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ABSTRACT

A variety of strategies have been proposed for overcoming local optimality in metaheuristic search. This
paper examines characteristics of moves that can be exploited to make good decisions about steps that
lead away from a local optimum and then lead toward a new local optimum. We introduce strategies to
identify and take advantage of useful features of solution history with an adaptive memory metaheuris-
tic, to provide rules for selecting moves that offer promise for discovering improved local optima. Our
approach uses a new type of adaptive memory based on a construction called exponential extrapolation.
The memory operates by means of threshold inequalities that ensure selected moves will not lead to
a specified number of most recently encountered local optima. Associated thresholds are embodied in
choice rule strategies that further exploit the exponential extrapolation concept and open a variety of
research possibilities for exploration. The considerations treated in this study are illustrated in an imple-
mentation to solve the Quadratic Unconstrained Binary Optimization (QUBO) problem. We show that the
AA algorithm obtains an average objective gap of 0.0315% to the best known values for the 21 largest
Palubeckis instances. This solution quality is considered to be quite attractive because less than 20 s on
average are taken by AA, which is 1 to 2 orders of magnitude less than the time required by most algo-

rithms reporting the best known results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The Tabu search (TS) metaheuristic (Glover (1986)) incorpo-
rates adaptive memory and responsive exploration to guide a local
search procedure to explore the solution space beyond local opti-
mality. The memory approaches underlying TS are usually based
on recency and frequency memories, while the responsive explo-
ration imposes restraints and inducements such as Tabu condi-
tions, aspiration levels, intensification and diversification processes.
The principal goal of the adaptive memory framework of TS is to
create a balance between search intensification and diversification.
Intensification strategies encourage move combinations and solu-
tion features historically found good. Diversification strategies in-
corporate new attributes and attribute combinations that were not
included within solutions generated in the past (see the book by
Glover and Laguna (1997) for a detailed examination of TS). Sev-
eral variants of TS have been proposed, including the Tabu cycle
method and conditional probability methods (Glover (1989)), as
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well as the Tabu thresholding methods (Glover (1995)), each be-
ing successfully applied to solve hard combinatorial optimization
problems (see for example Gendreau and Potvin (2005)), Qiu et
al. (2018), Guemri et al. (2019), Servranckx and Vanhoucke (2019),
Karamichailidou et al. (2021)).

Recently, Glover (2020) has proposed a new Alternating As-
cent (AA) algorithm for exploiting local optimality in metaheuristic
search for zero-one programming problems. The present paper fo-
cuses on the simplest version of the TS metaheuristic exploiting
local optimality in binary optimization, without including intensi-
fication and diversification phases, and similarly disregarding path
relinking and multi pass strategies.

In outline, the AA Algorithm alternates between an Ascent
Phase and a Post-Ascent Phase using thresholds to identify vari-
ables to change their values and to transition from one phase to
another. A high-level overview of the AA Algorithm (that removes
essential features subsequently described) is as follows:
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Overview of an Alternating Ascent (AA) Algorithm
While an outer loop termination criterion is not met do
Choose a starting solution
While an inner loop termination criterion is not met do
Execute the following two phases:
Ascent Phase: go to a local optimum
(which may also be the starting solution on the first pass)
Post Ascent Phase: move away from the local optimum and
away from some number of other previous local optima.
Endwhile
Endwhile

In outline, the AA Algorithm alternates between an Ascent
Phase and a Post-Ascent Phase using thresholds to identify vari-
ables to change their values and to transition from one phase to
another. The thresholds embody a form of adaptive memory based
on a function called exponential extrapolation, which makes it pos-
sible to track the number of times that variables receive their cur-
rent values in any selected number Q of most recent local optima
represented by the set Q. An exponential extrapolation measure
EE;(Q,x) is associated with a variable x; that gives rise to a re-
cency threshold of the form EE;(Q,x) > Threshold,(Q), which as-
sures that changing the current value for x; will not duplicate its
value in the r most recent local optima. By reference to a stan-
dard evaluation Evalj(x) for x; that identifies the change in the
objective function when x; changes its value, and taking advan-
tage of a rudimentary tabu search restriction and aspiration crite-
rion, this in turn gives rise to two status conditions denoted by
§$= and S/=, where an S= status identifies a variable that should
change the value it received in the most recent local optimum and
an S/= status identifies a variable that should retain its value that
differs from its value received in the most recent local optimum.
These conditions are additionally exploited using counters nS= and
nS/= of the number of variables that have an S/= and S= status,
embodied in a trigger threshold of the form nS= + nS/=> Trigger.
The trigger threshold determines when a new Ascent Phase should
be launched by removing all Tabu restrictions except the one that
caused the threshold to be satisfied. The resulting ascent first
reaches a conditional local optimum where the last Tabu restric-
tion remains in force, and where it is assured that the solution
cannot duplicate any of the r most recent local optima. Then this
last restriction is also removed to complete the ascent to a true
local optimum, and to begin a new Post-Ascent Phase.

Once no more improving moves remain (for the non-Tabu vari-
ables) in an Ascent Phase, the resulting ascent reaches a condi-
tional local optimum (subject to keeping x; at its new value). At
this point, we may remove the tabu restriction on x; as well, to
continue to a solution that is a true local optimum which ends
the Ascent Phase. Given that the conditional local optimum does
not duplicate the previous local optimum, and that the choice of
moves leading to this conditional local optimum is influenced by
the value assigned to x,, there is a strong likelihood that the new
local optimum will also differ from the previous local optimum.

To exploit this observation, we have to decide of whether to im-
mediately use the change from Eval;(x) < 0 to Eval;(x) > 0O to trig-
ger an ascent to a conditional local optimum, or whether to wait
until more than one variable x; selected to be x, has undergone
this change before launching such an ascent.

This study introduces a general procedure for launching a new
ascent based on exponential extrapolation to exploit local opti-
mality without recording the local optima. Exponential extrapola-
tion provides a significant saving of both memory and computation
over consulting the actual values of variables in previous local op-
tima. Numerical examples are given to illustrate the use of expo-
nential extrapolation and the key processes involved in exploiting
local optimality via the recency and trigger thresholds.

1038

European Journal of Operational Research 308 (2023) 1037-1055
2. Background
2.1. Binary optimization problem and move evaluation Eval;(x)

A binary optimization problem can be expressed as follows:
X0 = f(%)
P {

xeXc{0,1}"
where f is a linear or no-linear function on the binary vector x
characterized by its components x; for i e N={1,...,n} and the
feasible set X reprensents the imposed constraints on x.
Given a current binary solution x, a neighbor solution x’ is ob-

tained by flipping the value of a single variable from x; to xj. =

1—x;. Hence, we have x' = x + (1 — 2x;)e/, where e/ is the basic
unit vector with all components are zero except the jth compo-
nent equal to one, and the reverse (complementary) move of set-
ting x; = 1 consists of setting x; = 0, and vice versa. A neighbor so-
lution x" is well determined by only the index j € N called the at-
tribute of the move where change occurs while other variables are
held constant. Let N(x) denote the set of feasible moves which cor-
responds to N in the special case for the Quadratic Unconstrained
Binary Optimization (QUBO) problem, whose formulation is intro-
duced in Section 7, i.e., N(x) defines the neighborhood set of solu-
tion x.

We will refer to the use of an evaluation function Eval;(x) for
a binary variable x;, j e N={1.....n}, to identify the change in
the objective function xj at the current solution x produced by re-
versing the assignment x; = xj‘, where xjf is the current value for
xj. More precisely, the evaluation Eval;(x) for flipping variable x;
of x that identifies the change in the objective function when x;
changes its value, i.e.

Eval;(x) =Xy —xo = f(X') = f(x)

Since the objective is to maximize Xg, the sign of Eval;(x)
offers a partition of N(x) (=N for QUBO) into N*t(x) =
{jeN:Evalj(x) > 0}, N~ (x) ={jeN:Evalj(x) <0} and NO(x) =
{j € N:Eval;j(x) =0} to differentiate the set of improving moves,
worsening (strictly non-improving) moves and simple non-
improving moves respectively. In the following, we will refer only
to N*(x) and N~ (x).

Note that the descent method exploits this partition by choos-
ing at each iteration a move from N*(x) or N*(x) NN®(x) un-
til Nt (x) = ¢ or N*(x) N N°(x) = ¢. Hence, the final solution of a
descent method is a local optimum x such all move evaluations
Evalj(x) are non-positive, yielding Eval;(x) <0 for all variables
xj, i.e. N*(x) NNO(x) = @. For example, the steepest descent local
search method selects at each iteration a variable x; such that

maximize
s.t.

k = argmax{Eval;(x) : j € N*(x) N N°(x)}.

2.2. Adaptive memory Tabu search approach

An early experiment with metaheuristic search (Laguna and
Glover (1993)) for a class of sequencing problems disclosed that
improving moves were more likely to select attributes of optimal
solutions than non-improving moves. This was notably reflected in
the fact that moves made when approaching a local optimum were
more likely to create solutions that shared elements in common
with optimal solutions than moves made when retreating from a
local optimum. We are motivated by this study to change the rules
customarily used by metaheuristic procedures to provide new ap-
proaches for responding to local optimality. Our focus is on us-
ing adaptive memory strategies that incorporate special threshold
inequalities to guide the search. As a starting point, consider a
method that begins from a local optimum and employs rules of
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the following types, which are commonly employed in a rudimen-
tary form of an adaptive memory Tabu search approach.

Tabu Rule: When reaching a local optimum and selecting
moves that lead away from this optimum, employ restrictions that
temporarily do not allow moves to be reversed and hence that
would potentially return to the local optimum.

Aspiration Rule: Identify conditions for modifying Tabu Rule to
permit certain moves to be made that violate the restrictions and
allow previous moves to be reversed.

We observe that a simple form of Tabu search is often based
on a version of these two rules that has two features. We describe
these for the purpose of identifying a different way to apply Tabu
and Aspiration Rules.

Tabu Feature: A tenure value is used to prevent a move from
being reversed for Tenure iterations, thereby making the reverse
move tabu by reference to the current iteration Iter, by setting

Tabulter (ReverseMove) = Iter + Tenure

where Tabulter is an array representing recency memory. In the
case of binary optimization, the reverse move of x; =1 is x; =0,
and vice versa. Then Tabulter(ReverseMove) can be represented
simply by Tabulter(j), with the interpretation that

Iter < Tabulter(j)

means X; is tabu to change its current value x; = xjf to the reverse
(complementary) value x; =1 — xjf.

Aspiration Feature: The rule for choosing moves selects a high-
est evaluation move that is not Tabu or that satisfies an aspiration
criterion. Since all moves at local optimality cause the objective
function to deteriorate or remain unchanged, a highest evaluation
move is one that causes the objective function to deteriorate the
least. The aspiration criterion most commonly employed considers
a Reverse Move to be admissible to be chosen if it leads to a solu-
tion better than the best one found so far.

A Tabu search approach that relies more fully on adaptive mem-
ory refines the partition of the neighborhood set N(x) by involv-
ing the set NT(x) = {j € N : Tabulter(j) < Iter} which corresponds
to the set of non-Tabu moves and the set NA(x) ={j e N:xy+
Eval;(x) > x§} where x} is the best objective function found so far,
to the set of the moves satisfying the aspiration criterion.

Several variants of Tabu Search algorithm have been pro-
posed in the literature exploiting partitions involving the sets
N=(x),NO(x), N*(x), NT(x) and NA(x). For example, the simplest
form of tabu search without intensification or diversification, re-
sults where the default aspiration is applied when NT(x) = ¢ to
choose the least tabu move, i.e. k € Argmin{Tabulter(j) : j € N(x)}.
Then the search selects at each iteration a variable x; according to
the following rule

If NA(x) # ¢ then select k € Argmax{Eval;(x) : j e NA(x)}

Else If N7 (x) # ¢ then k € Argmax{Eval;(x) : j € NT(x)}
Else k € Argmin{Tabulter(j) : j € NT ®)}

EndIf

This simplest deterministic Tabu search algorithms based on
the recency or frequency memories are proved to converge to an
optimal solution in finite number of iterations (see Hanafi, 2001,
Glover & Hanafi, 2002). Faigle and Kern (1992) proposed some con-
vergence results for Probabilistic Tabu Search.

The target analysis experiment described in Laguna and Glover
(1993), shows that something about the combination of Tabu Fea-
ture and Aspiration Feature when moving away from a local opti-
mum tends to produce moves whose attributes do not correspond
to those of an optimal solution. Under the assumption that this
finding is applicable to other settings, this motivates an examina-
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tion of versions of Tabu and Aspiration Rules that modify Tabu and
Aspiration Features to produce a different behavior.

Alternative forms of Tabu and aspiration rules. As a starting point
for analyzing conditions that hold at a local optimum x, all move
evaluations are non-positive when a local optimum is reached, i.e.,
Eval;j(x) < O for all variables x;. In the situation where Eval;(x) <

0, suppose we assign a tabu tenure to a move that changes x; = xj‘

tox;j=1- xjﬁ‘ as is customarily done to prevent the move from be-
ing immediately reversed. Consider the process that takes place at
this point, as the search begins moving away from a local opti-
mum. To begin, all moves selected will consist of reversing val-
ues received by variables x; :xj?, in the local optimum to pro-
duce new assignments x; =1 —xjﬁ*, and given Eval;j(x) <0, these
will cause xy to decrease or remain unchanged. After reversing an
assignment for Evalj(x) <0, the new evaluation Eval;(x) will be
the negative of its previous value, and hence if Eval;(x) began neg-
ative it will now be positive. However, the improving move that
returns x; to its previous value will be prevented because of the
tabu tenure assigned to it. We will build on these simple obser-
vations to uncover aspects of adaptive memory choices that have
previously been overlooked.

