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Abstract. This study considers a well-known critical node detection problem that aims to 
minimize a pairwise connectivity measure of an undirected graph via the removal of a sub
set of nodes (referred to as critical nodes) subject to a cardinality constraint. Potential appli
cations include epidemic control, emergency response, vulnerability assessment, carbon 
emission monitoring, network security, and drug design. To solve the problem, we present 
a “reduce-solve-combine” memetic search approach that integrates a problem reduction 
mechanism into the popular population-based memetic algorithm framework. At each 
generation, a common pattern mined from two parent solutions is first used to reduce the 
given problem instance, then the reduced instance is solved by a component-based hybrid 
neighborhood search that effectively combines an articulation point impact strategy and a 
node weighting strategy, and finally an offspring solution is produced by combining the 
mined common pattern and the solution of the reduced instance. Extensive evaluations on 
42 real-world and synthetic benchmark instances show the efficacy of the proposed 
method, which discovers nine new upper bounds and significantly outperforms the cur
rent state-of-the-art algorithms. Investigation of key algorithmic modules additionally dis
closes the importance of the proposed ideas and strategies. Finally, we demonstrate the 
generality of the proposed method via its adaptation to solve the node-weighted critical 
node problem.
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1. Introduction
Given an undirected graph G � (V, E)with vertex (or node) set V and edge set E, critical node detection problems 
(CNDPs) (Arulselvan et al. 2009, Naoum-Sawaya and Buchheim 2016, Zhou et al. 2019, Baggio et al. 2021, Zhou 
et al. 2021b, Salemi and Buchanan 2022) aim to identify a subset of nodes (referred to as critical nodes) S ⊆ V whose 
removal enhances (decreases) the graph connectivity of the residual graph G[V \ S] evaluated by a given connec
tivity measure σ. According to different cases of |S | and σ, CNDPs can be divided into two categories: K-vertex- 
CNDP and β-connectivity-CNDP. The former is to optimize (minimize or maximize) the connectivity measure σ, 
such that no more than K nodes are deleted (i.e., |S | ≤ K), whereas the latter aims to minimize the set of deleted 
nodes, such that the connectivity measure σ is bounded by a given threshold β (Zhou et al. 2023d). A detailed tax
onomy of CNDPs is provided in (Zhou et al. 2021b). In addition, node-weighted CNDPs (Chen et al. 2020, Zhou 
et al. 2021c) and distance-based CNDPs (Salemi and Buchanan 2022, Zhou et al. 2023c) have been receiving 
increasing attention in the literature.
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The critical node problem (CNP) (Arulselvan et al. 2009, Zhou et al. 2019, Baggio et al. 2021) is a fundamental 
CNDP, which belongs to the category of K-vertex-CNDPs. It seeks a set S ⊆ V of at most K nodes, the deletion of 
which minimizes the total pairwise connectivity in G[V \ S]. Formally, the objective function f(S) of CNP can be 
written as follows:

f (S) �
XM

i�1

|Ci | ( |Ci | � 1)
2 , (1) 

where Ci is a connected component, and M is the total number of connected components in the residual graph 
G[V \ S]. Hence, the residual graph G[V \ S] is composed of M connected components, that is, 

PM
i�1 ∪ Ci � G[V \ S]. 

From (1), we observe that a good solution of CNP should generate a residual graph that maximizes the number of 
connected components while simultaneously minimizing the variance in the component sizes.

CNP has a wide spectrum of applications in many fields. For example, the overall transmissibility of a virus can 
be limited by identifying only a specific number of people to be vaccinated in epidemic control (Doostmohamma
dian et al. 2020). Emergency response can be modeled as a CNP by identifying some critical nodes that can be used 
to plan good emergency evacuations at a disaster case (Vitoriano et al. 2011). Besides epidemic control and emer
gency response, CNP is also a convenient model for other applications such as vulnerability assessment (Nguyen 
et al. 2013, Zhou et al. 2021c), carbon emission monitoring (Zhang et al. 2020), network security (Mugisha and Zhou 
2016), and drug design (Abbas et al. 2021).

CNP is known to be NP-hard on general graphs (Arulselvan et al. 2009). Its solution space grows exponentially 
with its size. As indicated in (Veremyev et al. 2014a), CNP can be solved exactly on medium sparse graphs with up 
to 1,500 nodes under the time limit 50,000 seconds. However, CNP instances from real-world applications can be 
considerably larger. To deal with such instances, computationally efficient heuristic algorithms have been devel
oped to provide high-quality solutions in reasonable computation time. To the best of our knowledge, two 
population-based memetic algorithms with fixed or variable population represent the current state-of-the-art for 
solving CNP (Zhou et al. 2019, 2021b). However, these algorithms are time-consuming, which becomes a handicap 
when they are applied on large graphs. This motivates us to incorporate a strategy based on the divide- 
and-conquer principle that divides an original problem into several subproblems to solve them separately, fol
lowed by combining the solutions of the subproblems to yield an overall solution of the original problem. To take 
advantage of both the memetic search framework and the divide-and-conquer principle, this work introduces a 
“reduce-solve-combine” (RSC) memetic algorithm that integrates a problem reduction mechanism into the popular 
memetic algorithm framework.

The main contributions of the work are summarized as follows: 
• The proposed algorithm, called instance reduction-based memetic search (IRMS), incorporates an RSC mecha

nism within the popular population-based memetic algorithm framework. At each generation, a common pattern 
mined from two parent solutions is first used to reduce the original instance, then the reduced instance is solved, 
and an offspring solution is finally obtained by combining the mined common pattern and the solution of the 
reduced instance. In addition, a component-based hybrid neighborhood search that combines the articulation point 
impact and node weighting strategies is developed to ensure an effective local optimization. It is worth noting that 
the reduced instance can be approximately solved by a heuristic solver or optimally solved by an exact solver in 
the RSC module. Moreover, this module is of a generic nature, which can be combined with other heuristic algo
rithms to improve their search performances.
• The proposed IRMS algorithm achieves a high level of performance on the 42 synthetic and real-world bench

mark instances commonly used in the literature that compares very favorably with the state-of-the-art CNP algo
rithms, finding new upper bounds for 9 instances. Our experimental results also disclose the superiority of IRMS 
over the most recent frequent pattern-based search (FPBS) (Zhou et al. 2022), which is based on mining patterns 
from a set of high-quality solutions with a time-consuming frequent itemset mining algorithm to guide the off
spring solution construction. Experimental analyses on key algorithmic modules of the proposed algorithm are 
performed to identify the elements underlying the effectiveness of the proposed ideas and techniques.
• We also demonstrate the inherent generality of the proposed IRMS algorithm by an application to solve the 

node-weighted critical node problem, where this generalized version of IRMS performs significantly better than 
the best-performing algorithm for the node-weighted problem in terms of both the best and average values.

The rest of this paper is organized as follows. After a brief review of previous studies on CNP and instance reduc
tion techniques in Section 2, we present IRMS for CNP in Section 3. Section 4 conducts experimental studies of the 
proposed algorithm and compares its results with those of the state-of-the-art methods. The generalization of IRMS 
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that adapts it to the node-weighted CNP is presented in Section 5. Key issues of IRMS are analyzed in Section 6, fol
lowed by conclusions in Section 7.

2. Related Work
2.1. Previous Studies on CNP
The CNP has been shown to be NP-hard (Arulselvan et al. 2009) and has attracted widespread research attention 
(Arulselvan et al. 2009; Pullan 2015; Veremyev et al. 2019; Zhou et al. 2019, 2021b). Existing solution approaches 
can be divided into two categories: exact and heuristic algorithms. Exact algorithms can theoretically guarantee 
the optimality of their obtained solutions. For example, Arulselvan et al. (2009) presented the first integer pro
gramming model with O( |V |2) variables and O( |V |3) constraints for CNP and used CPLEX to solve the model. Di 
Summa et al. (2012) further proposed two improved formulations: an extended formulation of (Arulselvan et al. 
2009) and a quadratic programming reformulation considering the complete form of CNP. Both are solved with 
the branch-and-cut framework. Because of the large number of constraints (i.e., O( |V |3)), the exact algorithms 
could solve CNP to optimality only for small sparse graphs with up to 150 nodes. Veremyev et al. (2014b) devel
oped an improved compact linear reformulation with only O( |V |2) constraints, which was able to provide exact 
solutions for CNP with up to 1,200 nodes and further developed a general integer programming framework for 
solving different CNDPs (Veremyev et al. 2014a). Rezaei et al. (2021) proposed an efficient exact iterative algo
rithm (EIA-CNDP) to solve a CNDP whose objective is to minimize the size of the largest connected component. 
In addition, they provided a comprehensive survey on both exact and heuristic algorithms for solving different 
CNDPs.

To deal with large instances, heuristic algorithms are required to solve CNP approximately in an affordable com
putation time. Existing heuristics for CNP can be grouped into two categories: local search and population-based 
methods. Local search methods manipulate only a single candidate solution of the given problem in each search 
step. For example, Arulselvan et al. (2009) presented an early heuristic that starts with an independent set and is 
coupled with a two-exchange local search. Ventresca (2012) proposed a simulated annealing (SA) algorithm for 
CNP using a combinatorial unranking-based problem representation. Pullan (2015) developed a multistart greedy 
algorithm for CNP (CNA1 for short). Addis et al. (2016) proposed several hybrid heuristic algorithms by combining 
the two basic greedy rules (i.e., add-back and remove) with some flavor of local search. Based on two smart and 
computationally efficient neighborhoods, Aringhieri et al. (2016b) presented two metaheuristic algorithms for CNP 
based on the iterated local search (ILS) and variable neighborhood search (VNS) frameworks. More recently, de 
San Lázaro et al. (2021) proposed an improved VNS algorithm, and Wang and Di (2022) proposed a cluster expan
sion method called CEMCNP for CNP. CEMCNP uses a strategy similar to that of the multistart ILS algorithm, sup
plemented by integrating a contraction mechanism to greedily alleviate the effect of vertex scale without loss of 
accuracy and an incremental cluster expansion approach to iteratively separate the graph into many disconnected 
components whose sizes are kept within reasonable bounds.

