 2
incgraph_20_0.30_5_30_1.60_9 49060 604.07 53456 18.53 50077 23.72 48562 59.01 47506 3.997 47506 47639.2 9.60 0.28 1
incgraph_20_0.30_5_30_1.60_10 66939 604.78 68195 10.52 65886 20.5 63819 59.53 63388 6.989 63332 63343.3 6.79 0.02 1

#𝐴𝑣𝑔 27316.73 184.83 29002.97 20.03 27750.52 13.13 27036.18 38.65 26778.83 4.15 26762.15 26777.93 3.84 0.17 5.08
#𝐵𝑒𝑠𝑡 48 0 0 1 30 51
Table 7
Summary for the performance of MNSB-TS compared with the reference heuristics (GRASP, VNSS and SS) and the general solver Gurobi for all the 240 instances.

Gurobi GRASP SS VNSS MNSB-TS(1 run) MNSB-TS(10 runs)

2-layer graph (47 ≤ 𝑛 ≤ 54) 𝑓𝑏𝑒𝑠𝑡 (𝑓𝑎𝑣𝑔)
Cross 1383.35 1454.9 1420.3 1419.18 1383.35 1383.35 (1383.35)
𝑇 𝑖𝑚𝑒 (s) 8.90 0.49 0.15 0.22 0.04 0.04

6-layer graph (138 ≤ 𝑛 ≤ 181)
Cross 7043.53 7279.23 7143.45 7008.18 6926.5 6926.3 (6927.59)
𝑇 𝑖𝑚𝑒 (s) 74.93 2.55 1.45 2.82 0.69 0.46

13-layer graph (311 ≤ 𝑛 ≤ 382)
Cross 16524.37 17633.78 16749.13 16320.92 16169.57 16159.10 (16166.62)
𝑇 𝑖𝑚𝑒 (s) 163.75 7.48 5.74 14.16 2.02 2.01

20-layer graph (510 ≤ 𝑛 ≤ 559)
Cross 27316.73 29002.97 27750.52 27036.18 26778.83 26762.15 ( 26777.93)
𝑇 𝑖𝑚𝑒 (s) 184.83 20.03 13.13 38.65 4.15 3.84

#Average
Cross 13066.99 13842.72 13265.85 12946.12 12814.56 12807.73 (12813.87)
𝑇 𝑖𝑚𝑒 (s) 108.10 7.64 5.17 13.96 1.73 1.59

𝑛 denotes the number of all the vertices in the incremental graph (i.e., the augmented graph obtained by adding incremental vertices).
13
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Table 8
Comparison between the MNSB-TS and its variation MNAB-TS with an attribute-based tabu strategy on the 36 representative instances.

Instance name MNAB-TS MNSB-TS

𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10)

