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Abstract
Clustering is the process of partitioning data into different clusters with the goal of minimizing the difference of objects
within each cluster, where the commonly used evaluation function is defined as the sum of the squared distance from each
point to the cluster center to which it belongs. Nevertheless, this general evaluation function is extremely vulnerable to
outliers and noisy data, and it is sensitive to initial cluster centers. More seriously, this evaluation function cannot effectively
represent the core of clustering results; even if the partition achieves the global optimum value according to the evaluation
function, the clustering results may not be good. In this study, we propose a multi-start local search algorithm (MLS)
with several techniques to tackle this problem. First, the center of each cluster is no longer its centroid, which reduces
the dependence of the cluster algorithm on difference in size and shape of ideal clusters. Second, the number of adjacent
points shared between clusters is defined as the new objective function. Third, two basic meta-operations, merge and split,
are used to optimize the objective function and make the iterative process insensitive to the initial solution. The novelty of
our approach is the selection criterion of the initial centers and the new objective function, which enables MLS to explore
more promising search area. Experimental results demonstrate that MLS outperforms traditional centroid-based clustering
algorithms in terms of both solution quality and computational efficiency, and it is quite competitive to other reference
algorithms such as spectral, density, and geometric based clustering algorithms.
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1 Introduction

Clustering is a fundamental problem in unsupervised
learning and data analysis. Its aim is to explore the implicit
structure in the data without prior labeling of classes
according to predefined attributes [29]. As an efficient
method for deriving knowledge from big data, it is widely
used in pattern recognition [30], image segmentation [32],
image object extraction [72], data compression [47] and data
stream processing [11]. An effective method for clustering
can aggregate data having the same attributes and separate
data having different attributes.

As an NP-hard problem, clustering analysis can be done
by strategies that try to find subgroups of samples based
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on features or on the properties of samples. Clustering
is generally achieved by assigning data points to clusters
by reference to a chosen optimization criterion [13]. For
example, [26] solves the clustering problem by seeking
several cluster solutions with different number of clusters
and preferring the one that minimizes the value of evaluation
metrics. The K-means algorithm is undoubtedly one of the
most studied centroid-based clustering algorithms [31] that
has a variety of applications in domain spanning areas [36].
Its essential idea is to find a set of k centers that minimizes
the sum of the squared distances from points to their closest
centers and to assign each point to its closest center [46].

The main contributions and novelties of this study can be
summarized as follows:

First, the center of each cluster is no longer its centroid,
which reduces the dependence of the algorithm on the
configuration of the points and their distribution. We select
the center point based on the distances among the points,
without knowing the specific coordinates or attribute values
of the points. In this way, a preprocessing step is employed
and therefore the objective function is calculated.
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Second, we define the minimization of the number of
adjacent pairs (NAP) between clusters as the new objective
function. Given a threshold value δ calculated from the
instance, if the distance between two points is less than
δ, they are deemed adjacent as illustrated in Fig. 1. K-
means only focuses on the distance within clusters, while
neglecting the distance between clusters. This results in
that, in some cases, as the objective function value becomes
small, the quality of the clustering result deteriorates
because it depends on the shapes and sizes of the clusters,
which are not known before clustering. By using NAP
to define the objective function, our algorithm aims to
minimize the overlap of the fields associated with the
clusters via focusing on the cluster boundaries.

Third, we use two basic meta-operations, merge and split,
to optimize the objective function and make the iterative
process insensitive to the initial solution. By this approach,
we select the two clusters with the largest NAP in the
current solution. Then, these two clusters are merged into
one cluster and a new center is chosen for them. Following
this, we choose the cluster with the minimum objective
value after segmentation to split it into two clusters. The
above steps are repeated until the iteration converges.

2 Related work

A large number of clustering algorithms have been
developed for different types of applications, which can be
generally classified into the following categories: centroid,
hierarchical, density, spectral, grid, and others.

Centroid-based (or partition-based) clustering algorithms
attempt to partition the data points into k clusters where
usually a distance-based specific criterion function is opti-
mized. A well-known method of minimizing the sum of
squared distances in clustering is the Generalized Lloyd
algorithm [46], also referred to as K-means algorithm,

which iteratively repartitions the data vectors and recal-
culates of the cluster centers until the solution converges
or a predefined maximum number of iterations has been
executed. Although this algorithm is easy to implement, it
relies heavily on the initial solution and a poor initial solu-
tion often leads to disappointing results. Several techniques
and strategies have been adopted to improve the original
K-means method. The global K-means algorithm dynam-
ically adds a cluster center one time by a deterministic
global search procedure in an incremental way [34]. The
well-known variant K-means++ chooses centers in a spe-
cific way for the K-means algorithm, which selects the first
center randomly and the next one according to the proba-
bility that is negatively correlated with the distance between
this point and the previously selected centers [56]. A com-
parative study of different initialization methods for the
K-means clustering algorithm was presented in [14] where
eight commonly used initial solution procedures were com-
pared. Duwairi and Abu-Rahmeh [16] applied the novel
heuristic for choosing the initial centroid that is known
non-trivial solutions of random centroids based methods.

Hierarchical clustering algorithms create a hierarchical
decomposition of the data that can be presented as a
dendrogram. Previous representative works includes the
balanced iterative reducing and clustering using hierarchies
(BIRCH) [74], clustering using representatives (CURE)
[24], etc. Recent advances in hierarchical clustering varies
in a wide range: [77] proposed a novel hesitant fuzzy
agglomerative hierarchical clustering algorithm for hesitant
fuzzy sets. Xu et al. [67] presented a density peak
based hierarchical clustering method. A novel hierarchical
clustering based on minimum spanning tree algorithm was
proposed in [10] for graph clustering. Fan [19] proposed
optimal probabilistic estimation approach by exploiting the
survival of the fittest principle. A unified validity index
framework for the hierarchical clustering was proposed in
[68], which improved the deficiencies of the measurements

Fig. 1 The illustration of the
proposed MLS clustering
algorithm
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in the existing validity indices. Yin et al. [71] proposed
an improved hierarchical clustering algorithm based on the
idea of population reproduction and fusion.