In contrast to the preceding local search methods, population-based methods often maintain a population of can
didate solutions that are manipulated and evaluated during the search process. For instance, Ventresca (2012) pro
posed a population-based method for CNP called the population-based incremental learning (PBIL) algorithm, 
which used an unranking-based problem representation and obtained higher-quality solutions than SA. However, 
SA found solutions faster than PBIL. Aringhieri et al. (2016a) designed a general evolutionary algorithm framework 
for different classes of CNDPs, which followed a simple genetic algorithm framework that made use of greedy rules 
to repair and correct the solution during the reproduction and mutation phases. Purevsuren et al. (2017) combined 
a greedy randomized adaptive search procedure (GRASP) with exterior path-relinking for CNP. Following this, 
Zhou et al. (2019) presented a memetic algorithm for CNP (MACNP for short) and subsequently proposed a vari
able population memetic search (VPMS) (Zhou et al. 2021b), using a strategic population sizing mechanism to 
dynamically adjust the population size during the search process. These memetic algorithms adopt a strategy for 
combining solutions to create new ones similar to that of the path relinking approach (Glover 1997), which invites 
the relationship between these approaches to be investigated more fully. Unlike the general local search and 
population-based algorithms, Nabli and Carvalho (2020) proposed a multiagent reinforcement learning framework 
to learn to solve a multilevel budgeted combinatorial problem. A case study on the multilevel CNP shows this 
learning algorithms outperforms classical reinforcement learning algorithms.

To the best of our knowledge, most state-of-the-art results of the CNP instances were obtained by memetic algo
rithms (i.e., MACNP and VPMS), which rely on a fixed or variable population of candidate solutions to explore the 
search space. However, these algorithms are very time-consuming and have trouble to effectively solve very large 
instances. It is necessary to propose computationally efficient algorithms capable to deal with such large instances.
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2.2. Previous Studies on Instance Reduction
To solve large-scale instances, instance reduction is a useful strategy for a number of difficult combinatorial optimi
zation problems, as shown in various studies in the literature (Zheng and Xue 2010, Wu and Hao 2012, Chen and 
Hao 2014, Delgadillo et al. 2016, Kenny et al. 2018, de Holanda Maia et al. 2020, Zhang et al. 2021, Le et al. 2022). In 
the following, we briefly review some representative instance reduction methods fitting different categories.

The divide-and-conquer strategy is a popular and general approach to solve large-scale problems. The main idea 
is to decompose the original large problem into smaller subproblems that can be solved individually. For the arc 
routing problem, a commonly used divide-and-conquer strategy is to divide the task into subsets, and then solve 
the subproblems induced by the task subsets separately. For example, Zhang et al. (2021) proposed a novel problem 
decomposition operator called the route cutting off operator and integrated it within two state-of-the-art divided- 
and-conquer algorithms to solve large scale capacitated arc routing problems.

Reduce-and-solve methods represent a closely related derivative of divide-and-conquer approaches illustrated 
by the work of Zheng and Xue (2010) who use formal calculation rules to divide a discrete optimization problem 
into subproblems with smaller search spaces and accompanied by efficient implicit algorithms to incrementally 
construct a complete solution from the solutions to the subproblems. Chen and Hao (2014) developed a reduce- 
and-solve heuristic approach for the multiple-choice multidimensional knapsack problem, which combined prob
lem reduction techniques with the CPLEX solver. Its basic idea is to use some dedicated heuristics to fix a number 
of groups and variables to obtain a reduced critical subproblem that is then solved by the CPLEX solver.

Similarly, Wu and Hao (2012) proposed an effective approach called EXTRACOL to coloring large graphs. It 
first applied a preprocessing procedure to extract large independent sets from the graph, and then used a memetic 
algorithm to color the residual graph. However, if an independent set extracted in the preprocessing is not part of 
the optimal coloring, it can never be repaired. To cope with this issue, the authors developed an extraction and 
expansion method called E2COL, which integrates an expansion phase to allow the coloring process to reconsider 
each extracted independent set on a one-by-one basis (Wu and Hao 2013). They further extended E2COL by pro
posing additional strategies, resulting in an improved extraction and expansion algorithm named IE2COL (Hao 
and Wu 2012), which used a forward independent set extraction strategy to reduce the initial graph, followed by a 
backward coloring process which uses extracted independent sets as new color classes for intermediate subgraph 
coloring.

Inspired by the concept of immunization by vaccination derived from artificial immune systems, Montiel et al. 
(2013) proposed a reduce-optimize-expand method to improve existing discrete optimization algorithms for large- 
scale traveling salesman problems (TSPs) composed of three steps. The first step decreases the problem complexity 
by a heuristic for reducing the number of nodes of the original problem. The next step applies an exact or heuristic 
algorithm to obtain an intermediate solution which is expanded in the third step to produce a final solution. Based 
on the reduce-optimize-expand method, Delgadillo et al. (2016) presented an intelligent strategy with a fuzzy logic 
classifier to obtain systematic reductions of TSP instances. In related work, de Holanda Maia et al. (2020) proposed 
a MineReduce approach to improve a heuristic for the heterogeneous fleet vehicle routing problem by performing 
problem reductions.

Blum et al. (2016) proposed an alternative hybrid metaheuristic framework called construct, merge, solve, and 
adapt (CMSA) for combinatorial optimization problems that similarly uses reduced problem instances and works 
in three phases. First, it generates a reduced subinstance of the original problem instance by a process that ensures a 
solution to the subinstance is also a solution to the original instance. Second, it applies an exact solver to the reduced 
subinstance to obtain a high-quality solution of the original instance. Finally, it makes use of the results of the exact 
solver as feedback for the next algorithm iteration. The method has been successfully applied to solve the minimum 
common string partition problem and minimum covering arborescence problem.

Kenny et al. (2018) presented a problem reduction metaheuristic called merge search (MS). It consists of three 
main modules: an initial solution construction heuristic, a SA-based local search to quickly generate a population of 
neighboring solutions, and a merge operation that uses information from all solutions in the population to produce 
a reduced subproblem, which is then solved by a mixed integer programming solver. The method has been further 
extended with an improved population generation and variable aggregation heuristics for the constrained pit prob
lem in (Kenny et al. 2019). The main difference between MS and CMSA is that CMSA generates solutions from 
scratch, whereas MS starts with a single initial seed solution and uses local search to generate a population of neigh
boring solutions to the initial seed solution.

Mihic et al. (2018) presented a general-purpose local search approach called randomized decomposition (RD) for 
solving hard, nonlinear, nonconvex mathematical programs. RD uses a novel decomposition to partition the solu
tion space into random subspaces and then find a local optimum in each subspace independently. In addition to 
the quadratic assignment problem, the RD decomposition method has been successfully applied to a wide range of 
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other problems, including revenue management (Cooper and Homem-de-Mello 2007) and traveling salesman pro
blems (Subramanyam and Gounaris 2018).

As mentioned previously, memetic algorithms (i.e., MACNP (Zhou et al. 2019) and VPMS (Zhou et al. 2021b)) 
are the best performing heuristic algorithms for CNP. In this work, we present an instance reduction-based meme
tic search (IRMS) approach for CNP, where an RSC instance reduction mechanism is integrated into the well- 
known memetic algorithm to join the merits of these two strategies for solving large and hard CNP applications.

3. Instance Reduction-Based Memetic Search for CNP
Our instance reduction-based memetic search algorithm for CNP is based on the following key modules.

3.1. Solution Representation and Evaluation
Given a CNP instance with an integer K, any subset S ⊂ V of size K is a feasible solution, that is, |S | � K. A candidate 
solution S can be represented by S � {vS(1), vS(2), : : : , vS(K)} such that S(i) is the index of node i in V or equivalently a 
binary vector of size |V | such that exactly K variables receive the value of one and the other |V | �K variable 
receives zero. The solution space Ω contains all possible subsets of K nodes, that is, Ω � {S ⊂ V : |S | � K}. The size 

of Ω is given by |V |K

� �

� |V | !
K!( |V |�K)! and increases rapidly with increases in |V | and K. According to (1), the solution 

cost of S can be evaluated by a modified depth first search (DFS) algorithm (Hopcroft and Tarjan 1973) in 
O( |V | + |E | ).

3.2. General Scheme
The general scheme of the proposed IRMS approach is illustrated in Figure 1. One distinct feature of IRMS is that a 
common pattern mined from only two parent solutions is used to guide the instance reduction, and the reduced 
instance is then solved by a fast local search heuristic. Finally, a promising offspring solution is obtained by directly 
combining the common pattern and the solution of the reduced instance. From the perspective of algorithm archi
tecture, IRMS is composed of five modules (see Algorithm 1): (1) population Initialization (Section 3.3), (2) 
component-based hybrid neighborhood search (Section 3.4), (3) common pattern mining (Section 3.5), (4) RSC 
mechanism (Section 3.6), and (5) population updating (Section 3.7).

The IRMS approach starts with an initial population of λ high-quality solutions (line 1). At each generation, it 
randomly selects two parent solutions SF and SM from the population P (line 4). A common pattern mining proce
dure is then applied to find a common pattern ζ between SF and SM (line 5). An offspring solution S is then gener
ated by the RSC mechanism (line 6), which is further improved by a component-based hybrid neighborhood search 
(CHNS) procedure (line 7). Finally, a population updating procedure is used to accept or discard the offspring solu
tion (line 11). The process repeats until a given stopping condition is satisfied, such as a time limit t̂ or a given num
ber of generations.

Algorithm 1 (Pseudo Code of IRMS Approach for CNP)
Input: A CNP instance I (i.e., an undirected graph G with an integer K), population size λ, selection probability 

θ, and maximal idle iteration count ξ̂
Output: The best found solution S∗
1: P← PopulationInitialization(λ) /* Build an initial population */
2: S∗ ← arg min{f (Si) : i � 1, 2, : : : ,λ} /* Record the best solution S∗ */
3: while a stopping condition is not satisfied do

Figure 1. (Color online) Diagram of the Proposed IRMS Approach 
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4: Randomly select two solutions SF and SM from P
5: ζ← CommonPatternMining(SF, SM) /* Mine common pattern between two parents */
6: S← RSC(I,ζ) /* Construct an offspring solution */
7: S′ ← CHNS(S,θ, ξ̂) /* Improve the solution */
8: if f (S′) ≤ f (S∗) then
9: S∗ ← S′

10: end if
11: P← PopulationUpdating(P, S′) /* Update the population */
12: end while
13: return The best found solution S∗

3.3. Population Initialization
The initial population is composed of λ diverse and high-quality solutions, where each solution is created as fol
lows. A random solution is first generated, which is then improved to a high-quality local optimum by the 
component-based neighborhood search procedure (Zhou et al. 2019). Then the improved solution is added into the 
population P if the solution does not duplicate any existing solution in the current population, and the process 
repeats until λ different high-quality solutions are obtained.