incgraph_2_0.06_5_30_1.60_7 15 17.8 4 15 15 10
incgraph_2_0.06_5_30_1.60_8 1 1.4 7 1 1 10
incgraph_2_0.06_5_30_1.60_9 0 0.2 8 0 0 10
incgraph_2_0.17_5_30_1.60_7 2754 2807.6 1 2742 2742 10
incgraph_2_0.17_5_30_1.60_8 187 188.6 3 187 187 10
incgraph_2_0.17_5_30_1.60_9 0 0 10 0 0 10
incgraph_2_0.30_5_30_1.60_7 12308 12406.3 1 12281 12281 10
incgraph_2_0.30_5_30_1.60_8 1169 1179.7 1 1169 1169 10
incgraph_2_0.30_5_30_1.60_9 211 213.9 2 208 208 10
incgraph_6_0.06_5_30_1.60_7 591 696.5 1 519 523.6 1
incgraph_6_0.06_5_30_1.60_8 208 244.6 1 151 151.6 8
incgraph_6_0.06_5_30_1.60_9 413 461.9 1 324 324.1 9
incgraph_6_0.17_5_30_1.60_7 7446 7592.1 1 7281 7282.1 2
incgraph_6_0.17_5_30_1.60_8 1559 1598.1 1 1519 1519.2 8
incgraph_6_0.17_5_30_1.60_9 1064 1096.6 1 921 921 10
incgraph_6_0.30_5_30_1.60_7 27103 27497.1 1 26836 26836 10
incgraph_6_0.30_5_30_1.60_8 7016 7100.2 1 6853 6853 10
incgraph_6_0.30_5_30_1.60_9 4432 4533.9 1 4320 4320 10
incgraph_13_0.06_5_30_1.60_7 1722 1787.5 1 1527 1533.3 1
incgraph_13_0.06_5_30_1.60_8 1086 1118.7 1 980 980.8 6
incgraph_13_0.06_5_30_1.60_9 1257 1327.1 1 1131 1137.2 1
incgraph_13_0.17_5_30_1.60_7 16192 16375.4 1 16021 16028.8 2
incgraph_13_0.17_5_30_1.60_8 4241 4432.7 1 4170 4170 10
incgraph_13_0.17_5_30_1.60_9 4911 4997.2 1 4613 4651.2 5
incgraph_13_0.30_5_30_1.60_7 58196 58697.7 1 57785 57785.7 4
incgraph_13_0.30_5_30_1.60_8 16728 16884.9 1 16535 16563 6
incgraph_13_0.30_5_30_1.60_9 19655 19908 1 19409 19409 10
incgraph_20_0.06_5_30_1.60_7 2651 2723.4 1 2367 2375.6 2
incgraph_20_0.06_5_30_1.60_8 2487 2556.2 1 2303 2319 1
incgraph_20_0.06_5_30_1.60_9 2554 2673.8 1 2388 2396.5 2
incgraph_20_0.17_5_30_1.60_7 21706 21964.7 1 21169 21175.2 2
incgraph_20_0.17_5_30_1.60_8 16576 16841.2 1 16387 16398.7 1
incgraph_20_0.17_5_30_1.60_9 12684 12785.2 1 12397 12405.8 1
incgraph_20_0.30_5_30_1.60_7 80050 80398.6 1 79351 79460.2 1
incgraph_20_0.30_5_30_1.60_8 62558 62945 1 62368 62401.4 2
incgraph_20_0.30_5_30_1.60_9 48101 48463.6 1 47506 47639.2 1

#𝐴𝑣𝑔 12217.56 12347.71 1.78 12048.17 12060.12 6.00
#𝐵𝑒𝑠𝑡 6 1 36 36
MNSB-TS obtains better results in terms of both the minimum crossing
number and the average computing time (6926.3 vs 7043.53 and 0.46
s vs. 74.93 s).

Table 5 shows the experimental results of all the reference methods
(Gurobi, GRASP, SS, VNSS, MNSB-TS) for the 60 instances of the
third instance set with 13 layers. As expected, the difficulty of solving
the problem instances increases with the increased number of layers.
Gurobi fails to obtain verified optimal solutions for a larger number
of instances than in the 6-layer graphs (49 vs. 55). For most instances,
where Gurobi fails to find solutions that it verifies as optimal, MNSB-TS
obtains better results than Gurobi. In general, the MNSB-TS algorithm
outperforms Gurobi in terms of the minimum crossing number and
computing time over the third instance set (16159.10 vs. 16524.37 and
2.01 s vs. 163.75 s). In addition, MNSB-TS algorithm also dominates
the three other competing heuristics (i.e., GRASP, SS and VNSS) in one
run in terms of the minimum crossing number for all the instances
(16159.10 vs. 17633.78, 16749.13, and 16320.92, respectively) with
a less computing time than the other heuristics.

From Table 6, which reports the fourth instance set with 20 layers,
the MNSB-TS algorithm again achieves the best results among the
compared algorithms in most instances. In the one-run test, MNSB-TS
obtains a better average crossing number (𝐶𝑟𝑜𝑠𝑠) than all three heuris-
tics and the exact solver Gurobi (26778.83 vs. 29002.97, 26778.83
14

vs. 27750.52, 26778.83 vs. 27036.18, and 26778.83 vs. 27316.73).
In the ten-run test, MNSB-TS obtains the best results in 51 out of
60 instances. Compared to Gurobi, MNSB-TS obtains a better average
crossing number and computing time (26777.93 vs. 27316.73 and 0.17
s vs. 184.83 s). In addition, MNSB-TS obtains the best results for more
instances than Gurobi (51 vs. 48).

Table 7 summarizes the total experimental results based on all 240
instances. As shown in this table, the MNSB-TS algorithm ranks at the
top of the state-of-the-art algorithms including the exact optimization
solver Gurobi in terms of both solution quality and computational effi-
ciency. Compared to Gurobi, MNSB-TS is able to find better results in
terms of average solution quality and tens of times faster computational
efficiency (1.59 s vs 108.10 s).

