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A B S T R A C T

The minimum routing and wavelength assignment (min-RWA) problem is a classic and challenging NP-hard
combinatorial optimization problem which aims to reduce the required wavelengths in wavelength-division
multiplexing optical networks. In order to tackle this problem, we present a dual-neighborhood iterated local
search (DN-ILS) by alternately evaluating a shift-shaking and a swap-shaking neighborhood to improve the
current solution. Both neighborhoods are based on an ejection chain-based shaking (ECS) procedure, while
the high-level procedures are shift moves and swap moves, respectively. These two move operators change
the wavelengths of certain lightpaths, while the ECS refines routing for the related lightpaths. Experimental
results on commonly used benchmark instances demonstrate that our proposed DN-ILS algorithm outperforms
the best methods in the literature by improving the best known results for 35 out of 113 instances while
matching the best known results for the remaining ones. The success of the shift-shaking and swap-shaking
neighborhoods inspires us to apply them to other challenging optimization problems with multi-level decisions
and strong constraints.
1. Introduction

Wavelength-division multiplexing (WDM) networks provide large
bandwidth which allows transmitting different messages through the
same fiber without mutual interference by assigning different wave-
lengths to different lightpaths traversing the same fiber, where a light-
path is a channel connecting two nodes through a series of consecutive
fiber links (Lee et al., 2002). In practice, each lightpath is usually as-
signed a single wavelength, i.e., wavelength conversion is not allowed,
which is known as the wavelength consistency constraint (Dutta et al.,
2000).

Two important combinatorial optimization problems are involved
in the WDM network: the traffic grooming problem for network de-
sign (Dawande et al., 2007) and the routing and wavelength assignment
(RWA) problem for network operation (Chlamtac et al., 1992). The
traffic grooming aims to minimize the cost of building a network which
satisfies transmission demands (Wu et al., 2020), while RWA focuses on
minimizing the consumption of wavelength resources for traffic routing
in a fixed network. In this paper, we study the min-RWA problem,
which deals with the assignment of wavelengths to all lightpaths as
well as their detailed routing.

∗ Corresponding author.
E-mail address: suzhouxing@hust.edu.cn (Z. Su).

Wavelengths have become limited and expensive resources with the
ever-growing lightpath requests (Wu et al., 2015). Accordingly, the
min-RWA problem, which is NP-hard (Erlebach and Jansen, 2001),
aims to route all lightpath requests using as few wavelengths as pos-
sible, becoming a focus of widespread attention. Numerous approaches
and variants of the RWA were reviewed in Dutta et al. (2000) and Zang
et al. (2000). In a first study, Chlamtac et al. (1992) proposed a greedy
algorithm for the RWA. Then, various mathematical formulations were
developed for the RWA, including integer linear programming (Ra-
maswami and Sivarajan, 1995), linear programming relaxation (Krish-
naswamy and Sivarajan, 2001) and column generation (Jaumard et al.,
2009). In view of the multi-level problem structure of min-RWA, there
are usually two types of solution approaches. On the one hand, Li and
Simha (2000) and Noronha and Ribeiro (2006) divided it into two
subproblems: routing problem and wavelength assignment problem. On
the other hand, Manohar et al. (2002) solved these two subproblems
simultaneously. In addition, Skorin-Kapov (2007) pointed out the rela-
tion between bin packing and min-RWA, where the lightpath requests
are regarded as items and copies of the original network are considered
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as bins. Based on this analogy, Noronha et al. (2008) developed the
best-fit decreasing (BFD) heuristic. Noronha et al. (2011) integrated
BFD into a biased random-key genetic algorithm. More recently, Mar-
tins et al. (2012) proposed a variable neighborhood descent (VND)
algorithm and Wu et al. (2016) designed a multi-neighborhood iterated
tabu search (MN-ITS) for min-RWA. As far as we know, the most
effective algorithms for min-RWA are VND and MN-ITS, and neither of
them dominates the other on the hard instances introduced by Noronha
et al. (2008).

In this paper, we propose an effective dual-neighborhood iterated
local search (DN-ILS) algorithm based on shift-shaking and swap-
shaking neighborhood structures for solving min-RWA. Our main con-
tributions can be summarized as follows:

• Instead of directly solving min-RWA, we solve a series of decision
subproblems 𝑘-RWA where 𝑘 denotes the number of wavelengths
used and is kept fixed in each subproblem. The idea of solving
each 𝑘-RWA problem is to first assign all the lightpaths to 𝑘
bins (macro-level decision) and then route the lightpaths in the
same bin (micro-level decision) with the objective of minimizing
the total overload of links in all the 𝑘 bins. The search space
of the min-RWA is much reduced and thus helps to conduct an
intensified search.

• We propose two new effective neighborhoods called shift-shaking
and swap-shaking for 𝑘-RWA and embed them into an iterated lo-
cal search framework. In addition, we combine a two-level neigh-
borhood evaluation, an incremental neighborhood evaluation and
a caching technique to accelerate the search.

• Computational experiments on three sets of 113 benchmark in-
stances demonstrate that our proposed algorithm outperforms the
best methods in the literature by improving the best known results
for 35 out of 113 instances while matching the best records for
all remaining ones. More importantly, DN-ILS obtains the lower
bound solutions of 8 instances for the first time.

• We conduct extensive experiments to verify the merits of the key
components of our algorithm, including the two-level neighbor-
hood evaluation, the incremental neighborhood evaluation and
the caching technique.

Our algorithm extends and improves an earlier version named SAS-
ILS (Fang et al., 2020). SAS-ILS shares similar local search framework
with the newly proposed DN-ILS, but only employs the shift neigh-
borhood to change the wavelength of a single lightpath. SAS-ILS also
integrates an ejection chain-based shaking procedure to refine the
routings of lightpaths assigned with the same wavelength. The basic
idea of the ejection chain method (Glover, 1996) is to slightly relax
the constraints so that more promising moves can be evaluated. The
improvements of DN-ILS lies in the following aspects:

• We design a new neighborhood which swaps the wavelength
assignments of two lightpaths. The search space of the swap-
shaking neighborhood is larger than that of the shift-shaking
neighborhood, thus making it easier to escape from local optima.

• We propose an effective neighborhood selection mechanism to
achieve a trade-off between effectiveness and efficiency, based
on the observation that the swap-shaking neighborhood usually
results in larger improvement but is more time-consuming to
evaluate.

• For generating the initial 𝑘-RWA solution, we break ties by adding
a secondary objective (hop) to determine a bin when we fail to
find a ‘‘best-fit’’ bin.

• We adopt two techniques to accelerate the local search, which
are an incremental evaluation technique and a caching technique,
respectively.

• We perform extensive experiments on four simplified versions
of DN-ILS to provide insight into the importance of the DN-ILS
2

ingredients. s
• This improved version of our algorithm further improves the best-
known results for 23 additional instances, and obtains the optimal
solutions for 4 additional ones.

2. Problem formulations

Given an optical network 𝐺 = (𝑉 ,𝐸) where 𝑉 is the vertex set
and 𝐸 is the set of directed links, let 𝐿 be the lightpath set in which
each lightpath 𝑙 ∈ 𝐿 is associated with a source vertex 𝑠𝑙 and a
destination vertex 𝑑𝑙. Let 𝑊 = {1, 2,… , |𝑊 |} be a sufficiently large
set of wavelengths. Then, the min-RWA problem aims to assign each
lightpath a wavelength and to route each lightpath to minimize the
total number of used wavelengths, under the constraint that no two
lightpaths in the same wavelength traverse the same link. There are
three types of binary decision variables: When assigned a value of
1, 𝜆𝑙𝑤 indicates that lightpath 𝑙 is assigned the wavelength 𝑤, 𝐹 𝑙𝑤

𝑖𝑗
indicates that lightpath 𝑙 assigned the wavelength 𝑤 traverses link (𝑖, 𝑗),
and 𝐹𝑤 indicates that wavelength 𝑤 is used. Then, the mixed-integer
programming (MIP) model of the min-RWA problem can be defined as
follows:

min
∑

𝑤∈𝑊
𝐹𝑤 (1)

s.t.
∑

𝑙∈𝐿
𝐹 𝑙𝑤
𝑖𝑗 ≤ 𝐹𝑤, ∀𝑤 ∈ 𝑊 , (𝑖, 𝑗) ∈ 𝐸 (2)

∑

𝑖∈𝑉
𝐹 𝑙𝑤
𝑖𝑗 −

∑

𝑘∈𝑉
𝐹 𝑙𝑤
𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

−𝜆𝑙𝑤, if 𝑗 = 𝑠𝑙;

𝜆𝑙𝑤, if 𝑗 = 𝑑𝑙;

0, otherwise.
∀𝑙 ∈ 𝐿,𝑤 ∈ 𝑊 , 𝑗 ∈ 𝑉 (3)

∑

𝑤∈𝑊
𝜆𝑙𝑤 = 1, ∀𝑙 ∈ 𝐿 (4)

𝐹 𝑙𝑤
𝑖𝑗 , 𝐹𝑤, 𝜆𝑙𝑤 ∈ {0, 1}, ∀𝑙 ∈ 𝐿,𝑤 ∈ 𝑊 , (𝑖, 𝑗) ∈ 𝐸 (5)

Objective (1) minimizes the number of activated wavelengths. Con-
straints (2) ensure that each used wavelength on each link will be
counted in the objective function. They also impose the restriction that
at most one lightpath assigned a given wavelength can traverse a given
link. Constraints (3) require that each lightpath has a simple route from
its source to its destination. Constraints (4) ensure that each lightpath
is assigned a single wavelength.

