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a b s t r a c t 

A variety of strategies have been proposed for overcoming local optimality in metaheuristic search. This 

paper examines characteristics of moves that can be exploited to make good decisions about steps that 

lead away from a local optimum and then lead toward a new local optimum. We introduce strategies to 

identify and take advantage of useful features of solution history with an adaptive memory metaheuris- 

tic, to provide rules for selecting moves that offer promise for discovering improved local optima. Our 

approach uses a new type of adaptive memory based on a construction called exponential extrapolation. 

The memory operates by means of threshold inequalities that ensure selected moves will not lead to 

a specified number of most recently encountered local optima. Associated thresholds are embodied in 

choice rule strategies that further exploit the exponential extrapolation concept and open a variety of 

research possibilities for exploration. The considerations treated in this study are illustrated in an imple- 

mentation to solve the Quadratic Unconstrained Binary Optimization (QUBO) problem. We show that the 

AA algorithm obtains an average objective gap of 0.0315% to the best known values for the 21 largest 

Palubeckis instances. This solution quality is considered to be quite attractive because less than 20 s on 

average are taken by AA, which is 1 to 2 orders of magnitude less than the time required by most algo- 

rithms reporting the best known results. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

The Tabu search (TS) metaheuristic ( Glover (1986) ) incorpo- 

ates adaptive memory and responsive exploration to guide a local 

earch procedure to explore the solution space beyond local opti- 

ality. The memory approaches underlying TS are usually based 

n recency and frequency memories, while the responsive explo- 

ation imposes restraints and inducements such as Tabu condi- 

ions, aspiration levels, intensification and diversification processes. 

he principal goal of the adaptive memory framework of TS is to 

reate a balance between search intensification and diversification. 

ntensification strategies encourage move combinations and solu- 

ion features historically found good. Diversification strategies in- 

orporate new attributes and attribute combinations that were not 

ncluded within solutions generated in the past (see the book by 

lover and Laguna (1997) for a detailed examination of TS). Sev- 

ral variants of TS have been proposed, including the Tabu cycle 

ethod and conditional probability methods ( Glover (1989) ), as 
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ell as the Tabu thresholding methods ( Glover (1995) ), each be- 

ng successfully applied to solve hard combinatorial optimization 

roblems (see for example Gendreau and Potvin (2005)) , Qiu et 

l. (2018) , Guemri et al. (2019) , Servranckx and Vanhoucke (2019) , 

aramichailidou et al. (2021) ). 

Recently, Glover (2020) has proposed a new Alternating As- 

ent (AA) algorithm for exploiting local optimality in metaheuristic 

earch for zero-one programming problems. The present paper fo- 

uses on the simplest version of the TS metaheuristic exploiting 

ocal optimality in binary optimization, without including intensi- 

cation and diversification phases, and similarly disregarding path 

elinking and multi pass strategies. 

In outline, the AA Algorithm alternates between an Ascent 

hase and a Post-Ascent Phase using thresholds to identify vari- 

bles to change their values and to transition from one phase to 

nother. A high-level overview of the AA Algorithm (that removes 

ssential features subsequently described) is as follows: 
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Overview of an Alternating Ascent (AA) Algorithm 

While an outer loop termination criterion is not met do 

Choose a starting solution 

While an inner loop termination criterion is not met do 

Execute the following two phases: 

Ascent Phase: go to a local optimum 

(which may also be the starting solution on the first pass) 

Post Ascent Phase: move away from the local optimum and 

away from some number of other previous local optima. 

Endwhile 

Endwhile 

In outline, the AA Algorithm alternates between an Ascent 

hase and a Post-Ascent Phase using thresholds to identify vari- 

bles to change their values and to transition from one phase to 

nother. The thresholds embody a form of adaptive memory based 

n a function called exponential extrapolation, which makes it pos- 

ible to track the number of times that variables receive their cur- 

ent values in any selected number Q of most recent local optima 

epresented by the set Q . An exponential extrapolation measure 

E j ( Q , x ) is associated with a variable x j that gives rise to a re- 

ency threshold of the form EE j ( Q , x ) ≥ T hreshold r (Q ) , which as-

ures that changing the current value for x j will not duplicate its 

alue in the r most recent local optima. By reference to a stan- 

ard evaluation Ev al j (x ) for x j that identifies the change in the

bjective function when x j changes its value, and taking advan- 

age of a rudimentary tabu search restriction and aspiration crite- 

ion, this in turn gives rise to two status conditions denoted by 

 

= and S � = , where an S = status identifies a variable that should

hange the value it received in the most recent local optimum and 

n S � = status identifies a variable that should retain its value that 

iffers from its value received in the most recent local optimum. 

hese conditions are additionally exploited using counters nS = and 

S � = of the number of variables that have an S � = and S = status,

mbodied in a trigger threshold of the form nS = + nS � = ≥ T rigger.

he trigger threshold determines when a new Ascent Phase should 

e launched by removing all Tabu restrictions except the one that 

aused the threshold to be satisfied. The resulting ascent first 

eaches a conditional local optimum where the last Tabu restric- 

ion remains in force, and where it is assured that the solution 

annot duplicate any of the r most recent local optima. Then this 

ast restriction is also removed to complete the ascent to a true 

ocal optimum, and to begin a new Post-Ascent Phase. 

Once no more improving moves remain (for the non-Tabu vari- 

bles) in an Ascent Phase, the resulting ascent reaches a condi- 

ional local optimum (subject to keeping x k at its new value). At 

his point, we may remove the tabu restriction on x k as well, to 

ontinue to a solution that is a true local optimum which ends 

he Ascent Phase. Given that the conditional local optimum does 

ot duplicate the previous local optimum, and that the choice of 

oves leading to this conditional local optimum is influenced by 

he value assigned to x k , there is a strong likelihood that the new

ocal optimum will also differ from the previous local optimum. 

To exploit this observation, we have to decide of whether to im- 

ediately use the change from Ev al j (x ) ≤ 0 to Ev al j (x ) > 0 to trig-

er an ascent to a conditional local optimum, or whether to wait 

ntil more than one variable x j selected to be x k has undergone 

his change before launching such an ascent. 

This study introduces a general procedure for launching a new 

scent based on exponential extrapolation to exploit local opti- 

ality without recording the local optima. Exponential extrapola- 

ion provides a significant saving of both memory and computation 

ver consulting the actual values of variables in previous local op- 

ima. Numerical examples are given to illustrate the use of expo- 

ential extrapolation and the key processes involved in exploiting 

ocal optimality via the recency and trigger thresholds. 
m

1038 
. Background 

.1. Binary optimization problem and move evaluation Ev al j (x ) 

A binary optimization problem can be expressed as follows: 

 

P ) 

{
maximize x 0 = f ( x ) 

s.t. x ∈ X ⊆ { 0 , 1 } n 
here f is a linear or no-linear function on the binary vector x 

haracterized by its components x i for i ∈ N = { 1 , . . . , n } and the

easible set X reprensents the imposed constraints on x . 

Given a current binary solution x , a neighbor solution x ′ is ob- 

ained by flipping the value of a single variable from x j to x ′ 
j 
=

 − x j . Hence, we have x ′ = x + ( 1 − 2 x j ) e 
j , where e j is the basic

nit vector with all components are zero except the jth compo- 

ent equal to one, and the reverse (complementary) move of set- 

ing x j = 1 consists of setting x j = 0 , and vice versa. A neighbor so-

ution x ′ is well determined by only the index j ∈ N called the at-

ribute of the move where change occurs while other variables are 

eld constant. Let N(x ) denote the set of feasible moves which cor- 

esponds to N in the special case for the Quadratic Unconstrained 

inary Optimization (QUBO) problem, whose formulation is intro- 

uced in Section 7 , i.e., N(x ) defines the neighborhood set of solu- 

ion x . 

We will refer to the use of an evaluation function Ev al j (x ) for

 binary variable x j , j ∈ N = { 1 , . . . , n } , to identify the change in

he objective function x 0 at the current solution x produced by re- 

ersing the assignment x j = x # 
j 
, where x # 

j 
is the current value for 

 j . More precisely, the evaluation Ev al j (x ) for flipping variable x j 
f x that identifies the change in the objective function when x j 
hanges its value, i.e. 

v al j ( x ) = x 
′ 
0 − x 0 = f 

(
x ′ 
)

− f ( x ) 

Since the objective is to maximize x 0 , the sign of Ev al j (x )

ffers a partition of N(x ) ( = N for QUBO) into N 

+ (x ) =
 j ∈ N : Ev al j (x ) > 0 } , N 

−(x ) = { j ∈ N : Ev al j (x ) < 0 } and N 

0 (x ) =
 j ∈ N : Ev al j (x ) = 0 } to differentiate the set of improving moves, 

orsening (strictly non-improving) moves and simple non- 

mproving moves respectively. In the following, we will refer only 

o N 

+ (x ) and N 

−(x ) . 

Note that the descent method exploits this partition by choos- 

ng at each iteration a move from N 

+ (x ) or N 

+ (x ) ∩ N 

0 (x ) un-

il N 

+ (x ) = ∅ or N 

+ (x ) ∩ N 

0 (x ) = ∅ . Hence, the final solution of a

escent method is a local optimum x such all move evaluations 

v al j (x ) are non-positive, yielding Ev al j (x ) ≤ 0 for all variables

 j , i.e. N 

+ (x ) ∩ N 

0 (x ) = ∅ . For example, the steepest descent local

earch method selects at each iteration a variable x k such that 

 = argmax { Ev al j ( x ) : j ∈ N 

+ ( x ) ∩ N 

0 ( x ) } . 

.2. Adaptive memory Tabu search approach 

An early experiment with metaheuristic search ( Laguna and 

lover (1993) ) for a class of sequencing problems disclosed that 

mproving moves were more likely to select attributes of optimal 

olutions than non-improving moves. This was notably reflected in 

he fact that moves made when approaching a local optimum were 

ore likely to create solutions that shared elements in common 

ith optimal solutions than moves made when retreating from a 

ocal optimum. We are motivated by this study to change the rules 

ustomarily used by metaheuristic procedures to provide new ap- 

roaches for responding to local optimality. Our focus is on us- 

ng adaptive memory strategies that incorporate special threshold 

nequalities to guide the search. As a starting point, consider a 

ethod that begins from a local optimum and employs rules of 
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he following types, which are commonly employed in a rudimen- 

ary form of an adaptive memory Tabu search approach. 

Tabu Rule : When reaching a local optimum and selecting 

oves that lead away from this optimum, employ restrictions that 

emporarily do not allow moves to be reversed and hence that 

ould potentially return to the local optimum. 

Aspiration Rule : Identify conditions for modifying Tabu Rule to 

ermit certain moves to be made that violate the restrictions and 

llow previous moves to be reversed. 

We observe that a simple form of Tabu search is often based 

n a version of these two rules that has two features. We describe 

hese for the purpose of identifying a different way to apply Tabu 

nd Aspiration Rules. 

Tabu Feature : A tenure value is used to prevent a move from 

eing reversed for T enure iterations, thereby making the reverse 

ove tabu by reference to the current iteration Iter, by setting 

 abuI ter ( Re v erseMov e ) = I ter + T enure 

here T abuIter is an array representing recency memory. In the 

ase of binary optimization, the reverse move of x j = 1 is x j = 0 ,

nd vice versa. Then T abuIter ( Re v er seMov e ) can be represented 

imply by T abuIter( j) , with the interpretation that 

 ter ≤ T abuI ter ( j ) 

eans x j is tabu to change its current value x j = x # 
j 

to the reverse

complementary) value x j = 1 − x # 
j 
. 

Aspiration Feature : The rule for choosing moves selects a high- 

st evaluation move that is not Tabu or that satisfies an aspiration 

riterion. Since all moves at local optimality cause the objective 

unction to deteriorate or remain unchanged, a highest evaluation 

ove is one that causes the objective function to deteriorate the 

east. The aspiration criterion most commonly employed considers 

 Reverse Move to be admissible to be chosen if it leads to a solu-

ion better than the best one found so far. 

A Tabu search approach that relies more fully on adaptive mem- 

ry refines the partition of the neighborhood set N(x ) by involv- 

ng the set N 

T̄ (x ) = { j ∈ N : T abuIter( j) < Iter} which corresponds

o the set of non-Tabu moves and the set N 

A (x ) = { j ∈ N : x 0 +
v al j (x ) > x ∗

0 
} where x ∗

0 
is the best objective function found so far,

o the set of the moves satisfying the aspiration criterion. 

Several variants of Tabu Search algorithm have been pro- 

osed in the literature exploiting partitions involving the sets 

 

−(x ) , N 

0 (x ) , N 

+ (x ) , N 

T̄ (x ) and N 

A (x ) . For example, the simplest

orm of tabu search without intensification or diversification, re- 

ults where the default aspiration is applied when N 

T̄ (x ) = ∅ to

hoose the least tabu move, i.e. k ∈ Ar gmin { T abuIter ( j) : j ∈ N(x ) } . 
hen the search selects at each iteration a variable x k according to 

he following rule 

If N A (x ) � = ∅ then select k ∈ Argmax { Ev al j (x ) : j ∈ N A (x ) } 
Else If N T̄ (x ) � = ∅ then k ∈ Argmax { Ev al j (x ) : j ∈ N T̄ (x ) } 

Else k ∈ Ar gmin { TabuIter ( j) : j ∈ N T̄ (x ) } 
EndIf 

This simplest deterministic Tabu search algorithms based on 

he recency or frequency memories are proved to converge to an 

ptimal solution in finite number of iterations (see Hanafi, 2001 , 

lover & Hanafi, 2002 ). Faigle and Kern (1992) proposed some con- 

ergence results for Probabilistic Tabu Search. 

The target analysis experiment described in Laguna and Glover 

1993) , shows that something about the combination of Tabu Fea- 

ure and Aspiration Feature when moving away from a local opti- 

um tends to produce moves whose attributes do not correspond 

o those of an optimal solution. Under the assumption that this 

nding is applicable to other settings, this motivates an examina- 
1039 
ion of versions of Tabu and Aspiration Rules that modify Tabu and 

spiration Features to produce a different behavior. 

lternative forms of Tabu and aspiration rules. As a starting point 

or analyzing conditions that hold at a local optimum x , all move 

valuations are non-positive when a local optimum is reached, i.e., 

v al j (x ) ≤ 0 for all variables x j . In the situation where Ev al j (x ) ≤
 , suppose we assign a tabu tenure to a move that changes x j = x # 

j 

o x j = 1 − x # 
j 

as is customarily done to prevent the move from be-

ng immediately reversed. Consider the process that takes place at 

his point, as the search begins moving away from a local opti- 

um. To begin, all moves selected will consist of reversing val- 

es received by variables x j = x # 
j 
, in the local optimum to pro-

uce new assignments x j = 1 − x # 
j 
, and given Ev al j (x ) ≤ 0 , these

ill cause x 0 to decrease or remain unchanged. After reversing an 

ssignment for Ev al j (x ) ≤ 0 , the new evaluation Ev al j (x ) will be

he negative of its previous value, and hence if Ev al j (x ) began neg-

tive it will now be positive. However, the improving move that 

eturns x j to its previous value will be prevented because of the 

abu tenure assigned to it. We will build on these simple obser- 

ations to uncover aspects of adaptive memory choices that have 

reviously been overlooked. 

verriding Tabu restrictions. As previously intimated, a key ques- 

ion to be addressed in developing an effective algorithm is how 

o usefully override the customary Tabu restriction by freeing cer- 

ain variables so they are no longer Tabu. Accompanying this ques- 

ion is the associated question of identifying the circumstances un- 

er which this override should be done. An answer to these ques- 

ions is suggested by considering the situation where the evalu- 

tion for a variable x j changes from Ev al j (x ) ≤ 0 to Ev al j (x ) > 0

hen moving away from a local optimum, without having assigned 

 new value to x 0 . We are prompted to ask whether there some- 

hing noteworthy about this change from a non-improving evalu- 

tion to an improving evaluation during a sequence of iterations 

fter reaching a local optimum. 

If the current value x # 
j 

of x j is also the value x 0 received at the

ocal optimum (when Ev al j (x ) ≤ 0 ), and if now Ev al j (x ) > 0 , then

his has the significant feature that the profitable (i.e., improving) 

ove x j = 1 − x # 
j 

gives x j a different value than it had at the lo-

al optimum. If x j is selected as the variable x k that changes its 

alue on the current iteration, then by making x k tabu to change 

ts value, the search cannot return to the local optimum while x k 
emains tabu. Consequently, we are motivated to consider the re- 

ult of freeing the Tabu restrictions on all variables x j except for 

 k , to launch an ascent in which the procedure cannot return to 

he previous local optimum. We call the iterations that occur upon 

aunching such an ascent until reaching a new local optimum an 

scent Phase. 