6. Analysis and discussions

In this section we analyze several key elements of the proposed
algorithm: the incremental evaluation technique, the solution-based
tabu strategy, the multiple neighborhood mechanism, the dynamic
diversification strategy, and the spatial distribution of high-quality
solutions respectively. We perform 10 independent runs of MNSB-TS
and the variants in the following subsections for each problem instance,

with a 200-s time limit per run.
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Table 9
Comparison among the MNSB-TS and its variations SBTS𝑖 with 𝑁𝑖 neighborhood operator on the 36 representative instances.

Instance name SBTS1 SBTS2 SBTS3 SBTS4 MNSB-TS

𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10)

incgraph_2_0.06_5_30_1.60_7 15 15 10 25 26.8 6 84 88.8 5 89 93.2 3 15 15 10
incgraph_2_0.06_5_30_1.60_8 1 1 10 4 6.8 2 16 22.8 2 21 29.8 3 1 1 10
incgraph_2_0.06_5_30_1.60_9 0 0 10 0 0.4 8 15 18.6 4 8 18.9 2 0 0 10
incgraph_2_0.17_5_30_1.60_7 2742 2745.7 4 2774 2782.1 2 2922 3035.7 4 2995 3024.4 1 2742 2742 10
incgraph_2_0.17_5_30_1.60_8 187 187 10 192 196 2 210 238.1 3 210 231 3 187 187 10
incgraph_2_0.17_5_30_1.60_9 0 0 10 0 0.3 7 18 23 4 10 17.7 3 0 0 10
incgraph_2_0.30_5_30_1.60_7 12281 12286.6 4 12340 12404 1 12961 13096.8 1 12859 13057.5 1 12281 12281 10
incgraph_2_0.30_5_30_1.60_8 1169 1172.3 7 1181 1191.6 2 1224 1267.6 1 1226 1255.3 3 1169 1169 10
incgraph_2_0.30_5_30_1.60_9 208 208 10 208 212.3 1 242 259 2 250 270.8 2 208 208 10
incgraph_6_0.06_5_30_1.60_7 519 524.6 1 608 623 1 582 608.2 1 683 737.3 1 519 523.6 1
incgraph_6_0.06_5_30_1.60_8 151 151.2 9 227 237 2 184 196.4 2 254 282.7 1 151 151.6 8
incgraph_6_0.06_5_30_1.60_9 324 324.3 7 365 375.9 1 347 368.4 1 447 459.2 1 324 324.1 9
incgraph_6_0.17_5_30_1.60_7 7281 7282.1 1 7449 7487.6 1 7356 7450 1 7646 7758.5 1 7281 7282.1 2
incgraph_6_0.17_5_30_1.60_8 1519 1519.1 9 1619 1627.9 3 1557 1579.4 1 1669 1704.1 2 1519 1519.2 8
incgraph_6_0.17_5_30_1.60_9 921 921 10 1001 1023.5 1 951 969.8 1 1140 1171.3 1 921 921 10
incgraph_6_0.30_5_30_1.60_7 26836 26836 10 27285 27403.3 1 27076 27230.8 1 27798 28016.5 1 26836 26836 10
incgraph_6_0.30_5_30_1.60_8 6853 6853 10 7069 7163.7 1 6918 6980 2 7244 7394.9 1 6853 6853 10
incgraph_6_0.30_5_30_1.60_9 4320 4320 10 4480 4521.3 1 4374 4421.9 2 4705 4782.3 1 4320 4320 10
incgraph_13_0.06_5_30_1.60_7 1530 1542.9 1 1778 1836.4 1 1595 1646.9 1 1911 1970.5 1 1527 1533.3 1
incgraph_13_0.06_5_30_1.60_8 982 985.9 2 1128 1144.4 1 1003 1011 2 1151 1169.1 1 980 980.8 6
incgraph_13_0.06_5_30_1.60_9 1131 1134 2 1340 1367.3 1 1159 1180.9 2 1404 1457.2 1 1131 1137.2 1
incgraph_13_0.17_5_30_1.60_7 16023 16140 1 16850 17003.7 1 16165 16327.6 1 17189 17340.8 1 16021 16028.8 2
incgraph_13_0.17_5_30_1.60_8 4170 4178.7 6 4486 4575.5 1 4212 4256.6 1 4621 4681.3 1 4170 4170 10
incgraph_13_0.17_5_30_1.60_9 4613 4648.6 4 5176 5224.4 1 4697 4815 1 5267 5317.2 1 4613 4651.2 5
incgraph_13_0.30_5_30_1.60_7 57786 57886.9 3 60059 60301.6 1 57963 58280.1 1 60052 60791.2 1 57785 57785.7 4
incgraph_13_0.30_5_30_1.60_8 16535 16577.3 2 17309 17421.8 1 16632 16691.1 2 17422 17541.1 1 16535 16563 6
incgraph_13_0.30_5_30_1.60_9 19409 19443.9 2 20233 20445.4 1 19543 19637.6 1 20583 20812.8 1 19409 19409 10
incgraph_20_0.06_5_30_1.60_7 2391 2404.6 1 2894 2948.1 1 2496 2536.9 1 3130 3176 1 2367 2375.6 2
incgraph_20_0.06_5_30_1.60_8 2327 2337.7 1 2716 2761.6 1 2392 2433.4 1 2814 2859.9 1 2303 2319 1
incgraph_20_0.06_5_30_1.60_9 2400 2413.2 1 2757 2872.4 1 2479 2491.4 1 2937 2971.3 1 2388 2396.5 2
incgraph_20_0.17_5_30_1.60_7 21176 21242.5 1 22624 22748.7 1 21316 21477.7 1 22903 23038.6 1 21169 21175.2 2
incgraph_20_0.17_5_30_1.60_8 16387 16401 1 17568 17790.8 1 16492 16556.5 1 17766 17969.8 1 16387 16398.7 1
incgraph_20_0.17_5_30_1.60_9 12401 12422.2 1 13269 13390.7 1 12486 12545.1 1 13452 13568 1 12397 12405.8 1
incgraph_20_0.30_5_30_1.60_7 79385 79549.2 1 82882 83230.4 1 79647 79819.8 1 83739 84068.3 1 79351 79460.2 1
incgraph_20_0.30_5_30_1.60_8 62370 62448.8 1 64671 65043.7 1 62503 62651.5 1 65133 65546.8 1 62368 62401.4 2
incgraph_20_0.30_5_30_1.60_9 47649 47822.2 1 50079 50282.4 1 47658 47923.8 1 50217 50761.3 1 47506 47639.2 1