Overriding Tabu restrictions. As previously intimated, a key ques-
tion to be addressed in developing an effective algorithm is how
to usefully override the customary Tabu restriction by freeing cer-
tain variables so they are no longer Tabu. Accompanying this ques-
tion is the associated question of identifying the circumstances un-
der which this override should be done. An answer to these ques-
tions is suggested by considering the situation where the evalu-
ation for a variable x; changes from Evalj(x) <0 to Eval;(x) > 0
when moving away from a local optimum, without having assigned
a new value to xo. We are prompted to ask whether there some-
thing noteworthy about this change from a non-improving evalu-
ation to an improving evaluation during a sequence of iterations
after reaching a local optimum.

If the current value x*}* of x; is also the value x, received at the
local optimum (when Eval;(x) < 0), and if now Eval;(x) > 0, then
this has the significant feature that the profitable (i.e., improving)
move X; = 1 —xj‘ gives x; a different value than it had at the lo-
cal optimum. If x; is selected as the variable x, that changes its
value on the current iteration, then by making x, tabu to change
its value, the search cannot return to the local optimum while x;
remains tabu. Consequently, we are motivated to consider the re-
sult of freeing the Tabu restrictions on all variables x; except for
X, to launch an ascent in which the procedure cannot return to
the previous local optimum. We call the iterations that occur upon
launching such an ascent until reaching a new local optimum an
Ascent Phase.

Once no more improving moves remain (for the non-Tabu vari-
ables) in an Ascent Phase, the resulting ascent reaches a condi-
tional local optimum (subject to keeping x, at its new value). At
this point, we may remove the tabu restriction on x; as well, to
continue to a solution that is a true local optimum which ends
the Ascent Phase. Given that the conditional local optimum does
not duplicate the previous local optimum, and that the choice of
moves leading to this conditional local optimum is influenced by
the value assigned to x, there is a strong likelihood that the new
local optimum will also differ from the previous local optimum.

To exploit this observation, we are presented with the decision
of whether to immediately use the change from Ewval;(x) <0 to
Eval;(x) > 0 to trigger an ascent to a conditional local optimum,
or whether to wait until more than one variable x; selected to be
X, has undergone this change before launching such an ascent. We
examine this issue in a broader context in the next section.
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3. A more general procedure for launching a new ascent

Instead of only considering the most recent local optimum, the
issue of identifying a variable x; to change its value in this lo-
cal optimum can be generalized to refer to some number Q of
the most recent local optima. We describe a way of doing this
that makes it possible to maintain appropriate updated informa-
tion without recording the local optima. This approach, called ex-
ponential extrapolation, provides a significant saving of both mem-
ory and computation over consulting the actual values of variables
in previous local optima.

3.1. Exponential extrapolation EE;(Q, X)

The term “exponential extrapolation” is motivated by the term
“exponential smoothing,” which refers to a procedure that choses
a value A between 0 and 1 and uses the simple formula

Yar1 = AYq+ (1 = A)yq

to determine the new value of y,,1 based on the two preceding
values yq and yq_q. The procedure can start from chosen values yq
for ¢ = 0 and 1. (More precisely, yq,1 and y,_; refer to forecast val-
ues and yq refers to an observed value. We do not require this dis-
tinction here.) Exponential extrapolation instead uses the formula,
expressed in terms of the weights wq

(1)

where we choose wy = 1. For simplicity, the parameters «, 8 and
y may be restricted to o between 1 and 2, and 8 and y between 0
and 3. Even simpler, we will chiefly focus on the special case o = 2
and B =y =0. It is possible to establish a connection between
exponential extrapolation and exponential smoothing whereby (1)
can be seen as a generalization of exponential smoothing, but we
will not pursue this here. Exponential smoothing has been applied
with Tabu search for solving fixed charge network problems in Barr
et al. (2021), using a different type of design than we use for ex-
ploiting exponential extrapolation, but we note that exponential
extrapolation affords an alternative to exponential smoothing in
the fixed charge setting too.

For the special case of (1) where o >0 and 8 =y =0 we are
particularly interested in the situation where = 2, to give

Wgi1 =aWg+ Bq+y

Wgy1 = 2wy =29

(2)

In general, the formula wy,; = awq can be expressed as wg 1 =
«of for g > 0.

Denote the set of Q most recent local optima by Q=
{x4: q=1,...,Q}, with x0=(xI,...,x]) €{0,1}". Let xe{0,1}"
denotes a binary solution, in the following we refer to exponen-
tial extrapolation by the acronym EE and we are interested in
weighted EE(Q, x) values for each variable x;:

Q .
EE}(Q) = Y 297'x] if xj=1
EjQo=1 G (3)
EE9(Q) :CEIzq* (1-x1) ifx;=0

The EE}. (Q) value weights the values x;? that equal 1 in the vec-
tors x4, g=1 to Q, and EE?(Q) which weights the values x;? that
equal 0 in these vectors. By defining

Q
EEbase(Q) = 2971 =22 -1 (3.1)
q=1
We have a useful equation
EEbase(Q) = EE?(Q) + EE} (Q) (3.2)
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For each g =2 to Q, we have wy = Y0 1wy +1= 37121+
1=29"1. Hence wy is greater than Zg;} wy, and as a special
case wq > ZqQ;]] wq. Consequently, the value EE} (Q) will be larger
when ij =1 than it will be when x¢ = 0, regardless of the val-

ues wqy for g < Q. Another way of expressing this is that (2) cre-
ates a lexicographic ordering of the binary value assignments to
the variables x;’., where the value EE}. (Q) is larger as the vector
Vi(Q) = (XJQJCJQ_1 .....
poses, this means that by using the EE value EE} (Q), the most re-
cent local optimum recorded x¢ will dominate any combination of
all other local optima, and the second most recent local optimum
x2-1 will dominate any combination of all local optima preceding

it, and so forth. A useful implication is that if we require that we
only select a variable x; to change its value from xjﬁ* to 1—)(3?b if

x}) increases lexicographically. For our pur-

Xj= xjﬁ* in the r most recent local optima by stipulating

EE;(Q, x) > Threshold,(Q)

where the threshold value sums the r largest weights given by

(4)

.
Threshold,(Q) = ) 2979 =2%7"(2" - 1)
q=1
We call the inequality (4) the recency threshold. We treat re-
cency threshold as embodying the two inequalities

EE} (Q) = Threshold, (Q)

(4.0)

(41)

EE?(Q) = Threshold, (Q) (4.2)

where (4.1) applies to x; = 1 and requires that x; cannot be chosen
to change from 1 to 0 unless x; also equals 1 in each of the r most
recent local optima, and (4.2) applies to x; = 0 and requires that x;
cannot be chosen to change from 0 to 1 unless x; also equals 0 in
each of the r most recent local optima.

In short, by requiring the recency threshold (4) to be satisfied
(for any choice of the index j, and for a specified value x; :xf),
we assure that we will not risk duplicating any of the r most re-
cent local optima by changing x; to equal 1 - xj?*. The utility of this
requirement is that we do not need to record the most recent lo-
cal optima to verify - or compel - that x; =1 or 0 in any speci-
fied number r of these most recent solutions. All that is necessary
is to specify that EE}. (Q) satisfy (4.1) or that EE?(Q) satisfy (4.2),

according to whether xj‘ =1 or 0. More precisely, we have the fol-
lowing proposition.

Proposition 1. Let x be a binary solution where for any index j € N,
a specified value is assigned x; = xjf, the recency threshold inequality

EE;(Q, x) > Threshold,(Q)

implies that xjﬁ* = xj? in any solution x4 forq=Q —1,...,Q — 1+
1.

Justification. See Appendix 1. Implications of the recency thresh-
old for using different @ values.

Moreover, this approach can grow Q to a selected value Qmgx,
and then perform a diversification step such as the focal distance
diversification strategy of Glover and Lu (2020) to start over again
with Q = 1. By using more than one set of values for the parame-
ters o, B and y (or even just changing the value of the parameter
« as in the strategies with 8 = y = 0), these parameters can be ap-
plied for different Qmqx, values, so that when one set is renewed by
starting over another set will continue to apply to earlier local op-
tima until its Qmqx, value is reached. This “staggered” approach can
then permit a parameter set that is renewed before another one to
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continue in operation when the second is renewed, and so on, so
that there is always a connection to local optima from a relatively
long period ago. In the case where 8 =y =0, which permits the
inductive update, the use of real arithmetic allows the “effective”
value of Qmqax, to be quite large while keeping Q constant.

Complementary recency threshold. Let Q = {X: x € Q}, it is easy to
check the useful properties:

(41

EE;(Q,X) = EEbase(Q) — EE;(Q, x)
EEbase(Q) = EEbase(Q)

- EE%(Q) = EE} (@)

EE(Q) = EE%(D)

EE]-((@,X) =EE;(Q,%)

Moreover, for any binary vector x and x/, we have

EE;(Q.X') = (1 |x} — x;|)EE;(Q. x) + |X} — X;|EE;(Q. %) (43)
Or equivalently
EE;(Q, x if X, =x;
EEj(Q’ x/) - {EEng 2; = EEbase(Q) — EE;(Q, x) i; xi:l—jxj
(4'.3)
Consequently, the recency threshold (4) is equivalent to
EE;(Q,X) < EEbase(Q) — Threshold,(Q) 4)

Finally, we note that Threshold,(Q) is independent of the value
assigned to x; and define its complement by

Threshold,(Q) = EEbase(Q) — Threshold, (Q)

which similarly yields Threshold;(Q) = EEbase(Q) — Threshold;

From these definitions it may be verified that the recency
threshold EE;(Q, x) > Threshold,;(Q) of (4) gives rise to the com-
plementary recency threshold (in the opposite direction)

EE;(Q. %) < Threshold;(Q) (4)

The significance of (4) is that whenever the recency threshold
EE;(Q.x) = Threshold,(Q) of (4) holds and x; is chosen to change
its value from xji* to 1 —x?, after the assignment, for the new value

of x;, we will have

EE;(Q, x) < Threshold,(Q) = EEbase(Q) — Threshold,(Q) (4%)

From the  definitions  EEbase(Q) = ZqQ=1 20-1=2Q _1
and  Threshold; (Q) = Y ¢_;2¢°7=227"(2"—1), the quantity
Threshold; (Q) can also be written

Q-r
Threshold;(Q) =) 2971 =227 —1

q=1
which is evidently much smaller than Threshold, (Q) (since 22~ >
Threshold,; (Q) by the relationship 227 = ZqQ;{ 20-1 4+ 1). Hence
when the recency threshold is satisfied for x; =x?, (4*) implies
the threshold cannot be satisfied after changing x; to 1 —xj?. The

converse is also true, if EE;(Q,x) < Threshold,(Q) is satisfied for
Xj =xjﬁ*, then the recency threshold will be satisfied when x; is

changed to equal 1 — xj.‘.

The AA approach refines the partition of the neigh-
borhood set N(x) by introducing the set NE(x)=
{i eN :EE;(Q,x) = Threshold,(Q)} that  identifies moves
satisfying the recency threshold inequality and the set

NE(x)={jeN: EE;(Q,x) < Ebase(Q) — Threshold;(Q)} that iden-
tifies reverse moves satisfying the recency threshold inequality.
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An inductive updating formula. Now we show how to conveniently
update the value EE;(Q, x) after adding a new local optimum x2+1
to Q or adding the new x2*+! while simultaneously dropping the
first local optimum x! from Q to maintains the number of local
optima Q constant. We write EE;(Q, x) with the most recent value
Q first:

Q
EE;(@.x) =y 2971(1 - |x; —x9|)
q=1

Adding a new local optimum x2*1 at the end of the current set
Q without dropping any solution from Q is achieved by

Q+1
EEj(@-i—xQ”,x) => 20711 - |xj —x‘}|)
q=1

EE;(Q+ %21 %) = EE;(Q.%) +22(1 - [x; - x2*1))

Dropping the first local optimum x! from the current set Q
without dropping any solution from Q is achieved by

Q
EEj(@—x".x) =) "212(1 - |xj—x;?|)
q=2

EE;(Q —x'x) = 27 EE;(Q.%) — 27" (1 - | — x1)

Adding the new x2+! while simultaneously dropping the first
local optimum x! from Q to maintains the number of local optima
Q constant, is achieved by

EE;(Q —x' +x%+1x) = 27EE;(Q.2) + 2071 (1 — [x; — 21

—271(1 - |x;—x}|) (5)

If we use integer arithmetic that rounds fractional values less
than 1 down to 0, the update Eq. (5) becomes

EEj(Q—x"+x%1x) = 27'EE;(@. %) +2%7' (1 = |x; —x{*])
(5.1)

If real (floating point) arithmetic is used instead of integer
arithmetic, the declining influence of earlier x; values will pro-
ceed in the same manner as if Q had been chosen to be larger,
or equivalently as if we allowed g to become negative, with each
weight wy_1 =2"1wg. By the relationship wg =29-1 this corre-
sponds to the weights 2-1, 22, 23, ... and so forth. The values
q=0,-1,-2,... need not be created or accessed, of course, since
they are merely a notational convention to convey how using real
arithmetic will have the same effect as permitting Q to be larger.
This can be relevant when using « values different than 2, as dis-
cussed in Appendix 1.

The inductive update conveniently permits us to start with Q
at its maximum desired value and use the formula (5.1) at each
iteration of generating a new local optimum to update EE;(Q, x).
Until Q local optima have been generated, EE;(Q, x) will not refer
to terms that go all the way back to g = 1. For example, after gen-
erating s local optima for s < Q, EE;(Q, x) determined by (5.1) will
effectively yield EE;(Q.x) = X229 1(1 - |x; -xI.