The requirement that no more than 𝑘 wavelengths are used gives
rise to the decision version of the min-RWA problem called 𝑘-RWA,
where we need to route each lightpath in 𝐿 and assign a wavelength to
it. In other words, 𝑊 includes exactly 𝑘 wavelengths (|𝑊 | = 𝑘), and the

IP model of 𝑘-RWA contains no objective but includes an additional
onstraint (6) together with Constraints (3)–(5), as summarized by:

.t.
∑

𝑙∈𝐿
𝐹 𝑙𝑤
𝑖𝑗 ≤ 1, ∀𝑤 ∈ 𝑊 , (𝑖, 𝑗) ∈ 𝐸 (6)

onstraints (3)–(5)
e refer to this model as 𝑘-RWA-D. A feasible solution of 𝑘-RWA-D is a

easible solution of min-RWA with an objective value of 𝑘. Fig. 1 gives
n example of 𝑘-RWA with 𝑘 = 3.

. Dual neighborhood iterated local search

We decompose the min-RWA into a series of 𝑘-RWA decision sub-
roblems, which is a popular framework for many optimization algo-
ithms. For example, it is a common technique to reformulate the graph
oloring problem into a series of 𝑘-coloring problems (Lü and Hao,
010a); The 𝑝-center problem can be transformed into a set of fixed-
adius covering problems (Zhang et al., 2020); The minimum vertex
overing problem is usually decomposed into a series of 𝑘-set covering
roblems (Cai et al., 2013); The rectangle packing problem can be
egarded as multiple strip packing problems (Wei et al., 2011). To be

pecific, we begin with a reasonable 𝑘. Once we find a feasible solution
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Fig. 1. An example of 𝑘-RWA with 𝑘 = 3. There are 7 vertices and 11 bidirectional links in the topology, and 6 different lightpaths. The left figure presents a feasible solution
of 𝑘-RWA, where each lightpath is assigned a wavelength and no two lightpaths traverse the same link if they are assigned the same wavelength. The right figure presents the
infeasible routing for the two lightpaths 𝐿1 and 𝐿2 which are assigned Wavelength3.
for the 𝑘-RWA problem, we set 𝑘 ← 𝑘 − 1 to seek a better solution for
the min-RWA problem. If no feasible solution is found for the 𝑘-RWA
problem, the algorithm stops and returns 𝑘 + 1 as the best objective
value for the original min-RWA.

In this section, we present an iterated local search approach for the
𝑘-RWA problem based on the shift-shaking and swap-shaking neighbor-
hoods. We also present several techniques to improve the efficiency of
the proposed DN-ILS algorithm, including a two-level evaluation strat-
egy, an incremental neighborhood evaluation method, and a caching
technique for neighborhood evaluation.

3.1. Problem analysis and main framework

We regard the 𝑘-RWA problem as putting all the lightpaths (items)
into 𝑘 bins and routing the lightpaths such that the routing of any pair
of lightpaths in the same bin do not share any link, i.e., the routing in
each bin is conflict-free.

Moreover, inspired by Lü and Hao (2010b) for solving the graph
coloring problem, we reformulate the decision problem 𝑘-RWA-D as an
optimization problem 𝑘-RWA-O, where the MIP model for 𝑘-RWA-O can
be obtained by relaxing constraints (6) in 𝑘-RWA-D and minimizing the
total violations of these constraints. We say a link in a bin is overloaded
if the number of lightpaths traversing this link is greater than one. Let
𝛿𝑤𝑖𝑗 = 𝑚𝑎𝑥{0,

∑

𝑙∈𝐿 𝐹 𝑙𝑤
𝑖𝑗 −1} be the overload of link (𝑖, 𝑗) in bin 𝐵𝑤 and let

𝛿𝑤 stand for the total overload of bin 𝐵𝑤. Then, the 𝑘-RWA-O problem
can be formulated as:

min 𝑓 (𝑋) =
∑

𝑤∈𝑊
𝛿𝑤 =

∑

𝑤∈𝑊

∑

(𝑖,𝑗)∈𝐸
𝛿𝑤𝑖𝑗 (7)

s.t.
∑

𝑙∈𝐿
𝐹 𝑙𝑤
𝑖𝑗 ≤ 1 + 𝛿𝑤𝑖𝑗 , ∀𝑤 ∈ 𝑊 , (𝑖, 𝑗) ∈ 𝐸 (8)

𝛿𝑤𝑖𝑗 ≥ 0, ∀𝑤 ∈ 𝑊 , (𝑖, 𝑗) ∈ 𝐸 (9)

Constraints (3)–(5)
Constraints (8) and (9) restrict 𝛿𝑤𝑖𝑗 to be the overload of link (𝑖, 𝑗) in bin
𝐵𝑤. The objective function 𝑓 (𝑋) is the total overload. Apparently, a
feasible solution 𝑋 for 𝑘-RWA-D requires 𝑓 (𝑋) = 0 in 𝑘-RWA-O, where
3

𝑋 = {𝐵1, 𝐵2,… , 𝐵𝑘} and each bin 𝐵𝑤 for 𝑤 = 1, 2,… , 𝑘 consists of
some lightpaths from 𝐿 assigned with wavelength 𝑤 and their specific
routing.

With this reformulation, the landscape of the solution space is
smoothed which is more friendly to hill climbing algorithms like it-
erated local search. In detail, by relaxing the link overload constraints,
i.e., allowing multiple lightpaths pass through the same edge using the
same wavelength (but with penalty), we convert each 𝑘-RWA decision
subproblem into a new optimization problem. This transformation
replaces the coarse-grained wavelength number objective function with
the fine-grained overload penalty, so that two solutions with the same
objective value in the original optimization problem can be differ-
entiated. Furthermore, combined with the ejection chain procedure
introduced in Section 3.3.4, the gradient will not easily get vanished
so that the search can escape from the local optima and saddle points
with less effort compared with the original min-RWA model.

Based on the 𝑘-RWA-O model, our DN-ILS algorithm employs a sim-
ple but effective iterated local search framework, which is widely used
to solve various combinatorial optimization problems (Carello et al.,
2004; Katayama and Narihisa, 1999). The main framework of DN-ILS is
described in Algorithm 1. Starting from an initial solution, the proposed
algorithm executes a dual-neighborhood local search procedure and a
perturbation procedure by turns.

Specifically, the local search procedure alternates between per-
forming a shift-shaking move and a swap-shaking move until a local
optimum is reached. Then, the perturbation procedure makes some
small changes to the best solution found so far to drive the search
into a new promising area. The search-and-perturb loop is repeated
until reaching a specified time limit or the current solution 𝑋 becomes
feasible for 𝑘-RWA-D, i.e., 𝑓 (𝑋) = 0.

3.2. Initial solution

Algorithm 2 shows our initial solution generation procedure for
the 𝑘-RWA problem, which adapts the BFD-RWA algorithm in Skorin-
Kapov (2007). The main difference between our initial solution gener-
ation and BFD-RWA lies in two aspects: (1) the number of bins in our
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Algorithm 1 DN-ILS: Main framework for 𝑘-RWA
Input: The physical network 𝐺, the lightpath set 𝐿 and the number of

wavelengths 𝑘
Output: The best solution found so far 𝑋𝑏𝑒𝑠𝑡
1: 𝑋 ← Init-Solution(𝐺,𝐿, 𝑘) /* Section 3.2 */
2: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋
3: repeat
4: 𝑋 ← DN-LS(𝑋) /* Section 3.4 */
5: if 𝑓 (𝑋) = 0 then
6: return 𝑋
7: end if
8: if 𝑓 (𝑋) < 𝑓 (𝑋𝑏𝑒𝑠𝑡) then
9: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋

10: end if
11: 𝑋 ← Perturbation(𝑋𝑏𝑒𝑠𝑡) /* Section 3.5 */
12: until the time limit is met

Algorithm 2 Init-Solution: Initial solution generation
Input: The physical network 𝐺, the lightpath set 𝐿 and the number of

wavelengths 𝑘
Output: The initial solution 𝑋
1: Create 𝑘 bins 𝐵1, 𝐵2, ..., 𝐵𝑘 by copying the network 𝐺
2: 𝑊 ← {𝐵1, 𝐵2, ..., 𝐵𝑘}
3: Sort the lightpaths of 𝐿 in non-increasing order by the length of

their shortest routes that minimizes ℎ𝑜𝑝
4: for 𝑙𝑖 in 𝐿 do
5: Find the ‘‘best-fit" bin 𝐵𝑤 ∈ 𝑊 for 𝑙𝑖
6: if such bin does not exist then
7: Determine a bin 𝐵𝑤 ∈ 𝑊 by minimizing 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤))

as the primary objective and ℎ𝑜𝑝(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤)) as the secondary
objective

8: end if
9: Insert 𝑙𝑖 with 𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤) into bin 𝐵𝑤
0: end for
1: 𝑋 ← (𝐵1, 𝐵2, ..., 𝐵𝑘)
2: return 𝑋

algorithm is fixed, whereas this number is the objective to be optimized
in BFD-RWA; (2) BFD-RWA always keeps the routing of all lightpaths
conflict-free while we minimize the conflicts of lightpaths.