#𝐴𝑣𝑔 12055.33 12081.29 4.83 12629.06 12713.13 1.69 12152.08 12226.06 1.64 12804.03 12926.29 1.36 12048.17 12060.12 6.00
#𝐵𝑒𝑠𝑡 24 15 3 0 0 0 0 0 36 32
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6.1. Importance of the incremental evaluation technique

It is particularly important to be able to rapidly evaluate the neigh-
borhoods in a neighborhood search method. In Section 3.3.2, we pro-
posed an incremental evaluation mechanism to evaluate the four neigh-
borhood operators by employing dedicated matrices to record informa-
tion about the number of edge crossings for pairs of vertices.

To evaluate the effectiveness of this incremental evaluation tech-
nique, we carry out computational experiments to compare the perfor-
mance of the MNSB-TS algorithm with this technique (abbreviated as
FE) and its variant (RC) on six representative instances with different
layers (where the number of layers is 2, 6, 13 and 20, respectively).
The variant RC recalculates the edge crossings of each candidate solu-
tion without employing the incremental evaluation mechanism, while
keeping other MNSB-TS components unaltered.

The evaluation of the iteration numbers with the CPU time in
seconds is shown in Fig. 7. One can observe that the FE procedure using
the incremental evaluation technique performs many more iterations
in the 10-s time interval than the RC procedure that does not employ
this mechanism. FE obviously outperforms RC and the gap between the
methods becomes larger as time grows, demonstrating the importance
of the proposed fast e- valuation strategy.

6.2. Effectiveness of the solution-based tabu strategy

The solution-based tabu strategy is a pivotal component of our
MNSB-TS algorithm. To show its merit for the IGDP problem compared
to the popular attribute-based tabu strategy, we produce a variant
MNAB-TS of MNSB-TS whose only change is to replace the solution-
based tabu strategy with the attribute-based strategy. Other MNSB-TS
components are unaltered according to the experimental protocol given
in Table 2.

In the attribute-based approach, when we select a new vertex 𝑣 and
ove it, vertex 𝑣 is conceived to be the solution attribute of interest,

nd we record 𝑣 in the tabu list with tabu tenure 𝑡𝑡, in order to prohibit
moving it again during the next 𝑡𝑡 iterations. Based on empirical testing
to identify a good choice for 𝑡𝑡, we set 𝑡𝑡 = 5 which is similar to the
setting chosen in Martí et al. (2018b). Finally, we use the aspiration
criterion that overrides the tabu status of a move (rendering the move
15

i

non-tabu) if the generated solution leads to a solution better than all
previously visited solutions.