Once no more improving moves remain (for the non-Tabu vari- 

bles) in an Ascent Phase, the resulting ascent reaches a condi- 

ional local optimum (subject to keeping x k at its new value). At 

his point, we may remove the tabu restriction on x k as well, to 

ontinue to a solution that is a true local optimum which ends 

he Ascent Phase. Given that the conditional local optimum does 

ot duplicate the previous local optimum, and that the choice of 

oves leading to this conditional local optimum is influenced by 

he value assigned to x k , there is a strong likelihood that the new

ocal optimum will also differ from the previous local optimum. 

To exploit this observation, we are presented with the decision 

f whether to immediately use the change from Ev al j (x ) ≤ 0 to

v al j (x ) > 0 to trigger an ascent to a conditional local optimum,

r whether to wait until more than one variable x j selected to be 

 k has undergone this change before launching such an ascent. We 

xamine this issue in a broader context in the next section. 
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. A more general procedure for launching a new ascent 

Instead of only considering the most recent local optimum, the 

ssue of identifying a variable x j to change its value in this lo- 

al optimum can be generalized to refer to some number Q of 

he most recent local optima. We describe a way of doing this 

hat makes it possible to maintain appropriate updated informa- 

ion without recording the local optima. This approach, called ex- 

onential extrapolation, provides a significant saving of both mem- 

ry and computation over consulting the actual values of variables 

n previous local optima. 

.1. Exponential extrapolation EE j ( Q , x ) 

The term “exponential extrapolation” is motivated by the term 

exponential smoothing,” which refers to a procedure that choses 

 value λ between 0 and 1 and uses the simple formula 

 q +1 = λy q + ( 1 − λ) y q −1 

o determine the new value of y q +1 based on the two preceding 

alues y q and y q −1 . The procedure can start from chosen values y q 
or q = 0 and 1. (More precisely, y q +1 and y q −1 refer to forecast val-

es and y q refers to an observed value. We do not require this dis- 

inction here.) Exponential extrapolation instead uses the formula, 

xpressed in terms of the weights w q 

 q +1 = αw q + βq + γ (1) 

here we choose w 1 = 1 . For simplicity, the parameters α, β and 

may be restricted to α between 1 and 2, and β and γ between 0 

nd 3. Even simpler, we will chiefly focus on the special case α = 2

nd β = γ = 0 . It is possible to establish a connection between 

xponential extrapolation and exponential smoothing whereby (1) 

an be seen as a generalization of exponential smoothing, but we 

ill not pursue this here. Exponential smoothing has been applied 

ith Tabu search for solving fixed charge network problems in Barr 

t al. (2021) , using a different type of design than we use for ex-

loiting exponential extrapolation, but we note that exponential 

xtrapolation affords an alternative to exponential smoothing in 

he fixed charge setting too. 

For the special case of (1) where α > 0 and β = γ = 0 we are

articularly interested in the situation where = 2 , to give 

 q +1 = 2 w q = 2 

q (2) 

In general, the formula w q +1 = αw q can be expressed as w q +1 = 

q for q ≥ 0 . 

Denote the set of Q most recent local optima by Q = 

 x q : q = 1 , . . . , Q } , with x q = ( x q 
1 
, . . . , x 

q 
n ) ∈ { 0 , 1 } n . Let x ∈ { 0 , 1 } n 

enotes a binary solution, in the following we refer to exponen- 

ial extrapolation by the acronym E E and we are interested in 

eighted E E ( Q , x ) values for each variable x j : 

 E j ( Q , x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

E E 1 
j ( Q ) = 

Q ∑ 

q =1 

2 

q −1 x q 
j 

i f x j = 1 

E E 0 
j ( Q ) = 

Q ∑ 

q =1 

2 

q −1 
(
1 − x q 

j 

)
i f x j = 0 

(3) 

The E E 1 
j 
(Q ) value weights the values x 

q 
j 

that equal 1 in the vec-

ors x q , q = 1 to Q , and E E 0 
j 
(Q ) which weights the values x 

q 
j 

that

qual 0 in these vectors. By defining 

 E base ( Q ) = 

Q ∑ 

q =1 

2 

q −1 = 2 

Q − 1 (3.1) 

We have a useful equation 

 E base ( Q ) = E E 0 j ( Q ) + E E 1 j ( Q ) (3.2) 

t

1040 
For each q = 2 to Q , we have w q = 

∑ q −1 

h =1 
w h + 1 = 

∑ q −1 

h =1 
2 h −1 +

 = 2 q −1 . Hence w q is greater than 

∑ q −1 

h =1 
w h , and as a special

ase w Q > 

∑ Q−1 
q =1 

w q . Consequently, the value E E 1 
j 
(Q ) will be larger

hen x Q 
j 

= 1 than it will be when x Q 
j 

= 0 , regardless of the val-

es w q for q < Q . Another way of expressing this is that (2) cre-

tes a lexicographic ordering of the binary value assignments to 

he variables x 
q 
j 
, where the value E E 1 

j 
(Q ) is larger as the vector

 j (Q ) = ( x Q 
j 
, x Q−1 

j 
, . . . , x 1 

j 
) increases lexicographically. For our pur- 

oses, this means that by using the E E value E E 1 
j 
(Q ) , the most re-

ent local optimum recorded x Q will dominate any combination of 

ll other local optima, and the second most recent local optimum 

 

Q−1 will dominate any combination of all local optima preceding 

t, and so forth. A useful implication is that if we require that we 

nly select a variable x j to change its value from x # 
j 

to 1 − x # 
j 

if

 j = x # 
j 

in the r most recent local optima by stipulating 

E j ( Q , x ) ≥ T hreshold r ( Q ) (4) 

here the threshold value sums the r largest weights given by 

 hreshold r ( Q ) = 

r ∑ 

q =1 

2 

Q−q = 2 

Q−r ( 2 

r − 1 ) (4.0) 

We call the inequality (4) the recency threshold. We treat re- 

ency threshold as embodying the two inequalities 

 E 1 j ( Q ) ≥ T hreshold r ( Q ) (4.1) 

 E 0 j ( Q ) ≥ T hreshold r ( Q ) (4.2) 

here (4.1) applies to x j = 1 and requires that x j cannot be chosen 

o change from 1 to 0 unless x j also equals 1 in each of the r most

ecent local optima, and (4.2) applies to x j = 0 and requires that x j 
annot be chosen to change from 0 to 1 unless x j also equals 0 in

ach of the r most recent local optima. 

In short, by requiring the recency threshold (4) to be satisfied 

for any choice of the index j, and for a specified value x j = x # 
j 
),

e assure that we will not risk duplicating any of the r most re- 

ent local optima by changing x j to equal 1 − x # 
j 
. The utility of this

equirement is that we do not need to record the most recent lo- 

al optima to verify – or compel – that x j = 1 or 0 in any speci-

ed number r of these most recent solutions. All that is necessary 

s to specify that E E 1 
j 
(Q ) satisfy (4.1) or that E E 0 

j 
(Q ) satisfy (4.2),

ccording to whether x # 
j 

= 1 or 0. More precisely, we have the fol-

owing proposition. 

roposition 1. Let x be a binary solution where for any index j ∈ N,

 specified value is assigned x j = x # 
j 
, the recency threshold inequality 

E j ( Q , x ) ≥ T hreshold r ( Q ) 

implies that x # 
j 

= x 
q 
j 

in any solution x q for q = Q − 1 , . . . , Q − r +
 . 

ustification. See Appendix 1 . Implications of the recency thresh- 

ld for using different α values. 

Moreover, this approach can grow Q to a selected value Q max , 

nd then perform a diversification step such as the focal distance 

iversification strategy of Glover and Lu (2020) to start over again 

ith Q = 1 . By using more than one set of values for the parame-

ers α, β and γ (or even just changing the value of the parameter 

as in the strategies with β = γ = 0 ), these parameters can be ap-

lied for different Q max , values, so that when one set is renewed by 

tarting over another set will continue to apply to earlier local op- 

ima until its Q max , value is reached. This “staggered” approach can 

hen permit a parameter set that is renewed before another one to 
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ontinue in operation when the second is renewed, and so on, so 

hat there is always a connection to local optima from a relatively 

ong period ago. In the case where β = γ = 0 , which permits the

nductive update, the use of real arithmetic allows the “effective”

alue of Q max , to be quite large while keeping Q constant. 

omplementary recency threshold. Let Q̄ = { ̄x : x ∈ Q } , it is easy to 

heck the useful properties: 

- EE j ( Q , ̄x ) = EEbase (Q ) − EE j ( Q , x ) ( 4 . 1 ) 

- E E base (Q ) = E E base ( ̄Q ) 

- E E 0 
j 
(Q ) = E E 1 

j 
( ̄Q ) 

- E E 1 
j 
(Q ) = E E 0 

j 
( ̄Q ) 

- EE j ( ̄Q , x ) = EE j ( Q , ̄x ) 

- EE j ( Q , x ) = EE j ( ̄Q , ̄x ) 

Moreover, for any binary vector x and x ′ , we have 

 E j 
(
Q , x ′ 

)
= 

(
1 −

∣∣x ′ j − x j 
∣∣)E E j ( Q , x ) + 

∣∣x ′ j − x j 
∣∣E E j ( Q , x̄ ) (4.3) 

Or equivalently 

 E j 
(
Q , x ′ 

)
= 

{
E E j ( Q , x ) i f x ′ 

j 
= x j 

E E j ( Q , ̄x ) = E E base ( Q ) − E E j ( Q , x ) i f x ′ 
j 
= 1 −x j 

(4 

′ .3) 

Consequently, the recency threshold (4) is equivalent to 

 E j ( Q , ̄x ) ≤ E E base ( Q ) − T hreshold r ( Q ) ( 4 ) 

Finally, we note that T hreshold r (Q ) is independent of the value 

ssigned to x j and define its complement by 

 hreshold r ( Q ) = E E base ( Q ) − T hreshold r ( Q ) 

hich similarly yields T hreshold r (Q ) = E E base (Q ) − T hreshold r 
From these definitions it may be verified that the recency 

hreshold EE j ( Q , x ) ≥ T hreshold r (Q ) of (4) gives rise to the com-

lementary recency threshold (in the opposite direction) 

EE j ( Q , ̄x ) ≤ T hreshold r (Q ) ( ̄4 ) 

The significance of ( ̄4 ) is that whenever the recency threshold 

E j ( Q , x ) ≥ T hreshold r (Q ) of (4) holds and x j is chosen to change

ts value from x # 
j 

to 1 − x # 
j 
, after the assignment, for the new value

f x j , we will have 

 E j ( Q , x ) ≤ T hreshold r ( Q ) = E E base ( Q ) − T hreshold r ( Q ) (4 

∗) 

From the definitions E E base (Q ) = 

∑ Q 
q =1 

2 q −1 = 2 Q − 1 

nd T hreshold r (Q ) = 

∑ r 
q =1 2 

Q−q = 2 Q−r ( 2 r − 1 ) , the quantity

 hreshold r (Q ) can also be written 

 hreshold r ( Q ) = 

Q−r ∑ 

q =1 

2 

q −1 = 2 

Q−r − 1 

hich is evidently much smaller than T hreshold r (Q ) (since 2 Q−r > 

 hreshold r (Q ) by the relationship 2 Q−r = 

∑ Q−r 
q =1 

2 q −1 + 1 ). Hence 

hen the recency threshold is satisfied for x j = x # 
j 
, (4 ∗) implies

he threshold cannot be satisfied after changing x j to 1 − x # 
j 
. The 

onverse is also true, if EE j ( Q , x ) ≤ T hreshold r (Q ) is satisfied for 

 j = x # 
j 
, then the recency threshold will be satisfied when x j is

hanged to equal 1 − x # 
j 
. 

The AA approach refines the partition of the neigh- 

orhood set N(x ) by introducing the set N 

E (x ) = 

 j ∈ N : EE j ( Q , x ) ≥ T hreshold r (Q ) } that identifies moves 

atisfying the recency threshold inequality and the set 

 

Ē (x ) = { j ∈ N : EE j ( Q , x ) ≤ Ebase (Q ) − T hreshold r (Q ) } that iden- 

ifies reverse moves satisfying the recency threshold inequality. 
1041 
n inductive updating formula. Now we show how to conveniently 

pdate the value EE j ( Q , x ) after adding a new local optimum x Q+1 

o Q or adding the new x Q+1 while simultaneously dropping the 

rst local optimum x 1 from Q to maintains the number of local 

ptima Q constant. We write EE j ( Q , x ) with the most recent value 

first: 

E j ( Q , x ) = 

Q ∑ 

q =1 

2 

q −1 
(
1 −

∣∣x j − x q 
j 

∣∣)
Adding a new local optimum x Q+1 at the end of the current set 

 without dropping any solution from Q is achieved by 

E j 
(
Q + x Q+1 , x 

)
= 

Q+1 ∑ 

q =1 

2 

q −1 (1 −
∣∣x j − x q 

j 

∣∣) 
 E j 

(
Q + x Q+1 , x 

)
= E E j ( Q , x ) + 2 

Q 
(
1 −

∣∣x j − x Q+1 
j 

∣∣)
Dropping the first local optimum x 1 from the current set Q 

ithout dropping any solution from Q is achieved by 

E j 
(
Q − x 1 , x 

)
= 

Q ∑ 

q =2 

2 

q −2 (1 −
∣∣x j − x q 

j 

∣∣) 
 E j 

(
Q − x 1 , x 

)
= 2 

−1 E E j ( Q , x ) − 2 

−1 
(
1 −

∣∣x j − x 1 j 

∣∣)
Adding the new x Q+1 while simultaneously dropping the first 

ocal optimum x 1 from Q to maintains the number of local optima 

constant, is achieved by 

E j 
(
Q − x 1 + x Q+1 , x 

)
= 2 

−1 EE j ( Q , x ) + 2 

Q−1 
(
1 −

∣∣x j − x Q+1 
j 

∣∣)
−2 

−1 
(
1 −

∣∣x j − x 1 j 

∣∣) (5) 

If we use integer arithmetic that rounds fractional values less 

han 1 down to 0, the update Eq. (5) becomes 

 E j 
(
Q − x 1 + x Q+1 , x 

)
= 2 

−1 E E j ( Q , x ) + 2 

Q−1 
(
1 −

∣∣x j − x Q+1 
j 

∣∣)
(5.1) 

If real (floating point) arithmetic is used instead of integer 

rithmetic, the declining influence of earlier x j values will pro- 

eed in the same manner as if Q had been chosen to be larger, 

r equivalently as if we allowed q to become negative, with each 

eight w q −1 = 2 −1 w q . By the relationship w q = 2 q −1 this corre-

ponds to the weights 2 −1 , 2 −2 , 2 −3 , … and so forth. The values

 = 0 , −1 , −2 , . . . need not be created or accessed, of course, since

hey are merely a notational convention to convey how using real 

rithmetic will have the same effect as permitting Q to be larger. 

his can be relevant when using α values different than 2, as dis- 

ussed in Appendix 1 . 

The inductive update conveniently permits us to start with Q

t its maximum desired value and use the formula (5.1) at each 

teration of generating a new local optimum to update EE j ( Q , x ) . 

ntil Q local optima have been generated, EE j ( Q , x ) will not refer 

o terms that go all the way back to q = 1 . For example, after gen-

rating s local optima for s < Q , EE j ( Q , x ) determined by (5.1) will

ffectively yield EE j ( Q , x ) = 

∑ Q 
q = s 2 q −1 ( 1 − | x j − x 

q 
j 
| ) . 

Hence, if we want to apply the recency threshold to assure 

 j = x # 
j 

in the r most recent local optima, we must remember that 

cannot exceed s . Fortunately, the inductive update handles this 

utomatically. 

