
European Journal of Operational Research 308 (2023) 1037–1055

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Tabu search exploiting local optimality in binary optimization

Saïd Hanafi a , Yang Wang

b , ∗, Fred Glover c , Wei Yang

b , Rick Hennig

c

a INSA Hauts-de-France / Université Polytechnique des Hauts-de-France, LAMIH, CNRS UMR 8201, Valenciennes 59313, France
b School of Management, Northwestern Polytechnical University, 127 Youyi West Road, 710072 Xi’an, China
c Entanglement, Inc. Boulder, CO, USA

a r t i c l e i n f o

Article history:

Received 21 May 2022

Accepted 2 January 2023

Available online 5 January 2023

Keywords:

Metaheuristics

Local optimality

Adaptive memory

Tabu search

Binary optimization

QUBO

a b s t r a c t

A variety of strategies have been proposed for overcoming local optimality in metaheuristic search. This

paper examines characteristics of moves that can be exploited to make good decisions about steps that

lead away from a local optimum and then lead toward a new local optimum. We introduce strategies to

identify and take advantage of useful features of solution history with an adaptive memory metaheuris-

tic, to provide rules for selecting moves that offer promise for discovering improved local optima. Our

approach uses a new type of adaptive memory based on a construction called exponential extrapolation.

The memory operates by means of threshold inequalities that ensure selected moves will not lead to

a specified number of most recently encountered local optima. Associated thresholds are embodied in

choice rule strategies that further exploit the exponential extrapolation concept and open a variety of

research possibilities for exploration. The considerations treated in this study are illustrated in an imple-

mentation to solve the Quadratic Unconstrained Binary Optimization (QUBO) problem. We show that the

AA algorithm obtains an average objective gap of 0.0315% to the best known values for the 21 largest

Palubeckis instances. This solution quality is considered to be quite attractive because less than 20 s on

average are taken by AA, which is 1 to 2 orders of magnitude less than the time required by most algo-

rithms reporting the best known results.

© 2023 Elsevier B.V. All rights reserved.

1

r

s

m

o

r

t

T

c

I

t

c

i

G

e

m

W

r

w

i

p

a

K

c

s

c

l

fi

r

P

a

a

e

h

0

. Introduction

The Tabu search (TS) metaheuristic (Glover (1986)) incorpo-

ates adaptive memory and responsive exploration to guide a local

earch procedure to explore the solution space beyond local opti-

ality. The memory approaches underlying TS are usually based

n recency and frequency memories, while the responsive explo-

ation imposes restraints and inducements such as Tabu condi-

ions, aspiration levels, intensification and diversification processes.

he principal goal of the adaptive memory framework of TS is to

reate a balance between search intensification and diversification.

ntensification strategies encourage move combinations and solu-

ion features historically found good. Diversification strategies in-

orporate new attributes and attribute combinations that were not

ncluded within solutions generated in the past (see the book by

lover and Laguna (1997) for a detailed examination of TS). Sev-

ral variants of TS have been proposed, including the Tabu cycle

ethod and conditional probability methods (Glover (1989)), as
∗ Corresponding author.

E-mail addresses: Said.Hanafi@uphf.fr (S. Hanafi), yangw@nwpu.edu.cn (Y.

ang), fred@entanglement.ai (F. Glover), yangwei123@mail.nwpu.edu.cn (W. Yang),

ick@entanglement.ai (R. Hennig) .

ttps://doi.org/10.1016/j.ejor.2023.01.001

377-2217/© 2023 Elsevier B.V. All rights reserved.
ell as the Tabu thresholding methods (Glover (1995)), each be-

ng successfully applied to solve hard combinatorial optimization

roblems (see for example Gendreau and Potvin (2005)) , Qiu et

l. (2018) , Guemri et al. (2019) , Servranckx and Vanhoucke (2019) ,

aramichailidou et al. (2021)).

Recently, Glover (2020) has proposed a new Alternating As-

ent (AA) algorithm for exploiting local optimality in metaheuristic

earch for zero-one programming problems. The present paper fo-

uses on the simplest version of the TS metaheuristic exploiting

ocal optimality in binary optimization, without including intensi-

cation and diversification phases, and similarly disregarding path

elinking and multi pass strategies.