Specifically, we duplicate the network 𝐺 to create 𝑘 copies and
stipulate that each network 𝐵𝑤 corresponds to a bin 𝑤. For each link
𝑖, 𝑗) of 𝐵𝑤, we use 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(𝑤, 𝑖, 𝑗) = 𝛿𝑤𝑖𝑗 and ℎ𝑜𝑝(𝑤, 𝑖, 𝑗) = 1 to measure
ts weight, respectively. For each lightpath 𝑙𝑖 assigned to bin 𝐵𝑤, we use
𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤) to denote the links traversed by 𝑙𝑖 in 𝐵𝑤. The total weight

of this route is denoted by the overload weight 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤))
and the hop weight ℎ𝑜𝑝(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤)). Initially, the shortest route of each
lightpath in any bin using the hop weight is calculated independently.
Then, we sort all lightpaths 𝑙 ∈ 𝐿 by the ℎ𝑜𝑝 route length in non-
ncreasing order. For the first lightpath in the sorted list, we choose

‘‘best-fit’’ bin for it to insert. The ‘‘best-fit’’ bin must satisfy the
ollowing conditions: (1) there exists a route for lightpath 𝑙𝑖 in this bin
hat does not conflict with other lightpaths, i.e., 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤)) =
; (2) inserting lightpath 𝑙𝑖 in this bin will yield the shortest ℎ𝑜𝑝 route
ength subject to the condition ℎ𝑜𝑝(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤)) < max(𝑑𝑖𝑎𝑚(𝐺),

√

|𝐸|).
hen a ‘‘best-fit’’ bin does not exist, we minimize 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤))

s the primary objective and ℎ𝑜𝑝(𝑟𝑜𝑢𝑡𝑒(𝑙𝑖, 𝑤)) as the secondary objective
o determine a bin to insert. We repeat the above-mentioned procedure
ntil all the lightpaths 𝑙𝑖 ∈ 𝐿 are inserted into proper bins.
4

.3. Neighborhoods definition

The definition of the neighborhood structure is one of the most
mportant features to distinguish different local search algorithms. In
his section, we first present the main idea of our Shift-Shaking (SS) and
wap-Shaking (SWS) neighborhoods. Then, we describe the common
omponent of SS and SWS: an ejection chain shaking procedure.

.3.1. Main idea
In RWA, the assignments of lightpaths to bins and the routing of

ightpaths are macro-level and micro-level decisions, respectively. The
ecisions at these two levels can seriously interfere with each other.
hus, we consider changing the wavelength and the route of a lightpath
s a whole. The overload is not caused by a single lightpath, so we
eed to modify the routing of other related lightpaths when resolving
onflicts. As a result, we design two new neighborhoods, combining a
hift (swap) move with two shaking procedures so as to make decisions
t the macro and micro levels simultaneously. Specifically, we perform
shift (swap) move to change the wavelength of one lightpath (two

ightpaths) while executing the shaking procedure to reroute related
ightpaths in bins 𝐵𝑜𝑙𝑑 and 𝐵𝑛𝑒𝑤 to reduce the total overload as much

as possible.

3.3.2. Shift-shaking neighborhood
Given a solution 𝑋, operator 𝑚𝑣1(𝑙𝑐 , 𝐵𝑜𝑙𝑑 , 𝐵𝑛𝑒𝑤) denotes the Shift-

Shaking neighborhood move, and 𝑋′ = 𝑋 ⊕ 𝑚𝑣1(𝑙𝑐 , 𝐵𝑜𝑙𝑑 , 𝐵𝑛𝑒𝑤) denotes
a neighboring solution of 𝑋. The operator 𝑚𝑣1(𝑙𝑐 , 𝐵𝑜𝑙𝑑 , 𝐵𝑛𝑒𝑤) has two
omponents: (1) A high-level shift move to re-assign the bin (i.e., wave-
ength) of a conflicting lightpath 𝑙𝑐 from its current bin 𝐵𝑜𝑙𝑑 to another
in 𝐵𝑛𝑒𝑤; (2) Two low-level shaking operations to optimize the routing
f the lightpaths in bins 𝐵𝑜𝑙𝑑 and 𝐵𝑛𝑒𝑤. Let 𝑀1(𝑋) be the set of all
ossible moves of 𝑚𝑣1. Then, we can use 𝑁1(𝑋) = {𝑋′ ∶ 𝑋′ = 𝑋 ⊕
𝑣1, 𝑚𝑣1 ∈ 𝑀1(𝑋)} to denote the neighborhood of 𝑋. Fig. 2 gives a

mall example of our SS neighborhood.

.3.3. Swap-shaking neighborhood
Given a solution 𝑋, the Swap-Shaking neighborhood is defined by

perator 𝑚𝑣2(𝑙1, 𝑙2), which transforms 𝑋 into a neighboring solution
′ = 𝑋 ⊕ 𝑚𝑣2(𝑙1, 𝑙2). The operator 𝑚𝑣2(𝑙1, 𝑙2) also has a two-level

tructure: (1) A high-level swap move to swap the bins (wavelengths)
f two lightpaths (𝑙1 and 𝑙2); (2) Two low-level shaking operations to
urther improve the routing in the old bins of 𝑙1 and 𝑙2. Let 𝑀2(𝑋)

be the set of all possible moves of 𝑚𝑣2, then 𝑁2(𝑋) = {𝑋′ ∶ 𝑋′ =
𝑋 ⊕𝑚𝑣2, 𝑚𝑣2 ∈ 𝑀2(𝑋)} represents the neighborhood of 𝑋.

3.3.4. Ejection chain-based shaking procedure
The ejection chain-based shaking (ECS) procedure ECS(𝑙𝑐 , 𝐵,𝑋) in-

serts lightpath 𝑙𝑐 into a new bin 𝐵 and reroutes the lightpaths in 𝐵 to
minimize the total overload in bin 𝐵, as described in Algorithm 3. The
ejection chain method has been successfully used to tackle many NP-
hard problems (Rego and Glover, 2010), including traveling salesman
problem (Glover, 1996), vehicle routing problem (Rego and Roucairol,
1996), generalized assignment problem (Yagiura et al., 2006) and
quadratic multiple knapsack problem (Peng et al., 2016).

As shown in Algorithm 3, there are mainly four subroutines in
our ECS procedure: GreedyInsert, EjectionMove, ReroutingMove and
TrialMove. Specifically, GreedyInsert inserts lightpath 𝑙𝑐 into bin 𝐵
and finds a route 𝑟 that minimizes 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(𝑟) as the primary objective
and ℎ𝑜𝑝(𝑟) as the secondary objective, while keeping the routing of
other lightpaths unchanged (line 1). EjectionMove removes one of the
most overloaded lightpaths 𝑙𝑒 from this bin to form an initial partial
solution (line 2). ReroutingMove first removes a conflicting lightpath
and then greedily inserts it back into the bin by GreedyInsert to form
a new partial solution (line 8). Based on one of the partial solutions
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Fig. 2. Illustration of making an SS neighborhood move 𝑚𝑣1(𝐿2 , 𝐵1 , 𝐵2). (a) Initially, links 𝐵𝐶 and 𝐶𝐷 in 𝐵1 are overloaded (𝛿1 = 2) and 𝐵2 is conflict-free (𝛿2 = 0). (b) Changing
the bin of 𝐿2 from 𝐵1 to 𝐵2 without shaking cannot reduce the total overload (𝛿1 = 1 and 𝛿2 = 1). (c) Performing two shaking procedures for bins 𝐵1 and 𝐵2 will reroute 𝐿1 and
𝐿6, thus eliminating the overload (𝛿1 = 0 and 𝛿2 = 0).
Algorithm 3 ECS: Ejection chain-based shaking procedure
Input: A conflicting lightpath 𝑙𝑐 , a bin 𝐵 and the current solution 𝑋
Output: The best solution 𝑋𝑏𝑒𝑠𝑡 after inserting 𝑙𝑐 into 𝐵
1: 𝑋𝐼 ← GreedyInsert(𝑙𝑐 , 𝐵,𝑋), 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝐼

2: {𝑋𝑅, 𝑙𝑒} ← EjectionMove(𝑋𝐼 )
3: 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 ← 0
4: while 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
5: 𝑋𝑅

𝑝𝑟𝑒𝑣 ← 𝑋𝑅, 𝑃 ← ∅
6: 𝐿𝑜 ← {𝑙𝑖 ∈ 𝐿(𝐵) ∶ 𝑙𝑖 is a conflicting lightpath in 𝐵}
7: for 𝑙𝑖 in 𝐿𝑜 do
8: 𝑋𝑅

𝑖 ← ReroutingMove(𝑙𝑖, 𝐵,𝑋𝑅)
9: 𝑃 ← 𝑃 ∪𝑋𝑅

𝑖
10: end for
11: if 𝑟𝑎𝑛𝑑[0, 1) ≤ 𝛼 then
12: 𝑋𝑅 ← a random partial solution in 𝑃
13: else
14: 𝑋𝑅 ← the best partial solution in 𝑃
15: end if
16: 𝑋𝑇 ← TrialMove(𝑙𝑒, 𝐵,𝑋𝑅)
17: if 𝑓 (𝑋𝑇 ) < 𝑓 (𝑋𝑏𝑒𝑠𝑡) then
18: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝑇

19: end if
20: if 𝑓 (𝑋𝑅) ≥ 𝑓 (𝑋𝑅

𝑝𝑟𝑒𝑣) then
21: 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 ← 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 + 1
22: else
23: 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 ← 0
24: end if
25: end while
26: return 𝑋𝑏𝑒𝑠𝑡

generated by ReroutingMove, TrialMove greedily inserts the initially
ejected lightpath 𝑙𝑒 into the bin by GreedyInsert to build a complete
solution (line 16).