To compare the relative performance of MNSB-TS and MNAB-TS,
we carried out computational experiments using 36 representative
benchmark instances with different scales (the layers varying among
2, 6, 13, 20), where both methods were run in 10 trials.

The experimental results including the best objective value (𝑓𝑏𝑒𝑠𝑡),
he average objective value (𝑓𝑎𝑣𝑔), and the average computing time 𝑡𝑎𝑣
or each algorithm are summarized in Table 8. The row #𝐴𝑣𝑔 indicates
he average value of each measure in the 36 representative instances.
he row #𝐵𝑒𝑠𝑡 shows the number of instances for which the associated
lgorithm obtained the best results in terms of 𝑓𝑏𝑒𝑠𝑡 or 𝑓𝑎𝑣𝑔 results.
learly, MNSB-TS proves more effective than the variant MNAB-TS
y obtaining better results for 𝑓𝑏𝑒𝑠𝑡 and 𝑓𝑎𝑣𝑔 (12048.17 vs. 12217.56
nd 12060.12 vs. 12347.71). In addition, MNAB-TS can obtain better
esults regarding robustness and stability than MNAB-TS in terms of
he indicator (𝑆𝑅(10)), which denotes the success times to obtain their
est solutions in ten runs (6 vs. 1.78). The MNSB-TS method dominates
he variant MNAB-TS in all the indicators, by obtaining better results
or 𝑓𝑏𝑒𝑠𝑡, 𝑓𝑎𝑣𝑔 and 𝑆𝑅(10). We therefore conclude that the solution-
ased tabu strategy plays a positive role in the high performance of
he MNSB-TS algorithm.

.3. Impact of the multiple neighborhood mechanism

As described in Algorithm 3, we iteratively employ multiple neigh-
orhood search iteratively in the main search phase. As such, at each
teration, a new neighborhood usually offers a chance to encounter a
eighboring solution of higher quality but requires additional computa-
ional effort. Hence, we face the challenge of identifying an appropriate
ultiple neighborhood mechanism to enable the resulting algorithm to

each a good tradeoff between solution quality and computing speed.
o study the impact of such a mechanism, we compared our standard
lgorithm with four variants of MNSB-TS, i.e., SBTS𝑖 by using a single
eighborhood move 𝑁𝑖 (𝑖 = 1,… , 4) (as described in Section 3.3.1)
ithout the multiple neighborhood framework.

Table 9 shows that the computational performance of SBTS1 per-
orms best among all the neighborhood moves in each indicator. SBTS1
s close to MNSB-TS in terms of 𝑓 and 𝑓 , while the gap becomes
𝑏𝑒𝑠𝑡 𝑎𝑣𝑔
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Table 10
Comparison between the MNSB-TS and its variation MNSB-TS𝑓𝑠 with a fixed strength perturbation strategy on the 36 representative instances.

Instance name MNSB-TS𝑓𝑠 MNSB-TS

𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10) 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR(10)