3.4. Component-Based Hybrid Neighborhood Search
3.4.1. Basic Idea. To perform local optimization, we propose a CHNS, which effectively combines the node 
weighting and articulation point impact strategies. As shown in Algorithm 2, CHNS starts from a candidate solu
tion S, and then iteratively improves it by adding a new node to S (lines 4–11) and greedily removing a node from S 
(lines 12–13). CHNS stops when the idle iteration count ξ (i.e., the number of iterations without improvement) 
reaches an allowed maximal value ξ̂.

Algorithm 2 (Pseudo Code of CHNS)
Input: A solution S, selection probability θ, and maximal idle iteration count ξ̂
Output: The best solution S∗ found 
1: S∗ ← S
2: ξ← 0 /* Idle iteration count */
3: while ξ < ξ̂ do
4: Randomly select a large connected component C
5: Generate a random probability p ∈ (0, 1)
6: if p < θ then
7: v←ArticulationPointImpact(C) /* Executed with the predefined selection probability θ */
8: else
9: v←NodeWeighting(C) /* Executed with the probability 1�θ */

10: end if
11: S← S ∪ {v}
12: u← arg min{f (S \ {w})� f (S) |w ∈ S}
13: S← S \ {u}
14: if f (S) < f (S∗) then
15: S∗ ← S
16: ξ← 0
17: else
18: ξ← ξ+ 1
19: end if
20: end while
21: return The best solution S∗ found

Definition 1 (Large Connected Component). A connected component C is considered as a large connected compo
nent if its size is greater than (χ̂ + χ̌)=2, where χ̂ �maxi∈{1, : : : , M} |Ci | and χ̌ �mini∈{1, : : : , M} |Ci | present the size of 
largest and smallest connected components in the residual graph G[V \ S], respectively.

At each iteration, a large connected component C is selected randomly. Then, CHNS uses a hybrid node selec
tion strategy to select a node v from C and combines the node weighting and articulation point impact strategies 
in a probabilistic way. That is, a node v is selected by the articulation point impact strategy with a selection 
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probability θ (0 ≤ θ ≤ 1), and otherwise is selected by a node weighting strategy as in (Zhou et al. 2019). CHNS 
can be considered as an improved form of component-based neighborhood search (CBNS) (Zhou et al. 2019) that 
includes a way to remove a node from a large connected component C with the articulation point impact strategy 
described next.

Algorithm 3 (Pseudo Code of Articulation Point Impact Strategy)
Input: A large connected component C
Output: The selected node v∗
1: root← a random node in C /* Randomly select a node as the root node */

//Initialize all arrays
2: Count← 0 /* Time stamp */
3: for all nodes v ∈ C do
4: dfn[v] � ψ[v] � 0
5: γ[v] � η[v] � 1
6: end for

//Calculate the impact of each node
7: TarjanInComponent(C, root, Count,γ,η)
8: for each node v ∈ VC do
9: if v is an articulation point then

10: ψ[v]+ � (Count�η[v])(Count�η[v]�1)
2

11: else
12: ψ[v]+ � (Count�1)(Count�2)

2
13: end if
14: v∗ ← arg min{ψ[v] : v ∈ VC}

15: end for
16: return The selected node v∗

3.4.2. Articulation Point Impact Strategy. Let C � (VC, EC) be a large connected component, where VC and EC denote 
the node set and edge set in C, respectively. The articulation point impact strategy aims to select a node whose 
removal maximally decreases the connectivity of C (see Algorithm 3). To quickly find such a node in C, we design a 
TarjanInComponent procedure based on the algorithm of Tarjan (1972) that traverses every node in a component in 
only one round with time complexity O( |VC | + |EC | ) (line 11). The detailed pseudo code of TarjanInComponent is 
provided in Algorithm 1 of the online supplement (Zhou et al. 2023b). The articulation point impact strategy starts 
its search from a root of the large connected component C. Any node in C can be considered as a root node.

A conversion from an original connected component to a DFS tree is illustrated in Figure 2, where Figure 2(a)
and (b), respectively, present a connected component of nine nodes and a corresponding DFS tree rooted at node a. 
As shown in Figure 2(b), black solid arrows indicate tree edges that are taken when visiting unvisited nodes, 
whereas black dashed arrows denote back edges taken when visiting visited nodes. After removing the node d, the 
two shaded areas that correspond to two resulting connected components are obtained.

Figure 2. (Color online) An Illustrative Example of a Conversion between (a) an Original Component and (b) the Corresponding 
DFS Tree 

(a) (b)
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Unlike the approach of Ventresca and Aleman (2015), our articulation point impact strategy builds a DFS tree 
and evaluates its nodes simultaneously. To achieve this, two arrays are defined to record the states of nodes in the 
tree, that is, time stamps (dfn) and trace values (low). The former presents the time stamp when a node is first visited 
(i.e., the traverse sequence number), whereas the latter records the trace value of the node (i.e., the smallest time 
stamp of the current node’s neighbor visited). Therefore, we can obtain dfn, low, γ, and η values of the previously 
mentioned example, as summarized in Table 1.

Definition 2 (Articulation Point). An articulation point (or cut vertex) of a graph is a node whose deletion with 
associated edges makes the original graph disconnected, or more precisely, increases the number of connected 
components in the graph.

From a DFS tree, we have two simple observations.

Remark 1. A leaf node is not an articulation point.

Remark 2. A root node with at least two subtrees is an articulation point.
Suppose u is an internal node (i.e., neither a leaf node nor a root node), v is an arbitrary node, and e(u, v) is the 

edge between nodes u and v. We calculate low values according to the following rules: 
• If e(u, v) is a tree edge of the graph, then we have low[u] �min{low[u], low[v]};
• If e(u, v) is a back edge of the graph and v is not the parent of u, then we have low[u] �min{low[u], dfn[v]}.
To evaluate each node in a component, we define an impact function ψ that calculates the impact of removing 

a node in a recursive way as in Ventresca and Aleman (2015). The impact function value ψ(v) of a node v ∈ C is 
calculated based on two auxiliary parameters γ and η, where γ identifies the number of nodes that are descen
dants of v (i.e., φ(v)) including v, and η indicates the sum of the node v and nodes of all new components that 
come from v’s subtrees if removing v. It is worth noting that γ and η have the same value if v is an articulation 
point and is not the root node of a component, that is, γ[v] � η[v] � φ(v) + 1. Let δ(v) be the set of children nodes 
of v in the DFS tree, and φ(v) denote the total number of nodes that are descendants of v. Then φ(v) can be recur
sively computed as follows:

φ(v) �
X

w∈δ(v)

φ(w), if w is a root or an internal node
1, if w is a leaf node:

�

(2) 

Once an articulation point v is removed, the component C is divided into two parts: ancestors and descen
dants. The descendants consist of multiple children subtrees that can be transformed into a series of new com
ponents. Therefore, the contribution of v’s descendants to the objective function value can be calculated as 
follows:

X

ti∈T(v)

|ti | ( |ti | � 1)
2 , (3) 

where |ti | is the number of nodes in the children subtree ti ∈ T(v), and T(v) is the children subtree set of v. Accord
ingly, the increment in the objective function can be simplified as

ψ[v] � f ′(C \ {T(v) ∪ {v}}) +
X

ti∈T(v)

|ti | ( |ti | � 1)
2 , (4) 

where the first part f ′(C \ {T(v) ∪ {v}}) computes the total pairwise connectivity of the ancestors, whereas the sec
ond part presents the total pairwise connectivity of the descendants.

After traversing the component C, a node v∗ with the minimum ψ value is added to the solution S. The chosen 
node must be the node whose removal will maximally decrease the objective function f(S). Once a node v is added 

Table 1. Related Parameter Values of the Example Shown in Figure 2

a b c d e f g h i

Time stamp (dfn) 1 2 3 6 4 7 8 9 5
Trace value (low) 1 1 1 3 3 6 6 8 4
γ 9 8 7 4 2 3 2 1 1
η 1 1 7 4 2 3 2 1 1
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into S based on the node weighting or articulation point impact strategies, that is, S← S ∪ {v}, a node u whose 
removal minimally deteriorates the objective function f(S) is removed from S, that is, S← S \ {u}. The graph changes 
along with the add and remove operations, accompanied by disintegration of old components and regeneration of 
new components.

3.4.3. Node Weighting Strategy. The node weighting strategy is an effective diversification technique for local 
search that has been successfully used to solve many combinational optimization problems, such as boolean 
satisfiability (Thornton et al. 2004) and vertex cover (Cai et al. 2011) problems. Our node weighting strategy uses an 
idea similar to that of the node weighting scheme used in Zhou et al. (2019). Each node of a large connected compo
nent is associated with a positive integer number as its weight. Weights are initially set to one. At each step, we 
select the node v from C with the largest weight (breaking ties randomly) to add to S. Then, the weights of the 
remaining nodes in C are incremented. Once an exchange operation is made between v ∈ C and u ∈ S, we set the 
weight of u to one. As the search processes, the “hard to remove” nodes of a large connected component will have 
larger weights, and thus have a higher chance to be selected and removed from the large connected component in 
subsequent search.

3.5. Common Pattern Mining
Identifying common patterns that frequently appear in a set of high-quality solutions can be naturally modeled as a 
frequent pattern mining task (Grahne and Zhu 2005), where common patterns refer to frequent patterns. CNP is a 
typical subset selection problem, its solution is usually represented as a set of removed nodes. Based on this charac
teristic, the problem of performing frequent pattern mining on a set of high-quality CNP solutions is reduced to 
mine frequent itemsets that often appear together. An itemset is composed of multiple removed nodes, and each 
removed node is an item. Besides itemsets, frequent patterns can also be represented as complex entities such as 
subsequences and substructures.