Density-based algorithms search for dense regions in
the data space that are separated from one another by low
density noise regions. Typical algorithms include DBSCAN
[17] and OPTICS [8]. A fuzzy density peaks clustering
algorithm based on an improved DNA genetic algorithm
and k-nearest neighbors was proposed by [5] to assure that
the subjective choice has a greater impact on the clustering
results when the size is small. Xu et al. [69] proposed
an improved density peaks clustering algorithm with fast
finding cluster centers, which improves the efficiency of
density peaks clustering algorithm by screening points with
higher local density based on two novel pre-screening
strategies. Based on the conception that cluster centers
are featured by a higher density than their neighbors and
by a relatively large distance from points with higher
densities, [44] proposed a fast search method for clustering.
Subsequently, [35] proposed a shared-nearest-neighbor-
based clustering by fast search and find of density peaks
algorithm to overcome the low robustness and poor fault
tolerance.

Base on the information from the eigenvalues (spec-
trum) of special matrices built from the graph or the data
set, spectral clustering becomes one of the most popular
modern clustering algorithms. Wang et al. [61] designated
a weighted-spectral clustering algorithm for detecting the
community structure of a complex network with no prior
knowledge of the cluster number. Zhu et al. [79] proposed
a low-rank sparse subspace clustering method by dynam-
ically learning the affinity matrix from low-dimensional
space of the original data. Wang et al. [63] proposed a spec-
tral clustering method with semantic interpretation based
on axiomatic fuzzy set theory to make it competitive in both
classification rate and comprehensibility. Subsequently,
[55] presented a spectral clustering using density-sensitive
distance measure with global and local consistencies.
Besides, an ultra-scalable spectral clustering and an
ensemble clustering were proposed in [28] for extremely
large-scale data sets with limited resources. A deep spectral
clustering method was proposed in [80], where several tech-
niques are combined into a unified framework. Sun et al.
[54] proposed a lifelong spectral clustering to learn a model
for a new spectral clustering task by selectively transfer-
ring previously accumulated experience from knowledge
library. An enhanced spectral clustering based on a churn
prediction model was proposed in [48]. Alshammari et
al. [6] proposed a method by refining a k-nearest neighbor
graph for a computationally efficient spectral clustering.

The grid-based clustering methods use a multi-resolution
grid data structure. It quantizes the object areas into a finite

number of cells that form a grid structure on which all the
operations for clustering are implemented. Sheikholeslami
et al. [49] proposed the WaveCluster algorithm for
clustering which was based on wavelet transforms. Wang
et al. [62] presented the Sting algorithm, which is a
hierarchical statistical information grid based approach for
spatial data mining to reduce computational burden. A study
of density-grid based clustering algorithms on data streams
can be found in [7]. Wu and Wilamowski [64] proposed a
fast density and grid based clustering method for data with
arbitrary shapes and noise. Brown et al. [12] proposed a fast
density-grid clustering method which works by dividing the
data space into a grid structure and then assigning a density
measurement to each grid cell.

With the development of cluster analysis in recent
years, some new methods, such as subspace clustering [2],
ensemble clustering [27, 53], deep embedded clustering
[66], clustering with deep learning [3], multi-omic and
multi-view clustering [41], graph clustering [37], and hybrid
approaches [1, 40, 73], have been proposed. Frey and
Dueck [21] proposed affinity propagation method which
takes the measures of similarity between pairs of data points
as input. Pourbahrami and Hashemzadeh [39] proposed a
geometric-based clustering method which uses the concept
of natural neighborhoods to extract the local density of data
points. Wang et al. [59] proposed a general graph-based
multi-view clustering method which takes the data graph
matrices of all views and uses them to generate a unified
graph matrix. A historical perspective of fuzzy clustering
was reviewed in [45]. A novel binary multi-view clustering
scheme was proposed in [78], which enables the handling of
multi-view image data and can be applied to large data. A
size-constrained label propagation was introduced in [37].
A general graph-based system for multi-view clustering
was proposed in [60] where the impact of different graph
metrics on the multi-view clustering performance within the
proposed framework is evaluated.

Recently, several K-menas based clustering improved
by metaheuristics have appeared. A K-PC algorithm
based on the principle of the K-means algorithm was
proposed in [23]. A novel clustering method by minimizing
the difference between pairwise sample assignments for
each data point was proposed in [38]. The performance
of K-means and its properties and effectiveness on
commonly used benchmark instances was studied by
[20]. Another approach in [76] adopted a decision
graph to find cluster centers easily and efficiently.
Besides, An improved deep embedded clustering algorithm
was proposed in [25] to handle the data structure
preservation by manipulating feature space. A two-leveled
symbiotic evolutionary algorithm was proposed in [51] for
clustering problems. An adaptive local learning regularized
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non-negative matrix factorization approach was proposed
in [50] for data clustering. Ashraf et al. [9] proposed
a meta-heuristic based genetic algorithm to optimize the
centroid initialization process. Two new algorithms based
on iterative local optimization for clustering graphs and
networks were proposed in [52]. A grey wolf optimization
algorithm was proposed in [4] to alleviate the stagnation in
local optima and premature convergence.

3 Research gaps

Through literature review, it is found that data clustering
attracts wide attention from research community and a
variety of algorithms of different categories are reported for
different types of clustering applications. Here we focus on
the research gaps in the centroid based clustering methods in
the existing studies, as well as the metaheuristic algorithms
incorporated to enhance the performance of centroid based
methods: (1) the traditional K-menas algorithm suffers from
the drawback that it is sensitive to the initial selection
of the cluster as the starting points. (2) metaheuristic
based clustering algorithms may stuck into local optima
if the search intensification and diversification is not well
balanced.