First, we observe that when the first local optimum is obtained, 

oth EE j ( Q , x ) and EEbase (Q ) can be determined by setting 

 E base ( Q ) = 2 

Q−1 (5.2a) 

E j ( Q , x ) = 2 

Q−1 
(
1 −

∣∣x j − x Q 
j 

∣∣) for j = 1 = 1 to n (5.2b) 
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The update formula (5.1) can be simplified if the evaluation 

E j ( Q , x ) refers to the last local optimum x Q . Let 

E j 
(
Q , x Q 

)
= 

Q ∑ 

q =1 

2 

q −1 
(
1 −

∣∣x Q 
j 

− x q 
j 

∣∣). 
From (5.1) we have 

 E j 
(
Q − x 1 + x Q+1 , x Q+1 

)
= 2 

−1 E E j 
(
Q , x Q+1 

)
+ 2 

Q−1 

While from (4.3) we have 

 E j 
(
Q , x Q+1 

)
= 

{ 

E E j 
(
Q , x Q 

)
i f x Q+1 

j 
= x Q 

j ( 5 . 2c ) 

E E j 
(
Q , x Q 

)
i f x Q+1 

j 
= 1 − x Q 

j ( 5 . 2d ) 

Hence 

EE j 
(
Q − x 1 + x Q+1 , x Q+1 

)
= 

{ 

2 

Q−1 + 2 

−1 EE j 
(
Q , x Q 

)
i f x Q+1 

j 
= x Q 

j 

2 

Q−1 + 2 

−1 EE j 
(
Q , x Q 

)
i f x Q+1 

j 
= 1 − x Q 

j 

This update can be expressed by the inductive formula 

 E j 
(
Q − x 1 + x Q+1 , x Q+1 

)
= 2 

Q−1 + 2 

−1 E E j 
(
Q , x Q 

)
Due to the complementary relationship expressed in ( 4 . 1 ) and 

f the new local optimum x Q+1 corresponds to the current solution 

 , the update (5) can then be expressed by 

EE j 
(
Q − x 1 + x Q+1 , x 

)
= 

{
2 

Q−1 + 2 

−1 EE j 
(
Q , x Q 

)
i f x # 

j 
= x Q 

j 

2 

Q−1 + 2 

−1 
(
E E base ( Q ) − E E j 

(
Q , x Q 

))
i f x # 

j 
= 1 − x Q 

j 

(5.2) 

We can perform this update without having saved the value x Q 
j 

ince each time a variable x k changes its current value x # 
k 

by set- 

ing x k = 1 − x # 
k 

during the iterations between obtaining successive 

ocal optima, the value EE k ( Q , x Q ) is updated by setting 

 E k 
(
Q , x Q 

)
= E E base ( Q ) − E E k 

(
Q , x Q 

)
(5.3) 

hich is essential to assure that the update Eq. (5.2) is equivalent 

o 

 E j ( Q ) = 2 

Q−1 + 2 

−1 E E j ( Q ) 

Following this update, E E base (Q ) itself can also be updated by

he inductive formula 

 E base ( Q ) = 2 

Q−1 + 2 

−1 E E base ( Q ) (5.4) 

By consequence, the initialization step (5.2b) becomes 

E j ( Q ) = 2 

Q−1 for j = 1 to n (5.5) 

Finally, rather than wait until obtaining a first local optimum as 

 basis for determining the first E E base (Q ) and EE j (Q ) values by

5.1), we can perform the following simple initialization to precede 

he first iteration of the algorithm 

 E base ( Q ) = 0 and E E j ( Q ) = 0 for j = 1 to n (5.6)

Then the updates of (5.2), (5.3) and (5.4) will automatically 

ield the correct values for E E base (Q ) and EE j (Q ) given by (5.1)

hen the first local optimum is obtained. 

In the same way, the value of T hreshold r can only refer to the

 most recent local optima when s < r. We can inductively update 

 hreshold r by letting 

 hreshold r = min 

(
E E base ( Q ) , 2 

Q−r ( 2 

r − 1 ) 
)

(5.7) 

here 2 Q−r ( 2 r − 1 ) corresponds to T hreshold r = 

∑ Q 
q = Q−r+1 

2 q −1 

here once r is selected. 
1042 
.2. Exploiting local optimality based on exponential extrapolation 

We refer to the iterations that begin upon reaching a local op- 

imum with an Ascent Phase as a Post-Ascent Phase. We are in- 

erested in two principal strategies to guide the Post-Ascent Phase. 

ach depends on the existence of an opportunity to interrupt the 

earch by removing Tabu restrictions and then to proceed to a new 

ocal optimum. 

Status S = . 
We refer to three key conditions that may be satisfied by a 

ariable x j after a local optimum is reached (where, to begin, 

v al j (x ) ≤ 0 for all variables x j ). 

(i) x # 
j 

= x Q 
j 

. 

(ii) Ev al j (x ) > 0 and x j is not tabu. 

(iii) EE j ( Q , x ) ≥ T hreshold r (Q ) . 

A variable x j that satisfies (i) and (ii) will be said to have an S + 

tatus . The “S” in S + simply refers to “Status,” while the “+ ” refers 

o the fact that Ev al j (x ) > 0 , which implies that changing the value

f x j will produce an improvement in the objective function x 0 . A 

ariable with an S + status will be given a higher priority to be 

elected as the variable x k than a variable that does not have an 

 

+ status. In other words, any non-tabu variable with a profitable 

valuation has a higher priority of receiving a new value than one 

ith a non-profitable evaluation. 

A variable x j that satisfies all three conditions (i), (ii) and (iii) 

or equivalently, the conditions (i) and (iii)) will be said to have an 

 

= status. The S = status dominates the S + status by having a higher 

riority to be chosen as the variable x k that receives a new value. 

ote this implies that the recency threshold acts like an aspira- 

ion criterion that overrides a tabu restriction to allow a variable 

 j to be selected when Ev al j (x ) > 0 . We do not allow this to hap-

en when Ev al j (x ) ≤ 0 . The importance of the S = status is that it

eans that the choice of x j to become x k can participate in a deci- 

ion to trigger an assent to a new local optimum, as described be- 

ow. The way that the S = status contributes to this process is as fol-

ows. The recency threshold EE j ( Q , x ) ≥ T hreshold r (Q ) implies that 

 j = x # 
j 

in each of the r most recent local optima. Hence if x j is

elected as x k to set x k = 1 − x # 
k 

on the current move, the result-

ng solution cannot move toward any of these local optima. An S = 

tatus is realized by assigning x k its new profitable value, thereby 

ausing its new x # 
k 

value to be the complement of its current value. 

The value of r must be chosen large enough (analogous to the 

hoice of a tabu tenure in tabu search) to drive the search away 

rom an appropriate number of previous local optima. At the same 

ime, the inequality EE j ( Q , x ) ≥ T hreshold r (Q ) is stronger than nec- 

ssary to avoid visiting these r local optima. Consequently, it can 

e preferable to avoid making r too large, which may unduly re- 

trict the new solutions that can be reached. (This observation also 

uggests that it may be valuable to explore options for setting α
maller than 2. This issue is examined in Appendix 1 .) 

The principal observation to be made at present is that the 

reater the number of variables x j that receive an S = status and 

hat have been chosen to be x k , the greater is the motive for trig-

ering an ascent to a new local optimum. 

Status S � = . 
The second strategy arises where a variable x j satisfies the fol- 

owing conditions: 

(i) x # 
j 

� = x Q 
j 

. 

(ii) Ev al j (x ) < 0 . 

(iii) EE j ( Q , x Q ) ≥ T hreshold r (Q ) . 

Note that a variable x j that satisfies x # 
j 

� = x Q 
j 

will have been

ade tabu after reaching the local optimum x Q by the customary 

pproach of making any variable tabu when it changes its value. 
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he variable will continue to be tabu unless its T enure value has 

xpired in the interim after receiving this new value. We will sup- 

ose that we make T enure large enough to avoid this eventuality. 

hen the move occurred to change x j ’s value to x Q 
j 

, the original

valuation Ev al j (x ) ≤ 0 would have reversed its sign to become 

v al j (x ) ≥ 0 (which, if Ev al j (x ) > 0 , would have made x j profitable

o change back to its previous value except for the Tabu restric- 

ion). The current evaluation Ev al j (x ) < 0 by (v) contrasts with the

ituation that created (iv). This current evaluation is therefore con- 

istent with considering the previous change of x j to have been a 

rofitable move rather than a non-profitable move (since the nega- 

ion of Ev al j (x ) for a profitable move would cause Ev al j (x ) < 0 as

n (v)). 

A variable x j that satisfies all three conditions (iv), (v) and (vi) 

ill be said to have an S � = status. The importance of the S � = sta-

us is that, like an S = status, it qualifies x j participate in a decision

o trigger an assent to a new local optimum. (This results from the 

act that the move that has given x j its new value x # 
j 

receives an

valuation as if it had originally been profitable and, in addition, 

auses x j to satisfy the recency threshold for x j = x Q 
j 

.) In sum, as

e indicate below, once a sufficient number of variables have ei- 

her an S = status or an S � = status, then these variables activate 

n Ascent Phase that proceeds to a new local optimum. It may be 

een that (vi) is identical to (iii) by noting that x # 
j 

in (iii) also cor-

esponds to x Q 
j 

. The difference between (iii) and (vi) is that the 

alue x Q 
j 

in (vi) differs from the current value x # 
j 

for x j . Because

ariables are made tabu when they are assigned a new value after 

eaching a local optimum, this implies that an S = status deals with 

he case where x j has not yet changed its local optimum value and 

n S � = status deals with the case where such a change has already

ccurred. 

In short, the new value not yet assigned to x j in (iii) and the

ew value already assigned to x j in (vi) must be different than the 

alue of x j in each of the r most recent local optima, and hence 

y receiving this value, the current solution moves in a direction 

way from these most recent local optima. It should also be ob- 

erved that EE j ( Q , x Q ) is determined in (vi) refer to the comple- 

ent EE j ( Q , ̄x ) . As shown earlier in (4 ∗), this implies that the in-

quality of (vi) becomes 

 E j ( Q , x ) ≤ E E base ( Q ) − T hreshold r ( Q ) 

This is relevant for choice rules, since it further implies that the 

alue of EE j ( Q , x ) will be relatively small than EE j ( Q , x Q ) , and in

eneral, just as EE j ( Q , x ) benefits from being larger in order for 

he recency threshold EE j ( Q , x ) ≥ T hreshold r (Q ) to hold (which es-

ablishes S = status when Ev al j (x ) > 0 and makes it desirable to

elect x j to become x k and change its value), the corresponding 

nequality EE j ( Q , ̄x ) ≤ EEbase (Q ) − T hreshold r (Q ) from (vi) shows

hat when Ev al j (x ) ≤ 0 , a smaller EE j ( Q , x ) is associated with a

ase where it is undesirable to select x j to change its value. Conse- 

uently, regardless of the sign of Ev al j (x ) , there is a motivation to

avor a larger EE j ( Q , x ) when choosing a variable x j to change its

alue. 

The two status conditions S = and S � = , where an S = status 

dentifies a variable that should change the value it received in 

he most recent local optimum and an S � = status identifies a 

ariable that should retain its value that differs from its value 

eceived in the most recent local optimum, make it possible 

o further refine the partition of the neighborhood set N(x ) by 

onsidering the N 

S = (x ) to be the set of moves satisfying the three

onditions of status S = , and N 

S � = (x ) to the set of moves satisfying

he three conditions of status S � = . First, observe that the partition 

f the neighborhood set N(x ) defined by the two disjoint sets 

 

= (x ) = { j ∈ N : x # 
j 

= x Q 
j 
} and N 

� = (x ) = { j ∈ N : x # 
j 

� = x Q 
j 
} can be
1043 
onstructed without having saved the value x Q 
j 

as a result of 

nowing the value EE j ( Q , x ) . In particular, we can construct the 

ast local optimum from the value of the current solution x # 
j 

and 

he value EE j ( Q , x ) : 

 

Q 
j 

= 

{
x j i f EE j ( Q , x ) ≥ 2 

Q 

1 − x j i f EE j ( Q , x ) ≤ 2 

Q − 1 

ence, we have N 

= (x ) = { j ∈ N : EE j ( Q , x ) ≥ 2 Q } and N � = (x ) = 

 j ∈ N : EE j ( Q , x ) ≤ 2 Q − 1 } . Consequently, the sets N 

S = (x ) and 

 

S � = (x ) may be defined as N 

S = (x ) = N 

= (x ) ∩ N 

+ (x ) ∩ N 

T̄ (x ) ∩ N 

E (x )

nd N 

S � = (x ) = N 

� = (x ) ∩ N 

−(x ) ∩ N 

Ē (x ) . 

rigger an ascent phase based on status S = and S � = . We introduce 

ariables nS = and nS � = that count the number of variables x j that 

ave an S = or S � = status. Temporarily, for convenience, we refer to 

he sum of these by nS. As illustrated in the next section, nS may 

ecrease on some iterations, because a variable x j with an S = or 

 

� = status may lose this status after a move involving a different 

ariable is made. The following trigger threshold provides a rule for 

aunching an ascent to a new local optimum 

S ≥ T rigger (6) 

Once the trigger threshold is satisfied, we know that if we con- 

inue to hold any of the x j variables with an S = or S � = status at

ts current value then we cannot duplicate any of the r most re- 

ent local optima. Thus, we can select the last of these variables 

o remain tabu and, as intimated earlier, remove the tabu restric- 

ions on all other variables and freely choose those with positive 

valuations to ascend to a conditional local optimum – a solution 

hat is locally optimal subject to retaining the Tabu restriction on 

he last variable. Upon reaching the conditional local optimum, the 

abu restriction on the remaining variable is likewise removed and 

he method proceeds to a true local optimum. (A natural variation 

s to allow all Tabu restrictions to be removed from the beginning 

f the ascent in the expectation that the Trigger threshold will cre- 

te a high probability that the new local optimum reached will not 

uplicate any of the r most recent local optima. A contrasting vari- 

tion would retain all variables with an S = and S � = status tabu and 

elease them all together from their Tabu restrictions at the condi- 

ional local optimum.) 

andidate list exploiting status S = and S � = . To differentiate moves 

elated to the criteria used to determine an S = and S � = status, the 

A algorithm uses two subsets of (x ) : 

- N 

1 (x ) = N 

+ (x ) ∩ ( N 

T̄ (x ) ∩ N 

E (x ) ) : N 

1 (x ) = { j ∈ N(x ) : Ev al j 
(x ) > 0 and either T abuIter( j) < Iter or EE j ( Q , x ) ≥
T hreshold r (Q ) } . This set is relevant in an Ascent Phase 

and in a Post-Ascent Phase where some variable has an S + 

or S = status. 

- N 

2 (x ) = ( N − N 

+ (x ) ) ∩ N 

T̄ (x ) : N 

2 (x ) = { Ev al j (x ) ≤ 0 and

T abuIter( j) < Iter} . This set is relevant in a Post-Ascent 

Phase. 

The AA algorithm explores a candidate list CL ⊆ N(x ) that de- 

ends on the introduced subsets, and the phase of research. The 

and id ateList function return the candidate list explored at each 

teration. 
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F unction Cand id ateList ( x, Ascent ) { 

If N A (x ) � = ∅ then CL = N A (x ) 

Else If N 1 (x ) � = ∅ then 

If N S 
= 
(x ) � = ∅ then CL = N S 

= 
(x ) 

Else CL = N 1 (x ) 

Else If Ascent = F alse then 

If N 2 (x ) � = ∅ then CL = N 2 (x ) 

If N S 
= 
(x ) = ∅ then CL = N S 

� = 
(x ) 

EndIf 

EndIf 

EndIf 

Return CL 

} // End Cand id ateList 

The next section provides an extended example of how these 

elationships are exploited. 

. Extended illustration of exploiting strategies S = and S �= 

We illustrate how the preceding data structures can be used 

o implement the two strategies S = and S � = by an example of the 

teps following an Ascent Phase to move away from the most re- 

ent local optimum in a Post-Ascent Phase. We choose Q = 4 to 

dentify the most recent local optimum x Q . For clarity, the follow- 

ng Working Table shows all 4 of the most recent local optima x 1 

o x 4 , although it isn’t necessary to keep a record of these solutions 

n order to execute the method. The Working Table also shows the 

eighted sums E E 1 
j 
(Q ) and E E 0 

j 
(Q ) whose values appear just be-

eath the solution x Q = x 4 (the last solution shown) ( Table 1 ). 