To mine useful information from high-quality solutions, considerable efforts have been made to hybridize fre
quent pattern mining with metaheuristic algorithms (Ribeiro et al. 2006, Plastino et al. 2014, Arnold et al. 2021, 
Zhou et al. 2022). A pioneer algorithm called DM-GRASP (Ribeiro et al. 2006) was proposed to solve the set packing 
problem, where a data mining procedure is first applied to mine useful patterns from an elite set of solutions, and 
then the mined pattern is used to guide the search of GRASP. MDM-GRASP (Plastino et al. 2014) improved 
DM-GRASP by performing data mining as soon as the elite set becomes stable (i.e., no change occurs in the elite set 
throughout a given number of iterations) and whenever the elite set has been changed and has become stable again, 
instead of performing data mining only once. Recently, Zhou et al. (2022) presented an FPBS method for the qua
dratic assignment problem, where frequent patterns mined from the population by FPmax* algorithm are used to 
guide the offspring solution construction. Although numerous frequent pattern mining algorithms are available in 
the literature (Luna et al. 2019), they are time consuming.

To quickly find frequent itemsets, we focus on mining common elements from only two parent solutions, ran
domly selecting two parent solutions SF and SM from the population at each generation. We observe that if all 
mined common elements between SF and SM are used to guide instance reduction, the size of the reduced instance 
tends to become very small. To avoid this problem and keep some randomness, we inherit each common element 
with a random probability. Therefore, the resulting frequent itemset ζ has no more than β |SF ∩ SM | elements, that 
is, |ζ | ≤ β |SF ∩ SM | , where β (0 < β ≤ 1) is a proportional factor.

3.6. Reduce-Solve-Combine Mechanism
Inspired by the divide-and-conquer strategy, we propose an RSC method to generate promising offspring solu
tions. RSC consists of three main stages, as shown in Algorithm 4. At the reduction stage, the original instance I 
is reduced to I′ based on a common pattern ζ (i.e., a l-itemset, where l � |ζ | ). All nodes of the pattern ζ and all 
edges associated with the nodes are deleted from the original instance I (lines 1–4). At the solution stage, from a 
random solution S, we apply the fast local search heuristic CHNS of Section 3.4 to find an improved solution S′
for the reduced instance I′ (lines 5–6). The improved solution S′ can be treated as a part of the final offspring 
solution So. At the combination stage, a feasible solution of the original instance I is obtained by combining 
the common pattern ζ and the local optimal solution S′ of I′, that is, So← ζ ∪ S′ (line 7). For some types of 
graphs, the reduced instance I′ is usually small and can be solved by a fast exact algorithm instead of a heuristic 
(i.e., CHNS). Consequently, IRMS can be implemented as a matheuristic (Archetti et al. 2017, Boschetti and 
Maniezzo 2022).
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Algorithm 4 (Pseudo Code of RSC Procedure)
Input: The CNP instance I, common pattern ζ, selection probability θ, and maximal idle iteration count ξ̂
Output: An offspring solution So

//Reduction stage 
1: for all nodes v ∈ ζ do
2: E(v) ← {all edges associated with v}
3: I′ ← I \ {v, E(v)}
4: end for

//Solution stage
5: Randomly generate an initial solution S′ of I′
6: S′ ← CHNS(S′,θ, ξ̂)

//Combination stage
7: So← ζ ∪ S′
8: return An offspring solution So

Figure 3 illustrates the basic idea of the RSC mechanism applied to an original instance I of 12 nodes and 16 edges 
with a common pattern ζ � {f , g}. Figure 3(b) presents the reduced instance I′ with 10 nodes and 9 edges by deleting 
all nodes of ζ and their associated edges from I. Figure 3(c) shows a high-quality local optimal solution S′ � {c, h} of 
I′ found by CHNS. Figure 3(d) gives the feasible solution So � {f , g, c, h} that is obtained by combining the common 
pattern ζ � {f , g} and the solution S′ � {c, h} of I′.

3.7. Population Updating
Following Fu and Hao (2015) and Zhou et al. (2019), we use a rank-based population updating strategy to manage 
the population P. Once an improved offspring solution So is obtained, we first tentatively insert it into P, that is, 
P′ ← P ∪ {So}. All λ+ 1 individuals in P′ are then evaluated by a combined score function Ψ(Si, P′) that simulta
neously considers the solution quality and solution distance. The combined score function Ψ(Si, P′) can be formally 
defined as follows:

Ψ(Si, P′) � α ∗Φ(f (Si)) + (1� α) ∗Φ(D(Si, P′)), (5) 

where Φ(f (Si)) and Φ(D(Si, P′)) represent the rank of solution Si with respect to its objective value f and average dis
tance D to the population P′, respectively. We rank the solutions of P′ in terms of solution quality and average dis
tance in descending order and ascending order, respectively. The parameter α is a weighting coefficient between 
solution quality and solution distance, which is empirically set to α � 0:6. Afterward, the worst solution Sw with 
respect to the combined score function is identified, that is, Sw← argSi∈P′min Ψ(Si, P′). Finally, if So is different 
from Sw, we replace Sw with So; otherwise, we discard So.

3.8. Discussion
IRMS enhances the canonical memetic algorithm framework (Neri and Cotta 2012; Zhou et al. 2023a, c) with the 
RSC mechanism, which benefits from the merits of both the instance reduction technique and the population-based 

Figure 3. (Color online) An Illustrative Example of the RSC Mechanism 

(a) (b)

(c) (d)
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algorithm for solving large and hard CNP instances. As indicated by the review of Section 2.1, MACNP is one of 
the best-performing heuristic algorithms for CNP (Zhou et al. 2019). IRMS distinguishes itself from MACNP in the 
following four features. First, IRMS is an enhanced algorithm that integrates an instance reduction mechanism into 
a memetic algorithm, whereas MACNP is only a canonical memetic algorithm. Second, IRMS generates an off
spring solution based on the RSC mechanism instead of the backbone-based crossover operator used in MACNP. 
Third, IRMS uses a CHNS to perform local optimization, which reinforces the component-based neighborhood 
search used in MACNP by an articulation point impact strategy. Accordingly, CBNS can be considered as a special 
case of CHNS, where only the node weighting strategy is applied. Finally, IRMS can use both heuristic and exact 
solvers to solve the reduced instances in IRMS.

Compared with existing studies on combining frequent pattern mining with metaheuristics (Ribeiro et al. 2006, 
Plastino et al. 2014, Arnold et al. 2021, Zhou et al. 2022), IRMS uses frequent patterns mined from high-quality solu
tions to guide the instance reduction instead of relying on solution construction processes. Moreover, IRMS per
forms instance reduction by referencing to nodes common to only two high-quality solutions instead of derived 
from multiple high-quality solutions as in the existing (time-consuming) frequent pattern mining algorithms (e.g., 
FPmax*; Grahne and Zhu 2005).

The RSC mechanism is only an algorithmic component of IRMS, whereas the reduce-optimize-expand (ROE) 
framework is an algorithm framework (Montiel et al. 2013). RSC distinguishes itself from ROE in three aspects. 
First, RSC reduces the original instance by directly removing some nodes, whereas ROE generates a reduced 
instance by creating fewer new nodes to represents a set of removed nodes. Second, RSC directly combines the 
removed nodes and the solution of the reduced instance to obtain a feasible solution of the original instance. 
Although ROE expands the solution of the reduced instance by inserting the discarded nodes in an additional (heu
ristic) way. Third, once a feasible solution of the original instance is obtained, RSC uses a local optimization proce
dure to further improve it to a high-quality solution.

3.9. Computational Complexity of IRMS
To analyze the computational complexity of IRMS, we consider each main module of Algorithm 1. IRMS begins its 
search from a high-quality initial population generated by the population initialization procedure in O(λK( |V |
+ |E | )ξ̃), where λ denotes the population size, and ξ̃ is the total number of iterations used in CBNS.

At each generation of the main loop of Algorithm 1, IRMS sequentially executes five search procedures: parent 
selection, common pattern mining, RSC, CHNS, and population management. The parent selection procedure only 
takes time O(1). A common pattern (i.e., a set of nodes) between two parent solutions can be found in O(K). The 
RSC mechanism consists of three phases: reduction, solution and combination. Both reduction and combination 
phases can be executed in O( |V | ), and the solution phase uses CHNS to solve the reduced instance, whose com
plexity is O(ξK( |V | + |E | )), where ξ is the total number of iterations used in CHNS. Hence, the total complexity of 
IRMS at each generation is O(ξK( |V | + |E | )).

4. Computational Studies
4.1. Benchmark Instances and Experimental Settings
Our IRMS algorithm was implemented in C++ and compiled using GNU gcc 7.3.0 with the “-O3” option on an Intel 
Xeon 8269CY 16-core processor with 2.5 GHz and 32 GB RAM under the Linux system. Please refer to Zhou et al. 
(2023b) for the instances, codes, and results of the experiments. Our experiments are conducted on two sets of 
widely used benchmark instances. 
• Synthetic benchmark set consists of 16 graphs belonging to 4 groups with different characteristics. They are 

generated according to four classes of commonly used complex network models: Barabási-Albert (BA), Erdős-Rényi 
(ER), Forest-Fire (FF), and Watts-Strogatz (WS). BA graphs are scale-free networks and proven to be the easiest to 
process. ER graphs are random graphs. FF graphs reproduce the behavior of how a fire spreads through a forest, 
with a scale-free structure like BA graphs but a denser structure. WS graphs are designed to mimic a dense small- 
world structure and are the most challenging to solve. The detailed characteristics of these graphs can be found in 
Ventresca and Aleman (2014).
• Real-world benchmark set is composed of 26 real-world networks from various practical applications, such 

as social networks, transportation networks, communication networks, biological networks, and power networks. 
Their details are summarized in Aringhieri et al. (2016a).