To overcome the above disadvantages, we propose in this
paper an effective multi-start local search (MLS) algorithm
with the goal of minimizing the number of adjacent pairs
instead of the sum of the squared distance from points
to their closest centers. The center of the cluster is no
longer its centroid and is selected based on the distance
between the points. By taking the number of adjacent pairs
as the new objective function to be minimized, MLS is
insensitive to the initial solution. Besides, the mlti-start
local search framework iteratively searches the solution
space by initialization, optimization, and adjustment phases.
The interaction among the three phases creates a balance
between search diversification and intensification, thus
to yield an effective means for generating high-quality
solutions.

4 Problem formulation

The clustering problem can be defined as follows. Consider
a set X of n points, given by X = {x1, . . . , xn}, or
equivalently X = {xi | i ∈ N} where N = {1, . . . , n}.
Let xr = (xr

1, . . . , x
r
d), r ∈ N be the feature vector of the

r-th point of the set X. Let d(xi, xj ) denote the distance
measure defined between points xi and xj , (i, j ∈ N), such
as Euclidean distance.

We are interested in clustering X into subsets C =
{C1, . . . , Ck} for specified cluster number k. The partition
P = {p1, . . . , pn} defines the cluster index to which each
point is assigned (i.e., xi ∈ Cpi

, pi ∈ {1, . . . , k}) and c =
{c1, . . . , ck} is the set of cluster’s centroids. The problem
formulation is then given by

minimize fk =
n∑

i=1

k∑

j=1

I {xi ∈ Cj }× ‖ xi − cj ‖2 (1)

s.t

⎧
⎨

⎩

∅ = Ci

⋂
Cj , ∀Ci, Cj ∈ C, i �= j,

X =
k⋃

i=1
Ci

(2)

where I {cond} in (1) is a binary function which returns 1 if
condition cond holds and returns 0 otherwise. Constraint (2)
ensures that each pointmust be assigned to exactly one cluster.
The objective function (1) used in K-means minimizes the
sum of squared distance between nodes that lie in the same
cluster. To express the objective function proposed in this
paper, we introduce the following new notations.

The threshold value δ determines whether two points
are adjacent. If d(xi, xj ) < δ, points xi and xj are
regarded as an adjacent pair. Ns(xi) = {xj | d(xi, xj ) <

δ, xj ∈ X} denotes the set of points adjacent to point
xi . SumAdjs(Cp, Cq) = ∑

xi∈Cp,xj ∈Cq
I {d(xi, xj ) < δ}

identifies the number of adjacent pairs of points where
one point lies in cluster Cp and the other lies in cluster
Cq . Based on the above definition, the proposed objective
function fa is defined in (3), which minimizes the sum of
the number of adjacent pairs between any two clusters.

fa =
∑

Ci,Cj ∈C,i �=j

SumAdjs(Ci, Cj ) (3)

5 Cluster centers and objective function

The two most important components of clustering are the
selection of centers and the definition of the objective
function [42]. In each iteration, the traditional K-means
algorithm defines the mean of all points in each cluster
to be a new center and reassigns each point to the new
center closest to it to identify the new collection of
clusters [34]. This method is not only time-consuming,
but also depends on the coordinates of the points. More
seriously, in some situations outliers or noisy data cause
points to be reassigned to clusters with fewer points, while
points incorporating normal data are reassigned to create
several clusters which should be a single large cluster.
Further processing by increasing the number of iterations

20349



X. Liu et al.

Fig. 2 Comparison of clustering
results obtained by K-means and
MLS

is usually not helpful in this situation. To overcome
these disadvantages, we select cluster centers based on
distances between points that define adjacency, utilizing the
neighborhood to be described in Section 5.1. By this means,
inappropriate points are prevented from becoming centers.

The most widely used objective function is the clustering
error criterion, which computes the squared distance of each
point from its corresponding cluster center and then takes
the sum of these distances over all points in the data set [35].
Although this criterion can overcome the dependency on
the initial solution if the process is restarted multiple times,
it still does not work when cluster sizes are unbalanced.
In other words, even if the objective function reaches the
optimum value for this criterion, the resulting set of clusters
may not be ideal. An example is provided in Fig. 2, where
Fig. 2a is the result obtained by K-means and Fig. 2b is
the result obtained by our proposed MLS procedure. Both
K-means and MLS are set to run 1000 iterations. Clearly,
the result on the right is significantly better than the one on
the left, which illustrates that the MLS procedure, guided
by the new objective function fa , can achieve much better
performance than the K-means procedure guided by fk .

5.1 TheMinSum-centroid

To avoid sparse points from hindering the search for the
next cluster center point, a threshold α is introduced. In a
cluster Ci , if |Ns(x)| < α, x ∈ Ci , the point x is regarded
as a sparse point and will not allowed to become a cluster
center. The MinSum-centroid is used to select or update the
centers as proposed in [20]. The sum of the distances from
the point x to all the other points among the cluster Ci to
which x belongs is given in (4) and the MinSum-centroid of
cluster Ci is defined in (5). The advantage of choosing the
center in this way is that new nodes are no longer generated
to become centers in the iterative process, and only one
preprocessing is needed to calculate the distance between
nodes if it is not directly given (This advantage is also shared

by the pseudo-centroid approach of [23]). In addition, the
reference to Ns(x) excludes the possibility of sparse points
becoming the center, which can avoid the interference of
abnormal or peripheral points.

SumDist (x) =
∑

x,xj ∈Ci,x �=xj

d(x, xj ) (4)

c∗ = arg min
x∈Ci,|Ns(x)|≥k

SumDist (x) (5)

In order to further reduce fa , c∗ is adjusted when a new
node is added or the point minimizing fa has not been
found. Since this step is time-consuming, the search process
is restricted to traverse the adjacent points N(c∗) of c∗.