As a prelude to discussing the moves shown in the Working 

able, recall that Strategies S = and S � = always use (a) EE j ( Q , x ) =
 E 1 

j 
(Q ) when the most recent solution x Q has x Q 

j 
= 1 and (b)

E j ( Q , x ) = EE 0 
j 
(Q ) when the most recent solution x Q has x Q 

j 
= 0 .

he values shown in the row for “EE j ( Q , x ) ” in the Working Table

herefore refer to E E 1 
j 
(Q ) when x Q 

j 
= 1 and refer to E E 0 

j 
(Q ) when

 

Q 
j 

= 0 in the local optimum x 4 . (This correspondence can be con-

rmed by computing E E 1 
j 
(Q ) and E E 0 

j 
(Q ) using (3) and (3.2).) 

We have chosen a T rigger value of 3 for the trigger threshold 

S ≥ T rigger in (6) that launches an ascent to a new local optimum. 

etails of the following Working Table are discussed immediately 

fter the table. 

orking table explanation. The method begins the Post-Ascent 

hase with the most recent local optimum x 4 = x Q with the cor- 
Table 1 

Working Table, 1 The new x 1 , x 2 , x 3 are the previous soluti

q w q x q x 1 x 2 x 3 x 4 x 5 

1 1 x 1 1 1 1 1 0 

2 2 x 2 0 1 0 1 1 

3 4 x 3 0 1 0 0 0 

4 8 x 4 1 1 0 0 0 

EE j ( Q , x ) 9 15 ∗ 14 ∗ 12 13 

Move (Begin a Post-Ascent Phase) 

1 0 

2 0 

3 1 

4 S � = 1 

5 1 

6 X 

7 S � = 

8 S � = 

Launch a new Ascent Phase 

Q w(q) x q (Obtain a new local optimum x 4 ) 1 

4 8 x 4 1 0 1 0 0 

EE j ( Q , x ) 12 8 8 14 ∗ 14 ∗

1044 
esponding values for EE j ( Q , x ) ( EE 1 
j 
(Q ) and EE 0 

j 
(Q ) ). An aster-

sk ( ∗) has been attached to each value EE j ( Q , x ) value that satis-

es EE j ( Q , x ) ≥ T hreshold r , which is relevant for identifying moves 

ith an S = or S � = status that will cause nS to change. Here we 

ave chosen r = 3 , yielding T hreshold 3 = 8 + 4 + 2 = 14 (the sum

f the three largest w q values). Hence an asterisk is attached to 

ach EE j ( Q , x ) value that is at least 14. 

For this example, we do not bother to specify the choice rule 

sed to select variables x j to set equal to 0 or 1. A discussion

f choice rules is given in Section 6 . As a basis for tracking the

hoices made, recall that Ev al j (x ) is nonpositive for all variables at 

 local optimum. Hence the first choice of a variable x j to change 

ts value after reaching the local optimum x 4 will be for a variable 

ith Ev al j (x ) ≤ 0 . Each choice of such a variable will reverse the

ign of Ev al j (x ) to produce Ev al j (x ) ≥ 0 , as noted in condition (iv)

f the S � = strategy. 

As previously noted, we assume that each variable selected to 

hange its value is made Tabu to prevent a move that changes the 

ariable back to its previous value. We also assume in the present 

xample that the variables x 7 and x 9 are tabu in the local opti- 

um x 4 , as indicated by the superscript T attached to the values 

or these variables in the x 4 row. (Variables may receive a Tabu 

estriction in this way by a rule that, upon obtaining a local op- 

imum, selects some number of the variables that were most re- 

ently assigned values leading to this local optimum to be Tabu. 

ere we may suppose x 7 and x 9 were the last Two variables to be 

ssigned their current values to reach this local optimum. It would 

lso be possible to apply a rule that does not make any variables 

n the local optimum Tabu. However, we include the situation with 

 7 and x 9 tabu to increase the scope of the illustration.) 

After one or more moves have been made, the evaluation for 

ne of the previously selected variables x j can change. This can be 

he basis for identifying a x j that qualifies to receive an S � = status 

ecause its evaluation has changed to become Ev al j (x ) ≤ 0 . Simi-

arly, the evaluation of a variable x j that has not previously been 

elected can change from Ev al j (x ) ≤ 0 to Ev al j (x ) > 0 , qualifying x j 
o receive an S + or an S = status. 

escription of successive moves. As shown in the Working Table, 

ove 1 selects x 1 as the first variable to become x k to change its

alue, changing x 1 = 1 to x 1 = 0 , with its new value 0 shown in

he row for Move 1. 

Similarly, Move 2 chooses x 2 to change from 1 to 0, as indicated 

y the value 0 shown in the row for Move 2, and Move 3 chooses
ons x 2 , x 3 , x 4 . 

x 6 x 7 x 8 x 9 x 10 

0 0 1 1 1 

0 1 1 0 1 

0 1 1 1 0 

0 1 T 1 1 T 0 

15 ∗ 14 ∗ 15 ∗ 13 12 ∗ for ≥ 14 

nS

1 

S = S + 2 

0 X 1 

1 S + 2 

1 3 

1 1 1 1 1 

8 15 ∗ 15 ∗ 14 ∗ 9 ( ∗ for ≥ 14) 
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 3 to change from 0 to 1, as indicated by the value 1 shown in the 

ow for Move 3. 

The next move, Move 4, chooses x 4 to change its current value, 

ielding x 4 = 1 , indicated by the value 1 shown in the row for

ove 4. In addition, the symbol S � = for Strategy S � = is inserted in 

his row in the column for x 2 to disclose that the result of set-

ing x 4 = 1 has changed a current evaluation Ev al 2 (x ) > 0 for x 2 
o a new evaluation Ev al 2 (x ) < 0 , and in addition E E 1 2 (Q ) ≥ 14 , as

ndicated by asterisk attached to the value 15 for E E 1 
2 
(Q ) (where

E 2 ( Q , x ) = EE 1 
2 
(Q ) is defined in relation to x 2 = x Q 

2 
= 1 ), shows

hat x 2 qualifies for the S � = status of Strategy S � = . As a result, the

S in the far-right column of the table is incremented to 1 (from 

n implicit initial value of 0). 

Move 5 selects x 5 to change from 0 to 1, and now this move

auses x 7 and x 10 , which have not yet changed their values in 

he local optimum x 4 , to receive new evaluations Ev al 7 (x ) a nd

v al 10 (x ) > 0, hence making them profitable and qualifying them 

or the S + status. In addition, x 7 satisfies the recency threshold and 

ence qualifies for the S = status. Thus, we show S = in the column 

or x 7 and S + in the column for x 10 , and the S = status for x 7 results

n incrementing nS to 2 in the far-right column. 

The status S = and S + for x 7 and x 10 (which also identifies them 

s improving moves) give both variables priority to be selected to 

hange their values. Since the S = status is higher than the S + sta- 

us, we select x 7 to change its value from 1 to 0 in Move 6. We

ake this move in spite of the fact that x 7 begins tabu (as indi-

ated by the superscript T attached to its value in x 4 ), because the

 

= priority also overrules the tabu status. 

Move 6 to set x 7 = 0 additionally has two other consequences 

n this example. The X’s in the columns for x 2 and x 10 are used to

ndicate that S � = and S + statuses of these variables have been can- 

eled because of the move setting x 7 = 0 – a situation indicating 

hat setting x 7 = 0 causes to become positive and Ev al 10 (x ) to be-

ome nonpositive. Because of cancelling the S � = status of x 2 , nS is 

educed from 2 to 1. 

There now remain three variables that are not Tabu, x 6 , x 8 and 

 10 (unless the tabu tenure attached to x 9 is small enough that the 

abu status of x 9 has expired). Move 7 selects x 6 to change its value

rom 0 to 1. According to the table, this move causes Ev al 2 (x ) and

v al 10 (x ) once again to become nonpositive and positive, respec- 

ively, and consequently reinstates their S � = and S + status that was 

anceled on the previous move. (Such a rapid fluctuation of the 

onpositive and positive evaluations of variables may be unlikely, 

ut we show such a change to illustrate conditions that potentially 

ay happen.) The recovery of the S � = status by x 2 causes nS again 

o grow to 2. 

Variable x 10 with its S + status now has priority above other 

ariables to be chosen as x k , and the assignment x 10 = 1 occurs

n Move 8. This move causes x 3 to receive an S � = status (by chang-

ng Ev al 3 (x ) > 0 back to Ev al 2 (x ) ≤ 0 and observing E E 1 2 (Q ) = 15

hich is larger enough for x 2 to satisfy the recency threshold). 

ow nS increases again, to equal 3. 

Since we have chosen T rigger to be 3, the trigger threshold nS ≥
 rigger is now satisfied and the ascent to a new local optimum is 

aunched. The variable x 3 is held tabu until reaching a conditional 

ocal optimum, and then its tabu restriction is released as well to 

roceed to a true local optimum. 

The next to last row of the Working Table identifies the new lo- 

al optimum, again designated x 4 by keeping Q = 4 . This shifts the

ndexing of the previous local optima so that the previous x 2 , x 3 

nd x 4 now become x 1 , x 2 and x 3 . The new E E 1 
j 
(Q ) and E E 0 

j 
(Q )

alues may be verified by consulting the new vectors that now 

ualify as x 1 through x 4 . Alternatively, these values can be com- 

uted from the inductive formula EE j ( Q , x ) = 2 Q−1 + EE j ( Q , x ) / 2

s expressed in ( 5 . 2c ) and ( 5 . 2d ) . (For example, in the case of x ,
1 i

1045 
hich currently equals 1 and also equals 1 in the previous x 4 so- 

ution, the new value for EE j ( Q , x ) = EE 1 1 (Q ) ) is given by ( 5 . 2c )

s EE j ( Q , x ) = 2 Q−1 + 

EE j ( Q ,x ) 

2 = 8 + 

9 
2 = 12 . 5 , and rounding down

ith integer arithmetic gives = E E 1 1 (Q ) = 12 . (There is no neces-

ity to round down, of course, and there is some advantage for 

ot doing so, particularly when α is chosen less than 2 as dis- 

ussed in Appendix 1 .) Similarly, in the case of x 2 , which cur-

ently equals 0 but equals 1 in the previous x 4 solution, the new 

alue for EE 2 ( Q , x ) ( = EE 0 
2 
(Q ) ) is given by ( 5 . 2d ) as EE j ( Q , x ) =

 

Q−1 + (E E base (Q ) − EE j ( Q , x ) )/2 = 8 + 

15 −15 
2 = 8 .) 

This example brings up an additional characteristic of the 

ethod. The final Move 8 that gives x 3 an S � = status affords the 

implest way to launch an Ascent Phase. Specifically, a variable x j 
ith an S � = status that becomes the “last variable” to satisfy the 

rigger threshold already has received an evaluation Ev al j (x ) ≤ 0 

nd is already tabu. Thus, no change is required in x j or its tabu

tatus to launch a new ascent. 

However, if a last variable to satisfy the trigger threshold does 

o by receiving an S = status, then it would be necessary to make 

he move that gives x j its new value. (This could have happened 

n the Working Table if Move 8 had caused x 8 to qualify for an S = 

tatus instead of causing x 3 to qualify for an S � = status.) Then, af- 

er giving x j its new value, its evaluation Ev al j (x ) will be negated

o yield Ev al j (x ) < 0 and x j will be made tabu to launch the new

scent. This final move could cause nS to drop if it cancels the S = 

r S � = status of some other variable(s), but there is a simple way to 

andle this. By keeping a separate value nS = for an S = status and 

S � = for an S � = status, it is not necessary to keep track of cancel-

ations. We only increase nS = by 1 when a variable x j with an S = 

tatus is chosen to change its value (which locks in the value for 

 j ). Then, each time a variable changes its value we recompute nS � = 

starting over from nS � = = 0 ). Consequently, we identify the current 

S � = value at the same time as scanning the variables to select a 

ew x j to change its value. 

However, there is an added subtlety. The properties that define 

n S � = status, as previously noted, are the same as those exhib- 

ted by a variable that has a Post- S = status, i.e., a variable that 

reviously had an S = status and then was chosen to change its 

alue. Consequently, by counting the variables with an S � = sta- 

us, we also are counting the variables with a Post- S = status – or 

ore precisely, variables with an active Post- S = status, that still 

atisfy the conditions when they changed their values. Thus, the 

rigger threshold inequality nS = ≥ T rigger tallies just the variables 

hat have Post- S = status, but not necessarily an active one (be- 

ause the Eval value may have subsequently changed its sign). This 

rovides a useful way to take advantage of both types of trigger 

hreshold inequalities, as disclosed in the pseudocode subsequently 

rovided for an advanced version of the algorithm illustrated in 

he Working Table. For a uniform notation, we refer to T rigger = 

nd T rigger � = to identify the trigger thresholds nS = ≥ T rigger = and 

S � = ≥ T rigger � = . In our present design we let T rigger = = T rigger � = =
 rigger, but other options are possible. 

We call this algorithm, that alternates between an Ascent Phase 

nd a Post-Ascent Phase, by exploiting the recency threshold 

nd the trigger thresholds, an Alternating Ascent (AA) algorithm. 

hoice rules for selecting a variable x j to become x k in the AA 

lgorithm are discussed in Section 5 followed by the pseudocode 

n Section 6 that provides an effective way to implement the 

lgorithm. 

. Choice rules of exploiting Ev al j (x ) and EE j ( Q , x ) 

Customary choice rules to select a variable x j to become x k 
nd change its value from x k = x # 

k 
to x k = 1 − x # 

k 
can be extended

n the context of the AA algorithm to take advantage of the val- 
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es EE j ( Q , x ) incorporated in the recency threshold. A good choice 

onsists of selecting a variable x k that optimizes simultaneously 

oth Ev al j (x ) and EE j ( Q , x ) over the selected candidate list CL . In

 multi-objective optimization problem, the quality of a solution is 

etermined by the dominance relation. This bi-objective selection 

roblem has not just one “optimal” solution but several “efficient”

olutions that satisfy tradeoffs between EE j ( Q , x ) and Ev al j (x ) . We

dentify three options for doing this, a simple weighting scheme, 

 simple cutoff (threshold) scheme and a more advanced cutoff

rocedure using an evaluation tradeoff analysis. The algorithm will 

nly use one of these options, hence providing three different ver- 

ions of the algorithm. These choice rule options depend on differ- 

ntiating two conditions related to the criteria used to determine 

n S = and S � = status identified by the candidate list function. 

To provide a compact description of the move selection func- 

ion, we introduce the following notation. Let f be a scalar vector 

ith components f j for j ∈ L . Then we denote 

f Max 
L = Max 

{
f j : j ∈ L 

}
ax f 

L 
= Argmax 

{
f j : j ∈ L 

}
= 

{
j ∈ L : f j = f Max 

L 

}
. 

First, we look for a move that maximizes the two objectives 

 v al j (x ) and E E j ( Q , x ) simultaneously. This move, if it exists, corre-

ponds to an ideal decision. Identifying this move is accomplished 

y the following instruction 

f M ax Ev al 
CL ∩ M ax EE 

CL � = ∅ then select k ∈ M ax Ev al 
CL ∩ M ax EE 

CL 

If an ideal move is not available, then the method uses one of 

he following three options. 