Hence, if we want to apply the recency threshold to assure
Xj= x}* in the r most recent local optima, we must remember that
r cannot exceed s. Fortunately, the inductive update handles this
automatically.

First, we observe that when the first local optimum is obtained,
both EE;(Q, x) and EEbase(Q) can be determined by setting

EEbase(Q) = 2¢! (5.2a)

lton (5.2b)

EE;(Q %) =227 (1 - |x; —x}|) for j=1
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The update formula (5.1) can be simplified if the evaluation
EE;(Q, x) refers to the last local optimum xQ. Let

Q
EE;(@.x°) = 3277 (1 - | =),
q=1
From (5.1) we have
EEj(Q — x! +x&1 x1) = 271EE;(Q, x¢*1) 427!
While from (4.3) we have

EE;(Q,x?)

EE;(Q,x¢t1) =] "\

J( ) {EE](Q, XQ)
Hence

EEJ (Q _ xl + XQ+1 , XQ+1)
|2t 2 EE (@ x0)
20-1 4+ 2-1EE;(Q.xQ)
This update can be expressed by the inductive formula

EEj(Q—x' + %1 x%1) = 201 4 271EE;(Q. x2)

if X' =¥ (5.20)
i Q1 _ Q
ifx;7 =1-x;7 (5.2d)

if,Q+1 _ 40
if xi" =x;

froQ+1 1 ,Q
lij =1-x;

Due to the complementary relationship expressed in (4.1) and
if the new local optimum x2t! corresponds to the current solution
x, the update (5) can then be expressed by

EEj(Q —x! +xQ“,x)
B {2‘2—1 +271EE;(Q.x)
201 4 21(EEbase(Q) — EEj(Q.x?))  if x¥ =1—x}
(5.2)
We can perform this update without having saved the value x?
since each time a variable x; changes its current value xﬁ by set-

ting x, =1— x}f during the iterations between obtaining successive
local optima, the value EE,(Q, x?) is updated by setting

EE(Q. x?) = EEbase(Q) — EE;(Q, x%) (5.3)

which is essential to assure that the update Eq. (5.2) is equivalent
to

EE;(Q) =2%" +27"EE;(Q)

Following this update, EEbase(Q) itself can also be updated by
the inductive formula

if x# — xQ
if xj =x;

EEbase(Q) = 2¢-! + 27'EEbase(Q) (5.4)
By consequence, the initialization step (5.2b) becomes
EE;(Q) =2%"forj=1ton (5.5)

Finally, rather than wait until obtaining a first local optimum as
a basis for determining the first EEbase(Q) and EE;(Q) values by
(5.1), we can perform the following simple initialization to precede
the first iteration of the algorithm

EEbase(Q) =0 and EE;(Q) =0 for j=1ton (5.6)

Then the updates of (5.2), (5.3) and (5.4) will automatically
yield the correct values for EEbase(Q) and EE;(Q) given by (5.1)
when the first local optimum is obtained.

In the same way, the value of Threshold, can only refer to the
s most recent local optima when s < r. We can inductively update
Threshold, by letting

Threshold, = min (EEbase(Q),2¢"(2" - 1)) (5.7)

where 22-7(2r —1) corresponds to Threshold, =Y 20-1

where once r is selected.

Q
q=Q-r+1
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3.2. Exploiting local optimality based on exponential extrapolation

We refer to the iterations that begin upon reaching a local op-
timum with an Ascent Phase as a Post-Ascent Phase. We are in-
terested in two principal strategies to guide the Post-Ascent Phase.
Each depends on the existence of an opportunity to interrupt the
search by removing Tabu restrictions and then to proceed to a new
local optimum.

Status S=.

We refer to three key conditions that may be satisfied by a
variable x; after a local optimum is reached (where, to begin,
Eval;(x) < 0 for all variables x;).

(i) x* = x%.
(ii) Evalj(x) > 0 and x; is not tabu.
(iii) EE;(Q,x) > Threshold(Q).

A variable x; that satisfies (i) and (ii) will be said to have an S*
status. The “S” in St simply refers to “Status,” while the “+” refers
to the fact that Eval;(x) > 0, which implies that changing the value
of x; will produce an improvement in the objective function xg. A
variable with an S* status will be given a higher priority to be
selected as the variable x; than a variable that does not have an
S* status. In other words, any non-tabu variable with a profitable
evaluation has a higher priority of receiving a new value than one
with a non-profitable evaluation.

A variable x; that satisfies all three conditions (i), (ii) and (iii)
(or equivalently, the conditions (i) and (iii)) will be said to have an
S= status. The S= status dominates the S* status by having a higher
priority to be chosen as the variable x; that receives a new value.
Note this implies that the recency threshold acts like an aspira-
tion criterion that overrides a tabu restriction to allow a variable
X; to be selected when Eval;(x) > 0. We do not allow this to hap-
pen when Eval;j(x) < 0. The importance of the S= status is that it
means that the choice of x; to become x; can participate in a deci-
sion to trigger an assent to a new local optimum, as described be-
low. The way that the S= status contributes to this process is as fol-
lows. The recency threshold EE;(Q, x) > Threshold,(Q) implies that
Xj :xjf in each of the r most recent local optima. Hence if x; is

selected as x; to set x, =1 —xf: on the current move, the result-
ing solution cannot move toward any of these local optima. An S=
status is realized by assigning x, its new profitable value, thereby
causing its new xf value to be the complement of its current value.

The value of r must be chosen large enough (analogous to the
choice of a tabu tenure in tabu search) to drive the search away
from an appropriate number of previous local optima. At the same
time, the inequality EE;(Q, x) > Threshold,(Q) is stronger than nec-
essary to avoid visiting these r local optima. Consequently, it can
be preferable to avoid making r too large, which may unduly re-
strict the new solutions that can be reached. (This observation also
suggests that it may be valuable to explore options for setting o
smaller than 2. This issue is examined in Appendix 1.)

The principal observation to be made at present is that the
greater the number of variables x; that receive an S= status and
that have been chosen to be x;, the greater is the motive for trig-
gering an ascent to a new local optimum.

Status S*.

The second strategy arises where a variable x; satisfies the fol-
lowing conditions:

(i) xj.* # x?.
(i) Evalj(x) < O.
(iii) EE;(Q.x®) > Threshold,(Q).
Note that a variable x; that satisfies xj.* ;éx;.l will have been

made tabu after reaching the local optimum x2 by the customary
approach of making any variable tabu when it changes its value.



S. Hanafi, Y. Wang, E. Glover et al.

The variable will continue to be tabu unless its Tenure value has
expired in the interim after receiving this new value. We will sup-
pose that we make Tenure large enough to avoid this eventuality.
When the move occurred to change x;’s value to x}Q, the original
evaluation Eval;(x) <0 would have reversed its sign to become
Eval;(x) = 0 (which, if Evalj(x) > 0, would have made x; profitable
to change back to its previous value except for the Tabu restric-
tion). The current evaluation Eval;(x) < 0 by (v) contrasts with the
situation that created (iv). This current evaluation is therefore con-
sistent with considering the previous change of x; to have been a
profitable move rather than a non-profitable move (since the nega-
tion of Eval;(x) for a profitable move would cause Eval;(x) <0 as
in (v)).

A variable x; that satisfies all three conditions (iv), (v) and (vi)
will be said to have an S/= status. The importance of the S/= sta-
tus is that, like an 5= status, it qualifies x; participate in a decision
to trigger an assent to a new local optimum. (This results from the
fact that the move that has given x; its new value x* receives an
evaluation as if it had originally been profitable and, in addition,
causes x; to satisfy the recency threshold for x; = x%.) In sum, as
we indicate below, once a sufficient number of variables have ei-
ther an S= status or an S/= status, then these variables activate
an Ascent Phase that proceeds to a new local optimum. It may be
seen that (vi) is identical to (iii) by noting that x‘}* in (iii) also cor-

responds to x?. The difference between (iii) and (vi) is that the

value x? in (vi) differs from the current value xj?* for x;. Because
variables are made tabu when they are assigned a new value after
reaching a local optimum, this implies that an S= status deals with
the case where x; has not yet changed its local optimum value and
an S/= status deals with the case where such a change has already
occurred.

In short, the new value not yet assigned to x; in (iii) and the
new value already assigned to x; in (vi) must be different than the
value of x; in each of the r most recent local optima, and hence
by receiving this value, the current solution moves in a direction
away from these most recent local optima. It should also be ob-
served that EE; (Q,x?) is determined in (vi) refer to the comple-
ment EE;(Q, X). As shown earlier in (4*), this implies that the in-
equality of (vi) becomes

EE;(Q, x) < EEbase(Q) — Threshold, (Q)

This is relevant for choice rules, since it further implies that the
value of EE;(Q,x) will be relatively small than EEj(Q,xQ), and in
general, just as EE;(Q,x) benefits from being larger in order for
the recency threshold EE;(Q, x) > Threshold,(Q) to hold (which es-
tablishes S= status when Evalj(x) > 0 and makes it desirable to
select x; to become x, and change its value), the corresponding
inequality EE;(Q, x) < EEbase(Q) — Threshold,(Q) from (vi) shows
that when Eval;(x) <0, a smaller EE;(Q,x) is associated with a
case where it is undesirable to select x; to change its value. Conse-
quently, regardless of the sign of Eval;(x), there is a motivation to
favor a larger EE;(Q, x) when choosing a variable x; to change its
value.

The two status conditions S= and S/=, where an S= status
identifies a variable that should change the value it received in
the most recent local optimum and an S/= status identifies a
variable that should retain its value that differs from its value
received in the most recent local optimum, make it possible
to further refine the partition of the neighborhood set N(x) by
considering the N5~ (x) to be the set of moves satisfying the three
conditions of status S=, and NS“(x) to the set of moves satisfying
the three conditions of status S/=. First, observe that the partition
of the neighborhood set N(x) defined by the two disjoint sets
N=(x)={jeN:xj‘:x?} and N/= (x) :{jeN:x?;ﬁx?} can be
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constructed without having saved the value x? as a result of
knowing the value EE;(Q, x). In particular, we can construct the
last local optimum from the value of the current solution xj‘ and
the value EE;(Q,x) :

Q _
o]

Hence, we have N=(x) ={jeN: EE;(Qx) > 29} and N#*(x) =
{j e N:EE;j(Q x) <22 —1}. Consequently, the sets N° (x) and
NS" (x) may be defined as NS~ (x) = N=(x) N N*(x) N NT (x) n NE (x)
and NS (x) = N*(x) "N~ (x) N NE(x).

Xj
1—Xj

if EE;(Q,x) > 2Q
if EEj(Q,x) <22 -1

Trigger an ascent phase based on status S= and S*. We introduce
variables nS= and nS# that count the number of variables x; that
have an S= or S* status. Temporarily, for convenience, we refer to
the sum of these by nS. As illustrated in the next section, nS may
decrease on some iterations, because a variable x; with an S= or
S# status may lose this status after a move involving a different
variable is made. The following trigger threshold provides a rule for
launching an ascent to a new local optimum

nS > Trigger (6)

Once the trigger threshold is satisfied, we know that if we con-
tinue to hold any of the x; variables with an S= or S$* status at
its current value then we cannot duplicate any of the r most re-
cent local optima. Thus, we can select the last of these variables
to remain tabu and, as intimated earlier, remove the tabu restric-
tions on all other variables and freely choose those with positive
evaluations to ascend to a conditional local optimum - a solution
that is locally optimal subject to retaining the Tabu restriction on
the last variable. Upon reaching the conditional local optimum, the
Tabu restriction on the remaining variable is likewise removed and
the method proceeds to a true local optimum. (A natural variation
is to allow all Tabu restrictions to be removed from the beginning
of the ascent in the expectation that the Trigger threshold will cre-
ate a high probability that the new local optimum reached will not
duplicate any of the r most recent local optima. A contrasting vari-
ation would retain all variables with an $= and S$# status tabu and
release them all together from their Tabu restrictions at the condi-
tional local optimum.)

Candidate list exploiting status S= and S*. To differentiate moves
related to the criteria used to determine an S= and S# status, the
AA algorithm uses two subsets of (x) :

- N'(x) =N*t(x)n (NT(x) nNE(x)):  N'(x) ={j e N(x) : Eval;
(x) >0 and either Tabulter(j) <Iter or EE;(Q,x)>
Threshold,(Q)}. This set is relevant in an Ascent Phase
and in a Post-Ascent Phase where some variable has an S*
or 5= status. A

- N2(x) = (N=N*(x))nNT(x) :  N2(x) = {Eval;j(x) <0 and
Tabulter(j) < Iter}. This set is relevant in a Post-Ascent
Phase.

The AA algorithm explores a candidate list CL € N(x) that de-
pends on the introduced subsets, and the phase of research. The
CandidateList function return the candidate list explored at each
iteration.



S. Hanafi, Y. Wang, E. Glover et al.

Function CandidateList (x, Ascent){
If NA(x)+#¢ then CL = NA(x)
Else If N'(x)#¢ then
If N5 (x)#% then CL = N5 (x)
Else CL = N'(x)
Else If Ascent = False then
If N2 (x)+¢ then CL = N?(x)
If N5 (x) = ¢ then CL = N5 (x)
EndIf
EndIf
EndIf
Return CL
} /| End CandidateList

The next section provides an extended example of how these
relationships are exploited.