GreedyInsert and EjectionMove are performed once to obtain an ini-
tial partial solution, while ReroutingMove and TrialMove are iteratively
performed until stagnation is encountered (line 4). At each iteration, we
first reroute each conflicting lightpath in 𝐵, which will produce a set
𝑃 of candidate partial solutions (lines 6–10). Then, in order to obtain
a new complete solution 𝑋𝑇 by TrialMove, a random solution or the
5

best solution in the candidate set 𝑃 is chosen with probability 𝛼 and
1 − 𝛼 to be the reference solution 𝑋𝑅, respectively (lines 11–16). As a
result, a new complete solution can be obtained, and the best one will
be saved by replacing 𝑋𝑏𝑒𝑠𝑡 (lines 17–19). This process is repeated until
the local optimum is reached, i.e., the partial solution 𝑋𝑅 has not been
improved for 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 consecutive steps.

Furthermore, when performing ECS on the old bin of 𝑙𝑐 , the subrou-
tines GreedyInsert, EjectionMove and TrialMove are skipped, i.e., we
just shake the bin to reach a local optimum. The reason for this
simplification is that the removal of lightpath 𝑙𝑐 releases resources so
that other lightpaths can utilize them. Thus, it becomes unnecessary to
eject another lightpath 𝑙𝑒, which means that TrialMove also does not
need to be performed. For illustrative purposes, Fig. 3 demonstrates
the ECS procedure on a small example.

3.4. Dual-neighborhood local search

Algorithm 4 describes the dual-neighborhood local search proce-
dure. At each iteration, the algorithm performs a local search based on
the shift-shaking neighborhood (SS-LS, Algorithm 5) with probability
𝑠𝑐 or the swap-shaking neighborhood (SWS-LS, Algorithm 6) with
probability 1 − 𝑠𝑐. In this way, the shift-shaking and swap-shaking
neighborhoods can be explored alternately to diversify the search.

It can be time-consuming to evaluate all moves at each iteration of
the local search. To improve the search efficiency, SS-LS and SWS-LS
adopt the following four methods. The first two speed up the search
by restricting the search space, while the remaining two accelerate the
neighborhood evaluation: (1) Only one of the conflicting lightpaths
is randomly chosen and all neighborhood moves that assign it to a
new bin are considered; (2) The neighborhood moves are evaluated
by a two-level method which combines a coarse-grained approach and
a fine-grained approach; (3) An incremental evaluation technique is
used; (4) A caching technique is employed to store the unchanged
neighborhood evaluation results after a move.

3.4.1. SS-based local search
As presented in Algorithm 5, SS-LS begins at a randomly picked

conflicting lightpath 𝑙𝑐 from 𝑋 (line 2). Then, our SS neighborhood is
constructed, which is the set of solutions obtained by moving lightpath
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Fig. 3. An example of the ECS procedure. (a) presents the initial state of a bin, where there are 6 lightpaths (𝐿1 −𝐿6) and 3 overloaded links (𝐷𝐵, 𝐵𝐸 and 𝐸𝐹 ) in the bin (𝛿 = 3).
We want to insert 𝐿7 into the bin by ECS. (b) shows the state after inserting 𝐿7 by GreedyInsert. There are three possible routes for 𝐿7 in the bin: 𝐺 → 𝐽 (𝛿 = 4), 𝐺 → 𝐹 → 𝐽
(𝛿 = 4) and 𝐺 → 𝐸 → 𝐹 → 𝐽 (𝛿 = 5). Therefore, the route found by GreedyInsert is 𝐺 → 𝐽 . (c) presents the state after EjectionMove, which removes the most overloaded lightpath,
i.e., 𝐿1. (d1) and (e1) respectively show the reference solution 𝑋𝑑1 (𝛿 = 1) and 𝑋𝑒1 (𝛿 = 0) obtained by performing ReroutingMove, while (d2) and (e2) respectively present the
complete solution 𝑋𝑑2 (𝛿 = 1) and 𝑋𝑒2 (𝛿 = 0) obtained by inserting the ejected lightpath into their corresponding reference solution. Therefore, the best complete solution is 𝑋𝑒2.
𝑙𝑐 from its original bin to another one. This not only reduces the size
of the neighborhood and improves efficiency, but also diversifies the
search as an additional advantage. In detail, we remove 𝑙𝑐 from its
old bin 𝐵𝑜𝑙𝑑 which results in a partial solution 𝑋′ (line 4). Next, we
try to insert lightpath 𝑙𝑐 in the best bin according to the two-level
evaluation method, as illustrated in Fig. 4. The evaluation of new bins
is carried out in two steps: First, a quick coarse-grained evaluation
considers all bins except 𝐵𝑜𝑙𝑑 to obtain a set of candidate bins; Second,
a fine-grained evaluation finds the best bin for 𝑙𝑐 and the corresponding
routing of affected lightpaths in the candidate bin set. Technically, we
construct the set 𝑁𝑖𝑛𝑠𝑒𝑟𝑡(𝑙𝑐 , 𝑋′) which greedily minimizes the overload,
i.e., the solutions obtained by GreedyInsert(𝑙𝑐 , 𝐵𝑛𝑒𝑤, 𝑋′) which inserts
𝑙𝑐 into 𝐵𝑛𝑒𝑤 with a min-cost route. The candidate bin set 𝐶𝐵 is the ones
corresponding to the 𝑚-best 𝑓 (𝑋′′) among 𝑋′′ ∈ 𝑁𝑖𝑛𝑠𝑒𝑟𝑡(𝑙𝑐 , 𝑋′) (line 5).
The fine-grained evaluation employs an ejection chain-based shaking
procedure to reroute the lightpaths in each candidate bin to reduce the
overload resulting from the insertion of lightpath 𝑙𝑐 . The search will
move to the best neighbor 𝑋∗ if it is better than 𝑋. If not, we still give
a small probability 𝛽 to accept 𝑋∗ in order to avoid getting trapped
6

in local optima. SS-LS performs the above procedure until it fails to
improve the best solution 𝑋𝑏𝑒𝑠𝑡 within a specified number of iterations
(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟2).

3.4.2. SWS-based local search
As presented in Algorithm 6, SWS-LS is similar to Algorithm 5,

except that its search space is much larger than that of SS-LS. Start-
ing from a randomly selected conflicting lightpath 𝑙1 (line 2), SWS-
LS evaluates all the solutions obtained by swapping 𝑙1 with another
lightpath. Next, we select the best lightpath to swap with 𝑙1 by a two-
level evaluation strategy, which obtains 𝑚 candidate lightpaths by the
coarse-grained evaluation and selects the best lightpath from the 𝑚
candidates by the fine-grained evaluation. Algorithm 7 presents the
coarse-grained evaluation for SWS, which starts by selecting the 𝑚-
best bins for 𝑙1 to insert by GreedyInsert. Then, we insert 𝑙1 into the
𝑚 selected bins to obtain the candidate set 𝑇𝐿, which contains all the
conflicting lightpaths after inserting 𝑙1. The 𝑚-best lightpaths to swap
are selected from 𝑇 , by performing a swap move with GreedyInsert.
𝐿
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Fig. 4. Two-level neighborhood evaluation for the SS neighborhood.
Algorithm 4 DN-LS: Dual-neighborhood local search
Input: The current solution 𝑋
Output: The best solution 𝑋𝑏𝑒𝑠𝑡 found in the local search
1: 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 ← 0
2: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋
3: while 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟2 do
4: if rand[0, 1) < 𝑠𝑐 then
5: 𝑋∗ ← SS-LS(𝑋)
6: else
7: 𝑋∗ ← SWS-LS(𝑋)
8: end if
9: if 𝑓 (𝑋∗) ≥ 𝑓 (𝑋) then

10: 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 ← 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 + 1
11: end if
12: if 𝑓 (𝑋∗) < 𝑓 (𝑋) or 𝑟𝑎𝑛𝑑[0, 1) < 𝛽 then
13: 𝑋 ← 𝑋∗

14: 𝑛𝑜_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑖𝑡𝑒𝑟 ← 0
15: end if
16: if 𝑓 (𝑋∗) < 𝑓 (𝑋𝑏𝑒𝑠𝑡) then
17: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋∗

18: end if
19: end while

Finally, we evaluate the candidates using ECS and select the best
lightpath 𝑙2 to swap with 𝑙1.