incgraph_2_0.06_5_30_1.60_7 15 15 10 15 15 10
incgraph_2_0.06_5_30_1.60_8 1 1 10 1 1 10
incgraph_2_0.06_5_30_1.60_9 0 0 10 0 0 10
incgraph_2_0.17_5_30_1.60_7 2742 2742 10 2742 2742 10
incgraph_2_0.17_5_30_1.60_8 187 187 10 187 187 10
incgraph_2_0.17_5_30_1.60_9 0 0 10 0 0 10
incgraph_2_0.30_5_30_1.60_7 12281 12281 10 12281 12281 10
incgraph_2_0.30_5_30_1.60_8 1169 1172.3 7 1169 1169 10
incgraph_2_0.30_5_30_1.60_9 208 208 10 208 208 10
incgraph_6_0.06_5_30_1.60_7 522 524.8 1 519 523.6 1
incgraph_6_0.06_5_30_1.60_8 151 151.6 7 151 151.6 8
incgraph_6_0.06_5_30_1.60_9 324 324 10 324 324.1 9
incgraph_6_0.17_5_30_1.60_7 7281 7288.1 1 7281 7282.1 2
incgraph_6_0.17_5_30_1.60_8 1519 1519.7 7 1519 1519.2 8
incgraph_6_0.17_5_30_1.60_9 921 921 10 921 921 10
incgraph_6_0.30_5_30_1.60_7 26836 26836 10 26836 26836 10
incgraph_6_0.30_5_30_1.60_8 6853 6853 10 6853 6853 10
incgraph_6_0.30_5_30_1.60_9 4320 4320 10 4320 4320 10
incgraph_13_0.06_5_30_1.60_7 1527 1538.8 1 1527 1533.3 1
incgraph_13_0.06_5_30_1.60_8 980 981.2 3 980 980.8 6
incgraph_13_0.06_5_30_1.60_9 1131 1136.3 1 1131 1137.2 1
incgraph_13_0.17_5_30_1.60_7 16021 16064.1 2 16021 16028.8 2
incgraph_13_0.17_5_30_1.60_8 4170 4172.8 9 4170 4170 10
incgraph_13_0.17_5_30_1.60_9 4613 4659.9 4 4613 4651.2 5
incgraph_13_0.30_5_30_1.60_7 57785 57786 2 57785 57785.7 4
incgraph_13_0.30_5_30_1.60_8 16535 16579.1 3 16535 16563 6
incgraph_13_0.30_5_30_1.60_9 19409 19413.2 8 19409 19409 10
incgraph_20_0.06_5_30_1.60_7 2380 2399.9 1 2367 2375.6 2
incgraph_20_0.06_5_30_1.60_8 2320 2335.7 1 2303 2319 1
incgraph_20_0.06_5_30_1.60_9 2393 2399.8 2 2388 2396.5 2
incgraph_20_0.17_5_30_1.60_7 21175 21190 1 21169 21175.2 2
incgraph_20_0.17_5_30_1.60_8 16387 16397.3 1 16387 16398.7 1
incgraph_20_0.17_5_30_1.60_9 12401 12413.7 1 12397 12405.8 1
incgraph_20_0.30_5_30_1.60_7 79358 79550.4 1 79351 79460.2 1
incgraph_20_0.30_5_30_1.60_8 62368 62417.7 1 62368 62401.4 2
incgraph_20_0.30_5_30_1.60_9 47506 47627.7 1 47506 47639.2 1

#𝐴𝑣𝑔 12049.69 12066.89 5.44 12048.17 12060.12 6.00
#𝐵𝑒𝑠𝑡 29 17 36 32
larger as the scale of the test instances becomes larger. This outcome
shows that 𝑁1 move is the best performing move, and using the four
neighborhood operators can obtain better results than only employing
each single move 𝑁1 to 𝑁4. Multiple neighborhood moves can delay
the convergence to avoid prematurely converging as can happen with
the algorithm that uses a single move. Meanwhile, the larger average
result in terms of 𝑆𝑅(10) in comparison with SBTS1 (6.00 vs 4.83)
shows the multiple neighborhood mechanism can make the algorithm
performance more robust and stable. This experiment thus confirms the
effectiveness of the multiple neighborhood framework in conjunction
with solution-based multiple neighborhood tabu search.

6.4. Importance of the dynamic diversification strategy

To check the influence of the dynamic strength strategy in the dy-
namic diversification phase, we compare our algorithm with a variant
of MNSB-TS with a fixed diversification strength (denoted as MNSB-
TS𝑓𝑠) obtained by removing the dynamic strength mechanism and
keeping the other ingredients unchanged. In other words, in contrast
with the dynamic strength strategy employed in MNSB-TS, which relies
on the historical search information (e.g., the previous local optimum
𝑆𝑝 and the counter 𝜉 of consecutive non-improving best solutions
found), the variant MNSB-TS𝑓𝑠 adopts a fixed diversification strength
𝑙𝑠𝑝. The value of 𝑙𝑠𝑝 is empirically set to (|𝐴𝑉 |)/3, where |𝐴𝑉 | denotes
16

the number of all the incremental vertices. Given the stochastic nature
of the two algorithms, we solved each instance 10 times by each
reference algorithm, and recorded the best objective value 𝑓𝑏𝑒𝑠𝑡, the
average objective values 𝑓𝑎𝑣𝑔 , and the times to obtain the best result
of each compared algorithm in ten runs 𝑆𝑅(10).

The experimental results are summarized in Table 10, which in-
cludes the same statistics as in Table 9. Table 10 discloses that the
MNSB-TS algorithm (with the dynamic diversification mechanism) per-
forms consistently better than the variant MNSB-TS𝑓𝑠 (with the fixed
diversification strength mechanism) over all performance indicators
considered and on all the tested instances.