Simple Weighted Sum Rule: The evaluation Ev al j (x ) is modi- 

ed to take in account of the evaluation EE j ( Q , x ) to produce the

urrogate evaluation S j ( Q , x, w ) given by 

 j ( Q , x, w ) = Ev al j ( x ) + w × EE j ( Q , x ) 

EEbase ( Q ) 

The pseudo code of this Simple Weighted Sum Rule is described 

ellow: 

F unction S impleW eighted S um ( CL , w ) { 

If M ax Ev al 
CL ∩ M ax EE 

CL � = ∅ then select k ∈ M ax Ev al 
CL ∩ M ax EE 

CL 

Else select k ∈ Argmax { S j ( Q , x, w ) : j ∈ CL } 
Return k 

} // End S impleW eighted S um 

The normalization of dividing EE j ( Q , x ) by EEbase (Q ) gives 0 ≤
 E j ( Q , x ) /E E base (Q ) ≤ 1 , which makes the calibration of w easier.

eight parameters w 1 for the candidate list CL = N 

1 (x ) and w 2 for

he candidate list CL = N 

2 (x ) are differentiated. The weight value 

 = w 1 producing S j ( Q , x, w ) for N 

1 (x ) will generally be small, as

n performing a tie-breaking function. The value w = w 2 for N 

2 (x )

ay also be small, but intuition suggests it may preferably be 

arger, perhaps in some instances large enough to cause EE j ( Q , x ) 

o dominate Ev al j (x ) . The possibilities for both w 1 and w 2 may

ange, for example, from 0.1 to Ev al Max 
CL 

the maximum expected 

alue for Ev al j (x ) . 

imple and advanced cutoff rules. The remaining choice rule op- 

ions are given by the Simple Cutoff Rule and the Advanced Cutoff

ule, and are preceded by checking a secondary dominance condi- 

ion. This is assured by the following instructions 

L ∗1 = Argmax 
{

Ev al j ( x ) : EE j ( Q , x ) ≥ EE Max 
CL , j ∈ CL 

}
f CL ∗1 � = ∅ then select k ∈ CL ∗1 

n the Simple Cutoff and the Advanced Cutoff function. When the 

econdary dominance condition is not satisfied (i.e. CL ∗
1 

= ∅ ) the 

imple and Advanced Cutoff Rules (which are applied separately in 

ifferent versions of the algorithm) are as follows. 
1046 
Simple Cutoff Rule: This rule select a move from the following 

andidate list CL ∗2 , if it is not empty: 

L ∗2 = Argmax 
{

Ev al j ( x ) : EE j ( Q , x ) ≥ Cutof f, j ∈ CL 
}

f CL ∗2 � = ∅ then select k ∈ CL ∗2 

here Cutof f = F × E E Max 
CL 

and F is a fraction chosen between

.5 and 0.9 (or more restrictively, between 0.7 and 0.9). In 

he special case where the S = status applies (i.e. N 

S = (x ) � = ∅ ),
utof f = max ( F × E E Max 

CL 
, T hreshold r ) , the Simple Cutoff function is 

s follows 

F unction SimpleCutof f ( CL , F ) { 

k = 0 

If M ax Ev al 
CL ∩ M ax EE 

CL � = ∅ then select k ∈ M ax Ev al 
CL ∩ M ax EE 

CL 

Else CL ∗1 = Argmax { Ev al j (x ) : EE j ( Q , x ) ≥ E E Max 
CL , j ∈ CL } 

If CL ∗1 � = ∅ then select k ∈ CL ∗1 
Else Cutof f = F × E E Max 

CL 

If N S 
= 
(x ) � = ∅ then Cutof f = Max ( Cutof f, T hreshold r ) 

CL ∗2 = Argmax { Ev al j (x ) : EE j ( Q , x ) ≥ C utof f, j ∈ C L } 
If CL ∗2 � = ∅ then select k ∈ CL ∗2 

EndIf 

EndIf 

Return k 

} // End SimpleCutof f 

Advanced Cutoff Rule: The Advanced Cutoff Rule is based on 

he same Cutof f value but uses a criterion to identify tradeoffs 

etween EE j ( Q , x ) and Ev al j (x ) , expressed as 

CL ∗1 = Argmax { Ev al j (x ) × EE j ( Q , x ) : EE j ( Q , x ) ≥ Cutof f, j ∈ CL } 
If CL ∗1 � = ∅ then select k ∈ CL ∗1 

in the case N 1 (x ) � = ∅ , and as 

CL ∗2 = Argmax { EE j ( Q ,x ) 

Ev al j (x ) 
: EE j ( Q , x ) ≥ Cutof f, j ∈ CL } 

If CL ∗2 � = ∅ then select k ∈ CL ∗2 
when N 1 (x ) = ∅ and Ascent = F alse . The Advanced Cutoff function is 

F unction Ad v ancedCutof f ( CL , F , Ascent ) { 

k = 0 

If M ax Ev al 
CL ∩ M ax EE 

CL � = ∅ then select k ∈ M ax Ev al 
CL ∩ M ax EE 

CL 

Else Cutof f = F × E E Max 
CL 

If N 1 (x ) � = ∅ then 

If N S 
= 
(x ) � = ∅ then Cutof f = Max ( Cutof f, T hreshold r ) 

CL ∗1 = Argmax { Ev al j (x ) × EE j ( Q , x ) : EE j ( Q , x ) ≥ Cutof f, j ∈ CL } 
If CL ∗1 � = ∅ then select k ∈ CL ∗1 
Else If Ascent = F alse then 

CL ∗2 = Argmax { EE j ( Q ,x ) 

Ev al j (x ) 
: EE j ( Q , x ) ≥ Cutof f, j ∈ CL } 

If CL ∗2 � = ∅ then select k ∈ CL ∗2 
EndIf 

EndIf 

EndIf 

EndIf 

Return k 

} // End Ad v ancedCutof f 

The analysis underlying the tradeoff choices in the advanced 

utoff rule are explained in Appendix 2 . For the move selection 

sing the cutoff thresholds, there may be merit in choosing the 

raction F larger (for example, closer to 0.5) when N 

1 (x ) � = ∅ , and

erhaps larger still when N 

1 (x ) � = ∅ , because in these cases a some-

hat smaller range of x j variables are candidates to be selected 

or x k . For example, setting F = 0 . 7 when restricting attention to

ariables with Ev al j (x ) > 0 , and setting F = 0 . 5 when additionally

estricting attention to variables satisfying the recency threshold, 

ay roughly correspond to setting F = 0 . 9 when considering all 

ariables without restriction. 

As previously noted, each of these choice rule options gives rise 

o a different version of the AA algorithm. Hence, given the param- 

ters: candidate list CL , weight w , fraction F , state of AA Ascent and

hoice rule option Choice , the following SelectMov e function returns 

he selected move k ∈ CL if it exists and returns 0 otherwise. 
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F unction SelectMo v e ( CL , w, F , Ascent , Choice ) { 

Switch ( Choice ){ 

Case 1: k = SimpleWeightedSum ( CL, w ) 

Case 2: k = SimpleC utof f ( C L, F ) 

Case 3: k = Ad v anced C utof f ( C L, F, Ascent ) 

} 

Return k 

} // End SelectMo v e 

. General AA algorithm design and pseudocode 

An AA algorithm oscillates between the Ascent Phase and the 

ost-Ascent Phase which is controlled by the boolean variable 

scent = T rue if the state of the AA algorithm is in Ascent Phase

nd Ascent = F alse when the AA algorithm is in Post-Ascent Phase. 

he pseudocode that follows is organized to facilitate experimenta- 

ion with the ideas for exploiting local optimality described in the 

receding sections. 

The AA algorithm starts with an initialization phase where all 

lobal variables of AA are determined once the parameters are 

xed. At each current iteration, a C urrentIt er() procedure is called 

o choose a next move k to be selected depending on whether 

he search is in the Ascent Phase or the Post-Ascent Phase (i.e. 

scent = T rue or F alse ). After this current phase, a post update pro-

edure is launched to update the state of search. The pseudo code 

f the main AA algorithm may be stated as follows: 

Algorithm AA () { 

Init italizat ion () 

For Iter = 1 to IterMax do // or until the expiration of a time limit 

k = C urrentIt er() 

If k > 0 then PostIt erU pdat eMov e (k ) // move k is selected 

Else PostIt erU pdat eNoMov e () // no move exists, i.e. k = 0 

EndFor 

} // End AA 

The instructions for the three key components of the AA algo- 

ithm – the Initialization, the Current Iteration Routine and the 

ost Iteration Update – are as follows. To recapitulate, we as- 

ume that we start with an initial solution x = 0 , Ascent = T rue

nd we do not keep the best solution found but just its value de- 

oted x ∗
0 
. The AA algorithm can be easily adjusted to keep also 

he best found solution x ∗ during the search. In the algorithms 

resented below, x denotes the current solution and we abbrevi- 

te the notation of E v al j (x ) , E E j ( Q , x ) , E E base (Q ) , T hreshold r (Q )

y referring to E v al j , E E j , E E base , and T hreshold r . Starting with

ull solution x = 0 , this simplifies the initialization of Ev al j , EE j ,

 E base, x 0 , and x ∗0 as described in ( Section 2.2 and Section 3.3),

ee Init italizat ion ( Q, r, Ascent ) algorithm. 

The Tabu restrictions required during the Ascent Phase and the 

ost-Ascent Phase of the AA algorithm take a simple form where 

he tenure is given by setting T enure = Lar ge , where Lar ge repre-

ents a large positive number. This approach is made possible by 

he fact that Tabu restrictions will be overruled by the aspiration 

riterion and by an S = status, which, together with the trigger 

hreshold, implicitly determine the duration of a tabu restriction. 

he AA algorithm starts with no variables tabu (i.e. T abuIter( j) = 0 

or j = 1 to n ) and initializes the record of the 3 most recent vari-

bles x j assigned values in the Ascent Phase. This can be done 

or any number of recent variables assigned values in the Ascent 

hase (i.e. R 1 = R 2 = R 3 = 0 ). This memory refresh is also done dur-

ng the search except that a Last move is identified to avoid cy- 

ling as in Tabu Search. For this reason, we introduce an impor- 

ant convention which introduces a term T abuIter(0) , which is as- 

igned a value as T abuIter( Last ) when Last = 0 . Likewise, we intro-

uce a term Ev al 0 which is permanently assigned the value Ev al 0 =
 . With these conventions, the AA algorithm calls the following 

esetMemory ( Last ) with Last = 0 in the initialization phase: 
1047 
Procedure ResetMemory ( Last ) { 

For j = 1 to n do TabuIter( j) = 0 

TabuIter( Last ) = Iter + Tenure 

R 1 = R 2 = R 3 = 0 

} // End ResetMemory 

These dummy values T abuIter(0) and Ev al 0 save computational 

ime for checking valid cases. Our AA algorithm oscillates between 

he Ascent Phase and the Post-Ascent Phase which is controlled by 

he boolean variable Ascent . Ascent = T rue if the AA algorithm is 

n Ascent Phase and Ascent = F alse when AA algorithm is in Post- 

scent Phase. 

The initialization phase of the AA algorithm starts with an 

nitial solution x # with objective value x # 
0 

, and sets x = x # , x ∗
0 

=
 

# 
0 

where x ∗
0 

denotes the best known value, and initializes the 

ecord of the 3 most recent variables x j assigned values in the 

scent Phase. This can be done for any number of recent vari- 

bles assigned values in the Ascent Phase ( R 1 = R 2 = R 3 = 0 ). Con-

equently, the initialization phase of the AA algorithm is described 

s follows: 

Procedure Init ializat ion () { 

Set x ∗0 = x # 0 , x = x # 

Ev al 0 = 0 , For j = 1 to n do Compute Ev al j for the initial solution with x j = x

Tenure = Large ; Red uced Tenure = min ( 16 , n/ 12 ) 

R 1 = R 2 = R 3 = 0 , For j = 1 to n do TabuIter( j) = 0 

Last = Last S = = 0 

E E base = 0 , For j = 1 to n do EE j = 0 

T hreshold r = 2 Q−r ( 2 r − 1 ) 

nS = = 0 

ResetMemory ( Last ) 

Ascent = T rue 

} // End Init ializat ion 

Each iteration of the AA algorithm begins by checking the as- 

iration criterion for overriding a Tabu restriction to see whether 

hanging the value of x j will yield a value for x 0 (currently given 

y x 0 = x # 0 ) that improves upon the best value x ∗0 , as indicated by

 

# 
0 + Ev al j (x ) > x ∗0 . Hence, when N 

A (x ) � = ∅ , the method selects a

est move k ∈ Argmax { Ev al j (x ) : j ∈ N 

A (x ) } . 

F unction CurrentIter () { 

If N A (x ) � = ∅ then select k ∈ Argmax { Ev al j : j ∈ N A (x ) } ; Return k ; 

If N S 
= 
(x ) � = ∅ then k = SelectMov e ( N S = ( x ) , w 1 , F, Ascent, Choice 1 ) ; Return k ; 

If N 1 (x ) � = ∅ then k = SelectMov e ( N 1 ( x ) , w 1 , F, Ascent, Choice 1 ) ; Return k ; 

If Ascent = F alse then 

If N 2 (x ) � = ∅ then k = SelectMov e ( N 2 ( x ) , w 2 , 1 /F, Ascent, Choice 2 ) ; Return k ;

If N S 
� = 
(x ) � = ∅ then select Last S � = ∈ N S � = (x ) 

EndIf 

Return 0 

} // End CurrentIter 

The Post Iteration Update PostIt erU pdat eMov e (k ) procedure has 

s argument the index k of the chosen variable x k to change its 

alue . When N 

A (x ) = ∅ , nS � = includes the count for active Post - S = 

tatus. Whenever nS = ≥ T rigger ( = Trigger in the current design), 

aunch a new ascent even if N 

1 (x ) � = ∅ , because even if Ev al j > 0

s encountered, possibly the influence of the previous x k assign- 

ent could create nS � = ≥ T rigger (by increasing nS � = in the Current 

teration Routine). The only exception is if N 

S = (x ) � = ∅ , since then

e first update x k before considering the possibility of launching 

 new ascent. Hence, next checks for N 

S = (x ) = ∅ as a basis for

hecking if nS � = ≥ T rigger will launch an Ascent before too many 

mproving choices are made. Don’t launch new ascent if N 

A (x ) � = ∅
ntil after updating x k . It would be possible to drop “N 

S = (x ) = ∅ ”
ext, because this will be checked in the Post Iteration Update 

outine. Moreover, if N 

A (x ) = N 

S = (x ) = ∅ and nS � = ≥ T rigger then

scent = F alse is implicit here because nS � = only changes in the 

urrent Iteration Routine to become greater than 0 when Ascent = 

 alse . In addition, no variable should be assigned a value, just 

s if k = 0 . In this case, we free all variables from Tabu restric-
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ions, except for Last = Last S � = by calling ResetMemory ( Last ) and 

etting Ascent = T rue . These updates are done before updating for 

he choice of x k , because the x k choice may be different when a

ew ascent is launched as here. Subsequently, launch a new ascent 

fter updating x k if nS � = ≥ T rigger. 

The PostIt erU pdat eMov e (k ) procedure calls the 

pdateMov e ( k, Ascent ) procedure after the flip move k , which 

pdates the value of the current solution x 0 , Ev al j for j = 1 to n ,

 k , EE k and also updates the memory when the AA algorithm is in

he Ascent Phase (see Section 2.2 and Section 3.3): 

Procedure U pdateMo v e (k) { 

x 0 = x 0 + Ev al k 
For j = 1 to n do Update Ev al j 
x k = 1 − x k 
E E k = E E base − EE k 

If Ascent = T rue then R 3 = R 2 ; R 2 = R 1 ; R 1 = k 

} // End U pdateMo v e 

When Ascent = F alse the search is in the Post-Ascent Phase and 

he condition nS � = ≥ T rigger allows an ascent to be launched when 

 

A (x ) � = ∅ . The condition Ev al Last S = < 0 could be needed because

ast S = might have been recorded on a previous iteration. However, 

nly accept Last S = as Last if Ev al Last S = < 0 , as it would be if its Post-

 

= status still applies; and check for Last S � = on same condition it 

ould be preferable to hold Tabu unless it is now profitable to 

hange back. Since we are only keeping variables Tabu that are un- 

rofitable anyway, it seems we don’t really need to hold anything 

abu during an Ascent phase, and this extra fuss is wasted effort. 

Procedure PostIt erU pdat eMo v e (k) { // k > 0 

If N A (x ) = N S 
= 
(x ) = ∅ and nS = ≥ T rigger then 

// PA Completed: Launch a new Ascent Phase 

ResetMemor y ( Last S = ) ; Ascent = T r ue 

Return ; // Exit the Post Iteration Update 

EndIf 

U pdateMov e (k ) 

If Ascent = F alse then 

TabuIter(k ) = Iter + Tenure 

If N S � = � = ∅ then Last S � = = k 

If N A � = ∅ or N S � = � = ∅ then nS � = = nS � = + 1 

If nS � = ≥ T rigger then // PA Completed: Launch a new Ascent Phase 

If Ev al Last 
S � = < 0 then Last = Last S � = 

ResetMemory ( Last ) ; Ascent = T rue 

EndIf 

EndIf 

} // End PostIt erU pdat eMo v e 

In the PostIt erU pdat eNoMov e () routine, no variable x k could be 

hosen to change its value, hence must end an Ascent Phase if 

scent = T rue or must begin an Ascent Phase if Ascent = F alse . The

utcome k = 0 is the only way to end an Ascent Phase. Ev al j does

ot need to be updated. Each time a true local optimum is ob- 

ained, the PostIt erU pdat eNoMov e procedure calls the U pdateE E () 

rocedure which updates the value of EE j for j = 1 to n , E E base

nd T hreshold r (see Section 2.2 and Section 3.3): 

Procedure U pdateEE () { 

For j = 1 to n do E E j = 2 Q−1 + 2 −1 E E j 
E E base = 2 Q−1 + 2 −1 E E base 

T hreshold r = min (E E base, 2 Q−r ( 2 r − 1) ) 

} // End U pdateEE 

The end of Ascent Phase is in two steps: first, free Last from its 

abu restriction to complete the ascent to a local optimum, and 

hen at the local optimum perform updates for the Post-Ascent 

hase when Ascent = F alse . 
1048 
Procedure PostIt erU pdat eNoMo v e () { // k = 0 

If Ascent = T rue then // End Ascent Phase 

TabuIter( Last ) = 0 

If Ev al Last > 0 then // A conditional local optimum is reached 

U pdateMov e ( Last ) ; Last = 0 

Else // A true local optimum is obtained, and a PA Phase begins 

Ascent = F alse ; nS � = = 0 

Last = Last S � = = Last S = = 0 

U pdateE E () 

TabuIter( j) = Iter + Red uced Tenure for j ∈ { R 1 , R 2 , R 3 } 
EndIf 

Else // Launch a new Ascent Phase 

If nS � = > 0 and Ev al Last 
S � = < 0 then Last = Last S � = 

Else If nS = > 0 and Ev al Last S = < 0 then Last = Last S = 

ResetMemory ( Last ) ; Ascent = T rue 

EndIf 

} // End PostIt erU pdat eNoMo v e 

. Computational results of the AA algorithm on QUBO 

This section presents computational results of applying the 

A algorithm to the quadratic unconstrained binary optimization 

QUBO) problem. We start by providing an efficient 1-flip move 

valuation and describing input and output parameters of the AA 

lgorithm. 