4. Extended illustration of exploiting strategies S= and S#

We illustrate how the preceding data structures can be used
to implement the two strategies S= and S* by an example of the
steps following an Ascent Phase to move away from the most re-
cent local optimum in a Post-Ascent Phase. We choose Q =4 to
identify the most recent local optimum x<. For clarity, the follow-
ing Working Table shows all 4 of the most recent local optima x!
to x4, although it isn’t necessary to keep a record of these solutions
in order to execute the method. The Working Table also shows the
weighted sums EE}. (Q) and EE?(Q) whose values appear just be-

neath the solution x¢ = x* (the last solution shown) (Table 1).
As a prelude to discussing the moves shown in the Working
Table, recall that Strategies S= and S* always use (a) EE;(Q,x) =

EE} (Q) when the most recent solution x¢ has x?:] and (b)
EE;(Q.x) = EE?(Q) when the most recent solution x2 has x]Q =0.
The values shown in the row for “EE;(Q, x)” in the Working Table
therefore refer to EE}. (Q) when x? =1 and refer to EE;.’(Q) when
x? =0 in the local optimum x*. (This correspondence can be con-
firmed by computing EE} (Q) and EE;?(Q) using (3) and (3.2).)

We have chosen a Trigger value of 3 for the trigger threshold
nS > Trigger in (6) that launches an ascent to a new local optimum.

Details of the following Working Table are discussed immediately
after the table.

Working table explanation. The method begins the Post-Ascent
Phase with the most recent local optimum x* = x2 with the cor-
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responding values for EE;(Q,x) (EE} (Q) and EE?(Q)). An aster-
isk (*) has been attached to each value EE;(Q, x) value that satis-
fies EE;(Q. x) > Threshold;, which is relevant for identifying moves
with an S= or S* status that will cause nS to change. Here we
have chosen r = 3, yielding Threshold; = 8 +4 + 2 = 14 (the sum
of the three largest wq values). Hence an asterisk is attached to
each EE;(Q, x) value that is at least 14.

For this example, we do not bother to specify the choice rule
used to select variables x; to set equal to 0 or 1. A discussion
of choice rules is given in Section 6. As a basis for tracking the
choices made, recall that Eval;(x) is nonpositive for all variables at
a local optimum. Hence the first choice of a variable x; to change
its value after reaching the local optimum x* will be for a variable
with Eval;(x) < 0. Each choice of such a variable will reverse the
sign of Eval;(x) to produce Eval;(x) > 0, as noted in condition (iv)
of the S# strategy.

As previously noted, we assume that each variable selected to
change its value is made Tabu to prevent a move that changes the
variable back to its previous value. We also assume in the present
example that the variables x; and xq are tabu in the local opti-
mum x*, as indicated by the superscript T attached to the values
for these variables in the x* row. (Variables may receive a Tabu
restriction in this way by a rule that, upon obtaining a local op-
timum, selects some number of the variables that were most re-
cently assigned values leading to this local optimum to be Tabu.
Here we may suppose x; and xg were the last Two variables to be
assigned their current values to reach this local optimum. It would
also be possible to apply a rule that does not make any variables
in the local optimum Tabu. However, we include the situation with
X7 and xg tabu to increase the scope of the illustration.)

After one or more moves have been made, the evaluation for
one of the previously selected variables x; can change. This can be
the basis for identifying a x; that qualifies to receive an S# status
because its evaluation has changed to become Eval;(x) < 0. Simi-
larly, the evaluation of a variable x; that has not previously been
selected can change from Eval;(x) < 0 to Evalj(x) > 0, qualifying x;
to receive an ST or an S= status.

Description of successive moves. As shown in the Working Table,
Move 1 selects x; as the first variable to become x, to change its
value, changing x; =1 to x; = 0, with its new value 0 shown in
the row for Move 1.

Similarly, Move 2 chooses x, to change from 1 to 0, as indicated
by the value 0 shown in the row for Move 2, and Move 3 chooses

Table 1

Working Table, 'The new x!, x2, x3 are the previous solutions x2, x3, x.
q wg X X X X3 X4 Xs Xs X7 Xg X9 X10
1 1 X! 1 1 1 1 0 0 1 1 1
2 2 X2 0 1 0 1 1 0 1 1 0 1
3 4 X3 0 1 0 0 0 0 1 1 1 0
4 8 x4 1 1 0 0 0 0 17 1 17 0
EE;(Q, x) 9 15* 14+ 12 13 15* 14* 15* 13 12 * for > 14
Move (Begin a Post-Ascent Phase) nS
1 0
2 0
3 1
4 Na 1 1
5 1 S= St 2
6 X 0 X 1
7 Ng 1 St 2
8 Na 1 3
Launch a new Ascent Phase
Q w(q) x% (Obtain a new local optimum x4)!
4 8 xt 1 0 1 0 0 1 1 1 1 1
EE;(Q,%) 12 8 8 14 14 8 15+ 15°  14* 9 (% for > 14)
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x3 to change from O to 1, as indicated by the value 1 shown in the
row for Move 3.

The next move, Move 4, chooses x4 to change its current value,
yielding x4 = 1, indicated by the value 1 shown in the row for
Move 4. In addition, the symbol S* for Strategy S* is inserted in
this row in the column for x, to disclose that the result of set-
ting x4 = 1 has changed a current evaluation Eval,(x) > 0 for x;
to a new evaluation Eval, (x) < 0, and in addition EE% (Q) > 14, as
indicated by asterisk attached to the value 15 for EE% (Q) (where
EE>(Q,x) =EE; (Q) is defined in relation to x; =x‘21 =1), shows
that x, qualifies for the S* status of Strategy S*. As a result, the
nS in the far-right column of the table is incremented to 1 (from
an implicit initial value of 0).

Move 5 selects x5 to change from O to 1, and now this move
causes x; and xjg, which have not yet changed their values in
the local optimum x%, to receive new evaluations Eval;(x)a nd
Evaljp(x) > 0, hence making them profitable and qualifying them
for the S* status. In addition, x; satisfies the recency threshold and
hence qualifies for the S= status. Thus, we show S= in the column
for x; and St in the column for x;g, and the S= status for x; results
in incrementing nS to 2 in the far-right column.

The status S= and S* for x; and x19 (which also identifies them
as improving moves) give both variables priority to be selected to
change their values. Since the S= status is higher than the ST sta-
tus, we select x; to change its value from 1 to 0 in Move 6. We
make this move in spite of the fact that x; begins tabu (as indi-
cated by the superscript T attached to its value in x*), because the
S= priority also overrules the tabu status.

Move 6 to set x; = 0 additionally has two other consequences
in this example. The X’s in the columns for x, and x;y are used to
indicate that S* and S* statuses of these variables have been can-
celed because of the move setting x; = 0 - a situation indicating
that setting x; = O causes to become positive and Evalyy(x) to be-
come nonpositive. Because of cancelling the S* status of x,, nS is
reduced from 2 to 1.

There now remain three variables that are not Tabu, xg, xg and
X10 (unless the tabu tenure attached to xg is small enough that the
tabu status of xg has expired). Move 7 selects xg to change its value
from 0 to 1. According to the table, this move causes Eval,(x) and
Evalig(x) once again to become nonpositive and positive, respec-
tively, and consequently reinstates their S* and S* status that was
canceled on the previous move. (Such a rapid fluctuation of the
nonpositive and positive evaluations of variables may be unlikely,
but we show such a change to illustrate conditions that potentially
may happen.) The recovery of the S# status by x, causes nS again
to grow to 2.

Variable xi9 with its St status now has priority above other
variables to be chosen as x;, and the assignment x;g =1 occurs
in Move 8. This move causes X3 to receive an S* status (by chang-
ing Evalz(x) > 0 back to Eval,(x) <0 and observing EE% Q) =15
which is larger enough for x, to satisfy the recency threshold).
Now nS increases again, to equal 3.

Since we have chosen Trigger to be 3, the trigger threshold nS >
Trigger is now satisfied and the ascent to a new local optimum is
launched. The variable x5 is held tabu until reaching a conditional
local optimum, and then its tabu restriction is released as well to
proceed to a true local optimum.

The next to last row of the Working Table identifies the new lo-
cal optimum, again designated x* by keeping Q = 4. This shifts the
indexing of the previous local optima so that the previous x2, x3
and x* now become x!, x2 and x3. The new EE}. (Q) and EE?(Q)
values may be verified by consulting the new vectors that now
qualify as x! through x*. Alternatively, these values can be com-
puted from the inductive formula EE;(Q.x) =22~ + EE;(Q.x)/2
as expressed in (5.2c) and (5.2d). (For example, in the case of x;,
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which currently equals 1 and also equals 1 in the previous x* so-
lution, the new value for EE;(Q,x) :EE} (Q)) is given by (5.2¢c)

as EEj(Q.x) =271+ w =8+ 9 =12.5, and rounding down
with integer arithmetic gives = EE]1 (Q) = 12. (There is no neces-
sity to round down, of course, and there is some advantage for
not doing so, particularly when « is chosen less than 2 as dis-
cussed in Appendix 1.) Similarly, in the case of x,, which cur-
rently equals 0 but equals 1 in the previous x* solution, the new
value for EE;(Q, x) (:EES(Q)) is given by (5.2d) as EE;(Q,x) =
201 4 (EEbase(Q) — EE;(Q.x))[2 = 8 + 13515 = 8.)

This example brings up an additional characteristic of the
method. The final Move 8 that gives x3 an S* status affords the
simplest way to launch an Ascent Phase. Specifically, a variable x;
with an S# status that becomes the “last variable” to satisfy the
trigger threshold already has received an evaluation Eval;(x) <0
and is already tabu. Thus, no change is required in x; or its tabu
status to launch a new ascent.

However, if a last variable to satisfy the trigger threshold does
so by receiving an S= status, then it would be necessary to make
the move that gives x; its new value. (This could have happened
in the Working Table if Move 8 had caused xg to qualify for an S=
status instead of causing x3 to qualify for an S* status.) Then, af-
ter giving x; its new value, its evaluation Eval;(x) will be negated
to yield Evalj(x) < 0 and x; will be made tabu to launch the new
ascent. This final move could cause nS to drop if it cancels the S=
or S# status of some other variable(s), but there is a simple way to
handle this. By keeping a separate value nS= for an S~ status and
nS#* for an S* status, it is not necessary to keep track of cancel-
lations. We only increase nS= by 1 when a variable x; with an $=
status is chosen to change its value (which locks in the value for
X;). Then, each time a variable changes its value we recompute nS*
(starting over from nS#* = 0). Consequently, we identify the current
nS# value at the same time as scanning the variables to select a
new x; to change its value.

However, there is an added subtlety. The properties that define
an S* status, as previously noted, are the same as those exhib-
ited by a variable that has a Post-S= status, i.e., a variable that
previously had an S= status and then was chosen to change its
value. Consequently, by counting the variables with an S* sta-
tus, we also are counting the variables with a Post-S= status - or
more precisely, variables with an active Post-S= status, that still
satisfy the conditions when they changed their values. Thus, the
trigger threshold inequality nS= > Trigger tallies just the variables
that have Post-S= status, but not necessarily an active one (be-
cause the Eval value may have subsequently changed its sign). This
provides a useful way to take advantage of both types of trigger
threshold inequalities, as disclosed in the pseudocode subsequently
provided for an advanced version of the algorithm illustrated in
the Working Table. For a uniform notation, we refer to Trigger=
and Trigger® to identify the trigger thresholds nS= > Trigger= and
nS#* > Trigger#. In our present design we let Trigger= = Trigger” =
Trigger, but other options are possible.

We call this algorithm, that alternates between an Ascent Phase
and a Post-Ascent Phase, by exploiting the recency threshold
and the trigger thresholds, an Alternating Ascent (AA) algorithm.
Choice rules for selecting a variable x; to become X, in the AA
algorithm are discussed in Section 5 followed by the pseudocode
in Section 6 that provides an effective way to implement the
algorithm.

5. Choice rules of exploiting Eval;(x) and EE;(Q, X)
Customary choice rules to select a variable x; to become x;

and change its value from x; = xf to x, =1 —x}f can be extended
in the context of the AA algorithm to take advantage of the val-
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ues EE;(Q, x) incorporated in the recency threshold. A good choice
consists of selecting a variable x, that optimizes simultaneously
both Eval;(x) and EE;(Q, x) over the selected candidate list CL. In
a multi-objective optimization problem, the quality of a solution is
determined by the dominance relation. This bi-objective selection
problem has not just one “optimal” solution but several “efficient”
solutions that satisfy tradeoffs between EE;(Q, x) and Eval;(x). We
identify three options for doing this, a simple weighting scheme,
a simple cutoff (threshold) scheme and a more advanced cutoff
procedure using an evaluation tradeoff analysis. The algorithm will
only use one of these options, hence providing three different ver-
sions of the algorithm. These choice rule options depend on differ-
entiating two conditions related to the criteria used to determine
an S= and S* status identified by the candidate list function.

To provide a compact description of the move selection func-
tion, we introduce the following notation. Let f be a scalar vector
with components f; for j € L. Then we denote

fl' = Max{f; : jeL}
Max{:Argmax{fj cjel}={iel: fi=f'"}.

First, we look for a move that maximizes the two objectives
Eval;(x) and EE;(Q, x) simultaneously. This move, if it exists, corre-

sponds to an ideal decision. Identifying this move is accomplished
by the following instruction

If MaxEl n MaxEE - ¢ then select k € MaxEl™ N MaxEf

If an ideal move is not available, then the method uses one of
the following three options.