In the following experiments, we use the well-known two-tailed sign test (Demšar 2006) to check the statistical 
difference between the compared algorithms on each comparison indicator. At a significance level of 0.05, the 
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critical value is CV42
0:05 �N=2+ 1:96

ffiffiffiffi
N
√

=2 ≈ 27, where N is the total number of benchmark instances, that is, n�42. 
This implies that algorithm A statistically outperforms algorithm B if A wins in at least 27 of 42 instances.

4.2. Parameter Sensitivity Analysis
Our computational results are obtained by running IRMS with the parameter settings provided in Table 2. The 
parameter ξ̂ identifies the allowable maximal idle iteration count used in CHNS. Because CHNS can be considered 
as an improved CBNS, we set ξ̂ � 1, 000 as for CBNS (Zhou et al. 2019). For the values of the other three parameters, 
that is, population size (λ), selection probability (θ) and proportional factor (β), are determined according to com
mon practice in heuristic algorithm design by testing a limited number of parameter configurations on representa
tive problem instances (Cordeau et al. 2006). To identify an appropriate value for a given parameter, we allow the 
chosen parameter to vary, while fixing the values of other parameters.

Our parameter sensitivity analysis is conducted on a set of 10 representative instances with different sizes and 
variable levels of difficulty, selected from both synthetic and real-world instance sets, that is, BA5000, ER941, FF500, 
WS250, TreniR, open-flights, H3000a, H4000, powergrid, and OClinks. In our experiment, each parameter value 
varies within a range specified in the column Considered Values in Table 2, whereas the other parameters are fixed 
to the Final Values. The total time budget for tuning is specified to be 30 executions of IRMS for each selected 
instance with a limit to 100 generations.

We take the parameter sensitivity analysis of the proportional factor β as an example. Figure 4(a) and (b), shows 
the box plots of IRMS with different β ∈ {0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8, 0:9, 1:0} values in terms of the average perfor
mance gap ∆f and the average computation time t, respectively. We calculate the performance gap as ∆f � f�BKV

BKV , 
where BKV indicates the best-known value. From Figure 4(a), we observe that IRMS with β � 0:9 yields the best 
performance in terms of ∆f . We also observe that large β values (β > 0:8) have a better performance than small ones 
(β ≤ 0:8) in terms of t, as shown in Figure 4(b). To make a reasonable compromise between the solution quality and 
computation time, we adopt β � 0:9 in IRMS.

4.3. Comparison Between IRMS and FPBS
As indicated in Zhou et al. (2022), the FPBS method tries to construct an offspring solution guided by frequent item
sets that are minded from a set of high-quality solutions by the pattern mining procedure FPmax* (Grahne and Zhu 

Table 2. Parameter Settings of Our IRMS Method

Parameter Description Considered values Final value Section

λ Population size {2,3,4,5,6,7,8,9,10} 5 3.2
ξ̂ Maximal idle iteration count {1,000} 1,000 3.4
θ Selection probability {0.2,0.3,0.4,0.5,0.6,0.7,0.8} 0.3 3.4
β Proportional factor {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} 0.9 3.5

Figure 4. (Color online) Boxplots of IRMS with Different β Values 

(a) (b)
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2005). Unlike FPBS, IRMS uses the mined common elements to guide the instance reduction, where the common 
elements are quickly identified from only two high-quality solutions. To demonstrate the superiority of IRMS, we 
first adapt FPBS for CNP and then experimentally compare it with IRMS. We independently solve each instance 30 
times with different random seeds and set the time limit of each run at t̂ � 3, 600 seconds.

Detailed comparative results between IRMS and FPBS are summarized in Table 3, where columns 1–5 present 
for each instance its name (Instance), number of nodes ( |V |), K value, K= |V | value, and best known value (BKV) 
reported in the literature. Columns 6–8 describe the detailed results of IRMS, that is, the best result (f̂ ) found during 
30 runs, average result (f ), and average computation time to attain the best result (t) at each run. Similarly, columns 
9–11 provide the results of FPBS. The better values of the compared results in terms of f̂ and f are indicated in bold. 
In addition, we also count the number of instances in which IRMS’s solution are better, equal, and worse in terms of 
each indicator compared with BKV and FPBS.

Table 3. Comparison Between IRMS and FPBS on Synthetic and Real-World Benchmarks Under t̂ � 3, 600 Seconds

Instance |V | K K= |V | BKV

FPBS8 IRMS

f̂ f t f̂ f t

BA500 500 50 0.10 195* 195 195.0 0.0 195 195.0 0.0
BA1000 1,000 75 0.08 558* 558 558.0 28.8 558 558.0 3.1
BA2500 2,500 100 0.04 3,704* 3,704 3,704.0 3.6 3,704 3,704.0 3.9
BA5000 5,000 150 0.03 10,196* 10,196 10,196.0 20.8 10,196 10,196.0 16.8
ER235 235 50 0.21 295* 295 295.0 5.3 295 295.0 6.5
ER466 466 80 0.17 1,524.0 1,524 1,551.9 2,222.2 1,524 1,524.0 83.7
ER941 941 140 0.15 5,012.0 5,122.0 5,303.7 1,724.0 5,012 5,020.0 520.0
ER2344 2,344 200 0.09 902,498.0 1,006,653.0 1,035,422.4 1,451.9 920,748 944,406.9 3,146.7
FF250 250 50 0.20 194* 194 194.0 0.0 194 194.0 0.0
FF500 500 110 0.22 257* 257 257.0 1.4 257 257.0 1.4
FF1000 1,000 150 0.15 1,260* 1,260 1,260.0 95.5 1,260 1,260.0 22.2
FF2000 2,000 200 0.10 4,545* 4,545 4,545.5 1,810.3 4,545 4,545.0 207.3
WS250 250 70 0.28 3,083.0 3,339.0 3,542.2 1,411.6 3,085 3,179.0 2,013.2
WS500 500 125 0.25 2,072.0 2,088.0 2,123.2 2,076.1 2,072 2,080.1 297.7
WS1000 1,000 200 0.20 109,677.0 257,569.0 280,878.6 1,715.6 138,098 145,969.1 1,963.2
WS1500 1,500 265 0.18 13,098.0 13,769.0 14,256.5 1,620.1 13,098 13,112.9 2,028.7
Bovine 121 3 0.02 268.0 268 268.0 0.0 268 268.0 0.0
Circuit 252 25 0.10 2,099.0 2,099 2,099.0 13.8 2,099 2,099.0 1.3
Ecoli 328 15 0.05 806.0 806 806.0 0.0 806 806.0 0.4
USAir97 332 33 0.10 4,336.0 5,444.0 5,444.0 0.1 4,336 4,648.0 668.8
HumanDi 516 52 0.10 1,115.0 1,115 1,115.0 0.7 1,115 1,115.0 0.1
TreniR 255 26 0.10 918.0 918 918.0 0.0 918 918.0 2.5
EU_fli 1,191 119 0.10 348,268.0 350,762.0 350,887.1 1,223.9 348,268 348,295.7 998.0
openfli 1,858 186 0.10 26,783.0 29,130.0 29,778.2 1,647.0 27,198 28,757.5 1,695.8
yeast1 2,018 202 0.10 1,412.0 1,412 1,412.0 187.1 1,412 1,412.0 37.8
H1000 1,000 100 0.10 306,349.0 322,615.0 328,173.6 1,697.8 306,349 308,951.9 2,165.2
H2000 2,000 200 0.10 1,242,739.0 1,331,626.0 1,360,981.3 1,721.2 1,236,503? 1,254,481.6 3,028.8
H3000a 3,000 300 0.10 2,840,690.0 3,062,331.0 3,108,832.5 1,568.7 2,804,579? 2,849,985.8 3,088.5
H3000b 3,000 300 0.10 2,837,584.0 3,064,784.0 3,104,320.8 2,111.0 2,801,186? 2,842,174.8 3,164.3
H3000c 3,000 300 0.10 2,835,369.0 3,077,676.0 3,101,625.7 1,609.9 2,801,692? 2,840,618.6 3,066.0
H3000d 3,000 300 0.10 2,828,492.0 3,054,775.0 3,100,897.9 1,903.3 2,816,590? 2,864,256.5 2,940.0
H3000e 3,000 300 0.10 2,843,000.0 3,070,679.0 3,114,306.9 2,228.6 2,836,177? 2,877,807.4 2,715.4
H4000 4,000 400 0.10 5,038,611.0 5,541,031.0 5,591,268.4 1,489.2 5,021,551? 5,110,687.5 3,042.0
H5000 5,000 500 0.10 7,964,765.0 8,720,111.0 8,778,198.6 1,615.3 8,029,837 8,188,900.3 2,741.0
powergr 4,941 494 0.10 15,862.0 16,097.0 16,182.9 1,651.9 15,866 15,886.6 3,021.6
Oclinks 1,899 190 0.10 611,253.0 616,684.0 618,350.7 1,782.1 614,467 614,467.6 1,038.9
facebook 4,039 404 0.10 420,334.0 1,567,137.0 1,602,706.4 2,183.0 719,722 741,314.4 2,852.1
grqc 5,242 524 0.10 13,591.0 13,673.0 13,708.7 2,463.1 13,594 13,613.0 3,201.9
hepth 9,877 988 0.10 106,276.0 122,109.0 132,995.7 2,181.8 115,133 119,766.8 3,159.4
hepph 12,008 1,201 0.10 6,155,877.0 11,300,876.0 11,957,556.6 1,432.2 9,401,029 9,781,789.8 3,077.4
astroph 18,772 1,877 0.10 53,963,375.0 61,896,814.0 62,977,189.9 1,880.7 57,592,461 58,649,781.0 3,271.4
condmat 23,133 2,313 0.10 2,298,596.0 9,950,262.0 10,890,742.9 2,254.0 9,670,268 10,789,125.6 2,286.2

No. of wins |ties | loses 7 |22 |13 26 |16 |0 28 |14 |0 – – – –

Notes. The best values are highlighted in bold. * presents the optimal solution; ? indicates the improved best upper bounds, and ◦ indicates an 
application of the FPBS (Zhou et al. 2022) method for CNP.
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It is worth noting that (1) the tested instances have been studied for a long time since year 2009 (Arulselvan et al. 
2009); (2) the current best known results have been improved progressively by a number of algorithms (Arulselvan 
et al. 2009; Ventresca 2012; Pullan 2015; Addis et al. 2016; Aringhieri et al. 2016a, b; Purevsuren et al. 2017; Veremyev 
et al. 2019; Zhou et al. 2019, 2021b; de San Lázaro et al. 2021; Wang and Di 2022), and (3) no single algorithm can attain 
all best known results. Thus, it is challenging to further improve the current best-known results, even by a small order.