.1. QUBO problem and its 1-flip move evaluation 

The quadratic unconstrained binary optimization (QUBO) prob- 

em is an NP-hard combinatorial optimization problem introduced 

y Hammer and Rudeanu (1968), which can be expressed as fol- 

ows: 

 

QUBO ) 

{
maximize x 0 = xAx 

s.t. x ∈ { 0 , 1 } n 
here A = ( a i j ) is a symmetric matrix of dimension n × n where

omponent a i j are real values for i, j ∈ N = { 1 , . . . , n } . The evalua-

ion Ev al j (x ) for flipping variable x j of x that identifies the change

n the objective function when x j changes its value, i.e. 

v al j ( x ) = x ′ 0 − x 0 = x ′ Ax ′ − xAx 

The move evaluation Ev al j (x ) can alternatively be expressed as 

v al j ( x ) = 

(
1 − 2 x j 

)(
A 

j + A j 

)
x + a j j 

The last equation is obtained since ( 1 − 2 x j ) 
2 = 1 and a j j = 

 

j Ae j where A 

j and A j refer to column and row j of matrix A re-

pectively. If the input matrix A is a symmetric matrix the term 

 

j + A j is equal to 2 A 

j = 2 A j , hence 

v al j ( x ) = 2 

(
1 − 2 x j 

)
A j x + a j j . 

roposition 2. Let x ′ be the solution obtained from x by flipping the 

ariable x k , i.e. x ′ = x + ( 1 − 2 x k ) e 
k . Then the update of the evalua-

ion Ev al j ( x 
′ ) can be computed using the rule 

 v al j 
(
x ′ 
)

= 

⎧ ⎨ 

⎩ 

−E v al j ( x ) i f j = k 

E v al j ( x ) + a ′ 
jk 

i f j � = k and x j = x k 

E v al j ( x ) − a ′ 
jk 

i f j � = k and x j � = x k 

where 

 

′ 
jk = 

{ 

a jk i f j < k 
a j j i f j = k 
a k j i f j > k 

Note that if the starting solution is null, i.e. x = 0 , the initial

valuation can be computed simply as follows Ev al j (0) = a ′ 
j j 

. 
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Table 2 

Options for choice rules. 

Choice 1 Choice 2 

1 Weighted_Sum_Rule ( w 1 ) Weighted_Sum_Rule ( w 2 ) 

2 Simple_Cutoff_Rule ( F ) Simple_Cutoff_Rule ( 1 /F ) 

3 Advanced_Cutoff_Rule ( F ) Advanced_Cutoff_Rule ( 1 /F ) 
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Table 3 

Parameters types and ranges for the IRACE experiments. 

Name Type Range 

w 1 r (0.1, 1) 

w 2 r (0.1, 100) 

F r (0.7, 0.9) 

Q i (15, 30) 

r i (10, 20) 

C1 c (1, 2, 3) 

C2 c (1, 2, 3) 

T rigger i (5, 9) 
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This efficient means of evaluating 1-flip moves is an improved 

ersion of the procedure proposed by Glover and Hao (2010), 

hich is used in a variety of different algorithms for QUBO (e.g. 

lover, Lü, & Hao (2010), Hanafi, Rebai & Vasquez (2013)). 

Experiments are carried out on two sets of benchmark in- 

tances, where the first set is composed of 60 instances from OR- 

ibrary with a density of 0.1 and the second set is composed of 

1 instances from Palubeckis with densities from 0.5 to 1.0. Ac- 

ording to the instance size, we further divide the instances into 

our subsets. The ‘ small ’ set is composed of 20 instances with 50 

o 100 variables. The ‘ medium ’ set is composed of 20 instances 

ith 250 to 500 variables. The ‘midsize’ set is composed of 20 in- 

tances with 10 0 0 to 250 0 variables. The ‘ large ’ set is composed of

1 instances with 30 0 0 to 70 0 0 variables. The OR-Library instances

re available on the website http://people.brunel.ac.uk/ ∼mastjjb/ 

eb/orlib/bqpinfo.html and the Palubeckis instances are available 

pon request since the previous website is not available. An op- 

imal value for small instances is obtained by solving the standard 

inearization (see Glover & Woolsey (1974), Billionnet & Calmels 

1996)) where each quadratic term in the objective function, x i x j , is 

eplaced by a new binary variable, y i j , and adding new constraints 

 i j ≤ x i , y i j ≤ x j , and x i + x j ≤ 1 + y i j to require that y i j = 1 if and

nly if x i = x j = 1 . Using Cplex software with 1 a time limit of

our, optimal values are known for n ≤ 250 , except for QUBO 250 , 6 

nd QUBO 250 , 8 . Note that the best known values x ∗∗
0 

are available 

or those instances. 

.2. Input and output parameters of the AA algorithm 

The input parameters of the AA algorithm are: 

- An initial solution x # with objective value x # 
0 

. In our experi- 

ments, the starting solution is x # = 0 . 

- Number of recent local optima: Q (the maximum value of 

Q depends on the largest integer or real value that can be 

supported by the computer and/or software used). For sim- 

plicity, we choose Q = 30 . 

- Number of most recent local optima: r < Q , for T hreshold r 
(e.g., r = 8 to 20). 

- Trigger thresholds: T rigger (e.g. from 5 to 9). 

- Base of Exponential Extrapolation α > 0 . For simplicity, we 

choose α = 2 . 

- Weights for the Sum Rule: w 1 and w 2 for moves in N 

1 (x )

and N 

2 (x ) : range from 0.1 to 100. 

- Fraction of E E Max 
CL 

used for cutoff: F e.g., from 0.7 to 0.9. 

- Memories: T enure = Large ; Red uced T enure = min ( 16 , n/ 12 ) . 

- Options C hoice 1 , C hoice 2 ∈ { 1 , 2 , 3 } for N 

1 (x ) and N 

2 (x ) , re-

spectively, as identified in Table 2 following. 

The AA algorithm also uses a common stopping criterion shared 

ith many other heuristics: the maximum number of iterations 

axIter which can be represented as a multiple of dimension n 

i.e. MaxIter ∈ { 50 n, . . . , 200 n } ) or the time limit (i.e. a multiple of

he time of uploading an instance of QUBO). For simplicity, we use 

 1 and C 2 to denote C hoice 1 and C hoice 2 , respectively, and Cab to

enote the combined choice C1 = a and C2 = b. We use the IRACE

utomatic tuning tool to determine the best parameter settings for 

he AA algorithm. Table 3 shows the specified range of the param- 

ters “w , w , F , Q, r, C 1 , C 2 , T rigger” for the IRACE experiments,
1 2 

1049
here type “r”, “i” and “c” denote real number, integer and cate- 

ory respectively. For the types “r” and “i”, a pair of numbers rep- 

esents the minimum and maximum values of the parameter set- 

ings, where we set the precision to 0.1. The maximum experiment 

udget is set to 10,0 0 0. 

During the IRACE experiments, we observe that when all 81 

nstances are included to determine the best parameter settings, 

he overall computational results are not as good as when the in- 

tances are divided into two categories, one consisting of 50 in- 

tances with the number of variables ranging from 50 to 10 0 0 and 

he other consisting of 31 instances with no less than 2500 vari- 

bles. Hence, we report the two best parameter settings recom- 

ended from IRACE for each category, which respectively for the 

rst 50 instances and the last 31 instances are: w 1 = 0 . 7 , w 2 = 1 ,

 = 0 . 9 , Q = 24 , r = 12 , C1 = 2 , C2 = 1 , T rigger = 5 and w 1 = 0 . 4 ,

 2 = 0 . 6 , F = 0 . 9 , Q = 17 , r = 11 , C1 = 2 , C2 = 1 , T rigger = 8 . By

eference to these two settings, we observe that C1 always receives 

he value 2 and C2 always receives the value 1, suggesting that the 

referred options for the choice rules are the Simple_Cutoff_Rule 

nd the Weighted_Sum_Rule. As the number of variables is in- 

reased, we note that the value of T r igger should be larger. 

.3. Computational experimentation 

In this section we assess the behavior of the AA algorithm on 

he 61 instances from the OR-Library and the 21 Palubeckis in- 

tances. Algorithms described in this paper were implemented in 

 ++ and compiled using GNU GCC 10.2.0 with -O3 flag on a Linux 

.10.0–862.el7.x86_64 operating system. The computer used for 

he experiments is equipped with a Intel(R) Xeon(R) Gold 6226R 

2.90 GHz) processor. All CPU times reported in seconds were ob- 

ained using the clock function and the CLOCKS_PER_SEC macro. 

elevant options of C hoice 1 , C hoice 2 ∈ { 1 , 2 , 3 } . In total we have

 options ( C 1 , C 2 ) ∈ { 1 , 2 , 3 } 2 where choice C1 is used for can- 

idate list N 

1 and choice C2 for N 

2 . The computational re- 

ults show that only 4 options are relevant where ( C 1 , C 2 ) ∈ 

 ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 3 , 1 ) } on the 81 tested instances. For each 

lass C of instances Small, Medium, Midsize, Large, we report in 

able 3 the computational results obtained by fixing MaxIter = 

0 × n . The quality of the performance of each execution of the 

A algorithm on a given instance I is computed as Gap I = 

x ∗∗
0 

−x ∗
0 

x ∗∗
0 

, 

here x ∗∗
0 

denotes the best known values reported in the literature 

nd x ∗
0 

denotes the best value returned by the AA algorithm. We 

rovide the average values Gap% = 10 2 × Gap a v g where Gap a v g = ∑ 

I∈ C Gap I | C| and the number # Best of instances I where Gap I = 0 (i.e. 

he AA algorithm reaches the best known value). The column Best

ndicates the best result over the 4 options of the AA algorithm. 

From Table 4 , we observe that the options C 11 , C 21 and C31

erform similarly well by obtaining percentage gaps to the best 

nown values of 0.0190%, 0.0147% and 0.0152% and matching these 

alues for 48, 51 and 53 instances, respectively, collectively reach- 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
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Fig. 1. Comparison of 4 options of AA algorithm on all instances sets. 

Table 4 

Comparison of 4 options of AA algorithm. 

C11 C12 C21 C31 Best

Small Gap% 0 0.9519 0 0 0 

20 # Best 20 15 20 20 20 

Medium Gap% 0.0231 0.7453 0.0177 0.0185 0.0108 

20 # Best 11 1 14 12 15 

Midsize Gap% 0.0194 0.5347 0.0087 0.0092 0.0077 

20 # Best 9 0 12 12 13 

Large Gap% 0.0328 0.8155 0.0315 0.0322 0.0214 

21 # Best 8 0 5 9 11 

All Gap% 0.0190 0.7625 0.0147 0.0152 0.0101 

81 # Best 48 16 51 53 59 
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ng 59 best known values out of 81 instances. The option C12 per- 

orms significantly worse than the other 3 options. The option C21 

erforms better than the other 3 options in terms of Gap and # Best

or medium and midsize instances of the QUBO problem, and for 

he small instances, C21 performs as well as C11 and C31 by find- 

ng all the best known values. For the large instances, C31 performs 

etter by obtaining the best known values but C21 obtains the best 

verage gap. The overall observation that setting C2 to 1 always 

eads to better results indicates that the AA algorithm is signifi- 

antly affected by C2 and relatively insensitive to C1 . 

Furthermore, we show in Fig. 1 the comparison results of the 

A algorithm under each option when solving each instance from 

he small, medium, midsize and large instances. The x-axis repre- 

ents each instance and the y-axis denotes the percentage gap to 

he best known value. If the percentage gap of a choice option is 0, 

he y-axis is not displayed. From Fig. 1 , we observe that C12 fails to
1050 
each the best known values for 5 small instances, while the other 

ptions ( C 11 , C 12 , C 31 ) can reach these values for all 20 small in-

tances. For solving each instance from the other sets of instances, 

he percentage gap of C12 is much larger than that of C 11 , C 21 and

 31 . The choice C 12 only finds the best known value for the in-

tance 5 (QUBO250.5) while the options C 11 , C 21 and C 31 obtain

he best known values for most instances. 

A algorithm behavior: time and iteration. Table 5 presents more 

nformation about the AA algorithm behavior. Column T ime gives 

he average CPU time needed to execute the Max Iter = 50 n itera- 

ions over each set of instances under each choice option of the 

A algorithm. Column T ∗ corresponds to the average CPU time to 

each the best solution found by a run on the AA algorithm over 

ach set of instances. Column % I corresponds to 10 2 × Iter ∗
Max Iter 

, where 

ter ∗ denotes the iteration that produced the best value. Looking at 

he option C21 , for instance, the small (resp. medium, midsize and 

arge) class requires on average less than 0.01 (resp. 0.12, 2.71 and 

6.69) seconds for each run. The best solutions are found for small 

resp. medium, midsize and large) instances in less than 0.01 (resp. 

.06, 1.25 and 13.05) seconds. 

The CPU time increases as the dimension n of the QUBO prob- 

em increases. However, there is no general behavior regarding the 

teration or time when the best value is reached. As the value % I =
00 × Iter ∗

Max Iter 
gets closer to 100%, the more frequently the best so- 

ution is found in the later iterations. For example, C11 reaches the 

est objective values at % I = 58% for small instances and % I = 24%

or medium instances. By comparison, C12 reaches the best objec- 
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Table 5 

AA Algorithm Behavior: CPU time in seconds and iterations. 

Instances 

C11 C12 C21 C31 

T ime T ∗ % I T ime T ∗ % I T ime T ∗ % I T ime T ∗ % I

Small 0 0 58% 0 0 80% 0 0 53% 0 0 53% 

Medium 0.12 0.03 24% 0.08 0.08 95% 0.12 0.06 49% 0.12 0.03 33% 

Midsize 2.70 1.17 51% 2.03 1.30 71% 2.71 1.25 53% 2.71 1.31 60% 

Large 16.68 11.34 71% 13.13 11.56 86% 16.69 13.05 76% 16.67 13.99 79% 
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ive values later at % I = 80% for small instances and % I = 95% for

edium instances. 

. Concluding observations and future steps 

The departure from the classical approaches for responding to 

ocal optimality in the strategies of the AA algorithm open a va- 

iety of possibilities for exploration. Exponential Extrapolation EE j 
ompresses Q recent local optima into a single vector. Moreover, 

he recency threshold EE j ≥ T hreshold r is new aspiration criterion 

hat prevents duplication from occurring among the r most recent 

ocal optima. The organization of the pseudocode is designed to 

ake these possibilities visible and easy to pursue. Questions that 

nvite investigation concern the determination of preferred thresh- 

ld parameters and the choice of values other than 2 for the ex- 

onential extrapolation parameter α (particularly in the “mixed α
trategy” discussed in Appendix 1 ). Relevant questions include: 

• What are the tradeoffs between r and T rigger of the recency 

and trigger thresholds? 
• Does an α value less than 2 become more effective as r or 

T rigger becomes larger? 
• How can the ability to start the AA algorithm with any so- 

lution x # be exploited most effectively in a diversification 

strategy? 
• Do answers depend on the state of the search, e.g., on how 

many iterations have elapsed or on how many Ascent and 

Post-Ascent phases have been performed? 
• Are there advantages to joining path relinking with the AA 

algorithm? 