5.2 The proposed objective function

The performance of iterative centroid-based clustering
algorithms, which generates a large number of local optimal
solutions, is highly related to the initial cluster centers.
If the initial cluster centers are not chosen properly, it is
difficult to get a desired solution during the procedure. The
objective function in these cases only focuses on the sum
of the distances between the center and other points, while
ignoring the boundary between the clusters. This can lead
to dividing a large cluster into two or more small clusters
(1,2), and to causing some small clusters to be mistakenly
combined into a large cluster (3,4), as shown in Fig. 3. If
minimizing the number of adjacent pairs whose elements lie
in different clusters is taken as the objective function, this
phenomenon can be avoided. This alternative objective can
divide clusters that are far apart and make all clusters well
bounded.

As previously noted, the newly proposed objective
function fa is the number of adjacent pairs (NAP) among
all clusters. The fewer the number of adjacent pairs whose
elements lies in different clusters, the more appropriate
are the boundaries between the clusters. Consequently, as
shown in Fig. 2, the clustering result obtained by fa is better
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Fig. 3 The results obtained by
K-means on data sets birch2 and
Aggregation

than the one by fk . Most clustering algorithms based on fk

require that the cluster size is roughly the same across all
clusters and the shape of the clusters is approximately round
or square, which makes them deeply dependent on the initial
solution. By contrast, fa does not depend on the shape or
size of the cluster, so it is insensitive to the initial solution.

5.3 Parameter δ

The parameter δ is a threshold value that determines
whether points are adjacent to others. It also reflects the
degree of concentration within clusters and the degree of
separation between clusters, so it is related to the average
distance of points and the number of clusters k as defined
in (6).

δ =
∑n

i=1
∑n

j=i d(xi, xj )

kn(n − 1)/2
(6)

6Multi-start local search based on NAP

We now describe the main scheme and each component of
multi-start local search based on NAP. In general, our MLS
procedure consists of three phases: initialization, optimiza-
tion, and adjustment. Since the algorithm is insensitive to
the initial solution, a greedy construction algorithm is used
in the initialization phase. The optimization phase mainly
uses two basic meta-operations called merge and split to
optimize the objective function fa . The adjustment phase
adjusts c∗ within its neighborhood Ns(c∗) to make fa as
small as possible. These three phases are invoked repeat-
edly until the stop condition is met. MLS terminates when
the solution has not been improved for maxi ter consecutive
repetitions of the above three phases. The general scheme of
the overall clustering procedure is described in Algorithm 1.

Algorithm 1 The main scheme of the multi-start local search
algorithm.

6.1 Initialization phase

In the initialization phase, whose pseudo code appears in
Algorithm 2 below, an arbitrary seed element in X is used
as the first element of c (line 3), and then the point that is
the farthest from the chosen center is selected as the next
element of c, until c covers k elements (lines 5∼9). Then,
remaining elements in X are assigned to the closest center
according to the measure d(xi, xj ) (lines 10∼12). After
initial clusters have been constructed, the centers in the set c
are updated by minimizing SumDist (ci, Ci) (line 15) and
each element is reassigned to its center (lines 16∼18). This
process is repeated until set c does not change or a given
stopping criterion is met (lines 14∼25). The initial solution
procedure by Algorithm 2 is a locally optimal solution based
on prototype clustering.

In the following, when referring to distances, it is
convenient to refer to the points xi and xj by their indices
i and j , writing d(i, j) for d(xi, xj ), MinD(i, c) for
MinD(xi, c), and writing i ∈ Cp and j ∈ Cq for xi ∈ Cp

and xj ∈ Cq .

6.2 Optimization phase

The pseudo-code of the optimization phase of our local
search algorithm is presented in Algorithm 3. First, it
initializes the min fa value to be “nfinity” (i.e., a large
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Algorithm 2 Pseudo code of the Initialization procedure.

value) in order to record the best solution (line 3) and then
starts from the initial solution generated by Algorithm 2.

The local search based on the operations merge and
split is designed to optimize the objective function fa in
the optimization phase. The merge operation merges two
clusters with the maximum NAP value into one cluster,
while the split operation selects the cluster with the smallest
NAP value to divide into two clusters. Upon starting from
an initial solution generated by Algorithm 2, the algorithm
repeats the merge operation (lines 6∼11) and the split
operation (lines 13∼25) until reaching a given iteration
limit. After the merge operation, a new center for the merged
cluster is chosen (line 8). Then all elements are reassigned
to produce k − 1 clusters by the measure d(xi, xj ) (lines
9∼11). The split operation then identifies a tentative new
center for each cluster, whereon the algorithm computes the
NAP after splitting the cluster and records the minimum
NAP and the corresponding cluster after the split operation
in f2 and addi (lines 12∼19). After all the clusters have
been checked, the cluster Caddi

is divided into two clusters
(line 20), and the solution is updated according to fa (lines
21∼25). The procedure terminates when the solution has
not been improved for Imax consecutive iterations.

Algorithm 3 Pseudo code of the Optimize procedure.

The procedure of choosing the pair of clusters (Cp, Cq)

that has the largest value of SumAdjs in Algorithm 3
is detailed in Algorithm 4. For this propose, we first use
preprocessing for each point i = 1 to n, to create the sets
S(i) = {j > j |d(i, j) < δ}. Then, while generating and
updating each cluster Cr , we keep track of its membership
by recording Cluster(i) = r for each element i in the
cluster Cr (lines 3∼6). After that, we examine the sets S(i)

for i = 1 to n − 1, and for each j in S(i) set V (r, s) =
V (r, s) + 1 for r = Cluster(i) and s = Cluster(j)

(lines 12∼18). Finally, the pair of clusters (Cp, Cq) that has
the largest value of SumAdjs can be identified simply as
V (r, s) for r = 1 to k − 1 and s = r + 1 to k (line 24).