From Table 3, we observe that IRMS demonstrates an excellent performance by finding new upper bounds for 
seven instances (marked by ?) and matching the best-known upper bounds on 22 instances. Compared with FPBS, 
IRMS finds better results in terms of f̂ on 26 of 42 instances and matches best-known values on the remaining 16 
instances except for the instance astroph. For the f performance indicator, IRMS also shows a better performance 
by attaining 28 better results and 14 equal results. At a significance level of 0.05, IRMS is significantly better than 
FPBS both in terms of f̂ (i.e., 34:0 > CV42

0:05) and f (i.e., 35:0 > CV42
0:05).

4.4. Comparison with State-of-the-Art Algorithms
To further evaluate IRMS, we conduct a detailed comparison with four state-of-the-art algorithms, that is, CAN1 
(Pullan 2015), MACNP (Zhou et al. 2019), VPMS (Zhou et al. 2021b), and CEMCNP (Wang and Di 2022). To the best 
of our knowledge, these four methods are the best-performing algorithms for CNP in the literature, and they attain 
the best-known values available except for the facebook and condmat instances.1 Because the source code and exe
cutable program of CEMCNP are not available to us, we reimplemented the method based on its pseudo code 
(Wang and Di 2022). Detailed comparisons between the reported results and computational results of CEMCNP 
are summarized in the online appendix (Zhou et al. 2023b). To guarantee a fair comparison, we run IRMS and these 
four algorithms (with their source codes) on the same computational platform and under the same time limit t̂. 
Table 4 summarizes the detailed results between IRMS and these state-of-the-art algorithms on synthetic and real- 
world benchmark instances under the time limit t̂ � 3, 600 seconds.

From Table 4, we observe that IRMS competes very favorably with these state-of-the-art algorithms by attaining 
seven new upper bounds and matching 22 best-known upper bounds. At a significance level of 0.05, IRMS signifi
cantly outperforms CAN1 both in terms of f̂ (i.e., 33:0 > CV42

0:05 � 27:0) and f (i.e., 36:0 > CV42
0:05). For the comparison 

between MACNP and IRMS, we can obtain similar observations. That is, IRMS is significantly better than MACNP in 
terms of f̂ (i.e., 27:5 > CV42

0:05), and it also outperforms MACNP in terms of f (i.e., 30:0 > CV42
0:05). Compared with 

VPMS, IRMS wins in 26.0 instances in terms of f̂ , which is just slightly smaller than the critical value CV42
0:05 � 27:0. For 

the f indicator, IRMS significantly outperforms VPMS, that is, 29:0 > CV42
0:05. For the comparison between IRMS and 

CEMCNP, we find that IRMS significantly outperforms CEMCNP both in terms of f̂ (i.e., 32:5 > CV42
0:05) and f (i.e., 

35:5 > CV42
0:05). These observations show that IRMS is highly effective compared with the state-of-the-art algorithms.

To further demonstrate the performance of IRMS, we report detailed results of IRMS under the longer time limit 
t̂ � 7, 200 seconds in Table 1 of the online appendix (Zhou et al. 2023b). We observe that IRMS improves its results 
with this extended time limit by finding two new upper bounds for the instances H5000 and grqc.

Finally, IRMS has trouble to attain the best known results for facebook and condmat. Conversely, we observe 
that these instances are challenging for almost all algorithms, except the ILS-N1-FC algorithm of Aringhieri et al. 
(2016b), which reported the current best-known results for these two instances (under the time limits of 3,000 and 
16,000 seconds, respectively) but does not perform so well on a number of other instances, as shown in table 5 of 
Aringhieri et al. (2016a).

5. Application to the Node-Weighted Critical Node Problem
To show that our IRMS method may be applied to solve other optimization problems, we consider the node- 
weighted critical node problem (NWCNP) (Chen et al. 2020, Zhou et al. 2021a), which consists of minimizing the 
pairwise connectivity of a given node-weighted graph by removing a subset of nodes subject to a budgetary con
straint. We start with an introduction of NWCNP, followed by reporting detailed comparative results between 
IRMS and existing methods.

5.1. Node-Weighted Critical Node Problem
NWCNP is a node-weighted version of CNP, which aims to minimize the objective function (1) and CNP and 
simultaneously satisfies the following budgetary constraint (6):

Subset to
X|S |

i�1
w(vS(i)) ≤ K, (6) 

where the terms w(vS(i)) > 0 are positive weights associated with each node, and K>0 is a predefined budget limit.
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CNP can be considered as a special case of NWCNP where the weight of each node is set to one, that is, 
w(vi) � 1, ∀vi ∈ V. As pointed out by Zhou et al. (2021a), an optimal solution of CNP is not necessarily optimal for 
NWCNP, and NWCNP is at least as challenging computationally as CNP (Arulselvan et al. 2009). Recently, some 
efforts have been devoted to solve it. For example, Chen et al. (2020) studied CNP in undirected weighted networks 
and proposed a mixed-integer quadratic programming model and a greedy algorithm. Zhou et al. (2021a) intro
duced an iterative local search algorithm (ILS-NWCNP for short) by iterating through a late acceptance-based local 
search and a destructive-constructive perturbation, which achieved the state-of-the-art results for NWCNP.

5.2. Computational Results on NWCNP
As benchmark instances for NWCNP are not available, we generated new weighted instances starting from the 
widely used synthetic and real-world CNP benchmarks. The only information required to be added is the weight
ing information for each node in the sparse graph. Following Zhou et al. (2021a), we adopt a random weighting 
scheme to assign a weight to each node given by w(vi) ∈ [0:2, 3], ∀vi ∈ V. Please refer to Zhou et al. (2023b) for both 
our implemented programs and generated benchmark instances.

To adapt IRMS to solve NWCNP, some modifications to main algorithmic modules (e.g., solution initialization and 
CHNS) of IRMS are necessary. According to the budgetary constraint (6), a feasible solution of NWCNP must satisfy 
the constraint dictating that the total weight of all removed nodes should be no more than K. Therefore, an initial solu
tion is constructed by iteratively removing nodes from the graph until the total weight of all removed nodes is larger 
than K. A feasible solution of NWCNP is not necessary to have K nodes. In addition, at each iteration, CHNS selects a 
removed node according to both impact function value ψ and node weight w instead of value ψ only.

We use IRMS-NWCNP to denote the resulting IRMS algorithm for NWCNP. The source code of ILS-NWCNP is 
available to us, which is responsible for achieving most of state-of-the-art results for NWCNP in the literature. 
Although for CEM-NWCNP, it is a new adaption of CEMCNP (Wang and Di 2022) for NWCNP. Correspondingly, 
the resulting algorithm for NWCNP is denoted as CEM-NWCNP. Therefore, we focus on experimentally compar
ing IRMS-NWCNP with both ILS-NWCNP and CEM-NWCNP and report the results in Table 5.

From Table 5, we observe that IRMS-NWCNP outperforms ILS-NWCNP in terms of both f̂ and f , finding better f̂ 
values for 37 instances, and equal f̂ values for 2 of the 5 remaining instances. In terms of f , IRMS-NWCNP achieves 
better results than ILS-NWCNP except for three instances (i.e., WS1000, WS1500, and facebook). At a significance 
level of 0.05, IRMS-NWCNP significantly outperforms ILS-NWCNP in terms of both f̂ (i.e., 38 > CV42

0:05) and f (i.e., 
39 > CV42

0:05). Compared with CEM-NWCNP, IRMS-NWCNP also shows better performance. At a significance level 
of 0.05, IRMS-NWCNP is significantly better than CEM-NWCNP in terms of f̂ , that is, 34:5 > CV42

0:05. Although for 
the performance indicator f , IRMS-NWCNP also significantly outperforms CEM-NWCNP (i.e., 37:5 > CV42

0:05).

6. Experimental Analysis
In this section, we perform additional testing to gain a deeper understanding of IRMS by conducting three groups 
of experiments: (1) to study the run-time distributions of IRMS and state-of-the-art algorithms, (2) to investigate the 
benefit of the component-based hybrid neighborhood search procedure, and (3) to confirm the effectiveness of the 
RSC mechanism.

6.1. Run-Time Distributions of IRMS and State-of-the-Art Algorithms
To further compare IRMS with the three state-of-the-art algorithms, we use time-to-target (TTT) plots (Aiex et al. 
2007) to show the algorithmic run-time distributions on representative instances. We execute each algorithm 100 
times for each instance and record the computation time to obtain a solution at least as good as a given target value 
at each run. The 100 computation times are sorted in ascending order, and a probability pi �

i�0:5
100 is associated with 

the ith sorted computation time ti. A TTT plot is then obtained by plotting these 100 points (ti, pi), i � 1, 2, : : : , 100. 
Figure 5 presents the TTT plots of IRMS and the three state-of-the-art algorithms on four representative instances, 
that is, BA1000 (10,196), FF1000 (1,271), humanDi (1,115), and yeast1 (1,421). The target value of each instance is 
indicated in the parentheses after each instance name.

From Figure 5, we observe that IRMS is likely to find a target solution faster than the compared algorithms. For 
example, for the synthetic instance BA1000, the probability of reaching the target value 10,196 in at most 
130 seconds is approximately 60% for both CAN1 and VPMS and 100% for both MACNP and IRMS. For the real- 
world instance humanDi, the probability of finding the target value 1,115 in at most five seconds is approximately 
40% for CAN1, 50% for VPMS, and 75% for MACNP, whereas it is at least 95% for IRMS. These observations further 
confirm that IRMS outperforms the state-of-the-art algorithms.
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6.2. Benefit of the Component-Based Hybrid Neighborhood Search
As previously noted, IRMS uses CHNS to perform local optimization, using the articulation point impact strategy 
to improve on the CBNS algorithm (Zhou et al. 2019). To show the benefit of CHNS, we experimentally compare 
IRMS with a variant named IRMS′ that is obtained from IRMS by replacing CHNS with CBNS. That is, IRMS′
selects a node based on the node weighting strategy rather than the articulation point impact strategy during the 
search. Detailed comparative results between IRMS′ and IRMS on both the synthetic and real-world benchmarks 
are summarized in Table 6.