Exploring variants of the AA algorithm that are tailored for 

ifferent classes of problems likewise presents an appealing av- 

nue for future research. The computational results for applying 

his first version of the AA algorithm to quadratic unconstrained 

inary optimization (QUBO) problems with up to 70 0 0 variables 

emonstrate its effectiveness in terms of both solution quality and 

omputational effort. More advanced AA algorithms, including a 

ouble-Pass AA Algorithm and an AA Algorithm with dynamic di- 

ersification strategies, will be examined in a sequel. 
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ppendix 1. Implications of the recency threshold for using 

ifferent α values 

We begin by reviewing the meaning of the more general form 

f recency threshold EE j ( Q , x ) ≥ T hreshold r (Q ) of (4) when α is

ot restricted to α = 2 . Rewriting (3) with α replacing 2 gives 
1051 
E j ( Q , x, α) = 

Q ∑ 

q =1 

αq −1 
(
1 −

∣∣x j − x q 
j 

∣∣). (3a) 

Then the corresponding form the recency threshold of (4) for 

 ∈ { 1 , . . . , Q } becomes 

 hreshold r ( Q , α) = 

r ∑ 

q =1 

αQ−q = 

{
αQ −αQ−r 

α−1 
i f α � = 1 

r i f α = 1 

(3.1a) 

We call the binary vector V j ( Q , r, x, α) = ( x Q 
j 
, x Q−1 

j 
, . . . , x 1 

j 
) ac- 

eptable if it satisfies the recency threshold 

E j ( Q , x, α) ≥ T hreshold r ( Q , α) . (4a) 

First observe that EE j ( Q , x, α) can be expressed as follows 

E j ( Q , x, α) = T hreshold Q ( Q , α) −
Q ∑ 

q =1 

αq −1 
∣∣x j − x q 

j 

∣∣. (3 

′ a) 

Moreover, by calculus, we have 

r ( Q , α) = T hreshold Q ( Q , α) − T hreshold r ( Q , α) 

= 

{
αQ−r −1 
α−1 

i f α � = 1 

Q − r i f α = 1 

ence the recency threshold of ( 4 α) can rewritten as 

Q 
 

 =1 

αq −1 
∣∣x j − x q 

j 

∣∣ ≤ �r ( Q , α) . (4 

∗a) 

Let x # 
j 

denote the current value for x j , the following describes 

he nature of the acceptable vectors depending on the value of α. 

roposition 1. 

(a) For r = Q and any α, the vector V j ( Q , Q, x, α) = 

( x # 
j 
, x # 

j 
, . . . , x # 

j 
) is the single acceptable vector, i.e. ∑ Q 

q =1 
| x j − x 

q 
j 
| = 0 . 

(b) For α = 1 , any binary vector V j ( Q , r, x, 1 ) is an acceptable 

vector, such that 

Q ∑ 

q =1 

∣∣x j − x q 
j 

∣∣ ≤ Q − r (4 

∗∗a) 

(c) For α � = 1 , any vector V j ( Q , r, x, α) such that x # 
j 

= x 
q 
j 

for all q ∈ { Q, . . . , Q − r } is an acceptable vector, i.e. ∑ Q 
q = r | x j − x 

q 
j 
| = 0 . 

(d) For α ≥ 2 , any vector V j ( Q , r, x, α) such that x # 
j 

� = x s 
j 

for

a given s ∈ { Q, . . . , Q − r } is an unacceptable vector, i.e. ∑ Q 
q = r | x j − x 

q 
j 
| ≥ 1 . 

(e) For 0 < α < 2 , there exist vectors V j ( Q , r, x, α) such that

x # 
j 

� = x 
q 
j 

for a given q ∈ { Q, . . . , Q − r } which is an acceptable

vector, i.e. 
∑ Q 

q = r | x j − x 
q 
j 
| ≥ 1 . 

roof. The statements a) and b) is trivial and are deduced directly 

rom ( 4 ∗α). It is easy to see from ( 4 ∗α) that if x # 
j 

= x 
q 
j 

for all

http://dx.doi.org/10.13039/501100001809
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 ∈ { Q, . . . , Q − r } in a vector V j ( Q , x, α) then 

∑ Q 
q =1 

αq −1 | x j − x 
q 
j 
| =

 Q−r 
q =1 

αq −1 | x j − x 
q 
j 
| ≤ ∑ Q−r 

q =1 
αq −1 = 

αQ−r −1 
α−1 . This validates the state- 

ent c). Now assume α ≥ 2 and there exists s ∈ { Q, . . . , Q − r } such 

hat x # 
j 

� = x s 
j 
. Then an acceptable vector V j ( Q , x, α) must satisfy 

Q−s ≤
Q ∑ 

q =1 

αq −1 
∣∣x j − x q 

j 

∣∣ ≤ αQ−r − 1 

α − 1 

This is equivalent to the inequality 

Q−r 
(
1 − αr−s ( α − 1 ) 

)
≥ 1 

hich is impossible for all α ≥ 2 and s ∈ { Q, . . . , Q − r } since 
r−s ( α − 1 ) ≥ 2 . This completes the proof of the statement d). The 

ollowing example will show the validity of statement e). �
Let a αr denote the number of acceptable vectors and a + αr de- 

ote the number of acceptable vectors such that 
∑ Q 

q = r | x j − x 
q 
j 
| ≥

 . Observe that a αr − a + αr = 2 r which corresponds to the num- 

er of acceptable vectors such that 
∑ Q 

q = r | x j − x 
q 
j 
| = 0 . For Q = 7 ,

he following table shows the values of a αr and a + αr where α ∈ 

 2 . 0 , 1 . 9 , . . . , 0 . 2 , 0 . 1 } and r ∈ { 1 , 2 , . . . , Q − 1 } . 
α a α1 a + α1 

a α2 a + α2 
a α3 a + α3 

a α4 a + α4 
a α5 a + α5 

a α6 a + α6 

2.0 64 0 32 0 16 0 8 0 4 0 2 0 

1.9 69 5 34 2 17 1 8 0 4 0 2 0 

1.8 74 10 37 5 18 2 9 1 4 0 2 0 

1.7 79 15 39 7 19 3 9 1 4 0 2 0 

1.6 85 21 42 10 21 5 10 2 5 1 2 0 

1.5 91 27 47 15 22 6 10 2 5 1 2 0 

1.4 100 36 56 24 26 10 12 4 5 1 2 0 

1.3 109 45 69 37 34 18 15 7 6 2 2 0 

1.2 116 52 82 50 44 28 19 11 7 3 2 0 

1.1 121 57 99 67 63 47 29 21 9 5 2 0 

1.0 127 63 120 88 99 83 64 56 29 25 8 6 

0.9 127 63 120 88 101 85 68 60 31 27 8 6 

0.8 127 63 123 91 113 97 91 83 55 51 17 15 

0.7 127 63 124 92 117 101 103 95 74 70 31 29 

0.6 127 63 125 93 120 104 110 102 89 85 48 46 

0.5 127 63 125 93 121 105 113 105 97 93 65 63 

0.4 127 63 125 93 121 105 113 105 97 93 65 63 

0.3 127 63 125 93 121 105 113 105 97 93 65 63 

0.2 127 63 125 93 121 105 113 105 97 93 65 63 

0.1 128 64 127 95 123 107 115 107 99 95 67 65 

The following table gives weights αq for q ∈ { Q − 1 = 6 , . . . , 0 } 
nd α ∈ { 2 . 0 , 1 . 9 , . . . , 0 . 2 , 0 . 1 } . The last two columns correspond to 

r ( Q , α) and T hreshold r ( Q , α) respectively for fixed r = 3 . 

α 6 5 4 3 2 1 0 �3 ( Q , α) T hreshold 3 ( Q , α) 

2 64 32 16 8 4 2 1 15 112 

1.9 47.045881 24.76099 13.032 6.859 3.61 1.9 1 13.369 84.83897 

1.8 34.012224 18.89568 10.498 5.832 3.24 1.8 1 11.872 63.4055 

1.7 24.137569 14.19857 8.3521 4.913 2.89 1.7 1 10.503 46.68824 

1.6 16.777216 10.48576 6.5536 4.096 2.56 1.6 1 9.256 33.81658 

1.5 11.390625 7.59375 5.0625 3.375 2.25 1.5 1 8.125 24.04688 

1.4 7.529536 5.37824 3.8416 2.744 1.96 1.4 1 7.104 16.74938 

1.3 4.826809 3.71293 2.8561 2.197 1.69 1.3 1 6.187 11.39584 

1.2 2.985984 2.48832 2.0736 1.728 1.44 1.2 1 5.368 7.547904 

1.1 1.771561 1.61051 1.4641 1.331 1.21 1.1 1 4.641 4.846171 

1 1 1 1 1 1 1 1 4 3 

0.9 0.531441 0.59049 0.6561 0.729 0.81 0.9 1 3.439 1.778031 

0.8 0.262144 0.32768 0.4096 0.512 0.64 0.8 1 2.952 0.999424 

0.7 0.117649 0.16807 0.2401 0.343 0.49 0.7 1 2.533 0.525819 

0.6 0.046656 0.07776 0.1296 0.216 0.36 0.6 1 2.176 0.254016 

0.5 0.015625 0.03125 0.0625 0.125 0.25 0.5 1 1.875 0.109375 

0.4 0.004096 0.01024 0.0256 0.064 0.16 0.4 1 1.624 0.039936 

0.3 0.0 0 0729 0.00243 0.0081 0.027 0.09 0.3 1 1.417 0.011259 

0.2 6.4E-05 0.0 0 032 0.0016 0.008 0.04 0.2 1 1.248 0.001984 

0.1 1E-06 1E-05 1E-04 1E-03 0.01 0.1 1 1.111 0.0 0 0111 

To describe the next sets of acceptable vectors as a function of 

he value α, we associate to an acceptable vector V j ( Q , r, x, α) the 

ollowing binary vector of dimension Q

˜ 
 j ( Q , r, x, α) = 

(∣∣x # j − x Q 
j 

∣∣, ∣∣x # j − x Q−1 
j 

∣∣, . . . , ∣∣x # j − x 1 j 

∣∣). 

e

1052 
In other terms, each binary component q of ˜ V j ( Q , x ) is 

˜ 
 

q 
j ( Q , r, x, α) = 

{
0 i f x # 

j 
= x q 

j 

1 i f x # 
j 

� = x q 
j 

This establishes a one-one correspondence between vectors 

 j ( Q , r, x, α) and 

˜ V j ( Q , r, x, α) . For a given vector ˜ V j ( Q , r, x, α) , we

btain a vector V j ( Q , r, x, α) such that 

 

q 
j ( Q , r, x, α) = 

{
x # 

j 
i f ˜ V 

q 
j ( Q , r, x, α) = 0 

1 − x # 
j 

i f ˜ V 

q 
j ( Q , r, x, α) = 1 

Hence, we call the binary vector ˜ V j ( Q , r, x, α) acceptable if it sat- 

sfies the recency threshold 

Q 
 

 =1 

αq −1 ˜ V 

q 
j ( Q , r, x, α) ≤

{
αQ−r −1 
α−1 

i f α � = 1 

Q − r i f α = 1 

. (4 

∗∗a) 

Let A j ( Q , r, x, α) be the set of acceptable vectors ˜ V j ( Q , r, x, α) . 

e observe for Q = 7 , and r = 3 that the sets A j ( Q , r, x, α) are

ested, i.e. for 0 < α < α + ε ≤ 2 , we have 

 j ( Q , r, x, α) ⊆ A j ( Q , r, x, α + ε) 

Therefore, let # denote the option of either # = 0 or 1. The fol-

owing table provides the difference set 

 j ( Q , r, x, α) = A j ( Q , r, x, α + ε) − A j ( Q , r, x, α) 

ith ε = 0 . 1 . To reduce the size of the table, we use the following

otation 

 r,k = 

{ 

y ∈ { 0 , 1 } Q : 
Q ∑ 

i = r 
y i = k 

} 

. 

Note that A j ( Q , r, x, 2 ) = E r, 0 , hence A j ( Q , r, x, 1 . 9 ) = 

 0 , 0 , 0 , 0 , 1 , 0 , 0 ) + A j ( Q , r, x, 2 ) . 

α | D j ( Q , r, x, α) | D j ( Q , r, x, α) 

1.9 1 (0,0,0,0,1,0,0) 

1.8 1 (1,0,0,0,1,0,0) 

1.7 1 (0,1,0,0,1,0,0) 

1.6 2 (0,0,#,0,1,0,0) 

1.5 1 (0,0,0,0,0,1,0) 

1.4 4 (0,0,0,1,1,0,0) + (#,1-#,0,0,0,1,0) + (1,0,1,0,1,0,0) 

1.3 8 (#,0,0,0,0,0,1) + (0,0,#,1-#,0,1,0) + (0,1,0,0,0,0,1) + 
(0,1,1,0,1,0,0) + (1,0,0,1,1,0,0) + (1,1,0,0,0,1,0) 

1.2 10 (0,0,0,0,1,#,1-#) + (0,0,#,1-#,0,0,1) + (0,#,1-#,1,1,0,0) + 
(0,1,1,0,0,1,0) + (1,0,#,1-#,0,1,0) + (1,1,0,0,0,0,1) 

1.0 19 (0,0,0,0,0,1,1) + (0,0,0,1,1,#,1-#) + (#,1-#,1,0,0,0,1) + 
( E 7 , 3 ∩ (E 3 , 1 – (0,#,1-#,1,1,0,0))) 

0.9 36 (0,0,0,#,1-#,1,1) + E 7 , 4 – (1,1,1,1,0,0,0) 

0.8 2 (0,#,1-#,1,1,1,1) 

0.7 12 (0,1,1,1,1,1,1) + E 7 , 5 − E 3 , 1 − E 3 , 3 – (1,1,0,1,1,#,1-#) 

0.6 4 (1,0,1,1,1,1,1) + (1,1,0,1,1,#,1-#) + (1,1,1,0,0,1,1) 

0.5 3 (1,1,0,1,1,1,1) + (1,1,1,0,1,#,1-#) 

0.4–2 ∅ 
0.1 2 (1,1,1,1,0,#,1) 

First, note that the only acceptable V j ( Q , r, x, α) vectors for α = 

 have the form 

 j ( Q , r, x, 2 ) = 

(
x # j , x 

# 
j , x 

# 
j , # , # , # , # 

)
This means that x j = x # 

j 
in each of the 3 most recent local 

ptima x Q , x Q−1 and x Q−1 (i.e., x Q 
j 

= x # 
j 
, x Q−1 

j 
= x # 

j 
and x Q−2 

j 
= x # 

j 
),

hile x j = x # 
j 

and x j = 1 − x # 
j 
are both possible in earlier local op-

ima x Q−3 to x 1 . Requiring EE j ( Q , x, α) ≥ T hreshold r ( Q , α) there-

ore compels x j = x # 
j 

in the 3 most recent local optima when 

= 2 . When α < 2 , other V j ( Q , r, x, α) vectors in addition to

 j ( Q , r, x, 2 ) = ( x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) can satisfy the recency thresh- 

ld. Consequently, in some cases x j = x # 
j 

may not be required for 

ach of the 3 most recent local optima. 
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cceptable V j ( Q , r, x, α) vectors for α = 2 , 1 . 7 and 1.5 

For α = 2 : ( x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) 

For α = 1 . 7 : ( x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) , 

 x # 
j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
, x # 

j 
, x # 

j 
, # ) , ( x # 

j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
) , 

3 more options than for α = 2 , accounting for # = 0 or 1) 

For α = 1 . 5 : ( x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) , ( x # 

j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
, x # 

j 
, # , # ) , 

 x # 
j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
, 1 − x # 

j 
, 1 − x # 

j 
, 1 − x # 

j 
) , 

 x # 
j 
, 1 − x # 

j 
, x # 

j 
, x # 

j 
, x # 

j 
, x # 

j 
, x # 

j 
) , (6 more options than for α = 2 , 

ccounting for # = 0 or 1) 

To further see the relevance of these differences, recall 

hat Strategy S = uses the recency threshold EE j ( Q , x, α) ≥
 hreshold r ( Q , α) when the x j = x # 

j 
in the most recent local opti-

um ( x Q 
j 

= x # 
j 

in x Q ), and we want to decide whether to change

 j to give x j = 1 − x # 
j 

(under conditions where this change is eval-

ated to improve the current solution). As previously emphasized, 

hen α = 2 , changing x j to give x j = 1 − x # 
j 

causes x j to take a dif-

erent value than in the 3 most recent local optima, and hence we 

ill not duplicate any of these local optima as long as x j retains

ts new value of 1 − x # 
j 
. 