6.3 Adjustment phase

After the inter-cluster tuning in the optimization phase,
intra-cluster requires readjustment to further improve fa .
This is accomplished in Algorithm 5 by sequentially
adjusting each center and exchanging it with one of its

20352



Multi-start local search algorithm based on a novel objective function for clustering analysis

Algorithm 4 Pseudo code of the ChooseMaxPair procedure.

neighbors Ns(c∗) to obtain a better center (line 6). Then,
each point is reassigned to the closest center by the measure
d(i, j) (line 7) followed by recording the minimum fa (lines
8∼11).

Algorithm 5 Pesudo code of CenterAdjust procedure.

7 Experimental results

We report the outcomes to evaluate the performance of
the MLS algorithm on a variety of clustering benchmarks
which are widely used in the literature [22]. The clustering
performance takes three aspects into account: the Jaccard
Coefficient (JC), the Fowlkes and Mallows Index (FMI)
and Accuracy, which can eliminate the influence of the
measurement standard on the results and make the outcome
more conclusive. For visualization to compare with other
clustering methods, most examples will be displayed in 2D
space, using Euclidean distance as the distance measure.

7.1 Benchmark sets

The benchmark sets of our study consist of the following
types.

A-sets [26]: the data sets contain a number of spherical
clusters (k = 20, 35, 50). The number of points and
their proximity to each other increases with the number
of clusters. As shown in Fig. 4, our algorithm obtains
convincing results in spite of the increasing number of
clusters, because its performance is rarely affected by the
initial solution. The clusters marked with red circles on the
right could be either combined into one cluster or divided
into two clusters. With the increasing number of clusters, it
is difficult to obtain a good initial solution.

Aggregation-sets [75]: These data sets produce slightly
unbalanced cluster sizes and their shapes are a little different
from those obtained from the circular data set. When using
fk as the objective function as in the standard K-means
algorithm, the final result is not ideal no matter how many
times the algorithm is restarted, as show in Fig. 2. However,
when our fa objective is used, a good clustering effect can
be easily obtained, as is shown in Fig. 5.

Birch-sets [43]: These data sets consist of two types,
birch1 and birch2, which are extracted separately from an
original data set consisting of 100,000 points with 100
clusters. The number of clusters in the birch1 data set is very
large (k = 100), compared with the example introduced
above. In contrast, birch2 has a very large number of
points per cluster. We tested birch1 and birch2 with sum
of the squared errors (SSE) and NAP as the objective
function, and found that SSE has difficulty converging to the
global optimum unless the associated algorithm is restarted
thousands of times. Because the algorithm could not jump
out of a local optimum and could only rely on successive
restarting, the quality of the final solution was rendered
very uncertain. In spite of the challenge presented by the
data, our algorithm using the NAP-based objective only
required a few iterations to converge, again demonstrating
little dependence on the initial solution. The results of MLS
are plotted in Fig. 6.

20353



X. Liu et al.

Fig. 4 The results obtained by
MLS (on the right) and K-means
(on the left) on instances A1,
A2, and A3 in A-sets

Unbalance-sets [58]: This data set gives rise to 8 strongly
unbalanced clusters. The three clusters on the left in Fig. 7
are very dense because each of them contains 2000 points.
The other five clusters on the right are relatively sparse
and each of them contains 100 points. If the initial centers
are not uniformly distributed among the best clusters, the
K-means approach will only converge to a local optimal
solution, yielding different clusters from that shown in
Fig. 6. However, owing to the NAP-based objective function

and the center adjustment phase, MLS is able to obtain a
highly separable solution for the unbalanced cluster data set
and succeeds in identifying the clusters plotted in Fig. 7.

S-Sets [57]: The S-sets contain Gaussian clusters with
different overlaps. The majority of them are spherical, but
a small part of them have been transformed to be likely
to the non-spherical Gaussian clusters. The second set (S2)
has strong overlapping points but the general distribution
of the clusters are still visible. The visualization is shown
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Fig. 5 The results obtained byMLS on data set Aggregation(N = 788,
k = 7)

in Fig. 8. R15 and D31-set [34]: These data sets contain
varying numbers of spherical clusters (k = 15, k = 31).
The visualization of the results obtained by MLS on data
sets R15 and D31 are shown in Fig. 9.

7.2 Performancemetrics

Clustering partitions the sample set into several non-
intersecting subsets. In this paper, the clustering results
are compared with a “reference model”. For example, the
segmentation results given by domain experts are used as a
reference model.

As above we represent the data set by X = {xi | i ∈ N}
and the collection of clusters by C = {Ch | h ∈ K}. The
cluster collection generated by the reference model will be

denoted as C∗ = {C∗
h | h ∈ K}. Let λ and λ∗ refer to the

points in C and C∗, respectively, we define:

a =| SS |, SS = {(xi, xj ) | λi = λj , λ
∗
i = λ∗

j , i < j}
b =| SD |, SD = {(xi, xj ) | λi = λj , λ

∗
i �= λ∗

j , i < j}
c =| DS |, DS = {(xi, xj ) | λi �= λj , λ

∗
i = λ∗

j , i < j}
The interpretation of these definitions is as follows. The

set SS contains sample pairs that are both in the same cluster
in C and C∗. The set SD contains sample pairs that are in
the same cluster in C but in different clusters in C∗. The set
DS contains sample pairs that are in different clusters in C

but in the same cluster in C∗. We define three performance
metrics based on a, b, and c.

• Jaccard Coefficient(JC):

JC = a

a + b + c

• Fowlkes and Mallows Index(FMI):

FMI =
√

a

a + b
∗ a

a + c

• Accuracy:

accuracy = a

a + c

The above performance measurement values all lie in
the interval [0, 1], and the larger the values, the better the
results.