In outline, the AA Algorithm alternates between an Ascent

hase and a Post-Ascent Phase using thresholds to identify vari-

bles to change their values and to transition from one phase to

nother. A high-level overview of the AA Algorithm (that removes

ssential features subsequently described) is as follows:

https://doi.org/10.1016/j.ejor.2023.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.01.001&domain=pdf
mailto:Said.Hanafi@uphf.fr
mailto:yangw@nwpu.edu.cn
mailto:fred@entanglement.ai
mailto:yangwei123@mail.nwpu.edu.cn
mailto:rick@entanglement.ai
https://doi.org/10.1016/j.ejor.2023.01.001

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

P

a

a

o

s

r

r

E

c

s

v

d

o

t

r

S

c

a

d

T

n

e

T

b

c

r

t

c

l

l

a

t

t

c

t

n

m

t

l

m

g

u

t

a

m

t

o

t

n

l

2

2

(

w

c

f

t

1

u

n

t

l

t

h

r

B

d

t

a

t

v

x

o

c

E

o

{

{
w

i

t

i

t

d

E

x

s

k

2

G

i

s

t

m

w

l

c

p

i

i

Overview of an Alternating Ascent (AA) Algorithm

While an outer loop termination criterion is not met do

Choose a starting solution

While an inner loop termination criterion is not met do

Execute the following two phases:

Ascent Phase: go to a local optimum

(which may also be the starting solution on the first pass)

Post Ascent Phase: move away from the local optimum and

away from some number of other previous local optima.

Endwhile

Endwhile

In outline, the AA Algorithm alternates between an Ascent

hase and a Post-Ascent Phase using thresholds to identify vari-

bles to change their values and to transition from one phase to

nother. The thresholds embody a form of adaptive memory based

n a function called exponential extrapolation, which makes it pos-

ible to track the number of times that variables receive their cur-

ent values in any selected number Q of most recent local optima

epresented by the set Q . An exponential extrapolation measure

E j (Q , x) is associated with a variable x j that gives rise to a re-

ency threshold of the form EE j (Q , x) ≥ T hreshold r (Q) , which as-

ures that changing the current value for x j will not duplicate its

alue in the r most recent local optima. By reference to a stan-

ard evaluation Ev al j (x) for x j that identifies the change in the

bjective function when x j changes its value, and taking advan-

age of a rudimentary tabu search restriction and aspiration crite-

ion, this in turn gives rise to two status conditions denoted by

= and S � = , where an S = status identifies a variable that should

hange the value it received in the most recent local optimum and

n S � = status identifies a variable that should retain its value that

iffers from its value received in the most recent local optimum.

hese conditions are additionally exploited using counters nS = and

S � = of the number of variables that have an S � = and S = status,

mbodied in a trigger threshold of the form nS = + nS � = ≥ T rigger.

he trigger threshold determines when a new Ascent Phase should

e launched by removing all Tabu restrictions except the one that

aused the threshold to be satisfied. The resulting ascent first

eaches a conditional local optimum where the last Tabu restric-

ion remains in force, and where it is assured that the solution

annot duplicate any of the r most recent local optima. Then this

ast restriction is also removed to complete the ascent to a true

ocal optimum, and to begin a new Post-Ascent Phase.

Once no more improving moves remain (for the non-Tabu vari-

bles) in an Ascent Phase, the resulting ascent reaches a condi-

ional local optimum (subject to keeping x k at its new value). At

his point, we may remove the tabu restriction on x k as well, to

ontinue to a solution that is a true local optimum which ends

he Ascent Phase. Given that the conditional local optimum does

ot duplicate the previous local optimum, and that the choice of

oves leading to this conditional local optimum is influenced by

he value assigned to x k , there is a strong likelihood that the new

ocal optimum will also differ from the previous local optimum.

To exploit this observation, we have to decide of whether to im-

ediately use the change from Ev al j (x) ≤ 0 to Ev al j (x) > 0 to trig-

er an ascent to a conditional local optimum, or whether to wait

ntil more than one variable x j selected to be x k has undergone

his change before launching such an ascent.