3.4.3. Incremental evaluation
According to the definition of the neighborhood structure, there are

only minor differences between the current solution and its neighbors,
i.e., only one or several lightpaths in at most two bins are changed.
Therefore, to evaluate the objective function value of the neighboring
solutions, we employ an incremental evaluation technique that only
considers the changed bins for accelerating the search. We denote the
7

Algorithm 5 SS-LS: SS-based Local search procedure
Input: The current solution 𝑋
Output: The best solution 𝑋𝑏𝑒𝑠𝑡 found in the local search
1: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋
2: Pick a random conflicting lightpath 𝑙𝑐 from 𝑋
3: 𝐵𝑜𝑙𝑑 ← the bin of 𝑙𝑐
4: 𝑋′ ← Remove 𝑙𝑐 from 𝐵𝑜𝑙𝑑
5: Search 𝑋′′ ∈ 𝑁𝑖𝑛𝑠𝑒𝑟𝑡(𝑙𝑐 , 𝑋′) whose 𝑓 (𝑋′′) is the 𝑚-best and add the

bin to set 𝐶𝐵 /* Coarse-grained evaluation */
6: 𝑓 ∗ ← ∞
7: for 𝐵𝑛𝑒𝑤 in 𝐶𝐵 do /* Fine-grained evaluation */
8: 𝑋′′ ← ECS(𝑙𝑐 , 𝐵𝑛𝑒𝑤, 𝑋′) /* Shake new bin 𝐵𝑛𝑒𝑤 */
9: if 𝑓 (𝑋′′) < 𝑓 ∗ then

10: 𝑓 ∗ ← 𝑓 (𝑋′′)
11: 𝑋∗ ← 𝑋′′

12: end if
13: end for
14: 𝑋∗ ← ECS(∅, 𝐵𝑜𝑙𝑑 , 𝑋∗) /* Shake old bin 𝐵𝑜𝑙𝑑 */
15: if 𝑓 (𝑋∗) < 𝑓 (𝑋) or 𝑟𝑎𝑛𝑑[0, 1) < 𝛽 then
16: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋∗

17: end if

two bins that are changed by moving from the current solution 𝑋 to
the candidate neighboring solution 𝑋′ by 𝐵1 and 𝐵2. Let 𝛥𝑤 be the
increment of the overload of bin 𝐵𝑤. The objective value of 𝑋′ can be
calculated as:

𝑓 (𝑋′) = 𝑓 (𝑋) + 𝛥1 + 𝛥2 (10)

To calculate the increment of the overload of a changed bin 𝐵𝑤, we
need to consider all the changed (deleted, inserted or rerouted) light-
paths in 𝐵𝑤. The rerouting move for one lightpath can be decomposed
into first deleting the lightpath from its bin and then reinserting it into
the bin with another route. Therefore, the changes of a bin can be
expressed as a process of deleting and/or inserting particular lightpaths.
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Algorithm 6 SWS-LS: SWS-based local search procedure
Input: The current solution 𝑋
utput: The best solution 𝑋𝑏𝑒𝑠𝑡 found in the local search

1: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋
2: Randomly select a conflicting lightpath 𝑙1 from 𝑋
3: 𝐵1 ← the bin of 𝑙1
4: 𝑋′ ← Remove 𝑙1 from 𝐵1
5: 𝐶𝐿 ← Obtain-m-lightpath(𝑙1, 𝑋′) /* Coarse-grained */
6: for 𝑙2 in 𝐶𝐿 do /* Fine-grained evaluation */
7: 𝐵2 ← the bin of 𝑙2
8: 𝑋′ ← Remove 𝑙2 from 𝐵2
9: 𝑋′′ ← ECS(𝑙2, 𝐵1, 𝑋′) /* Shake new bin 𝐵1 */

10: 𝑋′′ ← ECS(𝑙1, 𝐵2, 𝑋′′) /* Shake new bin 𝐵2 */
1: if 𝑓 (𝑋′′) < 𝑓 ∗ then
2: 𝑓 ∗ ← 𝑓 (𝑋′′)
3: 𝑋∗ ← 𝑋′′

4: end if
5: end for
6: if 𝑓 (𝑋∗) < 𝑓 (𝑋) or 𝑟𝑎𝑛𝑑[0, 1) < 𝛽 then
7: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋∗

8: end if

Algorithm 7 Obtain-m-lightpath: Coarse-grained evaluation
Input: The lightpath to swap 𝑙1 and the current solution 𝑋′

utput: 𝑚-best candidate lightpaths set 𝐶𝐿 to be swapped
1: Search 𝑋′′ ∈ 𝑁𝑖𝑛𝑠𝑒𝑟𝑡(𝑙1, 𝑋′) whose 𝑓 (𝑋′′) is the 𝑚-best and add the

bin into set 𝐶𝐵
2: 𝑇𝐿 ← ∅
3: for 𝐵2 in 𝐶𝐵 do
4: GreedyInsert(𝑙1, 𝐵2, 𝑋′)
5: 𝑇𝐿 ← 𝑇𝐿∪ the conflicted lightpaths in 𝐵2
6: end for
7: 𝐶𝐿 ← ∅
8: for 𝑙2 in 𝑇𝐿 do
9: 𝐵2 ← the bin of 𝑙2
0: 𝑋′′ ← GreedyInsert(𝑙1, 𝐵2, 𝑋′)

11: 𝑋′′ ← GreedyInsert(𝑙2, 𝐵1, 𝑋′′)
12: if 𝑓 (𝑋′′) is the 𝑚-best then
13: 𝐶𝐿 ← 𝐶𝐿 ∪ {𝑙2}
14: end if
15: end for

Let 𝐷𝑤 and 𝐼𝑤 respectively denote the sets of deleted and inserted
ightpaths in 𝐵𝑤 and 𝛥𝑤

𝑖𝑗 denote the increment of the overload of link
𝑖, 𝑗) in bin 𝐵𝑤. Let 𝑅𝑙 and 𝑅′

𝑙 respectively denote the route of lightpath
in 𝑋 and 𝑋′. Then, the increment of the overload of 𝐵𝑤 can be

alculated as:

𝑤 =
∑

𝑙∈𝐷𝑤

∑

(𝑖,𝑗)∈𝑅𝑙

𝛥𝑤
𝑖𝑗 +

∑

𝑙∈𝐼𝑤

∑

(𝑖,𝑗)∈𝑅′
𝑙

𝛥𝑤
𝑖𝑗 (11)

y recording the number of lightpaths on link (𝑖, 𝑗) in bin 𝐵𝑤 as 𝑛𝑤𝑖𝑗 ,
e can quickly calculate the increment of overload on this link. When
is deleted from 𝐵𝑤, the overload will decrease by 1 for each link (𝑖, 𝑗)
n the route of 𝑙 that contains more than one lightpath and will remain
nchanged for links containing only one lightpath, as shown in Eq. (12).
hen 𝑙 is inserted into 𝐵𝑤, the overload will increase by 1 if there

re one or more lightpaths, and will remain unchanged if there are no
ther lightpaths on each link (𝑖, 𝑗) that lightpath 𝑙 traverses, as given
y Eq. (13).

𝑤
𝑖𝑗 =

{

−1, if 𝑛𝑤𝑖𝑗 > 1
𝑤 ∀(𝑖, 𝑗) ∈ 𝑅𝑙 (12)
8

0, if 𝑛𝑖𝑗 = 1 a
Algorithm 8 Perturbation: Perturbation procedure for 𝑘-RWA
Input: Previous best found solution 𝑋𝑏𝑒𝑠𝑡
Output: The new solution 𝑋′ after perturbation
1: 𝐿𝑐 ← the conflicting lightpath set of 𝑋𝑏𝑒𝑠𝑡
2: 𝑝 ← 𝑚𝑖𝑛(𝑃 , |𝐿𝑐 |)
3: 𝐿𝑝 ← randomly select 𝑝 lightpaths from 𝐿𝑐
4: 𝑋′ ← remove all the lightpaths in 𝐿𝑝 from 𝑋𝑏𝑒𝑠𝑡
5: for 𝑙𝑖 in 𝐿𝑝 do
6: 𝛹 ← select 𝛾% of bins from 𝑊 randomly
7: Try to insert 𝑙𝑖 into each bin 𝐵𝑤 ∈ 𝛹 with a route that minimizes

𝛿𝑤

8: Choose the bin 𝐵𝑤 ∈ 𝛹 and the route of 𝑙𝑖 such that the increment
of overload is the smallest in 𝛹

9: 𝑋′ ← insert 𝑙𝑖 into bin 𝐵𝑤
0: end for
1: return 𝑋′;

𝛥𝑤
𝑖𝑗 =

{

1, if 𝑛𝑤𝑖𝑗 ≥ 1

0, if 𝑛𝑤𝑖𝑗 = 0
∀(𝑖, 𝑗) ∈ 𝑅′

𝑙 (13)

3.4.4. Caching technique for neighborhood evaluation
Algorithm 5 changes only two bins after one iteration of local

search. However, for a selected lightpath 𝑙𝑐 , we need to evaluate all
the bins (except the old bin) to select the best bin to insert, which is
time-consuming. In fact, to determine the best bin, we only need to
calculate the new objective value of the candidate solution 𝑋′ after
inserting 𝑙𝑐 into a bin by GreedyInsert or ECS based on solution 𝑋.

We exploit this fact by recording the increment of the overload
between 𝑋′ and 𝑋 after inserting 𝑙𝑐 into bin 𝐵𝑤 as 𝛥𝑤

𝑙𝑐
, creating a cache

for those bins which are not changed after one neighborhood move.
Therefore, when 𝑙𝑐 is selected to shift its bin again, we can quickly
retrieve 𝛥𝑤

𝑙𝑐
from the cache for those bins which have not been changed

since the last cache recalculation and then derive the objective value
of the candidate solution 𝑋′ based on the current solution by 𝑓 (𝑋′) =
𝑓 (𝑋) + 𝛥𝑤

𝑙𝑐
. After performing a neighborhood move, all values in the

ache related to the two changed bins will be recalculated according to
he incremental evaluation method. For the SWS neighborhood, similar
echniques can be applied.