7.3 Comparison with traditional K-means variants

As previous tested by K-means* and K-means++, the data
sets A1, A2, A3, Aggregation, Birch, R15, D31 and Iris
are also used as the testbed of MLS for comparison. The
difference among K-means, K-means* and K-means++ lies
in the construction of the initial solution. K-means randomly
selects k points as the initial solution, and K-means*

Fig. 6 The results obtained by
MLS on data set birch1
(N = 10000, k = 100) and
birch2 (N = 10000, k = 10)
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Fig. 7 The results obtained by MLS on data set unbalance-sets(N =
6500, k = 8)

chooses the first center c1 arbitrarily and the following i-
th (i ∈ {2, 3, . . . , K}) center ci to be the point that has
the largest minimum distance to the previously selected
centers, i.e., c1, c2, . . . , ci−1. K-means++ randomly selects
one point as the first center and chooses the following i-th
(i ∈ {2, 3, . . . , k}) center to be x ∈ X with a probability of

md(x)2∑n
j=1 md(xj )2

, where md(x) denotes the minimum distance

from point x to the previous selected centers.
Next, we evaluate the proposed MLS algorithm in terms

of both solution quality and computational efficiency. To
evaluate its performance more precisely, we apply the
following two kinds of experiments on all the common

instances for the four algorithms: MLS, K-means, K-
means*, and K-means++.

First, we run each of the four algorithms once and record
the corresponding results, comparing their performance
with respect to the three criteria defined above. The
comparison results are plotted in Fig. 10 on the left,
where the x-axis represents different data sets and the y-
axis represents the value of the performance evaluation
criteria. It can be seen from Fig. 10a, b, and c that the
JC, FMI, and Accuracy values obtained by MLS are larger
than those values obtained by K-means, K-means*, and K-
means++, which indicates that MLS is superior to other
three algorithms in terms of JC, FMI, and Accuracy.

Second, we execute MLS and the reference algorithms
for 100 times and record the best solutions found by each
algorithm and the corresponding computation time. The
comparison results are plotted in Fig. 10. Supplementing
these plots, Table 2 presents the average computational time
in seconds to reach the minimum value for the employed
objective. From Fig. 10d, e, f, and Table 2, one observes
that MLS achieves the best of JC, FMI, and Accuracy with
the smallest computation time, demonstrating that MLS
outperforms the three versions of K-means algorithms in
terms of both solution quality and computational efficiency.

7.4 Comparison with K-means variants based
onmetaheurstics

Moreover, to further evaluate the performance of MLS,
we apply experiments with the recent K-means methods
enhanced by metaheuristics: a genetic algorirthm (GA) [9],
two firefly algorithms, namely inward intensified explo-
ration FA (IIEFA) and compound intensified exploration

Fig. 8 The results obtained by
MLS on data sets S1 ans S2
(N = 5000, k = 15)

20356



Multi-start local search algorithm based on a novel objective function for clustering analysis

Fig. 9 The results obtained by
MLS on data sets R15
(N = 600, k = 15) and R31
(N = 3100, k = 31)

FA (CIEFA) [65], and a bargaining game based K-means
(GBK-means) [42].

Since GA only reports the Davies–Bouldin index (DBI)
as the performance metric, which is an internal evaluation
scheme introduced in [15]. A smaller DBI value indicates a
relative superiority of the method. Therefore, we compare
MLS with GA regarding to DBI values. Table 1 reports
the DBI values obtained by MLS, K-means, K-means*, and
GA on the 10 UCI machine learning benchmark data sets
which are commonly used in the literature 1. One observes
that MLS outperforms the other three algorithms on all the
instances and achieves the minimum average value 0.874
for DBI value. This demonstrates the effectiveness of the
proposed MLS algorithm (Table 2).

Table 3 reports the accuracy values obtained by IIEFA,
CIEFA, GBK-means, and MLS on different data sets. One
observes that MLS improves the accuracy values for 4 out
of 7 data sets compared with the two firefly algorithms,
and IIEFA and CIEFA only outperforms MLS on 3 data
sets. Besides, MLS improves the accuracy values for 6 out
of 12 data sets compared with GBK-means. These results
demonstrate that MLS is comparable to the recent K-means
variants based on metaheurstics.

7.5 Comparison with other state-of-the-art
clustering algorithms

To further identify the effectiveness of MLS, we compare
it with the recent state-of-the-art clustering algorithm based
on other mechanisms such as spectral, geometric, and
density. The comparison results are presented in Table 4
which reports the accuracy, NMI (normalized mutual
information), and F1-score [63] obtained by MLS and the
reference algorithms. The larger the NMI or F1-score is,
the better the algorithm’s performance is. Note that “-”

1https://archive.ics.uci.edu/ml/datasets.php.

represents that the corresponding values are not available.
The reference algorithms are as follows:

• AFS: A spectral clustering method with semantic
interpretation based on axiomatic fuzzy set theory [63].

• KNSC: A spectral clustering algorithm based on
refining a k-nearest neighbor graph [6].

• GLCDC: A spectral clustering algorithm using density-
sensitive distance measure with global and local
consistencies [55].

• ADBC: A novel density-based clustering algorithm
using nearest neighbor graph [33].

• GDPC: An improved density peaks clustering algorithm
with fast finding cluster centers [69].

• FSDPC: A fast density peaks clustering algorithm with
sparse search [70].

• ACSC: An ant colony stream clustering based on
density for dynamic data streams [18].

• GBC: A geometric-based clustering method using
natural neighbors [39].