This study introduces a general procedure for launching a new

scent based on exponential extrapolation to exploit local opti-

ality without recording the local optima. Exponential extrapola-

ion provides a significant saving of both memory and computation

ver consulting the actual values of variables in previous local op-

ima. Numerical examples are given to illustrate the use of expo-

ential extrapolation and the key processes involved in exploiting

ocal optimality via the recency and trigger thresholds.
m

1038
. Background

.1. Binary optimization problem and move evaluation Ev al j (x)

A binary optimization problem can be expressed as follows:

P)

{
maximize x 0 = f (x)

s.t. x ∈ X ⊆ { 0 , 1 } n
here f is a linear or no-linear function on the binary vector x

haracterized by its components x i for i ∈ N = { 1 , . . . , n } and the

easible set X reprensents the imposed constraints on x .

Given a current binary solution x , a neighbor solution x ′ is ob-

ained by flipping the value of a single variable from x j to x ′
j
=

 − x j . Hence, we have x ′ = x + (1 − 2 x j) e
j , where e j is the basic

nit vector with all components are zero except the jth compo-

ent equal to one, and the reverse (complementary) move of set-

ing x j = 1 consists of setting x j = 0 , and vice versa. A neighbor so-

ution x ′ is well determined by only the index j ∈ N called the at-

ribute of the move where change occurs while other variables are

eld constant. Let N(x) denote the set of feasible moves which cor-

esponds to N in the special case for the Quadratic Unconstrained

inary Optimization (QUBO) problem, whose formulation is intro-

uced in Section 7 , i.e., N(x) defines the neighborhood set of solu-

ion x .

We will refer to the use of an evaluation function Ev al j (x) for

 binary variable x j , j ∈ N = { 1 , . . . , n } , to identify the change in

he objective function x 0 at the current solution x produced by re-

ersing the assignment x j = x #
j
, where x #

j
is the current value for

 j . More precisely, the evaluation Ev al j (x) for flipping variable x j
f x that identifies the change in the objective function when x j
hanges its value, i.e.

v al j (x) = x
′
0 − x 0 = f

(
x ′
)

− f (x)

Since the objective is to maximize x 0 , the sign of Ev al j (x)

ffers a partition of N(x) (= N for QUBO) into N

+ (x) =
 j ∈ N : Ev al j (x) > 0 } , N

−(x) = { j ∈ N : Ev al j (x) < 0 } and N

0 (x) =
 j ∈ N : Ev al j (x) = 0 } to differentiate the set of improving moves,

orsening (strictly non-improving) moves and simple non-

mproving moves respectively. In the following, we will refer only

o N

+ (x) and N

−(x) .

Note that the descent method exploits this partition by choos-

ng at each iteration a move from N

+ (x) or N

+ (x) ∩ N

0 (x) un-

il N

+ (x) = ∅ or N

+ (x) ∩ N

0 (x) = ∅ . Hence, the final solution of a

escent method is a local optimum x such all move evaluations

v al j (x) are non-positive, yielding Ev al j (x) ≤ 0 for all variables

 j , i.e. N

+ (x) ∩ N

0 (x) = ∅ . For example, the steepest descent local

earch method selects at each iteration a variable x k such that

 = argmax { Ev al j (x) : j ∈ N

+ (x) ∩ N

0 (x) } .

.2. Adaptive memory Tabu search approach

An early experiment with metaheuristic search (Laguna and

lover (1993)) for a class of sequencing problems disclosed that

mproving moves were more likely to select attributes of optimal

olutions than non-improving moves. This was notably reflected in

he fact that moves made when approaching a local optimum were

ore likely to create solutions that shared elements in common

ith optimal solutions than moves made when retreating from a

ocal optimum. We are motivated by this study to change the rules

ustomarily used by metaheuristic procedures to provide new ap-

roaches for responding to local optimality. Our focus is on us-

ng adaptive memory strategies that incorporate special threshold

nequalities to guide the search. As a starting point, consider a

ethod that begins from a local optimum and employs rules of

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

t

t

m

t

w

p

a

o

t

a

b

m

T

w

c

a

s

I

m

(

e

c

f

m

l

a

t

o

i

t

E

t

p

N

f

s

c

T

t

t

o

G

v

(

t

m

t

fi

t

A

A

f

e

E

0

t

i

t

m

u

d

w

a

t

a

r

t

v

p

O

t

t

t

t

d

t

a

w

a

t

a

a

l

t

m

c

v

i

r

s

x

t

l

A

a

t

t

c

t

n

m

t

l

o

E

o

x

e

he following types, which are commonly employed in a rudimen-

ary form of an adaptive memory Tabu search approach.