.5. Perturbation

Algorithm 8 gives the perturbation procedure. It first randomly
icks a subset of conflicting lightpaths 𝐿𝑝 from the conflicting lightpath

set 𝐿𝑐 of 𝑋𝑏𝑒𝑠𝑡, where |𝐿𝑝| = 𝑚𝑖𝑛(𝑃 , |𝐿𝑐 |) and 𝑃 is a parameter. Then,
e cancel the routing of each lightpath 𝑙𝑖 ∈ 𝐿𝑝, and insert 𝑙𝑖 into

he best bin among a set of candidate bins where the overload is
inimized based on GreedyInsert. The candidate bin sets consist of 𝛾%

ins randomly picked from all bins.

. Computational results and analysis

In this section, we report and compare the experimental results of
everal state-of-the-art reference algorithms for RWA and our DN-ILS
n the commonly used benchmark instances.1

1 The code of our DN-ILS algorithm and the obtained best known solutions
re available at https://github.com/HUST-Smart/DNILS-RWA.

https://github.com/HUST-Smart/DNILS-RWA


Computers and Operations Research 160 (2023) 106396Z. Lü et al.

b
t

a
e
u
i
c

t
o
i

4

e
v
s
i
F
r
o
a
t
C
C
i
n
o
e
m
T
r

f
i
5
7
(

Table 1
Settings of parameters.

Parameter Candidate values Final value Description Section

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 2, 3, 4 3 The maximum number of consecutive non-improvement iterations in ECS. 3.3
𝛼 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 0.2 The probability of choosing a random solution in ECS. 3.3
𝛽 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 0.1 The probability of accepting worse solution in local search procedure. 3.4
𝑚 2, 3, 4 2 The number of candidate bins in local search procedure. 3.4
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟2 750, 800, 850, 900, 1000 850 The maximum number of consecutive non-improvement iterations in local

search procedure.
3.4

𝑃 3, 4, 5 4 The maximum number of selected conflicting lightpaths in perturbation
procedure.

3.5

𝛾 10, 20, 30, 40 20 The percent of selected bins in perturbation procedure. 3.5
d
b
f
5
2
r
s
o
f
I
o
b
s
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o
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1
Z

4.1. Benchmark instances and experimental protocol

Our experiments were performed on three sets of instances which
are denoted by W, Y and Z, respectively. Set W contains 13 real-world
instances which were widely studied in the literature. Sets Y and Z
were introduced in Noronha et al. (2008) and each set includes up to
100 nodes and 10,000 lightpaths, which are of larger scale and thus
more challenging. There are 75 instances in set Y which can be further
divided into three groups whose densities of links are 0.03 (Y3), 0.04
(Y4) and 0.05 (Y5), respectively. The 25 instances in set Z are built
on 𝑛 × 𝑚 grids embedded on the torus where each node only connects
to its nearest four neighboring nodes. The initial 𝑘 of each instance
is obtained by executing the BFD-RWA method described in Skorin-
Kapov (2007). Our DN-ILS method then repeatedly solves the 𝑘-RWA
y decreasing 𝑘 by 1 after obtaining a conflict-free solution until the
ime limit is reached.

Our DN-ILS algorithm was programmed in C++ and tested with
2.3 GHz E5-2698 CPU and 8 GB RAM for 5 independent runs on

ach instance. As the reference algorithms were tested on 2 GHz CPUs
nder a 5-minute time limit, we set the time limit (from computing the
nitial 𝑘 to the best 𝑘 found so far) of DN-ILS to 4 min, to make a fair
omparison by considering the difference of CPU performance.

Table 1 presents the descriptions and settings of several key parame-
ers used in our DN-ILS algorithm, where we consider all combinations
f the candidate values for each parameter on several representative
nstances and apply the final selected value for all the tested instances.

.2. Comparison with reference algorithms

We compare DN-ILS with the reference algorithms VND (Martins
t al., 2012), MN-ITS (Wu et al., 2016) and SAS-ILS (preliminary
ersion of DN-ILS) (Fang et al., 2020). Table 2 presents the results of the
et W instances. Tables 3–5 report the results of the sets Y3, Y4 and Y5
nstances, respectively. Table 6 gives the results of the set Z instances.
or each instance, column LB reports the lower bound obtained by
elaxing the wavelength consistency constraints and integer constraints
f the flow decision variables (Banerjee and Mukherjee, 1996). For each
lgorithm, column Obj presents the best results and column Gap gives
he relative objective gap as a percentage, i.e., (𝑂𝑏𝑗 −𝐿𝐵)∕𝐿𝐵 × 100%.
olumn Succ reports the success rate over 5 runs of our DN-ILS. Column
PU presents the average CPU time for obtaining the best results,

.e., the total computational time from obtaining the initial wavelength
umber to stopping at the best one. Row Average gives the average
bjective gap, CPU time and success rate on the listed instances. For
ach algorithm on each instance, if the objective value is optimal, i.e., it
atches the lower bound, the corresponding result is marked with ‘‘*’’.
he improved best known results are indicated in bold, while the tied
esults are indicated in italics.

Table 2 shows that all three algorithms can reach the lower bounds
or all the 13 instances in set W. The average time of our algorithm
s less than a second and is slightly shorter than MN-ITS. Tables 3–

disclose that DN-ILS obtains the optimal solutions on 48 out of
5 instances in set Y, and reaches the lower bounds for 3 instances
9

Y.3.60.4, Y.3.80.4 and Y.3.100.4) for the first time. These results also
emonstrate the robustness and efficiency of DN-ILS, for it obtains the
est results with almost 100% success rate and within a very short time
or all the instances in set Y. In detail, DN-ILS hits the best results for
2 out of 75 instances within a minute, and takes 80.35 s, 36.66 s and
1.25 s on average to reach the best results for sets Y3, Y4 and Y5,
espectively. Regarding the performance of the reference algorithms on
et Y, even if MN-ITS failed to hit the new upper bounds within 5 min
n 33 instances, it still spent 110.38 s, 44.24 s and 34.18 s on average
or converging to its best results, which is over 20% longer than our DN-
LS. Similar phenomenon can be found when comparing the efficiency
f SAS-ILS and the proposed DN-ILS. Comparing these outcomes to the
est results obtained by VND and MN-ITS, DN-ILS is able to find better
olutions on 22 instances, while matching the best known results on
he remaining 53 ones.

In Table 6, we additionally compare DN-ILS with MN-ITS and VND
n set Z. For these instances, DN-ILS reaches the lower bounds for
1 out of 25 instances and improves the best known results for 13
nstances, while matching the best known results for the remaining
2 ones. In particular, the lower bounds for instances Z.4 × 25.60,
.4 × 25.100, Z.5 × 20.80, Z.6 × 17.100 and Z.8 × 13.20 are obtained

for the first time, indicating that these 5 instances are closed. DN-ILS
is also very robust for this dataset. The success rates of our proposed
algorithm are 100% on set Z except for only 4 instances. However, one
can observe that DN-ILS improves the best results on these 4 instances.
In addition, the success rates will be 100% if we stop upon reaching
the previous best known results. Regarding computational efficiency,
DN-ILS reaches the best results on 12 instances within a minute and
spends 72.87 s on average for obtaining the best results on set Z, while
MN-ITS can only obtain worse results with 46.91% longer run time.

In summary, DN-ILS improves the best known results for 35 out of
113 instances, while matching the best known results for all remaining
ones. Moreover, DN-ILS reaches the lower bounds on 8 instances for the
first time. These statistics demonstrate the advantages of the proposed
DN-ILS algorithm in terms of both effectiveness and efficiency.

4.3. Importance of DN-ILS ingredients

To evaluate the merits of the shift-shaking and swap-shaking neigh-
borhoods, the two-level neighborhood evaluation approach, the incre-
mental evaluation method and the caching technique, we conducted
experiments to compare DN-ILS with its simplified versions (SD-ILS,
SEC-ILS, SSWI-ILS, SSWC-ILS) on the four largest instances (Y.3.100.1,
Y.4.100.5, Z.6 × 17.100 and Z.10 × 10.100) with the best 𝑘 reported
in Tables 2 to 6. Specifically, SD-ILS employs a different neighborhood
which keeps the high-level shift/swap move but replaces the two shak-
ing procedures with GreedyInsert (thus greedily finding a route for the
lightpath to be inserted into the new bin, while keeping the routes of
other lightpaths in the bin unchanged). SEC-ILS also employs the same
shift and swap neighborhoods, but evaluates all bins by fine-grained
ejection chain-based shaking. SSWI-ILS replaces the incremental eval-
uation technique with the naive neighborhood evaluation, where the
objective is calculated from scratch. SSWC-ILS disables the caching

technique of neighborhood evaluations, which means that it directly
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Table 2
Computational results and comparisons on set W instances.