Table 4 reports the comparison results of MLS and
the recent state-of-the-art clustering algorithms based on
spectral, density, and geometric. One observes that MLS
obtains the best accuracy, NMI, and F1 score for 12, 6, and
11 out of all the 15 data sets, respectively. In particular,
MLS outperforms the reference algorithms regarding to all
the metrics on four data sets, i.e., wdbc, bre-wi, waveform,
and gamma. These results again identify the effectiveness of
the proposed MLS method.

8 Conclusion

Clustering is a fundamental technique in machine learning
that involves classifying data points by partitioning them
into separate groups. In view of the disadvantages of tra-
ditional K-means clustering algorithms, which encounter
several shortcomings: (i) centroid initialization sensitivity
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Fig. 10 The JC, FMI, and
Accuracy values obtained by
MLS (run once on the left and
100 times on the right

Table 1 The comparison among MLS and the reference algorithms with respect to the DBI metric

Data set K-means K-means* GA MLS

Iris 0.78 0.76 0.465 0.435

Heart failure 2.08 1.989 1.402 1.257

Seeds 1.033 0.952 0.661 0.549

Thyroid 0.923 0.682 0.182 0.181

Wine 1.366 1.278 1.179 1.133

Yeast 2.227 1.661 1.191 1.624

Breast 0.877 0.761 0.827 0.768

Glass 1.568 1.292 1.165 1.158

wdbc 0.897 0.869 0.82 0.761

Average 1.306 1.138 0.877 0.874
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Table 2 The average computational time required by each algorithm to obtain the minimum objective function value

Data set K-means K-means* K-means++ MLS

A1 3628 1587 4717 1556

A2 100554 35785 44771 2611

A3 280588 94591 115829 6968

Aggregation 4119 720 1109 781

Birch 126715 266099 192214 45195

R15 681 114 532 35

D31 81874 24233 21453 1414

Iris 297 94 161 37

Average 74807.00 52902.88 47598.25 7324.63

occurs due to the random allocation of k centroids. (ii) the
stagnation in local minima appears in metaheuristics, and
(iii) the improper criteria for evaluating cluster membership.
To address these issues, we introduce a new objective func-
tion of minimizing the number of adjacent pairs between
clusters, and propose a multi-start local search method
which incorporates merge and spilt meta-operations. The
experimental results show that the proposed method is
superior to commonly used clustering algorithms in the
K-means class, evaluated by standard performance metrics.

The main contributions of this paper consist of four
elements: the selection of the cluster centers, the objective
function definition, the method of improving a current
cluster configuration, and the performance analysis of
experimental results. First, the center of each cluster is
no longer its centroid, which reduces the dependence of
the algorithm’s performance on data points that can be
grouped in roughly spherical structures and whose densities

do not vary widely in the solution space. Second, we
introduce a characterization of adjacency that underlies
our new objective function to minimize the number of
adjacent pairs whose elements lie in different clusters.
Third, we use two basic meta-operations denoted merge
and split to successively improve the clusters and make
the iterative process insensitive to the initial solution.
Finally, we apply three performance evaluation criteria to
conduct a computational analysis of our procedure. The
experimental results demonstrate that our MLS algorithm
can provide much better classification accuracy than
traditional K-means based clustering algorithms, and it is
quite competitive to others such as spectral, density, and
geometric based clustering algorithms.

This research can be extended in several directions. First,
since the new objective function has little correlation with
parameter k, the problem of specifying a good k value may
be handled effectively by a well-designed dynamic self-

Table 3 Comparison of MLS with IIEFA, CIEFA, and GBK-means

Data set IIEFA CIEFA MLS data set GBK-means MLS

Iris 0.88 0.87 0.96 s1 real 1 0.99

wdbc1 0.91 0.91 0.93 s2 real 1 0.97

Wine 0.95 0.97 0.92 s3 real 0.99 0.86

Sonar 0.56 0.56 0.62 wdbc 0.93 0.93

Ecoli 0.77 0.79 0.80 ionosphere 0.58 0.71

Balance2 0.80 0.79 0.67 heart 0.77 0.79

Thyroid0387 0.82 0.83 0.40 australian 0.86 0.79

haberman 0.52 0.75

bre-ca3 0.93 0.70

bre-cw4 0.93 0.96

mam mas5 0.75 0.78

jap cr6 0.84 0.79

The largest value of each row is marked in bold

1: wdbc is shorted for wdbc breast cancer. 2: balance is shorted for balance-scale

3: bre-ca is shorted for breast-cancer. 4: bre-cw is shorted for breast-cancer-wisconsin

5: mam-mas is shorted for mammographic masses. 6: jap-cre is shorted for japanese credit
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Table 4 Comparison of MLS with other clustering algorithms based spectral and density

Data set Metric Ours Spectral based Density based Geometric

MLS AFS KNSC GLCDC ADBS GDPC FSDPC ACSC GBC

Iris accu 0.96 − 0.90 − − 0.94 0.94 0.89 −
NMI 0.86 0.90 − 0.86 0.74 − − − 0.81
F1 0.96 0.95 − − − − − − 0.95

wdbc accu 0.93 − − − − − − − −
NMI 0.63 0.48 − − − − − − −
F1 0.93 0.78 − − − y − − −

Wine accu 0.92 − 0.70 − y − − 0.88 −
NMI 0.76 0.76 − 0.88 0.63 − − − −
F1 0.92 0.87 − − y − − − −

Sonar accu 0.62 − − − − − − − −
NMI 0.04 0.08 − 0.30 − − − − −
F1 0.61 0.55 − − − − − − −

Iono1 accu 0.71 − − − − − − − −
NMI 0.13 − − 0.32 − − − − −
F1 0.70 − − − − − − − −

Ecoli accu 0.80 − − − − − − − −
NMI 0.68 − 0.58 − − − − − 0.70

F1 0.54 0.79 − − − − − − 0.79

Heart accu 0.79 − − − − − − − −
NMI 0.26 − − 0.40 − − − − −
F1 0.79 − − − − − − − −