Tabu Rule : When reaching a local optimum and selecting

oves that lead away from this optimum, employ restrictions that

emporarily do not allow moves to be reversed and hence that

ould potentially return to the local optimum.

Aspiration Rule : Identify conditions for modifying Tabu Rule to

ermit certain moves to be made that violate the restrictions and

llow previous moves to be reversed.

We observe that a simple form of Tabu search is often based

n a version of these two rules that has two features. We describe

hese for the purpose of identifying a different way to apply Tabu

nd Aspiration Rules.

Tabu Feature : A tenure value is used to prevent a move from

eing reversed for T enure iterations, thereby making the reverse

ove tabu by reference to the current iteration Iter, by setting

 abuI ter (Re v erseMov e) = I ter + T enure

here T abuIter is an array representing recency memory. In the

ase of binary optimization, the reverse move of x j = 1 is x j = 0 ,

nd vice versa. Then T abuIter (Re v er seMov e) can be represented

imply by T abuIter(j) , with the interpretation that

 ter ≤ T abuI ter (j)

eans x j is tabu to change its current value x j = x #
j

to the reverse

complementary) value x j = 1 − x #
j
.

Aspiration Feature : The rule for choosing moves selects a high-

st evaluation move that is not Tabu or that satisfies an aspiration

riterion. Since all moves at local optimality cause the objective

unction to deteriorate or remain unchanged, a highest evaluation

ove is one that causes the objective function to deteriorate the

east. The aspiration criterion most commonly employed considers

 Reverse Move to be admissible to be chosen if it leads to a solu-

ion better than the best one found so far.

A Tabu search approach that relies more fully on adaptive mem-

ry refines the partition of the neighborhood set N(x) by involv-

ng the set N

T̄ (x) = { j ∈ N : T abuIter(j) < Iter} which corresponds

o the set of non-Tabu moves and the set N

A (x) = { j ∈ N : x 0 +
v al j (x) > x ∗

0
} where x ∗

0
is the best objective function found so far,

o the set of the moves satisfying the aspiration criterion.

Several variants of Tabu Search algorithm have been pro-

osed in the literature exploiting partitions involving the sets

−(x) , N

0 (x) , N

+ (x) , N

T̄ (x) and N

A (x) . For example, the simplest

orm of tabu search without intensification or diversification, re-

ults where the default aspiration is applied when N

T̄ (x) = ∅ to

hoose the least tabu move, i.e. k ∈ Ar gmin { T abuIter (j) : j ∈ N(x) } .
hen the search selects at each iteration a variable x k according to

he following rule

If N A (x) � = ∅ then select k ∈ Argmax { Ev al j (x) : j ∈ N A (x) }
Else If N T̄ (x) � = ∅ then k ∈ Argmax { Ev al j (x) : j ∈ N T̄ (x) }

Else k ∈ Ar gmin { TabuIter (j) : j ∈ N T̄ (x) }
EndIf

This simplest deterministic Tabu search algorithms based on

he recency or frequency memories are proved to converge to an

ptimal solution in finite number of iterations (see Hanafi, 2001 ,

lover & Hanafi, 2002). Faigle and Kern (1992) proposed some con-

ergence results for Probabilistic Tabu Search.