Simple Weighted Sum Rule: The evaluation Eval;(x) is modi-
fied to take in account of the evaluation EE;(Q, x) to produce the
surrogate evaluation 5;(Q, x, w) given by

EE;(Q. %)
EEbase(Q)

The pseudo code of this Simple Weighted Sum Rule is described
bellow:

S;(Q,x,w) = Evalj(x) + w x

Function SimpleW eightedSum(CL, w){
If MaxE{? N MaxZ # ¢ then select k € MaxE® n MaxEf
Else select k € Argmax{S;(Q.x,w) : j € CL}
Return k

} /| End SimpleW eightedSum

The normalization of dividing EE;(Q, x) by EEbase(Q) gives 0 <
EE;(Q,x)/EEbase(Q) < 1, which makes the calibration of w easier.
Weight parameters w; for the candidate list CL = N'(x) and w;, for
the candidate list CL = N2(x) are differentiated. The weight value
w = w; producing S;(Q, x, w) for N1(x) will generally be small, as
in performing a tie-breaking function. The value w = w, for N2 (x)
may also be small, but intuition suggests it may preferably be
larger, perhaps in some instances large enough to cause EE;(Q, x)
to dominate Evalj(x). The possibilities for both w; and w, may
range, for example, from 0.1 to Evalg/’L”" the maximum expected
value for Eval;(x).

Simple and advanced cutoff rules. The remaining choice rule op-
tions are given by the Simple Cutoff Rule and the Advanced Cutoff
Rule, and are preceded by checking a secondary dominance condi-
tion. This is assured by the following instructions

CL; = Argmax{Eval;(x) : EE;(Q, x) > EE}™, j e CL}

If CL; +# ¢ then select k € CL;

in the Simple Cutoff and the Advanced Cutoff function. When the
secondary dominance condition is not satisfied (i.e. CL; =¢) the
Simple and Advanced Cutoff Rules (which are applied separately in
different versions of the algorithm) are as follows.
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Simple Cutoff Rule: This rule select a move from the following
candidate list CL3, if it is not empty:

CL; = Argmax{Eval;(x) : EE;(Q, x) > Cutof f, j e CL}

If CL; # ¢ then select k € CL;

where Cutoff=F xEEC’V["X and F is a fraction chosen between
0.5 and 0.9 (or more restrictively, between 0.7 and 0.9). In
the special case where the S= status applies (i.e. N5~ (x) # %),
Cutof f = max(F x EEg/’L‘”‘, Threshold,), the Simple Cutoff function is
as follows

Function SimpleCutof f (CL, F){
k=0
If MaxE/? N Max£E # ¢ then select k € MaxE n MaxEf
Else CL: = Argmax{Eval;(x) : EE;(Q, x) > EEM™  j e CL}
If CL; # ¢ then select k € CL}
Else Cutof f = F x EEM®
If N5 (x) # ¢ then Cutof f = Max(Cutof f, Threshold,)
CL; = Argmax{Eval;(x) : EE;(Q.x) > Cutoff, j € CL}
If CL; +# ¢ then select k e CL3
EndIf
EndIf
Return k
} /| End SimpleCutof f

Advanced Cutoff Rule: The Advanced Cutoff Rule is based on
the same Cutof f value but uses a criterion to identify tradeoffs
between EE;(Q, x) and Eval;(x), expressed as

CL; = Argmax{Eval;(x) x EE;(Q,x) : EE;(Q, x) > Cutof f, j € CL}
If CL} # ¢ then select k € CL;
in the case N'(x) # ¢, and as
CL; = Argmax{ i%ﬁ:; : EE;(Q.x) = Cutof f, j e CL}
If CL; # ¢ then select k e CL;
when N'(x) = ¢ and Ascent = False. The Advanced Cutoff function is
Function AdvancedCutof f(CL, F,Ascent){
k=0
If MaxE{® 0 MaxZf + ¢ then select k € MaxE/ 0 MaxEf
Else Cutof f = F x EEMa
If N'(x) # ¢ then
If N° (x) # ¢ then Cutof f = Max(Cutof f, Threshold,)
CL; = Argmax{Eval;(x) x EE;(Q,x) : EE;(Q, x) > Cutof f, j € CL}
If CL; # ¢ then select k € CL}
Else If Ascent = False then
L :Argmax{%ﬁ':; : EEj(Q,x) > Cutoff, j e CL}
If CL; # ¢ then select k € CL;
EndIf
EndIf
EndIf
EndIf
Return k
} /| End AdvancedCutof f

The analysis underlying the tradeoff choices in the advanced
cutoff rule are explained in Appendix 2. For the move selection
using the cutoff thresholds, there may be merit in choosing the
fraction F larger (for example, closer to 0.5) when N!(x) # ¢, and
perhaps larger still when N (x) # ¢, because in these cases a some-
what smaller range of x; variables are candidates to be selected
for x,. For example, setting F = 0.7 when restricting attention to
variables with Eval;(x) > 0, and setting F = 0.5 when additionally
restricting attention to variables satisfying the recency threshold,
may roughly correspond to setting F = 0.9 when considering all
variables without restriction.

As previously noted, each of these choice rule options gives rise
to a different version of the AA algorithm. Hence, given the param-
eters: candidate list CL, weight w, fraction F, state of AA Ascent and
choice rule option Choice, the following SelectMove function returns
the selected move k € CL if it exists and returns O otherwise.
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Function SelectMove(CL, w, F, Ascent, Choice){
Switch (Choice){
Case 1: k = SimpleWeightedSum(CL, w)
Case 2: k = SimpleCutof f(CL, F)
Case 3: k = AdvancedCutof f (CL, F,Ascent)
}
Return k
} /| End SelectMove

6. General AA algorithm design and pseudocode

An AA algorithm oscillates between the Ascent Phase and the
Post-Ascent Phase which is controlled by the boolean variable
Ascent = True if the state of the AA algorithm is in Ascent Phase
and Ascent = False when the AA algorithm is in Post-Ascent Phase.
The pseudocode that follows is organized to facilitate experimenta-
tion with the ideas for exploiting local optimality described in the
preceding sections.

The AA algorithm starts with an initialization phase where all
global variables of AA are determined once the parameters are
fixed. At each current iteration, a Currentiter() procedure is called
to choose a next move k to be selected depending on whether
the search is in the Ascent Phase or the Post-Ascent Phase (i.e.
Ascent = True or False). After this current phase, a post update pro-
cedure is launched to update the state of search. The pseudo code
of the main AA algorithm may be stated as follows:

Algorithm AA(){
Inititalization()
For Iter = 1 to IterMax do || or until the expiration of a time limit
k = Currentlter()
If k > 0 then PostIterUpdateMove (k) || move k is selected
Else PostIterUpdateNoMove() [/ no move exists, i.e. k=0
EndFor
} // End AA

The instructions for the three key components of the AA algo-
rithm - the Initialization, the Current Iteration Routine and the
Post Iteration Update - are as follows. To recapitulate, we as-
sume that we start with an initial solution x = 0, Ascent = True
and we do not keep the best solution found but just its value de-
noted xj. The AA algorithm can be easily adjusted to keep also
the best found solution x* during the search. In the algorithms
presented below, x denotes the current solution and we abbrevi-
ate the notation of Eval;(x), EE;(Q,x), EEbase(Q), Threshold,(Q)
by referring to Evalj, EE;, EEbase, and Threshold,. Starting with
null solution x = 0, this simplifies the initialization of Evalj, EE;,
EEbase, xg, and xj as described in (Section 2.2 and Section 3.3),
see Inititalization(Q, r, Ascent) algorithm.

The Tabu restrictions required during the Ascent Phase and the
Post-Ascent Phase of the AA algorithm take a simple form where
the tenure is given by setting Tenure = Large, where Large repre-
sents a large positive number. This approach is made possible by
the fact that Tabu restrictions will be overruled by the aspiration
criterion and by an S= status, which, together with the trigger
threshold, implicitly determine the duration of a tabu restriction.
The AA algorithm starts with no variables tabu (i.e. Tabulter(j) =0
for j =1 to n) and initializes the record of the 3 most recent vari-
ables x; assigned values in the Ascent Phase. This can be done
for any number of recent variables assigned values in the Ascent
Phase (i.e. Ry = Ry = R3 = 0). This memory refresh is also done dur-
ing the search except that a Last move is identified to avoid cy-
cling as in Tabu Search. For this reason, we introduce an impor-
tant convention which introduces a term Tabulter(0), which is as-
signed a value as Tabulter(Last) when Last = 0. Likewise, we intro-
duce a term Evaly which is permanently assigned the value Evaly =
0. With these conventions, the AA algorithm calls the following
ResetMemory(Last) with Last = 0 in the initialization phase:
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Procedure ResetMemory(Last){
For j =1 to n do Tabulter(j) =0
Tabulter(Last) = Iter + Tenure
Ri=Ry=R;3=0

} /| End ResetMemory

These dummy values Tabulter(0) and Evaly save computational
time for checking valid cases. Our AA algorithm oscillates between
the Ascent Phase and the Post-Ascent Phase which is controlled by
the boolean variable Ascent. Ascent = True if the AA algorithm is
in Ascent Phase and Ascent = False when AA algorithm is in Post-
Ascent Phase.

The initialization phase of the AA algorithm starts with an
initial solution x* with objective value x¥, and sets x = x*, x} =
x’g where xj denotes the best known value, and initializes the
record of the 3 most recent variables x; assigned values in the
Ascent Phase. This can be done for any number of recent vari-
ables assigned values in the Ascent Phase (R; = R, = R3 = 0). Con-
sequently, the initialization phase of the AA algorithm is described
as follows:

Procedure Initialization(){
Set x5 = x#, x = x*
Evalo = 0, For j =1 to n do Compute Eval; for the initial solution with x; = x¥
Tenure = Large; ReducedTenure = min(16, n/12)
Ri =R, =R3 =0, For j =1 to n do Tabulter(j) =0
Last = Lasts- =0
EEbase =0, For j=1to ndo EE; =0
Threshold, = 227 (2" — 1)
ns= =0
ResetMemory (Last)
Ascent = True
} /] End Initialization

Each iteration of the AA algorithm begins by checking the as-
piration criterion for overriding a Tabu restriction to see whether
changing the value of x; will yield a value for xo (currently given
by xg :xg) that improves upon the best value xj, as indicated by
x¥ + Evalj(x) > x§. Hence, when NA(x) # ¢, the method selects a
best move k € Argmax{Eval;(x) : j € NA(x)}.

Function Currentlter(){
If NA(x) # ¢ then select k € Argmax{Eval; : j € N*(x)}; Return k ;
If N5 (x) # ¢ then k = SelectMove(NS™ (x), wq, F, Ascent, Choice;); Return k ;
If N'(x) # ¢ then k = SelectMove(N" (x), wy, F,Ascent,Choice;); Return k ;
If Ascent = False then
If N?(x) + ¢ then k = SelectMove(N?(x), w,, 1/F, Ascent, Choice,); Return k ;
If N¥ (x) # @ then select Lasts: € N5 (x)
EndIf
Return 0
} /| End Currentlter

The Post Iteration Update PostiterU pdateMove(k) procedure has
as argument the index k of the chosen variable x, to change its
value. When NA(x) = ¢, nS* includes the count for active Post-S=
status. Whenever nS= > Trigger (= Trigger in the current design),
launch a new ascent even if N!1(x) # ¢, because even if Eval; > 0
is encountered, possibly the influence of the previous x; assign-
ment could create nS* > Trigger (by increasing nS* in the Current
Iteration Routine). The only exception is if N5~ (x) # @, since then
we first update x; before considering the possibility of launching
a new ascent. Hence, next checks for NS~ (x) =@ as a basis for
checking if nS* > Trigger will launch an Ascent before too many
improving choices are made. Don’t launch new ascent if N4(x) # ¢
until after updating x,. It would be possible to drop “N5~ (x) = #”
next, because this will be checked in the Post Iteration Update
routine. Moreover, if NA(x) = N5"(x) =@ and nS* > Trigger then
Ascent = False is implicit here because nS* only changes in the
Current Iteration Routine to become greater than 0 when Ascent =
False. In addition, no variable should be assigned a value, just
as if k=0. In this case, we free all variables from Tabu restric-
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tions, except for Last = Lastsz by calling ResetMemory(Last) and
setting Ascent = True. These updates are done before updating for
the choice of x;, because the x;, choice may be different when a
new ascent is launched as here. Subsequently, launch a new ascent
after updating x,, if nS* > Trigger.

The PostIterU pdateMove (k) procedure calls the
UpdateMove(k, Ascent) procedure after the flip move k, which
updates the value of the current solution xo, Eval; for j=1 to n,
Xy, EE, and also updates the memory when the AA algorithm is in
the Ascent Phase (see Section 2.2 and Section 3.3):

Procedure UpdateMove (k){

Xo = Xo + Evaly

For j =1 to n do Update Eval;

Xe=1—x;

EE, = EEbase — EE,

If Ascent = True them R3 =Ry; Ry =Ri; Ry =k
} /| End UpdateMove

When Ascent = False the search is in the Post-Ascent Phase and
the condition nS#* > Trigger allows an ascent to be launched when
NA(x) # . The condition Evaljgg,. <0 could be needed because
Lasts- might have been recorded on a previous iteration. However,
only accept Lasts= as Last if Evaljgs, < 0, as it would be if its Post-
S= status still applies; and check for Lasts. on same condition it
would be preferable to hold Tabu unless it is now profitable to
change back. Since we are only keeping variables Tabu that are un-
profitable anyway, it seems we don'’t really need to hold anything
Tabu during an Ascent phase, and this extra fuss is wasted effort.