Habe2 accu 0.75 − − − − − − − −
NMI 0.08 − − 0.27 − − − − −
F1 0.65 − − − − − − − −

Bre-ca accu 0.70 − − − − − − − −
NMI 0.03 − − 0.79 − − − − 0.83

F1 0.60 − − − − − − − 0.93

Bre-wi accu 0.96 − − − − − − − −
NMI 0.76 0.76 − − − − − − −
F1 0.96 0.93 − − − − − − −

Seeds accu 0.85 − − − − 0.88 0.90 − −
NMI 0.64 0.74 − − 0.66 − − − 0.69

F1 0.53 0.84 − − − − − − 0.89
Segm3 accu 0.62 − 0.65 − − − 0.6 − −

NMI 0.70 0.59 − − − − − − −
F1 0.50 0.57 − − − − − − −

Waveform accu 0.78 − − − − 0.62 0.54 − −
NMI 0.47 − − − − − − − −
F1 0.77 − − − − − − − −

Gamma accu 0.69 − 0.66 − − 0.51 0.65 − −
NMI 0.08 − − − − − − − −
F1 0.66 − − − − − − − −

Pendigits accu 0.74 − 0.83 − − 0.37 0.65 − −
NMI 0.68 − − − − − − − −
F1 0.71 − − − − − − − −

The largest value of each row is marked in bold

1: iono is shorted for ionosphere. 2: habe is shorted for haberman

3: segm is shorted for segmetation. Other abbreviations are the same as in Table 3
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adjustment strategy. Second, the local search algorithm in
this paper could be combined with reinforcement learning
technique to enhance its efficiency. Third, given the merits
of the new objective function of minimizing the number
of adjacent pairs, other objective functions with respect to
both inter- and intra-cluster measurements will be adopted
to tackle more complex and irregular data distribution
problems in future study.
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data analysis. Zhipeng Lü contributed to conceptualization, validation,
writing-draft review and editing, supervision, project administration,
funding acquisition. Fred Glover contributed to conceptualization,
methodology, writing-review and editing, project administration. Jun-
wen Ding contributed to conceptualization, methodology, validation,
writing-review and editing, formal analysis, supervision, and funding
acquisition.

Data Availability The datasets adopted in the current study are
available at https://archive.ics.uci.edu/ml/datasets.php.

Declarations

Ethics approval and consent to participate This article does not
contain any studies with human participants or animals performed by
any of the authors.

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Abualigah LM, Khader AT, Hanandeh ES (2018) Hybrid
clustering analysis using improved krill herd algorithm. Appl
Intell 48(11):4047–4071

2. Agrawal R, Gehrke J, Gunopulos D et al (2005) Automatic
subspace clustering of high dimensional data. Data Min Knowl
Disc 11(1):5–33

3. Aljalbout E, Golkov V, Siddiqui Y et al (2018) Clustering with
deep learning: taxonomy and new methods. arXiv:180107648

4. Aljarah I, Mafarja M, Heidari AA et al (2020) Clustering analysis
using a novel locality-informed grey wolf-inspired clustering
approach. Knowl Inf Syst 62(2):507–539

5. Aloise D, Deshpande A, Hansen P et al (2009) NP-Hardness of
euclidean sum-of-squares clustering. Mach Learn 75(2):245–248

6. Alshammari M, Stavrakakis J, Takatsuka M (2021) Refining a
k-nearest neighbor graph for a computationally efficient spectral
clustering. Pattern Recog 114:107,869

7. Amini A, Wah TY, Saybani MR et al (2011) A study of
density-grid based clustering algorithms on data streams. In: 2011
Eighth international conference on fuzzy systems and knowledge
discovery (FSKD), IEEE, pp 1652–1656

8. Ankerst M, Breunig MM, Kriegel HP et al (1999) Optics: ordering
points to identify the clustering structure. ACM Sigmod Record
28(2):49–60

9. Ashraf FB, Matin A, Shafi MSR et al (2021) An improved k-
means clustering algorithm for multi-dimensional multi-cluster
data using meta-heuristics. In: 2021 24th International conference
on computer and information technology (ICCIT), IEEE, pp 1-6

10. Bateni MH, Behnezhad S, Derakhshan M et al (2017) Affinity
clustering: hierarchical clustering at scale. In: Proceedings of the
31st International conference on neural information processing
systems, pp 6867–6877

11. Bendoly E (2003) Theory and support for process frameworks
of knowledge discovery and data mining from ERP systems. Inf
Manag 40(7):639–647

12. Brown D, Japa A, Shi Y (2019) A fast density-grid based
clustering method. In: 2019 IEEE 9Th annual computing and
communication workshop and conference (CCWC), IEEE, pp
0048–0054

13. Cao B, Glover F, Rego C (2015) A tabu search algorithm for
cohesive clustering problems. J Heuristics 21(4):457–477

14. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study
of efficient initialization methods for the K-means clustering
algorithm. Expert Syst Appl 40(1):200–210

15. Davies DL, Bouldin DW (1979) A cluster separation measure.
IEEE Trans Pattern Anal Mach Intell 3(2):224–227

16. Duwairi R, Abu-Rahmeh M (2015) A novel approach for
initializing the spherical K-means clustering algorithm. Simul
Model Pract Theory 54:49–63

17. Ester M, Kriegel HP, Sander J et al (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: Proceedings of the AAAI conference on artificial
intelligence, pp 226–231

18. Fahy C, Yang S, Gongora M (2018) Ant colony stream clustering:
a fast density clustering algorithm for dynamic data streams. IEEE
Trans Cybern 49(6):2215–2228

19. Fan J (2019) Ope-hca: an optimal probabilistic estimation
approach for hierarchical clustering algorithm. Neural Comput
Applic 31(7):2095–2105
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