The target analysis experiment described in Laguna and Glover

1993) , shows that something about the combination of Tabu Fea-

ure and Aspiration Feature when moving away from a local opti-

um tends to produce moves whose attributes do not correspond

o those of an optimal solution. Under the assumption that this

nding is applicable to other settings, this motivates an examina-
1039
ion of versions of Tabu and Aspiration Rules that modify Tabu and

spiration Features to produce a different behavior.

lternative forms of Tabu and aspiration rules. As a starting point

or analyzing conditions that hold at a local optimum x , all move

valuations are non-positive when a local optimum is reached, i.e.,

v al j (x) ≤ 0 for all variables x j . In the situation where Ev al j (x) ≤
 , suppose we assign a tabu tenure to a move that changes x j = x #

j

o x j = 1 − x #
j

as is customarily done to prevent the move from be-

ng immediately reversed. Consider the process that takes place at

his point, as the search begins moving away from a local opti-

um. To begin, all moves selected will consist of reversing val-

es received by variables x j = x #
j
, in the local optimum to pro-

uce new assignments x j = 1 − x #
j
, and given Ev al j (x) ≤ 0 , these

ill cause x 0 to decrease or remain unchanged. After reversing an

ssignment for Ev al j (x) ≤ 0 , the new evaluation Ev al j (x) will be

he negative of its previous value, and hence if Ev al j (x) began neg-

tive it will now be positive. However, the improving move that

eturns x j to its previous value will be prevented because of the

abu tenure assigned to it. We will build on these simple obser-

ations to uncover aspects of adaptive memory choices that have

reviously been overlooked.

verriding Tabu restrictions. As previously intimated, a key ques-

ion to be addressed in developing an effective algorithm is how

o usefully override the customary Tabu restriction by freeing cer-

ain variables so they are no longer Tabu. Accompanying this ques-

ion is the associated question of identifying the circumstances un-

er which this override should be done. An answer to these ques-

ions is suggested by considering the situation where the evalu-

tion for a variable x j changes from Ev al j (x) ≤ 0 to Ev al j (x) > 0

hen moving away from a local optimum, without having assigned

 new value to x 0 . We are prompted to ask whether there some-

hing noteworthy about this change from a non-improving evalu-

tion to an improving evaluation during a sequence of iterations

fter reaching a local optimum.

If the current value x #
j

of x j is also the value x 0 received at the

ocal optimum (when Ev al j (x) ≤ 0), and if now Ev al j (x) > 0 , then

his has the significant feature that the profitable (i.e., improving)

ove x j = 1 − x #
j

gives x j a different value than it had at the lo-

al optimum. If x j is selected as the variable x k that changes its

alue on the current iteration, then by making x k tabu to change

ts value, the search cannot return to the local optimum while x k
emains tabu. Consequently, we are motivated to consider the re-

ult of freeing the Tabu restrictions on all variables x j except for

 k , to launch an ascent in which the procedure cannot return to

he previous local optimum. We call the iterations that occur upon

aunching such an ascent until reaching a new local optimum an

scent Phase.

Once no more improving moves remain (for the non-Tabu vari-

bles) in an Ascent Phase, the resulting ascent reaches a condi-

ional local optimum (subject to keeping x k at its new value). At

his point, we may remove the tabu restriction on x k as well, to

ontinue to a solution that is a true local optimum which ends

he Ascent Phase. Given that the conditional local optimum does

ot duplicate the previous local optimum, and that the choice of

oves leading to this conditional local optimum is influenced by

he value assigned to x k , there is a strong likelihood that the new

ocal optimum will also differ from the previous local optimum.

To exploit this observation, we are presented with the decision

f whether to immediately use the change from Ev al j (x) ≤ 0 to

v al j (x) > 0 to trigger an ascent to a conditional local optimum,

r whether to wait until more than one variable x j selected to be

 k has undergone this change before launching such an ascent. We

xamine this issue in a broader context in the next section.

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

3

i

c

t

t

t

p

o

i

3

“

a

y

t

v

f

u

t

e

w

w

γ
a

a

e

c

w

w

e

p

e

t

p

w

α

{
d

t

w

E

t

e

E

E

1

c

w

u

a

t

V

p

c

a

x

i

o

x

E

w

T

c

E

E

w

t

r

c

e

(

w

c

r

c

fi

i

a

l

P

a

E

1

J

o

a

d

w

t

α

p

s

t

. A more general procedure for launching a new ascent

Instead of only considering the most recent local optimum, the

ssue of identifying a variable x j to change its value in this lo-

al optimum can be generalized to refer to some number Q of

he most recent local optima. We describe a way of doing this

hat makes it possible to maintain appropriate updated informa-

ion without recording the local optima. This approach, called ex-

onential extrapolation, provides a significant saving of both mem-

ry and computation over consulting the actual values of variables

n previous local optima.