When α = 1 . 7 above, the solutions ( x # 
j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
, x # 

j 
, x # 

j 
, # ) 

nd ( x # 
j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
, x # 

j 
, 1 − x # 

j 
, x # 

j 
) show that changing x j = x # 

j 
to 

 j = 1 − x # 
j 

would cause the new solution to have a different value

han in the two most recent local optima (where x Q 
j 

= x Q−1 
j 

= x # 
j 
),

ut there are three cases where changing x j = x # 
j 

to x j = 1 − x # 
j 

ould yield the same x j value as in the third most recent local 

ptimum (where x Q−2 
j 

= 1 − x # 
j 

in these solutions). Consequently, 

here would be a possibility that changing x j = x # 
j 

to x j = 1 − x # 
j 

ould permit the third most recent local optimum to be revis- 

ted. This possibility might not be large, considering that most of 

he local optima avoided by α = 1 . 7 are represented by the solu-

ions ( x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) . The risk of revisiting the rth most re- 

ent solution would also clearly have a smaller impact if r is some- 

hat greater than 3. The risk would further be diminished if other 

ariables x j likewise satisfied the recency threshold, since each of 

hese instances would mostly avoid the solutions represented by 

 x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) . 

The case for α = 1 . 5 shows this smaller α value poses ad- 

itional risks beyond α = 1 . 7 of revisiting solutions other than 

 x # 
j 
, x # 

j 
, x # 

j 
, # , # , # , # ) . One of these involves a risk of duplicating 

he second most recent local optimum. (Since this solution is the 

ne indexed x r−1 , the significance of this risk is not very great as r

ecomes larger.) 

In all of these cases, the risk may be additionally reduced as the 

umber of moves away from the most recent local optimum in- 

reases, since this produces a chance that the ascent to a new local 

ptimum would be launched from a point farther away from pre- 

ious local optima. However, greater assurance would be provided 

y the trigger threshold that postpones the Ascent Phase until an 

ncreased number of different x k variables are identified by Strate- 

ies S = and S � = whose V k ( Q , r, x, α) vectors satisfy EE k ( Q , x, α) ≥
 hreshold r ( Q , α) . 

As in the case of α = 2 , it is not necessary to record these

 k ( Q , r, x, α) vectors, since the simple update of E E 1 
j 
(Q ) for all j

an be used with the general form of (5) where α replaces 2; i.e., 

 E 1 j ( Q ) = αQ−1 x Q 
j 

+ E E 1 j ( Q ) /α

nd 

 E base ( Q ) = αQ−1 + E E base ( Q ) /α. 

p
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By these observations it is clear that there may be merit in 

xploring the use of α values other than α = 2 when exponen- 

ial extrapolation is embedded in an adaptive memory strategy. 

or example, the preceding examples show that smaller α val- 

es can avoid revisiting some local optima beyond the first r, and 

his might be additionally exploited by choosing larger r values for 

maller α values. The chief appeal of using an α value less than 

 is that it allows greater latitude in the choice of variables that 

ualify for launching a new Ascent Phase by Strategy S = or S � = . 

 Mixed α Strategy 

When selecting an α value less than 2, it is desirable to use a 

mixed α strategy” where the first term of the sequence 

 E 1 j ( Q ) = 

Q ∑ 

q =1 

αq −1 x q 
j 

eplaces αq −1 x 
q 
j 

by 2 q −1 x 
q 
j 

to give the mixed sequence 

 E 1 j ( Q ) = 

Q ∑ 

q =1 

2 

q −1 x q 
j 

hich similarly gives 

 E base ( Q ) = 

Q ∑ 

q =1 

2 

q −1 

 hreshold r ( Q ) = 

r ∑ 

q =1 

2 

Q−q . 

The reason for making the last coefficient in this sequence 2 Q−1 

nstead of αQ−1 is to assure that satisfying the recency threshold 

ill always imply that a variable cannot duplicate its value in the 

ost recent solution x Q and additionally yield 2 Q−1 > 

∑ Q−1 
q =1 

αq −1 , 

s in the case where α = 2 . This latter outcome allows us to update

 E j ( Q , x ) , E E base (Q ) and T hreshold r by a slight generalization of

he rule for the case where α = 2 , without having to save the value

 

Q 
j 

. We won’t go through the full algebraic derivation but identify 

he key changes in the formulas (5.23) (5.24 and (5.3) for updating 

E j ( Q , x ) and EEbase (Q ) , which give the following formulas. Define

 = 2 Q−1 and B = αQ−1 once a first local optimum is identified, and

efore that, initialize A = B = 0 , just as we initialize E E base (Q ) = 0

nd EE j ( Q , x ) = 0 for all j. Then the new formulas become 

 E j ( Q , x ) = 

{ 

2 Q−1 + 

(
E E j ( Q , x ) + B − A 

)
/α if E E j ( Q , x ) ≤ 2 Q−1 

2 Q−1 + 

(
E E base ( Q ) − E E j ( Q , x ) 

)
/α if E E j ( Q , x ) < 2 Q−1 

These are executed sequentially each time a local optimum is 

ound, followed by setting 

 E base ( Q ) = 2 

Q−1 + ( E E base ( Q ) + B − A ) /α

 = 2 

Q−1 and B = αQ−1 

It is easy to confirm that these formulas reduce to the formulas 

iven in Section 6 when α = 2. 

The modifications of the pseudocode are correspondingly 

traightforward. The Preliminary Initialization adds the following 

wo instructions: 

- Choose a value for α (e.g., 1.5, 1.7 or 2) 

- A = B = 0 . 

Then in the procedure U pdateE E () is replaced by the following 

rocedure: 
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Procedure U pdateMixedEE () { 

For j = 1 to n do 

If EE j ≥ 2 Q−1 then EE j = 2 Q−1 + ( EE j + B − A ) /α

Else E E j = 2 Q−1 + ( E E base − E E j ) /α

Endfor 

A = 2 Q−1 and B = αQ−1 

E E base = 2 Q−1 + 2 −1 E E base 

T hreshold r = min (E E base, 2 Q−r ( 2 r − 1) ) 

} // End U pd ateMixed EE 

It is easy to show the following properties: 

- EE j ( Q , x ) = EEbase (Q ) − ∑ Q 
q =1 

2 q −1 | x j − x 
q 
j 
| 

- EE j ( Q , x ) = x j E E 
1 
j 
(Q ) + ( 1 − x j ) E E 

0 
j 
(Q ) 

- EE j ( Q , x ) = ( 2 x j − 1 ) EE 1 
j 
(Q ) + ( 1 − x j ) E E base (Q ) 

- EE j ( Q , x ) = 

{
EE 1 

j 
(Q ) i f x j = 1 

EEbase (Q ) − EE 1 
j 
(Q ) i f x j = 0 

- E E 1 
j 
(Q ) = ( 2 x j − 1 ) EE j ( Q , x ) + ( 1 − x j ) E E base (Q ) 

- E E 1 
j 
(Q ) = 

{
EE j ( Q , x ) i f x j = 1 

E E base (Q ) − EE j ( Q , x ) i f x j = 0 

- E E 1 
j 
(Q ) = 

{
EE j ( Q , x ) i f x j = 1 

E E base (Q ) − EE j ( Q , x ) i f x j = 0 

ppendix 2. Tradeoff Relationships 

A refers to a current evaluation and B refers to a previous evalu- 

tion, such as the best before now. A 1 and B 1 refer to the first type

f evaluation and A 2 and B 2 refer to the second type of evaluation. 

e assume the second type of evaluation, A 2 and B 2 , is always 

onnegative (as in the case of EE j ( Q , x ) ), but the first type, A 1 and

 1 , can sometimes be negative (as in the case of Ev al j (x ) ). The cur-

ent evaluation will dominate the previous evaluation if A ≥ B ; i.e. 

 1 ≥ B 1 and A 2 ≥ B 2 . 

Assume dominance does not occur. Then we have two possibil- 

ties. 

ase 1. A 1 > B 1 and A 2 < B 2 

ase 2. A 1 < B 1 and A 2 > B 2 

Consider these two cases in the context of conditions satisfied 

y moves in N 

1 (x ) and N 

2 (x ) , which we write as follows: 

ondition 1. A 1 , B 1 ≥ 0 . A 2 , B 2 ≥ 0 

ondition 2. A 1 , B 1 ≤ 0 . A 2 , B 2 ≥ 0 . 

These conditions correspond to conditions defined by reference 

o the sets N 

1 (x ) and N 

2 (x ) of Section 3.2 where A 1 and B 1 refer to

v al j (x ) and A 2 and B 2 refer to EE j ( Q , x ) . However, the conditions

ere are less stringent than those of Section 3.2 , since they do not

nclude reference to Tabu restrictions or the recency threshold or 

he S = status of variables. In addition, moves in N 

1 (x ) would imply

 1 , B 1 > 0 rather than A 1 , B 1 ≥ 0 . We note, however, that we can

ranslate every case for Condition 2 into Condition 1 by identifying 

 lower bound LB for all instances A 1 and B 1 such that A 1 , B 1 ≥ LB ,

nd redefining 

 1 = A 1 − LB ; B 1 = B 1 − LB. 

Without identifying LB , we consider Conditions 1 and 2 sepa- 

ately. For each combination of conditions and cases, we identify 

he max and min values of the A and B components. 

Condition 1 & Case 1: The combination of Condition 1 and 

ase 1 yields A 1 > B 1 ≥ 0 , hence A 1 > 0 , and we seek a nonneg-

tive multiple x so that A 1 x dominates B 1 , as given by A 1 x ≥ B 1 .

e also have B 2 > A 2 ≥ 0 , hence B 2 > 0 , and we seek a nonnega-

ive multiple x so that A dominates B x , as given by A ≥ B x. An
2 2 2 2 
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 that yields dominance in both situations gives A 2 /B 2 ≥ x ≥ B 1 /A 1 

r equivalently 

 1 A 2 /A 1 B 2 ≥ x ≥ B 1 B 2 /A 1 B 2 

Hence dominance and strict dominance are respectively 

chieved by 

 1 A 2 ≥ B 1 B 2 and A 1 A 2 > B 1 B 2 . 

In terms of Ev al j (x ) and EE j ( Q , x ) this corresponds to 

v al j (x ) × EE j ( Q , x ) > EE 
p 
j 
( Q , x ) > Ev al 

p 
j 
(x ) × EE 

p 
j 
( Q , x ) , where the

p” exponent represents “previous”. 

Condition 1 & Case 2: Corresponding analysis gives A 1 ≥ B 1 x 

nd A 2 x ≥ B 2 to yield 

 1 A 2 /A 2 B 1 ≥ x ≥ B 1 B 2 /A 2 B 1 

nd while the denominator is different, the conclusions for dom- 

nance and strict dominance are the same as in Condition 1 & 

ase 1 , i.e. A 1 A 2 ≥ B 1 B 2 and A 1 A 2 > B 1 B 2 . 

Condition 2 & Case 1: We now have 0 ≥ A 1 > B 1 , hence B 1 < 0 ,

nd we seek a nonnegative multiple x so that A 1 dominates B 1 x ,

ence 

 1 ≥ B 1 x or − B 1 x ≥ −A 1 . 

Likewise, we have B 2 > A 2 ≥ 0 , hence B 2 > 0 , and we seek a

onnegative multiple x so that A 2 dominates B 2 x , hence 

 2 ≥ B 2 x. 

Since −B 1 > 0 , the two inequalities become 

 2 /B 2 ≥ x ≥ −A 1 / − B 1 . 

r equivalently 

A 2 B 1 / − B 1 B 2 ≥ x ≥ −A 1 B 2 / − B 1 B 2 

ith positive denominators. Hence dominance and strict domi- 

ance are achieved by 

−A 2 B 1 ≥ −A 1 B 2 ( A 1 B 2 ≥ A 2 B 1 ) and − A 2 B 1 > 

−A 1 B 2 (A 1 B 2 > A 2 B 1 ) 

In terms of Ev al j (x ) and EE j ( Q , x ) this corresponds to 

v al j (x ) × EE 
p 
j 
( Q , x ) > Ev al 

p 
j 
(x ) × EE j ( Q , x ) , where the “p” expo-

ent again represents “previous”. 

Condition 2 & Case 2: Following the line of argument as in 

ondition 2 & Case 1 , we conclude 

A 2 B 1 /A 1 A 2 ≥ x ≥ −A 1 B 2 /A 1 A 2 

hich yields the same dominance conclusions as in Condition 2 & 

ase 1 . 

We remark that the conclusions in all these cases can also be 

eached by a more involved derivation using a different definition 

f dominance, where A dominates B if 

f ( A 1 , B 1 ) ≥ f ( A 2 , B 2 ) 

here for i = 1 , 2 

f ( A i , B i ) = ( M ax ( A i , B i ) − M in ( A i , B i ) ) / ( | A i | + | B i | ) . 

roposition 2. Let x ′ the solution obtained from x by flipping the 

ariable x k , i.e. x ′ = x + ( 1 − 2 x k ) e 
k . Then the update of the evalua-

ion Ev al j ( x 
′ ) can be computed using the rule 

 v al j 
(
x ′ 
)

= 

⎧ ⎨ 

⎩ 

−E v al j ( x ) i f j = k 

E v al j ( x ) + a 
′ 
jk 

i f j � = k and x j = x k 

E v al j ( x ) − a 
′ 
jk 

i f j � = k and x j � = x k 
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ustification. In case the input matrix A is a lower triangular ma- 

rix, let A 

′ = ( a ′ 
i j 
) denote its associated symmetric matrix defined 

s follows 

 

′ 
i j = 

{ 

a i j i f i < j 
a ii i f i = j 
a ji i f i > j 

Consequently, we have A 

′ 
j 
x = ( A 

j + A j ) x − a 
′ 
j j 

x j , hence the ini-

ial evaluation Ev al j (x ) can be calculated in linear time using the

ormula Ev al j (x ) = ( 1 − 2 x j ) A 

′ 
j 
x + ( 1 − x j ) a 

′ 
j j 

. Hence, we have 

v al j 
(
x ′ 
)

= 

(
1 − 2 x 

′ 
j 

)
A 

′ 
j x 

′ + 

(
1 − x 

′ 
j 

)
a 

′ 
j j 

v al j 
(
x ′ 
)

= 

(
1 − 2 x ′ j 

)
A 

′ 
j 

(
x + ( 1 − 2 x k ) e 

k 
)

+ 

(
1 − x ′ j 

)
a ′ j j 

v al j 
(
x ′ 
)

= 

(
1 − 2 x ′ j 

)
A 

′ 
j x + 

(
1 − 2 x ′ j 

)
A 

′ 
j ( 1 − 2 x k ) e 

k + 

(
1 − x ′ j 

)
a ′ j j 

v al j 
(
x ′ 
)

= 

(
1 − 2 x ′ j 

)
A 

′ 
j x + 

(
1 − 2 x ′ j 

)
( 1 − 2 x k ) a 

′ 
jk + 

(
1 − x ′ j 

)
a ′ j j 

Two cases are considered: 

Case 1: j � = k → x ′ 
j 
= x j 

v al j 
(
x ′ 
)

= 

(
1 − 2 x j 

)
A 

′ 
j x + 

(
1 − 2 x j 

)
( 1 − 2 x k ) a 

′ 
jk + 

(
1 − x j 

)
a 

′ 
j j 

 v al j 
(
x ′ 
)

= E v al j 
(
x ′ 
)

+ 

(
1 − 2 x j 

)
( 1 − 2 x k ) a 

′ 
jk 

Case 2: j = k → x ′ 
k 

= 1 − x k 

v al k 
(
x ′ 
)

= ( 2 x k − 1 ) A 

′ 
k x + ( 2 x k − 1 ) ( 1 − 2 x k ) a 

′ 
kk + x k a 

′ 
kk 
1055 
v al k 
(
x ′ 
)

= ( 2 x k − 1 ) A 

′ 
k x + ( x k − 1 ) a ′ kk 

Ev al k ( x 
′ ) = −Ev al k (x ) . �
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