6.5. Spatial distribution of high-quality solutions

To understand the structure of the IGDP problem and to motivate
the use of our proposed algorithm, we perform an experimental study
on spatial distribution of high-quality locally optimal solutions inspired
by Porumbel et al. (2010). This study is based on 6 representative in-
stances with different numbers of layers (6, 13, 20). For each instance,
we perform one execution of our MNSB-TS algorithm with the pre-
fixed maximum time of MNSB-TS given in Tables 7–9, and record 1600
distinct high-quality solutions encountered during the run.

To visualize the spatial distribution of high-quality solutions, we
employ the multidimensional scaling procedure from Kruskal (1964) to
generate the distribution in Euclidean 𝑅3 space. The procedure consists

of the following two steps:
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Table 11
Summary for the key components in MNSB-TS.

Key components Description Motivation Influence and results

Incremental
evaluation
technique

To efficiently evaluate the changed
objective values produced by the
candidate neighborhood moves, we
utilize dedicated matrices to record
the relevant information associated
with the number of edge crossings
for two vertices.

A similar technique is successfully
applied to the DBDP (i.e., two-layer
graph drawing problem), and we
extend it to IGDP (i.e., multi-layer
graph drawing problem).

Experimental results in Section 6.1 show
that the FE procedure using the
incremental evaluation technique performs
many more iterations in the 10-s time
interval than the RC procedure that does
not employ this mechanism. FE
conspicuously outperforms RC and the gap
between the methods becomes larger as
time grows, demonstrating the importance
of the proposed fast evaluation strategy.

Solution-based
tabu strategy

The solution-based tabu strategy
utilizes hash functions and hash
vectors to store the information
encoding a solution to make it tabu,
instead of recording simpler solution
attributes such as values assigned to
one or two variables which can
prevent a range of solutions from
being re-visited.

Solution-based tabu strategy has
been successfully applied to various
combinatorial optimization
problems, e.g., the minimum
differential dispersion problem
(Wang et al., 2017), the
multidemand multidimensional
knapsack problem (Lai et al.,
2018a), the maximum diversity
problem (Liu et al., 2020), and the
obnoxious p-median problem (Chang
et al., 2021). In this study, we
explore combining this method with
a multiple neighborhood mechanism
for solving the IGDP problem.

Computational results disclose that the
solution-based tabu strategy plays an
instrumental role in the high performance
of the MNSB-TS algorithm (see
Section 6.2).

Multiple
neighborhood
mechanism

MNSB-TS iteratively employs
multiple neighborhood search in the
main search phase, including four
neighborhood moves 𝑁1 −𝑁4.

At each iteration of the Algorithm 3,
a new neighborhood move usually
offers a chance to encounter a
neighboring solution of higher
quality.

Experimental results in Section 6.3 show
that the multiple neighborhood
mechanism can obtain a better tradeoff
between the computational efficiency and
solution quality in comparison with two
other neighborhood frameworks.

Dynamic
diversification
strategy

The proposed dynamic
diversification phase is controlled by
a specific parameter of the jump
magnitude by determining the
number of removed vertices and the
balance ratio between random and
greedy strategies in the modification
procedure in Section 3.4.
Specifically, it varies the
diversification intensity, depending
on the search status.

The purpose of the diversification
mechanism is to allow MNSB-TS to
escape from the current local
optimum in order to discover other
local optima of better solution
quality.

Experimental results in Sections 6.4 show
the effectiveness of the dynamic
diversification mechanism.
• Step 1: We first construct the distance matrix 𝑀𝑝×𝑝 (𝑝 = 1600
in this study), where each entry 𝑀[𝑎, 𝑏] represents the distance
between solutions 𝑆𝑎 and 𝑆𝑏, and 𝑝 is the total number of sampled
locally optimum solutions. The distance 𝑑𝑖𝑠𝑡(𝑆𝑎, 𝑆𝑏) between 𝑆𝑎

and 𝑆𝑏 is defined as follows:

𝑑𝑖𝑠𝑡(𝑆𝑎, 𝑆𝑏) =
𝐾
∑

𝑘=1

𝑛𝑘
∑

𝑖=1
𝐻𝑘(𝜔𝑎

𝑘(𝑖), 𝜔
𝑏
𝑘(𝑖)) (21)