Procedure PostIterUpdateMove(k){ || k > 0
If NA(x) = N* (x) = ¢ and nS= > Trigger then
|| PA Completed: Launch a new Ascent Phase
ResetMemory(Lasts-); Ascent = True
Return; /| Exit the Post Iteration Update
EndIf
UpdateMove (k)
If Ascent = False then
Tabulter (k) = Iter + Tenure
If N5« # ¢ then Lasts: =k
If N4 # ¢ or Ns- # ¢ then nS* = nS* + 1
If nS# > Trigger then |/ PA Completed: Launch a new Ascent Phase
If EvalLaS[ST, < 0 then Last = Lasts-
ResetMemory(Last) ; Ascent = True
EndIf
EndIf
} /| End PostlIterU pdateMove

In the PostlterUpdateNoMove() routine, no variable x, could be
chosen to change its value, hence must end an Ascent Phase if
Ascent = True or must begin an Ascent Phase if Ascent = False. The
outcome k =0 is the only way to end an Ascent Phase. Eval; does
not need to be updated. Each time a true local optimum is ob-
tained, the PostiterUpdateNoMove procedure calls the UpdateEE ()
procedure which updates the value of EE; for j=1 to n, EEbase
and Threshold, (see Section 2.2 and Section 3.3):

Procedure UpdateEE (){
For j=1to n do EE; =21 + 2-'EE;
EEbase = 221 4 2-1EEbase
Threshold, = min(EEbase, 227 (2" — 1))
} /| End UpdateEE

The end of Ascent Phase is in two steps: first, free Last from its
tabu restriction to complete the ascent to a local optimum, and
then at the local optimum perform updates for the Post-Ascent
Phase when Ascent = False.
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Procedure PostIterUpdateNoMove(){ [[ k=0
If Ascent = True then [/ End Ascent Phase
Tabulter(Last) =0
If Evaly,se > 0 then |/ A conditional local optimum is reached
UpdateMove(Last); Last = 0
Else /| A true local optimum is obtained, and a PA Phase begins
Ascent = False; nS* =0
Last = Lasts+ = Lasts- =0
UpdateEE ()
Tabulter(j) = Iter + ReducedTenure for j € {Ry, Ry, R3}
EndIf
Else /| Launch a new Ascent Phase
If nS# > 0 and Evalies, < O then Last = Lasts:
Else If nS= > 0 and Evaljq,. < O then Last = Lasts-
ResetMemory(Last) ; Ascent = True
EndIf
} /| End PostIterU pdateNoMove

7. Computational results of the AA algorithm on QUBO

This section presents computational results of applying the
AA algorithm to the quadratic unconstrained binary optimization
(QUBO) problem. We start by providing an efficient 1-flip move
evaluation and describing input and output parameters of the AA
algorithm.

7.1. QUBO problem and its 1-flip move evaluation

The quadratic unconstrained binary optimization (QUBO) prob-
lem is an NP-hard combinatorial optimization problem introduced
by Hammer and Rudeanu (1968), which can be expressed as fol-
lows:

maximize Xg = XAx
(QUBO) {s.t. xe{0,1}"
where A = (g;;) is a symmetric matrix of dimension n x n where
component g;; are real values for i, j € N={1,...,n}. The evalua-

tion Eval;(x) for flipping variable x; of x that identifies the change
in the objective function when x; changes its value, i.e.

Evalj(x) = xy — xo = X'AxX' — xAx

The move evaluation Eval;j(x) can alternatively be expressed as
Evalj(x) = (1 — ZX]) (AJ +A])X + ajj

The last equation is obtained since (1 —2)<j)2 =1 and a;; =

e/Ae/ where A/ and A; refer to column and row j of matrix A re-

spectively. If the input matrix A is a symmetric matrix the term
Al +A;j is equal to 2A7 = 2A;, hence

Eval;(x) = 2(1 — 2x;)Ajx + ajj.
Proposition 2. Let x' be the solution obtained from x by flipping the

variable xy, i.e. X' = x + (1 — 2x,)e*. Then the update of the evalua-
tion Eval;(x") can be computed using the rule

—Eval;(x) if j=k
Evalj(x') = {Evalj(x) +d), if j#kand x; =x,
Eualj(x)—ag.k if j#kand x; # x;

where
, Ak lf]<k
ajk: ajj lf]:k

Qyj lf_]>k

Note that if the starting solution is null, i.e. x = 0, the initial

evaluation can be computed simply as follows Eval;(0) = agj.
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Table 2 Table 3
Options for choice rules. Parameters types and ranges for the IRACE experiments.
Choice, Choice, Name Type Range
1 Weighted_Sum_Rule (w;) Weighted_Sum_Rule (w,) Wy r (0.1, 1)
2 Simple_Cutoff_Rule (F) Simple_Cutoff_Rule (1/F) wy r (0.1, 100)
3 Advanced_Cutoff_Rule (F) Advanced_Cutoff_Rule (1/F) F r (0.7, 0.9)
i (15, 30)
r i (10, 20)
) . ) . ) . C1 c (1,2,3)
This efficient means of evaluating 1-flip moves is an improved e c (1,2, 3)
version of the procedure proposed by Glover and Hao (2010), Trigger i (5,9)

which is used in a variety of different algorithms for QUBO (e.g.
Glover, Li, & Hao (2010), Hanafi, Rebai & Vasquez (2013)).

Experiments are carried out on two sets of benchmark in-
stances, where the first set is composed of 60 instances from OR-
Library with a density of 0.1 and the second set is composed of
21 instances from Palubeckis with densities from 0.5 to 1.0. Ac-
cording to the instance size, we further divide the instances into
four subsets. The ‘small’ set is composed of 20 instances with 50
to 100 variables. The ‘medium’ set is composed of 20 instances
with 250 to 500 variables. The ‘midsize’ set is composed of 20 in-
stances with 1000 to 2500 variables. The ‘large’ set is composed of
21 instances with 3000 to 7000 variables. The OR-Library instances
are available on the website http://people.brunel.ac.uk/~mastjjb/
jeb/orlib/bgpinfo.html and the Palubeckis instances are available
upon request since the previous website is not available. An op-
timal value for small instances is obtained by solving the standard
linearization (see Glover & Woolsey (1974), Billionnet & Calmels
(1996)) where each quadratic term in the objective function, x;x;, is
replaced by a new binary variable, y;;, and adding new constraints
Yij <%;, ¥ij <Xj, and x; +x; < 1+y;; to require that y;; =1 if and
only if x; =x; = 1. Using Cplex software with 1 a time limit of
hour, optimal values are known for n < 250, except for QUBO;sg g
and QUBO,sg g. Note that the best known values x3* are available
for those instances.

7.2. Input and output parameters of the AA algorithm

The input parameters of the AA algorithm are:

- An initial solution x* with objective value xg . In our experi-
ments, the starting solution is x* = 0.

Number of recent local optima: Q (the maximum value of
Q depends on the largest integer or real value that can be
supported by the computer and/or software used). For sim-
plicity, we choose Q = 30.

Number of most recent local optima: r < Q, for Threshold,
(e.g., r =8 to 20).

- Trigger thresholds: Trigger (e.g. from 5 to 9).

Base of Exponential Extrapolation « > 0. For simplicity, we
choose o = 2.

Weights for the Sum Rule: w; and w, for moves in N'(x)
and N2(x): range from 0.1 to 100.

Fraction of EE@”L‘”‘ used for cutoff: F e.g., from 0.7 to 0.9.
Memories: Tenure = Large; ReducedTenure = min(16, n/12).
Options Choiceq, Choice, € {1,2,3} for N'(x) and N2(x), re-
spectively, as identified in Table 2 following.

The AA algorithm also uses a common stopping criterion shared
with many other heuristics: the maximum number of iterations
MaxIter which can be represented as a multiple of dimension n
(i.e. Maxlter € {50n, ..., 200n}) or the time limit (i.e. a multiple of
the time of uploading an instance of QUBO). For simplicity, we use
C1 and C2 to denote Choice; and Choice,, respectively, and Cab to
denote the combined choice C1 =a and C2 = b. We use the IRACE
automatic tuning tool to determine the best parameter settings for
the AA algorithm. Table 3 shows the specified range of the param-
eters “wq, wyp, F,Q, r, C1, C2, Trigger” for the IRACE experiments,
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where type “r”, “i” and “c” denote real number, integer and cate-
gory respectively. For the types “r” and “i”, a pair of numbers rep-
resents the minimum and maximum values of the parameter set-
tings, where we set the precision to 0.1. The maximum experiment
budget is set to 10,000.

During the IRACE experiments, we observe that when all 81
instances are included to determine the best parameter settings,
the overall computational results are not as good as when the in-
stances are divided into two categories, one consisting of 50 in-
stances with the number of variables ranging from 50 to 1000 and
the other consisting of 31 instances with no less than 2500 vari-
ables. Hence, we report the two best parameter settings recom-
mended from IRACE for each category, which respectively for the
first 50 instances and the last 31 instances are: wy = 0.7, wy =1,
F=09 Q=24,r=12,C1=2,C2=1, Trigger=5 and w; =04,
wy =06, F=09, Q=17, r=11, C1 =2, C2 =1, Trigger = 8. By
reference to these two settings, we observe that C1 always receives
the value 2 and C2 always receives the value 1, suggesting that the
preferred options for the choice rules are the Simple_Cutoff_Rule
and the Weighted_Sum_Rule. As the number of variables is in-
creased, we note that the value of Trigger should be larger.

7.3. Computational experimentation

In this section we assess the behavior of the AA algorithm on
the 61 instances from the OR-Library and the 21 Palubeckis in-
stances. Algorithms described in this paper were implemented in
C++ and compiled using GNU GCC 10.2.0 with -03 flag on a Linux
3.10.0-862.e17.x86_64 operating system. The computer used for
the experiments is equipped with a Intel(R) Xeon(R) Gold 6226R
(2.90 GHz) processor. All CPU times reported in seconds were ob-
tained using the clock function and the CLOCKS_PER_SEC macro.

Relevant options of Choicey, Choice; € {1,2,3}. In total we have
9 options (C1, C2) e {1,2,3}> where choice C1 is used for can-
didate list N' and choice C2 for N2. The computational re-
sults show that only 4 options are relevant where (C1,C2) e
{(1,1),(1,2),(2,1),(3,1)} on the 81 tested instances. For each
class C of instances Small, Medium, Midsize, Large, we report in
Table 3 the computational results obtained by fixing Maxlter =
50 x n. The quality of the performance of each execution of the

AA algorithm on a given instance I is computed as Gap; = XO;:‘O,
where x§* denotes the best known values reported in the literature
and xj denotes the best value returned by the AA algorithm. We
provide the average values Gap% = 10° x Gapayg where Gapayg =

% and the number #Best of instances I where Gap; =0 (i.e.
the AA algorithm reaches the best known value). The column Best
indicates the best result over the 4 options of the AA algorithm.
From Table 4, we observe that the options C11, C21 and C31
perform similarly well by obtaining percentage gaps to the best
known values of 0.0190%, 0.0147% and 0.0152% and matching these

values for 48, 51 and 53 instances, respectively, collectively reach-
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Fig. 1. Comparison of 4 options of AA algorithm on all instances sets.

Table 4
Comparison of 4 options of AA algorithm.
c1 C12 21 C31 Best

Small Gap% 0 0.9519 0 0 0
20 #Best 20 15 20 20 20
Medium Gap% 0.0231 0.7453 0.0177 0.0185 0.0108
20 #Best 11 1 14 12 15
Midsize Gap% 0.0194 0.5347 0.0087 0.0092 0.0077
20 #Best 9 0 12 12 13
Large Gap% 0.0328 0.8155 0.0315 0.0322 0.0214
21 #Best 8 0 5 9 11
All Gap% 0.0190 0.7625 0.0147 0.0152 0.0101
81 #Best 48 16 51 53 59

ing 59 best known values out of 81 instances. The option C12 per-
forms significantly worse than the other 3 options. The option C21
performs better than the other 3 options in terms of Gap and #Best
for medium and midsize instances of the QUBO problem, and for
the small instances, C21 performs as well as C11 and C31 by find-
ing all the best known values. For the large instances, C31 performs
better by obtaining the best known values but C21 obtains the best
average gap. The overall observation that setting C2 to 1 always
leads to better results indicates that the AA algorithm is signifi-
cantly affected by C2 and relatively insensitive to C1.

Furthermore, we show in Fig. 1 the comparison results of the
AA algorithm under each option when solving each instance from
the small, medium, midsize and large instances. The x-axis repre-
sents each instance and the y-axis denotes the percentage gap to
the best known value. If the percentage gap of a choice option is 0,
the y-axis is not displayed. From Fig. 1, we observe that C12 fails to
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reach the best known values for 5 small instances, while the other
options (C11, C12, C31) can reach these values for all 20 small in-
stances. For solving each instance from the other sets of instances,
the percentage gap of C12 is much larger than that of C11, C21 and
C31. The choice C12 only finds the best known value for the in-
stance 5 (QUB0250.5) while the options C11, C21 and C31 obtain
the best known values for most instances.

AA algorithm behavior: time and iteration. Table 5 presents more
information about the AA algorithm behavior. Column Time gives
the average CPU time needed to execute the Maxy,, = 50n itera-
tions over each set of instances under each choice option of the
AA algorithm. Column T* corresponds to the average CPU time to
reach the best solution found by a run on the AA algorithm over
each set of instances. Column%I corresponds to 10% x ,V;Zicrer where
Iter* denotes the iteration that produced the best value. Looking at
the option C21, for instance, the small (resp. medium, midsize and
large) class requires on average less than 0.01 (resp. 0.12, 2.71 and
16.69) seconds for each run. The best solutions are found for small
(resp. medium, midsize and large) instances in less than 0.01 (resp.
0.06, 1.25 and 13.05) seconds.