Instance LB VND MN-ITS DN-ILS

Obj Gap (%) Obj Gap (%) CPU (s) Obj Gap (%) CPU (s) Succ (%)

ATT 20 20* 0.00 20* 0.00 3.43 20* 0.00 3.78 100.00
ATT2 113 113* 0.00 113* 0.00 2.64 113* 0.00 1.85 100.00
Brasil 48 48* 0.00 48* 0.00 0.07 48* 0.00 0.06 100.00
EON 22 22* 0.00 22* 0.00 0.01 22* 0.00 0.01 100.00
Finland 46 46* 0.00 46* 0.00 0.46 46* 0.00 0.40 100.00
NSF.1 22 22* 0.00 22* 0.00 0.25 22* 0.00 0.18 100.00
NSF.3 22 22* 0.00 22* 0.00 0.43 22* 0.00 0.31 100.00
NSF.12 38 38* 0.00 38* 0.00 1.46 38* 0.00 1.14 100.00
NSF.48 41 41* 0.00 41* 0.00 0.23 41* 0.00 0.32 100.00
NSF2.1 21 21* 0.00 21* 0.00 0.03 21* 0.00 0.04 100.00
NSF2.3 21 21* 0.00 21* 0.00 0.08 21* 0.00 0.08 100.00
NSF2.12 35 35* 0.00 35* 0.00 0.34 35* 0.00 0.26 100.00
NSF2.48 39 39* 0.00 39* 0.00 0.03 39* 0.00 0.03 100.00

Average 0.00 0.00 0.73 0.00 0.65 100.00
Table 3
Computational results and comparisons on set Y3 instances.

Instance LB VND MN-ITS SAS-ILS DN-ILS

Obj Gap (%) Obj Gap (%) CPU (s) Obj Gap (%) CPU (s) Succ (%) Obj Gap (%) CPU (s) Succ (%)

Y.3.20.1 27 29 7.41 29 7.41 73.57 29 7.41 61.09 100.00 29 7.41 25.82 100.00
Y.3.20.2 33 33* 0.00 33* 0.00 0.26 33* 0.00 0.21 100.00 33* 0.00 0.15 100.00
Y.3.20.3 29 29* 0.00 29* 0.00 33.10 29* 0.00 19.71 100.00 29* 0.00 16.34 100.00
Y.3.20.4 26 28 7.69 28 7.69 43.38 28 7.69 25.02 100.00 28 7.69 15.31 100.00
Y.3.20.5 28 28* 0.00 29 3.57 201.96 28* 0.00 154.65 100.00 28* 0.00 156.70 100.00
Y.3.40.1 53 57 7.55 57 7.55 100.67 57 7.55 77.83 100.00 56 5.66 131.63 80.00
Y.3.40.2 59 59* 0.00 59* 0.00 1.06 59* 0.00 0.55 100.00 59* 0.00 0.47 100.00
Y.3.40.3 61 61* 0.00 61* 0.00 247.23 61* 0.00 135.06 100.00 61* 0.00 14.46 100.00
Y.3.40.4 50 54 8.00 54 8.00 40.60 54 8.00 31.8 100.00 53 6.00 107.65 60.00
Y.3.40.5 53 56 5.66 56 5.66 93.74 56 5.66 47.93 100.00 55 3.77 186.61 80.00
Y.3.60.1 81 87 7.41 86 6.17 122.81 86 6.17 105.89 100.00 85 4.94 137.47 60.00
Y.3.60.2 89 89* 0.00 89* 0.00 1.50 89* 0.00 1.13 100.00 89* 0.00 1.00 100.00
Y.3.60.3 91 91* 0.00 91* 0.00 155.10 91* 0.00 80.45 100.00 91* 0.00 14.44 100.00
Y.3.60.4 78 80 2.56 80 2.56 113.46 79 1.28 87.74 100.00 78* 0.00 131.08 40.00
Y.3.60.5 77 82 6.49 82 6.49 131.08 81 5.19 135.99 100.00 81 3.90 88.60 20.00
Y.3.80.1 106 115 8.49 114 7.55 143.72 114 7.55 124.38 100.00 113 6.60 161.60 100.00
Y.3.80.2 117 117* 0.00 117* 0.00 3.27 117* 0.00 2.29 100.00 117* 0.00 1.68 100.00
Y.3.80.3 118 118* 0.00 118* 0.00 227.40 118* 0.00 144.03 80.00 118* 0.00 123.70 80.00
Y.3.80.4 105 106 0.95 106 0.95 150.20 105* 0.00 86.91 100.00 105* 0.00 63.86 100.00
Y.3.80.5 104 109 4.81 109 4.81 197.97 108 3.85 121.61 100.00 107 2.88 111.58 20.00
Y.3.100.1 131 143 9.16 141 7.63 299.65 141 7.63 221.13 80.00 140 6.87 214.13 40.00
Y.3.100.2 146 146* 0.00 146* 0.00 5.82 146* 0.00 3.16 100.00 146* 0.00 2.66 100.00
Y.3.100.3 146 146* 0.00 146* 0.00 29.27 146* 0.00 25.59 100.00 146* 0.00 19.11 100.00
Y.3.100.4 131 132 0.76 132 0.76 165.10 131* 0.00 122.35 100.00 131* 0.00 100.82 100.00
Y.3.100.5 129 136 5.43 136 5.43 177.49 135 4.65 129.53 100.00 134 3.88 181.82 80.00

Average 3.29 3.28 110.38 2.91 77.84 98.40 2.38 80.35 82.40
Fig. 5. Evolution of the total overload by DN-ILS and its variants on four largest instances. Point (𝑥, 𝑦) means that the best total overload is 𝑦 at 𝑥 seconds.
10
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Table 4
Computational results and comparisons on set Y4 instances.

Instance LB VND MN-ITS SAS-ILS DN-ILS

Obj Gap (%) Obj Gap (%) CPU (s) Obj Gap (%) CPU (s) Succ (%) Obj Gap (%) CPU (s) Succ (%)

Y.4.20.1 17 19 11.76 19 11.76 12.82 19 11.76 2.29 100.00 18 5.88 89.88 60.00
Y.4.20.2 28 28* 0.00 28* 0.00 0.69 28* 0.00 0.45 100.00 28* 0.00 0.52 100.00
Y.4.20.3 23 23* 0.00 23* 0.00 0.18 23* 0.00 0.12 100.00 23* 0.00 0.11 100.00
Y.4.20.4 19 19* 0.00 19* 0.00 6.30 19* 0.00 5.24 100.00 19* 0.00 3.04 100.00
Y.4.20.5 17 19 11.76 19 11.76 5.08 19 11.76 3.82 100.00 19 11.76 5.86 100.00
Y.4.40.1 31 35 12.90 35 12.90 20.51 35 12.90 15.09 100.00 35 12.90 33.09 20.00
Y.4.40.2 57 57* 0.00 57* 0.00 0.94 57* 0.00 0.67 100.00 57* 0.00 0.57 100.00
Y.4.40.3 43 43* 0.00 43* 0.00 0.86 43* 0.00 0.46 100.00 43* 0.00 0.39 100.00
Y.4.40.4 38 38* 0.00 38* 0.00 7.98 38* 0.00 2.64 100.00 38* 0.00 2.26 100.00
Y.4.40.5 33 37 12.12 37 12.12 14.27 37 12.12 9.05 100.00 36 9.09 106.08 100.00
Y.4.60.1 47 53 12.77 53 12.77 88.82 52 10.64 53.07 100.00 52 10.64 42.17 100.00
Y.4.60.2 86 86* 0.00 86* 0.00 24.76 86* 0.00 19.90 100.00 86* 0.00 19.27 100.00
Y.4.60.3 64 64* 0.00 64* 0.00 3.19 64* 0.00 2.36 100.00 64* 0.00 2.33 100.00
Y.4.60.4 58 58* 0.00 58* 0.00 1.33 58* 0.00 0.81 100.00 58* 0.00 0.62 100.00
Y.4.60.5 49 55 12.24 55 12.24 52.86 54 10.20 52.45 100.00 54 10.20 43.15 100.00
Y.4.80.1 62 70 12.90 69 11.29 299.74 69 11.29 180.28 100.00 68 9.68 125.54 100.00
Y.4.80.2 118 118* 0.00 118* 0.00 17.36 118* 0.00 8.80 100.00 118* 0.00 11.15 100.00
Y.4.80.3 81 81* 0.00 81* 0.00 4.88 81* 0.00 3.53 100.00 81* 0.00 3.24 100.00
Y.4.80.4 78 78* 0.00 78* 0.00 1.62 78* 0.00 1.17 100.00 78* 0.00 1.01 100.00
Y.4.80.5 65 72 10.77 71 9.23 87.10 71 9.23 45.28 100.00 70 7.69 126.08 100.00
Y.4.100.1 76 86 13.16 86 13.16 93.44 85 11.84 63.75 100.00 84 10.53 143.83 100.00
Y.4.100.2 146 146* 0.00 146* 0.00 25.55 146* 0.00 16.02 100.00 146* 0.00 38.17 100.00
Y.4.100.3 98 98* 0.00 98* 0.00 31.89 98* 0.00 17.31 100.00 98* 0.00 8.27 100.00
Y.4.100.4 98 98* 0.00 98* 0.00 75.13 98* 0.00 15.26 100.00 98* 0.00 11.57 100.00
Y.4.100.5 80 89 11.25 89 11.25 228.83 87 8.75 150.35 100.00 87 8.75 98.19 100.00

Average 4.87 4.74 44.24 4.42 26.80 100.00 3.89 36.66 95.20
Table 5
Computational results and comparisons on set Y5 instances.