𝐻𝑘(𝜔𝑎
𝑘(𝑖), 𝜔

𝑏
𝑘(𝑖)) =

⎧

⎪

⎨

⎪

⎩

0, If 𝜔𝑎
𝑘(𝑖) = 𝜔𝑏

𝑘(i);

1, If 𝜔𝑎
𝑘(𝑖) ≠ 𝜔𝑏

𝑘(i);
(22)

where 𝜔𝑎
𝑘(𝑖) and 𝜔𝑏

𝑘(𝑖) denote the vertex locating 𝑖th position in
layer 𝑘 for solutions 𝑆𝑎 and 𝑆𝑏, respectively. The 𝐻𝑘 function
value is a binary value set to 0 if both two solutions 𝑆𝑎 and 𝑆𝑏

has the same vertex in the same position in 𝑘th layer, and set to
1 otherwise.

• Step 2: Given the computed distance matrix 𝑀𝑝×𝑝, we then use the
classic multidimensional scaling procedure from Kruskal (1964)
to map the 𝑝 points in the 𝑛 dimensional space into the Euclidean
space 𝑅3. The distance between two points in 𝑅3 is approximately
equal to that in the original n-dimensional space. Finally, we plot

3
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a scatter graph of the obtained points in 𝑅 presented in Fig. 8.
Interestingly, Fig. 8 reveals that high-quality local optima tend to be
grouped into clusters. On the one hand, the distance between solutions
within a same cluster is small in general, which implies that exploita-
tion should be reinforced to detect neighboring high quality local
optima. Indeed, the solution-based tabu strategy of the MNSB-TS algo-
rithm exploits this property by systematically launching a search from
the best solution found so far to discover other nearby high-quality
solutions. On the other hand, local optima from different clusters are
generally separated by a large distance. In the case of the MNSB-TS
algorithm, to discover a new cluster (that can contain new high-quality
solutions), it is useful to apply strong diversification strategies (i.e., the
multiple neighborhood mechanism and dynamic diversification strat-
egy). Hence, the spatial distribution of high-quality solutions reinforces
the rationale underlying the proposed strategies in MNSB-TS.

At last, we summarize and explain the key proposed components, as
well as highlighting their corresponding motivation and their influence
on our MNSB-TS in Table 11.

7. Conclusion and future works

We present a novel algorithm (MNSB-TS) for solving the incre-

mental graph drawing problem (IGDP), whose key features include an
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Fig. 7. Computational performance comparison with and without the fast neighborhood evaluation strategy.
fficient solution-based tabu search that uses a multiple neighborhood
tructure with four neighborhood moves and a corresponding fast
valuation strategy for solution improvement, together with a dynamic
iversification phase to encourage the search to explore new regions in
he search space.

Experimental evaluations on extensive benchmarks show that our
NSB-TS algorithm competes very favorably with the current state-of-

he-art algorithms, obtaining highly competitive results in terms of both
18
computational efficiency and solution quality in comparison with the
best-performing heuristics and the exact solver Gurobi. In addition, we
carry out experimental analysis to reveal the effectiveness of the new
features incorporated in the MNSB-TS algorithm.

The main advantages of our multiple neighborhood solution-based
tabu search can be summarized as follows: First, the solution-based
tabu strategy provides a more effective tabu search procedure for
the IGDP problem Second, our solution-based tabu strategy features a
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Fig. 8. Distribution of high-quality solutions produced by the MNSB-TS algorithm on the six representative instances.
impler implementation structure to combine with the multiple neigh-
orhood moves, since it does not contain tabu tenure and tabu aspira-
ion, which are standard components in attribute-based tabu search.
hird, compared with previous solution-based tabu search methods
19
(such as Lai et al., 2018a, 2018b, 2018c; Wang et al., 2017), the
MNSB-TS algorithm adopts a multiple neighborhood mechanism to
enhance diversification. Extensive computational testing establishes the
contribution of each of these advantages.
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There are several issues for future work. It would be interesting
to examine different protocols for multiple neighborhood search as
proposed in the references cited in Section 1. Given the importance of
diversification, it would also be interesting to replace randomization
in our dynamic diversification approach by adaptive memory designs.
Another option of interest is to combine our proposed strategies with
population-based frameworks like genetic algorithms, path relinking or
memetic algorithms. Finally, the success of our strategies in tackling
the IGDP problem suggests that it would be worthwhile to investigate
how they perform for solving other graph drawing problems such as
the classic two-layer or multiple-layer graph drawing problem.
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