The CPU time increases as the dimension n of the QUBO prob-
lem increases. However, there is no general behavior regarding the
iteration or time when the best value is reached. As the value%I =
100 x N}Zi:m gets closer to 100%, the more frequently the best so-
lution is found in the later iterations. For example, C11 reaches the
best objective values at%l = 58% for small instances and%l = 24%
for medium instances. By comparison, C12 reaches the best objec-
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Table 5
AA Algorithm Behavior: CPU time in seconds and iterations.
1 C12 C21 C31
Instances N - - -
Time T* %I Time T* %1 Time T* %l Time T* %1
Small 0 0 58% 0 0 80% O 0 53% 0 0 53%
Medium  0.12 0.03 24%  0.08 0.08 95%  0.12 0.06 49%  0.12 0.03 33%
Midsize 2.70 1.17 51%  2.03 1.30 71% 271 1.25 53% 271 1.31 60%
Large 16.68 1134 71% 1313 1156 86% 16.69 13.05 76% 1667 1399 79%

tive values later at%l = 80% for small instances and%I = 95% for
medium instances.

8. Concluding observations and future steps

The departure from the classical approaches for responding to
local optimality in the strategies of the AA algorithm open a va-
riety of possibilities for exploration. Exponential Extrapolation EE;
compresses Q recent local optima into a single vector. Moreover,
the recency threshold EE; > Threshold; is new aspiration criterion
that prevents duplication from occurring among the r most recent
local optima. The organization of the pseudocode is designed to
make these possibilities visible and easy to pursue. Questions that
invite investigation concern the determination of preferred thresh-
old parameters and the choice of values other than 2 for the ex-
ponential extrapolation parameter « (particularly in the “mixed o
strategy” discussed in Appendix 1). Relevant questions include:

o What are the tradeoffs between r and Trigger of the recency
and trigger thresholds?

e Does an « value less than 2 become more effective as r or

Trigger becomes larger?

How can the ability to start the AA algorithm with any so-

lution x* be exploited most effectively in a diversification

strategy?

» Do answers depend on the state of the search, e.g., on how

many iterations have elapsed or on how many Ascent and

Post-Ascent phases have been performed?

Are there advantages to joining path relinking with the AA

algorithm?

Exploring variants of the AA algorithm that are tailored for
different classes of problems likewise presents an appealing av-
enue for future research. The computational results for applying
this first version of the AA algorithm to quadratic unconstrained
binary optimization (QUBO) problems with up to 7000 variables
demonstrate its effectiveness in terms of both solution quality and
computational effort. More advanced AA algorithms, including a
Double-Pass AA Algorithm and an AA Algorithm with dynamic di-
versification strategies, will be examined in a sequel.
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Appendix 1. Implications of the recency threshold for using
different o« values

We begin by reviewing the meaning of the more general form
of recency threshold EE;(Q, x) > Threshold;(Q) of (4) when « is
not restricted to o = 2. Rewriting (3) with o replacing 2 gives

Q
EE;(Q.x.00) = Yo% (1 - [ - x1]).

q=1

(3a)

Then the corresponding form the recency threshold of (4) for
re{l,..., Q} becomes

r a%—ar :

Threshold s = Q-q _ a—1 lf o ;ﬁ] 31
reshold;(Q, @) q;a {r oot (3.1a)
We call the binary vector V;(Q, 1. x,«) = (XQ,X?q,...,x}) ac-

ceptable if it satisfies the recency threshold

EE;(Q,x, ) > Threshold,(Q, ). (4a)

First observe that EE;(Q, x, @) can be expressed as follows

Q
EE;(Q, x, &) = Thresholdg (Q, @) — ) @' |x; — 1.

(3'a)
q=1
Moreover, by calculus, we have
Ar(Q, o) = Thresholdg (Q, o) — Threshold, (Q, ct)
_ e ifas
Q-r ifa=1
Hence the recency threshold of (4«) can rewritten as
Q
Y i fx?| < AMQ, ). (4*a)

q=1

Let xjf denote the current value for x;, the following describes
the nature of the acceptable vectors depending on the value of «.

Proposition 1.

(@ For r=Q and any «, the vector V;(Q Q,x )=
(xj‘,xj‘, ...,xj‘) is the single acceptable vector, i.e.
ZqQ=1 |x; —xj?| =0.

(b) For o =1, any binary vector V;(Q,r,x,1) is an acceptable
vector, such that

Q
Z|xj—le| <Q-r (4**a)
q=1

(c) For a#1, any vector V;(Q,r.x,«) such that xj‘ = x;?
for all gqe{Q,...,Q—r} is an acceptable vector, i.e.
ZqQ=r |Xj _Xj” =0.

(d) For o =2, any vector V;(Q,r,x, ) such that x*f ;éxj. for
a given se{Q,...,Q—r} is an unacceptable vector, i.e.
ZqQ:r |x; —x?| > 1.

(e) For 0 <« <2, there exist vectors V;(Q,r,x, &) such that
xj.* # xg for a given q € {Q, ..., Q — r} which is an acceptable
vector, i.e. ZqQ:r |x; —x?l > 1.

Proof. The statements a) and b) is trivial and are deduced directly
from (4*«). It is easy to see from (4*«) that if x*f =x;1 for all

1051


http://dx.doi.org/10.13039/501100001809

S. Hanafi, Y. Wang, E. Glover et al.

ge{Q.....Q—r} in a vector V;(Q,x, ) then 28=1 ad7x; —xj?| =
Z?;{aq” % —x{l < Zg;{otq” = «%7-1 This validates the state-
ment c). Now assume « > 2 and there exists s € {Q, ..., Q — r} such
that xj.‘ # xj.. Then an acceptable vector V;(Q, x, ) must satisfy

Q Q-r
0- Uy, e’ -1
o Ssqgaq % —x1| < T

This is equivalent to the inequality
a"(1-aS@-1)) =1

which is impossible for all @« >2 and se{Q.....Q —r} since
o' 5(a — 1) > 2. This completes the proof of the statement d). The
following example will show the validity of statement e). O

Let a4 denote the number of acceptable vectors and ag, de-
note the number of acceptable vectors such that 23=r |x; —x;?| >
1. Observe that a,r —af, = 2" which corresponds to the num-
ber of acceptable vectors such that quzr x; —xj?| =0. For Q =7,
the following table shows the values of a,r and af, where o €
{2.0,19,...,02,0.1} and r e {1,2,...,Q — 1}.

QO Ay QY Ger Y, Gg3 QY3 Ge4 QY Ges G55 Ous Gl
20 64 32 0 16 0 8 0 4 0 2 0
19 69 5 34 2 17 1 8 0 4 0 2 0
1.8 74 10 37 5 18 2 9 1 4 0 2 0
1.7 79 15 39 7 19 3 9 1 4 0 2 0
1.6 85 21 42 10 21 5 10 2 5 1 2 0
1.5 91 27 47 15 22 6 10 2 5 1 2 0
14 100 36 56 24 26 10 12 4 5 1 2 0
1.3 109 45 69 37 34 18 15 7 6 2 2 0
1.2 116 52 82 50 44 28 19 11 7 3 2 0
1.1 121 57 99 67 63 47 29 21 9 5 2 0
1.0 127 63 120 88 929 83 64 56 29 25 8 6
09 127 63 120 88 101 85 68 60 31 27 8 6
0.8 127 63 123 91 113 97 91 83 55 51 17 15
0.7 127 63 124 92 117 101 103 95 74 70 31 29
0.6 127 63 125 93 120 104 110 102 89 85 48 46
0.5 127 63 125 93 121 105 113 105 97 93 65 63
04 127 63 125 93 121 105 113 105 97 93 65 63
03 127 63 125 93 121 105 113 105 97 93 65 63
0.2 127 63 125 93 121 105 113 105 97 93 65 63
0.1 128 64 127 95 123 107 115 107 99 95 67 65

The following table gives weights «? for ge {Q —1=6,...,0}
and o € {2.0,1.9,...,0.2,0.1}. The last two columns correspond to
Ar(Q, @) and Threshold, (Q, @) respectively for fixed r = 3.

a 6 5 4 3 2 1 0 A3(Qa) Threshold3(Q, )
2 64 32 16 8 4 2 115 112

1.9 47.045881 24.76099 13.032 6.859 3.61 19 1 13.369 84.83897
1.8 34.012224 18.89568 10.498 5.832 324 18 1 11.872 63.4055
1.7 24137569 14.19857 8.3521 4.913 2.89 17 1 10.503 46.68824
1.6 16.777216 10.48576 6.5536 4.096 2.56 1.6 1 9.256 33.81658
1.5 11.390625 7.59375 5.0625 3.375 2.25 15 1 8125 24.04688
14 7529536 5.37824 3.8416 2.744 196 14 1 7104 16.74938
13 4.826809 3.71293 2.8561 2.197 169 13 1 6.187 11.39584
12 2985984 248832 2.0736 1728 144 12 1 5368 7.547904
11 1771561 161051 14641 1331 121 11 1 4.641 4.846171
1 1 1 1 1 1 1 14 3

0.9 0.531441 0.59049 0.6561 0.729 0.81 09 1 3.439 1.778031
0.8 0.262144 032768 0.4096 0.512 0.64 0.8 1 2.952 0.999424
0.7 0.117649 0.16807 0.2401 0.343 049 0.7 1 2.533 0.525819
0.6 0.046656 0.07776 0.1296 0.216 0.36 0.6 1 2.176 0.254016
0.5 0.015625 0.03125 0.0625 0.125 0.25 0.5 1 1875 0.109375
0.4 0.004096 0.01024 0.0256 0.064 0.16 04 1 1.624 0.039936
0.3 0.000729 0.00243 0.0081 0.027 0.09 0.3 1 1417 0.011259
0.2 6.4E-05 0.00032 0.0016 0.008 0.04 0.2 1 1.248 0.001984
0.1 1E-06 1E-05 1E-04 1E-03 0.01 01 1 1111 0.000111

To describe the next sets of acceptable vectors as a function of
the value o, we associate to an acceptable vector Vi@, r,x ) the
following binary vector of dimension Q

(@ 1 x o) = (|xF = x9, |xt —x3~"

# 1
,...,}xj X;
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In other terms, each binary component q of Vj (Q,x) is

T

A

if i #x;

This establishes a one-one correspondence between vectors

V;(Q.r.x, &) and V;(Q. 1, x. ). For a given vector V;(Q.r,x, ), we
obtain a vector V;(Q, 1, x, «) such that

%4(0) rxa):{o
g (@ nx 1

3
X] )
1—xj

if \7]9(@, r.x,a)=0

q —_
Vi(@Qr.x.a) —{ if V/@rxa) =1

Hence, we call the binary vector \7]-((@, r, X, ) acceptable if it sat-
isfies the recency threshold

Q o[(2—1'71 N
q-1y7q ] lfa#‘l *k
LR Pl et =

Let A;(Q,r,x, ) be the set of acceptable vectors Vj((@, X, Q).
We observe for Q =7, and r =3 that the sets AJ(Q, r,X,o) are
nested, i.e. for 0 < o < o + € < 2, we have

Aj(Q.rx,a) CA;(Q, 1 x,a +¢€)

Therefore, let # denote the option of either #=0 or 1. The fol-
lowing table provides the difference set

Dj(Q.rx,a)=AjQrx.a+€)-Aj(QrX )

with € = 0.1. To reduce the size of the table, we use the following
notation

Q
Eiv=1y<{0. 1}Q : ZYI’ =k

i=r

Note that A;(Q,1,x,2)=E; hence A;(Qrx19)=
(0,0,0,0,1,0,0) +A;(Q, 1,%,2).
4 IDj(Q.r.x, )] D;j(Q.r.x a)
19 1 (0,0,0,0,1,0,0)
18 1 (1,0,0,0,1,0,0)
17 1 (0,1,0,0,1,0,0)
16 2 (0,0,#,0,1,0,0)
15 1 (0,0,0,0,0,1,0)
14 4 (00011,00) + (#1-#00010) + (1010,100)
13 8 (#000001) + (00#1-#010) + (0100001) +
(0110100)  + (1,00,1100) + (11,0,001,0)
1210 (0,0001#1-#) + (0,0#1-#001) + (0#1-#1100) +
(0110,010)  + (10#1-#010) + (1100,00]1)
10 19 (0000011) + (00011#1-#)  + (#1-#10001) +
(E73 N (E31 - (0#1-#1,1,0,0))
09 36 (00,0#1-#11) + E74 - (11,1,1,0,0,0)
08 2 (0#,1-#,1,11,1)
07 12 (0.11111,1) + E;5—FE3q—E3z - (L1011#1-#)
06 4 (1,0,1,1,1,1,1) + (L01141-#)  + (111,0011)
05 3 (11,01111)  + (111,01#1-#)
0.4-2 ¥
01 2 (11,1,1,0,41)

First, note that the only acceptable V;(Q, r, x, ) vectors for a =
2 have the form

Vi(Q.1,x,2) = (x¥, xt, xE 4, #, #,#)

This means that x; :xjﬁ* in each of the 3 most recent local
optima x¢,x2-1 and x¢-1 (ie,, x;.l = xj‘,x?’] :xj.* and x?’z :xjf),
while x; = x*f and x; =1 —xj?are both possible in earlier local op-
tima x¢=3 to x!. Requiring EE;(Q, X, &) > Threshold;(Q, «) there-
fore compels x; :xj.’* in the 3 most recent local optima when
a =2. When o <2, other V;(Q,r,x,«) vectors in addition to
Vi(Q,1,x,2) = (xj‘,xj‘,xj‘, #,#, #, #) can satisfy the recency thresh-
old. Consequently, in some cases x; = xj‘ may not be required for
each of the 3 most recent local optima.