Instance LB VND MN-ITS SAS-ILS DN-ILS

Obj Gap (%) Obj Gap (%) CPU (s) Obj Gap (%) CPU (s) Succ (%) Obj Gap (%) 𝐶𝑃𝑈 (𝑠) Succ (%)

Y.5.20.1 13 13* 0.00 13* 0.00 4.62 13* 0.00 2.52 100.00 13* 0.00 2.22 100.00
Y.5.20.2 17 17* 0.00 17* 0.00 17.39 17* 0.00 15.48 100.00 17* 0.00 1.30 100.00
Y.5.20.3 12 12* 0.00 13 8.33 102.08 12* 0.00 76.58 100.00 12* 0.00 74.35 80.00
Y.5.20.4 17 17* 0.00 17* 0.00 0.35 17* 0.00 0.27 100.00 17* 0.00 0.28 100.00
Y.5.20.5 15 15* 0.00 15* 0.00 0.16 15* 0.00 0.08 100.00 15* 0.00 0.09 100.00
Y.5.40.1 24 24* 0.00 24* 0.00 9.66 24* 0.00 7.13 100.00 24* 0.00 3.71 100.00
Y.5.40.2 31 31* 0.00 31* 0.00 3.77 31* 0.00 2.75 100.00 31* 0.00 1.47 100.00
Y.5.40.3 22 23 4.55 23 4.55 13.41 23 4.55 6.87 100.00 23 4.55 5.90 100.00
Y.5.40.4 33 33* 0.00 33* 0.00 5.20 33* 0.00 2.91 100.00 33* 0.00 2.06 100.00
Y.5.40.5 28 28* 0.00 28* 0.00 0.98 28* 0.00 0.69 100.00 28* 0.00 0.69 100.00
Y.5.60.1 33 35 6.06 35 6.06 29.99 35 6.06 28.76 100.00 35 6.06 34.44 100.00
Y.5.60.2 45 45* 0.00 45* 0.00 10.92 45* 0.00 7.86 100.00 45* 0.00 3.29 100.00
Y.5.60.3 34 34* 0.00 34* 0.00 14.41 34* 0.00 7.64 100.00 34* 0.00 7.18 100.00
Y.5.60.4 48 48* 0.00 48* 0.00 50.06 48* 0.00 34.00 100.00 48* 0.00 13.89 100.00
Y.5.60.5 40 40* 0.00 40* 0.00 4.55 40* 0.00 2.41 100.00 40* 0.00 2.22 100.00
Y.5.80.1 43 46 6.98 47 9.30 26.79 46 6.98 26.04 100.00 45 4.65 60.20 20.00
Y.5.80.2 59 59* 0.00 59* 0.00 27.14 59* 0.00 25.86 100.00 59* 0.00 10.84 100.00
Y.5.80.3 43 44 2.33 45 4.65 38.67 44 2.33 19.40 100.00 44 2.33 17.01 100.00
Y.5.80.4 63 63* 0.00 63* 0.00 146.78 63* 0.00 73.57 100.00 63* 0.00 41.15 100.00
Y.5.80.5 53 53* 0.00 53* 0.00 5.01 53* 0.00 4.26 100.00 53* 0.00 3.93 100.00
Y.5.100.1 55 57 3.64 57 3.64 59.60 57 3.64 33.30 100.00 56 1.82 118.53 60.00
Y.5.100.2 73 73* 0.00 74 1.37 58.37 73* 0.00 48.54 100.00 73* 0.00 29.82 100.00
Y.5.100.3 53 54 1.89 55 3.77 32.80 54 1.89 51.68 100.00 54 1.89 39.76 100.00
Y.5.100.4 77 77* 0.00 77* 0.00 180.49 77* 0.00 103.90 100.00 77* 0.00 50.72 100.00
Y.5.100.5 66 66* 0.00 66* 0.00 11.24 66* 0.00 6.60 100.00 66* 0.00 6.15 100.00

Average 1.02 1.67 34.18 1.02 23.56 100.00 0.85 21.25 94.40
calculates the incremental evaluation objective by calling GreedyInsert
or ECS.

Fig. 5 shows that although SD-ILS quickly improves the solution
quality in the early stage, DN-ILS outperforms SD-ILS by taking less
computation time to obtain a feasible solution. The reason for this
phenomenon might be that without the shaking procedure, the routing
of the lightpaths in both bins is not sufficiently optimized to reach a
local optimum. That is to say, good candidate high-level shift-moves
may be overlooked due to an inferior evaluation when only using
the greedy heuristic. It is noteworthy that DN-ILS is much faster than
SEC-ILS in all cases, demonstrating the importance of the combined
11
neighborhood evaluation method. When the incremental evaluation is
disabled, SSWI-ILS converges slowly such that the objective value is
still high when the time limit is reached, justifying the importance of
the incremental evaluation technique. In addition, when the caching
technique is disabled, SSWC-ILS is much slower than DN-ILS in all
cases, demonstrating the importance of this technique.

5. Conclusion

Two novel neighborhoods, called shift-shaking and swap-shaking,

are proposed to tackle the classic min-RWA problem. In detail, our
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Table 6
Computational results and comparisons on set Z instances.

Instance LB VND MN-ITS SAS-ILS DN-ILS

Obj Gap (%) Obj Gap (%) CPU (s) Obj Gap (%) CPU (s) Succ (%) Obj Gap (%) CPU (s) Succ (%)

Z.4 × 25.20 66 68 3.03 66* 0.00 299.53 66* 0.00 211.35 20.00 66* 0.00 122.00 100.00
Z.4 × 25.40 126 129 2.38 127 0.79 34.71 127 0.79 31.71 100.00 127 0.79 27.41 100.00
Z.4 × 25.60 192 195 1.56 193 0.52 40.58 193 0.52 21.69 100.00 192* 0.00 53.69 40.00
Z.4 × 25.80 257 261 1.56 258 0.39 101.22 258 0.39 65.05 100.00 258 0.39 104.51 100.00
Z.4 × 25.100 312 319 2.24 317 1.60 234.76 315 0.96 180.09 100.00 312* 0.00 136.89 60.00
Z.5 × 20.20 54 55 1.85 54* 0.00 0.86 54* 0.00 0.86 100.00 54* 0.00 0.69 100.00
Z.5 × 20.40 101 104 2.97 101* 0.00 115.50 101* 0.00 107.18 100.00 101* 0.00 76.85 100.00
Z.5 × 20.60 154 158 2.60 154* 0.00 299.61 154* 0.00 203.93 40.00 154* 0.00 146.55 100.00
Z.5 × 20.80 205 209 1.95 206 0.49 103.39 205* 0.00 56.88 100.00 205* 0.00 81.09 100.00
Z.5 × 20.100 250 256 2.40 253 1.20 80.08 252 0.80 59.40 100.00 251 0.40 134.70 60.00
Z.6 × 17.20 44 46 4.55 44* 0.00 40.52 44* 0.00 32.30 100.00 44* 0.00 80.73 100.00
Z.6 × 17.40 84 87 3.57 85 1.19 10.70 85 1.19 9.34 100.00 85 1.19 6.89 100.00
Z.6 × 17.60 128 133 3.91 129 0.78 15.55 129 0.78 13.48 100.00 129 0.78 20.02 100.00
Z.6 × 17.80 171 176 2.92 171* 0.00 165.17 171* 0.00 119.83 100.00 171* 0.00 169.33 100.00
Z.6 × 17.100 216 222 2.78 220 1.85 93.25 217 0.46 89.66 100.00 216* 0.00 128.97 100.00
Z.8 × 13.20 33 35 6.06 34 3.03 72.05 33* 0.00 60.35 100.00 33* 0.00 16.61 100.00
Z.8 × 13.40 63 67 6.35 64 1.59 78.87 64 1.59 45.49 100.00 64 1.59 27.06 100.00
Z.8 × 13.60 96 101 5.21 98 2.08 109.98 97 1.04 79.52 100.00 97 1.04 100.15 100.00
Z.8 × 13.80 129 134 3.88 130 0.78 52.78 130 0.78 42.17 100.00 130 0.78 36.45 100.00
Z.8 × 13.100 168 175 4.17 173 2.98 150.49 169 0.60 176.50 100.00 169 0.60 37.03 100.00
Z.10 × 10.20 27 31 14.81 29 7.41 141.37 28 3.70 112.46 100.00 28 3.70 47.94 100.00
Z.10 × 10.40 51 59 15.69 55 7.84 171.94 54 5.88 130.57 100.00 54 5.88 33.11 100.00
Z.10 × 10.60 77 88 14.29 84 9.09 124.33 82 6.49 70.22 100.00 81 5.19 58.60 40.00
Z.10 × 10.80 103 116 12.62 112 8.74 54.35 109 5.83 45.92 100.00 108 4.85 75.03 100.00
Z.10 × 10.100 125 142 13.60 139 11.20 84.61 134 7.20 54.02 100.00 133 6.40 99.51 100.00

Average 5.48 2.54 107.05 1.56 80.80 94.40 1.34 72.87 92.00
local search-based algorithm incorporates high-level shift and swap
moves to change the wavelengths of lightpaths and two low-level
shaking procedures to further optimize the routing of the associated
lightpaths. Our approach additionally introduces several strategies to
accelerate the neighborhood evaluation. Computational experiments on
113 commonly used benchmark instances show that DN-ILS obtains the
optimal solutions on 8 instances for the first time, improves the best
known results for 35 instances and matches the best known results for
the remaining 78 ones within short computation time. Although our SS
and SWS neighborhoods are specially designed for the 𝑘-RWA problem,
their success inspires us to adapt their underlying ideas to tackle other
multi-level optimization problems with strong constraints.
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