Table 6 shows that IRMS dominates IRMS′ by achieving better results on 19 instances and equal results on the 22 
remaining instances in terms of f̂ . IRMS statistically beats IRMS′ on 30.0 instances (i.e., 30:0 > CV42

0:05) at a significance 
level of 0.05. For the f indicator, IRMS finds better results on 24 instances and equal results on the 16 remaining 
instances. At a significance level of 0.05, IRMS significantly outperforms IRMS′ (i.e., 32:0 > CV42

0:05). These results con
firm the benefit of CHNS over CBNS.

Table 5. Comparison Between IRMS-NWCNP and Reference Algorithms on Weighted Synthetic and Real-World Bench
marks Under t̂ � 3, 600 Seconds

Instance K

ILS-NWCNP8 CEM-NWCNP IRMS-NWCNP

f̂ f t f̂ f t f̂ f t

BA500 50 283 286.7 65.0 278 280.7 1.1 269 271.4 1,946.1
BA1000 75 820 835.8 703.4 819 829.3 3.2 815 823.4 2,098.5
BA2500 100 4,910 4,973.2 1,153.1 4,784 4,909.7 55.8 4,825 4,884.4 2,544.0
BA5000 150 13,722 13,907.4 162.6 13,346 13,640.3 535.3 13,672 13,797.1 2,600.0
ER235 50 724 1,495.7 680.4 922 1,591.0 0.2 616 638.0 2,081.8
ER466 80 19,104 23,745.6 92.8 19,870 27,351.1 0.6 4,274 5,117.9 1,989.0
ER941 140 63,079 78,285.9 1,407.5 55,194 78,522.3 35.7 38,654 43,229.0 3,073.9
ER2344 200 1,397,614 1,491,688.6 2,885.2 1,495,253 1,629,017.5 69.5 1,334,743 1,355,718.0 2,845.2
FF250 50 479 514.8 196.3 522 547.0 0.1 466 475.2 1,661.5
FF500 110 532 556.4 356.9 561 580.4 1.5 514 525.5 2,992.4
FF1000 150 2,469 2,509.1 1,918.0 2,345 2,494.5 11.5 2,374 2,402.1 2,912.4
FF2000 200 8,715 8,822.4 824.0 7,837 8,212.2 180.2 8,435 8,535.9 2,731.7
WS250 70 8,801 10,270.9 414.2 9,724 14,414.2 205.8 8,304 8,468.5 1,408.9
WS500 125 5,924 6,553.2 785.4 13,810 25,821.4 4.2 4,679 5,049.9 3,081.1
WS1000 200 222,092 228,611.7 2,048.3 277,755 311,422.1 628.7 247,187 260,977.6 2,721.2
WS1500 265 78,142 95,715.1 2,577.0 236,725 344,796.0 58.9 134,518 158,567.2 2,409.3
Bovine 3 954 954.6 237.5 954 954.0 0.0 954 954.0 0.1
Circuit 25 3,498 4,254.6 395.8 4,718 7,253.7 0.1 3,160 3,204.0 1,826.1
Ecoli 15 1,348 1,360.0 759.4 1,368 1,591.4 0.3 1,348 1,348.0 0.5
USAir97 33 9,484 9,545.0 865.5 9,441 9,955.0 0.7 9,313 9,345.1 978.3
humanDi 52 1,843 1,867.2 575.7 1,727 1,826.1 2.0 1,693 1,700.7 1,824.5
TreniR 26 647 648.8 962.9 627 695.3 0.6 597 634.7 2,537.0
EU_flights 119 395,636 399,652.6 955.0 400,991 407,205.3 75.3 386,809 388,392.8 2,144.6
openflights 186 91,072 95,801.6 2,093.8 95,097 103,457.7 183.6 87,420 87,939.6 2,474.7
yeast1 202 3,569 3,700.2 1,344.7 3,320 3,495.9 206.2 3,317 3,373.0 2,917.6
H1000 100 345,971 353,678.8 1,005.0 381,567 398,257.1 168.7 317,208 325,771.1 2,908.5
H2000 300 1,412,216 1,444,356.3 490.4 1,574,504 1,608,151.6 743.4 1,331,567 1,356,273.3 2,889.0
H3000a 300 3,146,558 3,234,620.3 1,654.6 3,581,933 3,690,692.4 899.9 3,098,206 3,133,268.5 2,755.0
H3000b 300 3,169,598 3,224,242.6 1,214.0 3,614,080 3,679,776.8 1,056.7 3,047,488 3,077,125.0 2,991.0
H3000c 300 3,180,822 3,224,308.1 1,892.6 3,523,237 3,650,634.8 759.3 3,074,841 3,118,908.1 2,553.1
H3000d 300 3,159,049 3,205,091.0 1,519.1 3,499,408 3,635,271.7 970.8 3,089,828 3,124,039.0 2,875.4
H3000e 300 3,156,667 3,221,055.5 1,160.7 3,630,227 3,660,257.7 1,282.0 3,097,630 3,145,617.3 2,877.8
H4000 400 5,650,385 5,712,357.8 2,014.2 6,435,143 6,539,854.0 1,428.0 5,563,646 5,629,050.2 2,868.9
H5000 500 8,915,291 8,999,620.4 2,593.4 10,190,504 10,268,278.5 1,724.9 8,799,566 8,950,070.3 2,973.4
powergrid 494 36,639 41,493.8 2,019.5 28,702 30,541.8 2,479.8 36,395 37,144.5 2,793.2
Oclinks 190 798,262 807,393.5 1,991.5 812,214 826,705.5 604.8 775,689 782,060.6 2,851.2
facebook 404 1,444,026 1,469,417.4 3,095.0 1,444,559 2,011,511.2 2,224.1 1,570,192 1,585,472.6 2,862.8
grqc 524 47,604 52,548.5 1,720.8 41,914 46,216.3 2,381.1 44,664 47,360.7 2,747.7
hepth 988 8,016,122 8,225,523.5 3,436.0 8,924,436 9,908,367.9 3,524.0 6,934,032 7,070,319.2 2,714.5
hepph 1,201 25,775,334 26,101,767.5 3,399.9 28,084,670 30,582,642.5 3,361.6 23,594,695 24,177,629.2 2,851.7
astroph 1,877 82,976,199 84,203,164.2 3,568.2 96,874,011 100,752,411.9 3,532.4 77,314,231 78,730,627.0 2,991.2
condmat 2,313 72,014,730 75,003,163.3 3,555.2 93,241,452 97,411,338.5 3,580.1 60,805,637 66,817,701.5 3,365.8
No. of wins|ties | loses 37 |2 |3 39 |0 |3 – 34 |1 |7 37 |1 |4 – – – –

Notes. The best values are highlighted in bold. ◦ presents the results of ILS-NWCNP obtained by executing its source code in our computational 
platform.
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6.3. Effectiveness of the RSC Mechanism
To evaluate the effectiveness of the RSC mechanism used by IRMS, we compare IRMS with an alternative version 
called IRMS′′ obtained from IRMS by disabling the RSC mechanism and directly constructing an offspring solution 
based on the frequent pattern and the offspring construction method used in frequent pattern based search (Zhou 
et al. 2022). Table 7 describes the comparative results between IRMS and IRMS′′ on both the synthetic and real- 
world instances under the time limit t̂ � 3, 600 seconds.

As seen from Table 7, IRMS demonstrates a better performance than IRMS′′ by obtaining better results on 21 
instances and equal results on the 21 remaining instances in terms of f̂ . Similar observations apply to the f indicator, 
where IRMS attains the same or better results on all 42 instances except for the instance Oclinks. At a significance 

Figure 5. (Color online) TTT Plots of IRMS and State-of-the-art Algorithms 

(a) BA1000 (10196) (b) FF1000 (1271)

(d) yeast1 (1421)(c) humanDi (1115)

Table 6. Comparison Between IRMS and IRMS′ on Synthetic and Real-World Benchmarks Under t̂ � 3, 600 Seconds

Instance K BKV

IRMS′ IRMS

f̂ f t f̂ f t

BA500 50 195* 195 195.0 0.0 195 195.0 0.0
BA1000 75 558* 558 558.0 1.3 558 558.0 3.1
BA2500 100 3,704* 3,704 3,704.0 5.3 3,704 3,704.0 3.9
BA5000 150 10,196* 10,196 10,196.0 15.8 10,196 10,196.0 16.8
ER235 50 295 295 295.0 2.8 295 295.0 6.5
ER466 80 1,524 1,524 1,524.0 651.6 1,524 1,524.0 83.7
ER941 140 5,012 5,012 5,048.1 1,724.0 5,012 5,020.0 520.0
ER2344 200 902,498 929,333 951,425.0 3,010.4 920,748 944,406.9 3,146.7
FF250 50 194* 194 194.0 0.1 194 194.0 0.0
FF500 110 257* 257 257.0 0.8 257 257.0 1.4
FF1000 150 1,260* 1,260 1,260.0 27.0 1,260 1,260.0 22.2
FF2000 200 4,545* 4,545 4,545.0 115.4 4,545 4,545.0 207.3
WS250 70 3,083 3,324 3,600.2 2,067.5 3,085 3,179.0 2,013.2
WS500 125 2,072 2,072 2,079.0 436.4 2,072 2,080.1 297.7
WS1000 200 109,677 244,708 274,428.2 1,567.4 138,098 145,969.1 1,963.2
WS1500 265 13,098 13,100 13,121.2 1,670.6 13,098 13,112.9 2,028.7
Bovine 3 268 268 268.0 0.0 268 268.0 0.0
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level of 0.05, IRMS significantly outperforms IRMS′′ in terms of both the f̂ (i.e., 31:5 > CV42
0:05) and f (i.e., 

33:0 > CV42
0:05) indicators, confirming the effectiveness of RSC.