S. Hanafi, Y. Wang, F. Glover et al.
Acceptable V;(Q, 1, x, a) vectors for o =2,1.7 and 1.5

For o = 2: (xjf,xf,xji*,#, #, #, %)

For o = 1.7: (xjf,xj-‘,xj-‘, #,#, 4%, #),

Bt 1 ot oyt A Bt 1 ot gt 1 N
(.1 ﬁj,xj,xj,xj,#).(xj,xj,l xj,xj,xj,l X7.X7),
(3 more options than for & = 2, accounting for #=0 or 1)

For o =1.5: (x*i*,xj?,x?,#, # #. #), (x;?,xjf,l —xjﬁ*,x?,x?,#, #),

H ot 1 o ot 1w ] a1
(xj,xj,l xj,xj,l xj,l xj,l xj),
(xji*, 1 —x?,x?,x?,xjﬁ*,xf,x?), (6 more options than for «a =2,
accounting for #=0 or 1)

To further see the relevance of these differences, recall
that Strategy S= uses the recency threshold EE;(Q, x, a) >
Threshold;(Q, ) when the x; =xj.‘ in the most recent local opti-
mum (x;.2 = xj.‘ in x2), and we want to decide whether to change
xj to give x; =1 —x;? (under conditions where this change is eval-
uated to improve the current solution). As previously emphasized,
when a = 2, changing x; to give x; = 1 —xj.‘ causes x; to take a dif-
ferent value than in the 3 most recent local optima, and hence we

will not duplicate any of these local optima as long as x; retains
its new value of 1 — xj‘.

When o = 1.7 above, the solutions (xj.*,xj.*,l —xf,xj‘,xj‘,xj.‘,#)

and (xj.‘,xj.*, 1- xjf, xjﬁ‘,xj‘, 1 —xj?,xj.*) show that changing x; = xjﬁ‘ to

xj=1- xjf would cause the new solution to have a different value

than in the two most recent local optima (where x? :x?’1 :xj‘),

but there are three cases where changing x; :x;?b to x; =1 —xji*

would yield the same x; value as in the third most recent local
optimum (where x?’z =1 —x;? in these solutions). Consequently,

there would be a possibility that changing x; = xjf to xj =1 —xj.‘
would permit the third most recent local optimum to be revis-
ited. This possibility might not be large, considering that most of
the local optima avoided by o = 1.7 are represented by the solu-
tions (x?,xji*,xjf,#, #, #,#). The risk of revisiting the r" most re-
cent solution would also clearly have a smaller impact if r is some-
what greater than 3. The risk would further be diminished if other
variables x; likewise satisfied the recency threshold, since each of
these instances would mostly avoid the solutions represented by
(xji‘,xj‘,xjﬂ#, #,#, #).

The case for a =1.5 shows this smaller « value poses ad-
ditional risks beyond « = 1.7 of revisiting solutions other than
(xji*,xj.‘,xj.‘,#, # #,#). One of these involves a risk of duplicating
the second most recent local optimum. (Since this solution is the
one indexed x'~1, the significance of this risk is not very great as r
becomes larger.)

In all of these cases, the risk may be additionally reduced as the
number of moves away from the most recent local optimum in-
creases, since this produces a chance that the ascent to a new local
optimum would be launched from a point farther away from pre-
vious local optima. However, greater assurance would be provided
by the trigger threshold that postpones the Ascent Phase until an
increased number of different x; variables are identified by Strate-
gies S= and S* whose V,(Q,r,x, ) vectors satisfy EE,(Q,x, «) >
Threshold, (Q, @).

As in the case of o =2, it is not necessary to record these
Vi(Q,1,x, ) vectors, since the simple update of EE} (Q) for all j

can be used with the general form of (5) where « replaces 2; i.e.,

EEj(Q) = a®'x? +EE} (Q)/a
and

EEbase(Q) = %! + EEbase(Q) /.

European Journal of Operational Research 308 (2023) 1037-1055

By these observations it is clear that there may be merit in
exploring the use of o values other than o =2 when exponen-
tial extrapolation is embedded in an adaptive memory strategy.
For example, the preceding examples show that smaller « val-
ues can avoid revisiting some local optima beyond the first r, and
this might be additionally exploited by choosing larger r values for
smaller o values. The chief appeal of using an o« value less than
2 is that it allows greater latitude in the choice of variables that
qualify for launching a new Ascent Phase by Strategy S= or S#.

A Mixed o Strategy

When selecting an « value less than 2, it is desirable to use a
“mixed o strategy” where the first term of the sequence

Q
EEj(Q) =) o 'x]
q=1

replaces oeq*1x;1 by 2q*1x‘} to give the mixed sequence

Q
EE}(Q) =) 297 'x!
q=1

which similarly gives

Q
EEbase(Q) = ) 297!
q=1

Threshold,(Q) = ) ~2971.
q=1

The reason for making the last coefficient in this sequence 291
instead of «2-1 is to assure that satisfying the recency threshold
will always imply that a variable cannot duplicate its value in the
most recent solution x¢ and additionally yield 22! > 23;11 a1,
as in the case where « = 2. This latter outcome allows us to update
EE;(Q,x), EEbase(Q) and Threshold, by a slight generalization of
the rule for the case where « = 2, without having to save the value
x?. We won’t go through the full algebraic derivation but identify
the key changes in the formulas (5.23) (5.24 and (5.3) for updating
EE;(Q, x) and EEbase(Q), which give the following formulas. Define
A =221 and B = a2 once a first local optimum is identified, and
before that, initialize A = B = 0, just as we initialize EEbase(Q) = 0
and EE;(Q, x) = 0 for all . Then the new formulas become

201 4+ (EEj(Q.x) + B—A)/a if EE;(Q, x) < 22!

EE;(Q,x) =
1(@%) 201 4 (EEbase(Q) — EE;(Q. X))/ if EE;(Q,x) < 297!

These are executed sequentially each time a local optimum is
found, followed by setting

EEbase(Q) = 2! + (EEbase(Q) + B — A) /a

A=2%"1and B= !

It is easy to confirm that these formulas reduce to the formulas
given in Section 6 when o =2.

The modifications of the pseudocode are correspondingly
straightforward. The Preliminary Initialization adds the following
two instructions:

- Choose a value for o (e.g., 1.5, 1.7 or 2)
-A=B=0.

Then in the procedure UpdateEE() is replaced by the following
procedure:
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Procedure UpdateMixedEE (){

For j=1 to n do
If EE; > 201 then EE; = 20-1 4 (EE; + B— A)/a
Else EE; = 2-! + (EEbase — EE;) /u

Endfor

A=2%"1and B=qa!

EEbase = 29-! + 2-'EEbase

Threshold, = min(EEbase, 22" (2" — 1))

} /| End UpdateMixedEE

It is easy to show the following properties:

EE;(Q, x) = EEbase(Q) — ZqQ:] 297 |x; — x;]|
EE;(Q.%) = GEE!(Q) + (1 - x)EE?(Q)
EE;(Q.%) = (2x; — DEE}(Q) + (1 —x;)EEbase(Q)

EE1(Q) if xj=1

- EEj(@x) = {EEJbase(Q) - EE}- (@ ifxj=0
- EE}(Q) = (2%; — EE;(Q. X) + (1 —x;)EEbase(Q)

EE;(Q, x) if xj=1

- EEj(@) = {EE]base(@) —EEj(Q,x) if Xj‘ =0

_ |EE;(@.%) if xi=1

- EEj(@) = {EE]base(Q) —EE;(@Q.x) if Xj‘ =0

Appendix 2. Tradeoff Relationships

A refers to a current evaluation and B refers to a previous evalu-
ation, such as the best before now. A; and B; refer to the first type
of evaluation and A, and B, refer to the second type of evaluation.
We assume the second type of evaluation, A, and B,, is always
nonnegative (as in the case of EE;(Q, x)), but the first type, A; and
By, can sometimes be negative (as in the case of Eval;(x)). The cur-
rent evaluation will dominate the previous evaluation if A > B; i.e.

A] ZB] and A2 sz.

Assume dominance does not occur. Then we have two possibil-
ities.

Case 1. A; > By and Ay < By
Case 2. Ay <B; and Ay > By

Consider these two cases in the context of conditions satisfied
by moves in N1(x) and N2(x), which we write as follows:

Condition 1. A{,B; >0.A,,B, >0
Condition 2. A], B] <0. A2, Bz > 0.

These conditions correspond to conditions defined by reference
to the sets N1(x) and N2(x) of Section 3.2 where A; and B; refer to
Eval;(x) and A, and B, refer to EE;(Q, x). However, the conditions
here are less stringent than those of Section 3.2, since they do not
include reference to Tabu restrictions or the recency threshold or
the S= status of variables. In addition, moves in N'(x) would imply
Aq, By > 0 rather than Aq, By > 0. We note, however, that we can
translate every case for Condition 2 into Condition 1 by identifying
a lower bound LB for all instances A; and B; such that A, B; > LB,
and redefining

A1 =A1 —LB; B1 =B1 — LB.

Without identifying LB, we consider Conditions 1 and 2 sepa-
rately. For each combination of conditions and cases, we identify
the max and min values of the A and B components.

Condition 1 & Case 1: The combination of Condition 1 and
Case 1 yields A > B; >0, hence A; > 0, and we seek a nonneg-
ative multiple x so that Ax dominates B;, as given by Aix > Bjy.
We also have B, > A, > 0, hence B, > 0, and we seek a nonnega-
tive multiple x so that A, dominates B,x, as given by A, > Bx. An
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x that yields dominance in both situations gives A,/B, > x > By/A;
or equivalently

A1A3/A1By > x > B1B,/A1B,

Hence dominance and strict dominance are respectively
achieved by
A1A; > B1B, and A;A; > B1B;.

In terms of Evalj(x) and EE;(Q,x) this corresponds to
Evalj(x) x EE;(Q.X) > EEJ?(Q, X) > Evalf(x) x EE;’(Q,X), where the
“p” exponent represents “previous”.

Condition 1 & Case 2: Corresponding analysis gives A; > Bix
and A,x > B, to yield
A1A3/A3B1 = X = B1By/A3B4
and while the denominator is different, the conclusions for dom-
inance and strict dominance are the same as in Condition 1 &
Case 1, ie. A]A2 > B]Bz and A-lAz > B]B2.

Condition 2 & Case 1: We now have 0 > A; > By, hence B; <0,

and we seek a nonnegative multiple x so that A; dominates Bix,
hence

A1 > Bix or —Bjx > —A;.

Likewise, we have B, > A, > 0, hence B, > 0, and we seek a
nonnegative multiple x so that A, dominates B,x, hence

Ay > BoXx.
Since —B; > 0, the two inequalities become
Ay/By > x> —Ay/ —By.
or equivalently
—A;B1/ —B1By > X > —A1By/ — B1B;

with positive denominators. Hence dominance and strict domi-
nance are achieved by
—A;By = —A1B; (A1B; = A;By) and — AyBy >
—A1By (A1By > A3By)
In terms of Evalj(x) and EE;(Q,x) this corresponds to
Eval;(x) x EE]‘.’(Q,X) > Eval;’(x) x EE;j(Q,x), where the “p” expo-
nent again represents “previous”.

Condition 2 & Case 2: Following the line of argument as in
Condition 2 & Case 1, we conclude

—AxBi/A1Ay = X = —A1By /A1A;

which yields the same dominance conclusions as in Condition 2 &
Case 1.

We remark that the conclusions in all these cases can also be
reached by a more involved derivation using a different definition
of dominance, where A dominates B if

f(A1.B1) > f(A2, By)
where fori=1,2

f (A, By) = (Max(A;, B;) — Min(A;, B))/(IAi] + |Bi]).

Proposition 2. Let x' the solution obtained from x by flipping the
variable x, i.e. X' = x+ (1 — 2x;)ek. Then the update of the evalua-
tion Eval;(x") can be computed using the rule

if j=k
if j#kand x; = x;
if j#kand xj # x,

—Eval;(x)
Eval;(x) + d,
Eval;(x) — aj

Eval;(x')
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Justification. In case the input matrix A is a lower triangular ma-
trix, let A’ = (agj) denote its associated symmetric matrix defined

as follows

a;j lfl<_]
! . . .
G=\o =]
a; ifi>j

Consequently, we have A;.x = (A +Aj)X — a;.jxj, hence the ini-

tial evaluation Evalj(x) can be calculated in linear time using the
formula Eval;(x) = (1 — ij)A;.x +(1- xj)a;.j. Hence, we have

Eval;(x') = (1-2x)AX + (1-x)a};

Eval;(x') = (1—2x))A}(x+ (1 - 2x)e") + (1 - x})d);
Eval;(x') = (1—2x))Aix + (1 - 2x,)A[(1 = 2x)e* + (1 - x;)a);

Eval;(x') = (1-2x))Alx+ (1 -2x}) (1 = 2x)d}, + (1 - x})aj;
Two cases are considered:
Case 1: j;ék—>x}:xj

Evalj(x') = (1-2x))Ax+ (1-2%;) (1 = 2x0a;, + (1 - x;)a);

Evalj(x') = Eval;(x) + (1 - 2%;) (1 — 2x),
Case 2: j=k—>x, =1-x

Eval, (X) = (2% — DAX + 2% — 1) (1 = 2X) @)y + Xy
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Eval,(X') = (2% — DAX + (X — 1)@,
Eval,(x") = —Eval,(x). O
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