7. Conclusion
Finding an optimal set of nodes, called critical nodes, whose removal will maximally decrease the pairwise connec
tivity of the remaining graph, is a fundamental critical node detection problem. To solve this problem, we propose 
an instance reduction-based memetic search (IRMS) method that integrates a reduce-solve-combine instance reduc
tion mechanism with the well-known population-based memetic algorithm framework. Extensive experimental 
results on 42 synthetic and real-world benchmark instances show that IRMS is highly effective compared with the 

Table 6. (Continued)

Instance K BKV

IRMS′ IRMS

f̂ f t f̂ f t

Circuit 25 2,099 2,099 2,099.0 0.8 2,099 2,099.0 1.3
Ecoli 15 806 806 806.0 0.0 806 806.0 0.4
USAir97 33 4,336 4,336 4,736.9 1,365.0 4,336 4,648.0 668.8
HumanDi 52 1,115 1,115 1,115.0 4.4 1,115 1,115.0 0.1
TreniR 26 918 918 918.0 1.8 918 918.0 2.5
EU_fli 119 348,268 348,268 349,321.2 1,683.3 348,268 348,295.7 998.0
openfli 186 26,783 28,718 28,880.0 1,946.7 27,198 28,757.5 1,695.8
yeast1 202 1,412 1,412 1,412.0 51.9 1,412 1,412.0 37.8
H1000 100 306,349 308,299 310,940.3 2,576.1 306,349 308,951.9 2,165.2
H2000 200 1,242,739 1,271,562 1,310,345.4 2,422.2 1,236,503 1,254,481.6 3,028.8
H3000a 300 2,840,690 2,914,963 2,992,166.4 2,528.1 2,804,579 2,849,985.8 3,088.5
H3000b 300 2,837,584 2,929,494 3,011,990.2 2,692.4 2,801,186 2,842,174.8 3,164.3
H3000c 300 2,835,369 2,925,015 2,983,251.7 2,343.5 2,801,692 2,840,618.6 3,066.0
H3000d 300 2,828,492 2,938,989 3,007,547.3 2,451.9 2,816,590 2,864,256.5 2,940.0
H3000e 300 2,843,000 2,960,196 3,014,327.4 2,783.2 2,836,177 2,877,807.4 2,715.4
H4000 400 5,038,611 5,313,533 5,421,596.1 2,641.3 5,021,551 5,110,687.5 3,042.0
H5000 500 7,964,765 8,297,260 8,575,610.7 2,392.2 8,029,837 8,188,900.3 2,741.0
powergr 494 15,862 15,866 15,891.3 3,171.9 15,866 15,886.6 3,021.6
Oclinks 190 611,253 614,467 614,651.4 1,676.8 614,467 614,467.6 1,038.9
facebook 404 420,334 919,158 1,258,604.9 2,991.4 719,722 741,314.4 2,852.1
grqc 524 13,591 13,601 13,626.6 3,147.3 13,594 13,613.0 3,201.9
hepth 988 106,276 116,527 119,693.3 3,228.1 115,133 119,766.8 3,159.4
hepph 1,201 6,155,877 11,353,914 11,951,940.6 2,447.0 9,401,029 9,781,789.8 3,077.4
astroph 1,877 53,963,375 62,237,249 63,050,133.4 2,242.8 57,592,461 58,649,781.0 3,271.4
condmat 2,313 2,298,596 9,642,594 10,902,735.5 2,233.3 9,670,268 10,789,125.6 2,286.2
No. of wins |ties | loses – – 19 |22 |1 24 |16 |2 – – – –

Notes. The best values are highlighted in bold. * presents the optimal solution.

Table 7. Comparison Between IRMS (with Reduce-Solve-Recombine Mechanism) and IRMS′′ (Without Reduce-Solve- 
Combine Mechanism) on Synthetic and Real-World Benchmarks Under t̂ � 3, 600 Seconds

Instance K BKV

IRMS′′ IRMS

f̂ f t f̂ f t

BA500 50 195* 195 195.0 0.0 195 195.0 0.0
BA1000 75 558* 558 558.0 0.5 558 558.0 3.1
BA2500 100 3,704* 3,704 3,704.0 2.7 3,704 3,704.0 3.9
BA5000 150 10,196* 10,196 10,196.0 26.1 10,196 10,196.0 16.8
ER235 50 295 295 295.0 1.8 295 295.0 6.5
ER466 80 1,524 1,524 1,524.0 240.9 1,524 1,524.0 83.7
ER941 140 5,012 5,012 5,076.0 1,929.7 5,012 5,020.0 520.0
ER2344 200 902,498 965,168 991,942.3 2,190.0 920,748 944,406.9 3,146.7
FF250 50 194* 194 194.0 0.1 194 194.0 0.0
FF500 110 257* 257 257.0 0.6 257 257.0 1.4
FF1000 150 1,260* 1,260 1,260.0 24.3 1,260 1,260.0 22.2
FF2000 200 4,545* 4,545 4,545.0 388.4 4,545 4,545.0 207.3
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state-of-the-art heuristic algorithms, by discovering nine new upper bounds. Investigations are also performed that 
identify the benefit of different search modules and techniques used by the IRMS algorithm. In addition, we report 
computational results that demonstrate a generalization of IRMS likewise outperforms the previous best algorithm 
for the node-weighted critical node problem. The updated upper bounds can be useful for future research.

As future work, several potential research directions can be pursued. First, it would be interesting to optimally 
solve the reduced instance by an exact solver instead of approximately solving by a heuristic solver in the reduce- 
solve-combine module. Second, the reduce-solve-combine mechanism being a general-purpose technique for the 
instance reduction, its generality can be further verified by combining it with other metaheuristics, such as large 
neighborhood search (Schaap et al. 2022) and path relinking (Wu et al. 2020). Third, it is worth adapting IRMS to 
solver other problem variants, such as the distance-based critical node problem (i.e., there is a cost associated to 
each pair of nodes in the residual graph; Salemi and Buchanan 2022, Zhou et al. 2023c) and connected critical node 
problem (Hosteins et al. 2022). Finally, this work could benefit exact algorithms. For instance, we can employ IRMS 
to generate a high-quality initial solution for a given instance, whose objective function value is used as a tight start
ing upper bound.
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Endnote
1 For the facebook and condmat instances, the best-known values were reported in Aringhieri et al. (2016a, table 5), which were reached only 
by the ILS-N1-FC algorithm of Aringhieri et al. (2016b).

Table 7. (Continued)

Instance K BKV

IRMS′′ IRMS

f̂ f t f̂ f t

WS250 70 3,083 3,090 3,275.8 1,678.5 3,085 3,179.0 2,013.2
WS500 125 2,072 2,072 2,080.9 1,769.3 2,072 2,080.1 297.7
WS1000 200 109,677 141,667 146,811.2 2,039.8 138,098 145,969.1 1,963.2
WS1500 265 13,098 13,858 14,144.3 1,888.9 13,098 13,112.9 2,028.7
Bovine 3 268 268 268.0 0.0 268 268.0 0.0
Circuit 25 2,099 2,099 2,099.0 0.5 2,099 2,099.0 1.3
Ecoli 15 806 806 806.0 0.0 806 806.0 0.4
USAir97 33 4,336 4,336 4,674.0 314.4 4,336 4,648.0 668.8
HumanDi 52 1,115 1,115 1,115.0 0.3 1,115 1,115.0 0.1
TreniR 26 918 918 918.0 0.4 918 918.0 2.5
EU_fli 119 34, 348,268 348,350.8 1,705.8 348,268 348,295.7 998.0
openfli 186 26,783 29,118 29,497.6 2,059.9 27,198 28,757.5 1,695.8
yeast1 202 1,412 1,412 1,412.0 52.7 1,412 1,412.0 37.8
H1000 100 306,349 312,592 316,868.3 2,392.4 306,349 308,951.9 2,165.2
H2000 200 1,242,739 1,283,398 1,303,858.8 2,059.1 1,236,503 1,254,481.6 3,028.8
H3000a 300 2,840,690 2,909,699 2,961,854.3 1,670.9 2,804,579 2,849,985.8 3,088.5
H3000b 300 2,837,584 2,927,637 2,959,051.0 1,520.3 2,801,186 2,842,174.8 3,164.3
H3000c 300 2,835,369 2,906,920 2,948,294.3 2,130.8 2,801,692 2,840,618.6 3,066.0
H3000d 300 2,828,492 2,935,313 2,965,419.8 2,146.9 2,816,590 2,864,256.5 2,940.0
H3000e 300 2,843,000 2,927,917 2,964,465.5 2,202.5 2,836,177 2,877,807.4 2,715.4
H4000 400 5,038,611 5,246,420 5,317,627.6 1,881.6 5,021,551 5,110,687.5 3,042.0
H5000 500 7,964,765 8,289,948 8,388,331.1 1,929.4 8,029,837 8,188,900.3 2,741.0
powergr 494 15,862 15,938 15,990.4 2,692.5 15,866 15,886.6 3,021.6
Oclinks 190 611,253 614,467 614,467.1 1,402.9 614,467 614,467.6 1,038.9
facebook 404 420,334 755,714 805,713.6 1,894.0 719,722 741,314.4 2,852.1
grqc 524 13,591 13,635 13,652.6 2,764.6 13,594 13,613.0 3,201.9
hepth 988 106,276 126,106 137,745.1 1,652.7 115,133 119,766.8 3,159.4
hepph 1,201 6,155,877 10,255,932 11,239,245.2 2,946.7 9,401,029 9,781,789.8 3,077.4
astroph 1,877 53,963,375 62,169,348 63,174,914.0 2,410.7 57,592,461 58,649,781.0 3,271.4
condmat 2,313 2,298,596 9,943,424 10,804,865.5 2,416.2 9,670,268 10,789,125.6 2,286.2
No. of wins |ties | loses – – 21 |21 |0 25 |16 |1 – – – –

Notes. The best values are highlighted in bold. * presents the optimal solution.
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Delgadillo FJD, Montiel O, Sepúlveda R (2016) Reducing the size of traveling salesman problems using vaccination by fuzzy selector. Expert 

Systems Appl. 49:20–30.
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