.1. Exponential extrapolation EE j (Q , x)

The term “exponential extrapolation” is motivated by the term

exponential smoothing,” which refers to a procedure that choses

 value λ between 0 and 1 and uses the simple formula

 q +1 = λy q + (1 − λ) y q −1

o determine the new value of y q +1 based on the two preceding

alues y q and y q −1 . The procedure can start from chosen values y q
or q = 0 and 1. (More precisely, y q +1 and y q −1 refer to forecast val-

es and y q refers to an observed value. We do not require this dis-

inction here.) Exponential extrapolation instead uses the formula,

xpressed in terms of the weights w q

 q +1 = αw q + βq + γ (1)

here we choose w 1 = 1 . For simplicity, the parameters α, β and

may be restricted to α between 1 and 2, and β and γ between 0

nd 3. Even simpler, we will chiefly focus on the special case α = 2

nd β = γ = 0 . It is possible to establish a connection between

xponential extrapolation and exponential smoothing whereby (1)

an be seen as a generalization of exponential smoothing, but we

ill not pursue this here. Exponential smoothing has been applied

ith Tabu search for solving fixed charge network problems in Barr

t al. (2021) , using a different type of design than we use for ex-

loiting exponential extrapolation, but we note that exponential

xtrapolation affords an alternative to exponential smoothing in

he fixed charge setting too.

For the special case of (1) where α > 0 and β = γ = 0 we are

articularly interested in the situation where = 2 , to give

 q +1 = 2 w q = 2

q (2)

In general, the formula w q +1 = αw q can be expressed as w q +1 =

q for q ≥ 0 .

Denote the set of Q most recent local optima by Q =

 x q : q = 1 , . . . , Q } , with x q = (x q
1
, . . . , x

q
n) ∈ { 0 , 1 } n . Let x ∈ { 0 , 1 } n

enotes a binary solution, in the following we refer to exponen-

ial extrapolation by the acronym E E and we are interested in

eighted E E (Q , x) values for each variable x j :

 E j (Q , x) =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

E E 1
j (Q) =

Q ∑

q =1

2

q −1 x q
j

i f x j = 1

E E 0
j (Q) =

Q ∑

q =1

2

q −1
(
1 − x q

j

)
i f x j = 0

(3)

The E E 1
j
(Q) value weights the values x

q
j

that equal 1 in the vec-

ors x q , q = 1 to Q , and E E 0
j
(Q) which weights the values x

q
j

that

qual 0 in these vectors. By defining

 E base (Q) =

Q ∑

q =1

2

q −1 = 2

Q − 1 (3.1)

We have a useful equation

 E base (Q) = E E 0 j (Q) + E E 1 j (Q) (3.2)

t

1040
For each q = 2 to Q , we have w q =

∑ q −1

h =1
w h + 1 =

∑ q −1

h =1
2 h −1 +

 = 2 q −1 . Hence w q is greater than

∑ q −1

h =1
w h , and as a special

ase w Q >

∑ Q−1
q =1

w q . Consequently, the value E E 1
j
(Q) will be larger

hen x Q
j

= 1 than it will be when x Q
j

= 0 , regardless of the val-

es w q for q < Q . Another way of expressing this is that (2) cre-

tes a lexicographic ordering of the binary value assignments to

he variables x
q
j
, where the value E E 1

j
(Q) is larger as the vector

 j (Q) = (x Q
j
, x Q−1

j
, . . . , x 1

j
) increases lexicographically. For our pur-

oses, this means that by using the E E value E E 1
j
(Q) , the most re-

ent local optimum recorded x Q will dominate any combination of

ll other local optima, and the second most recent local optimum

Q−1 will dominate any combination of all local optima preceding

t, and so forth. A useful implication is that if we require that we

nly select a variable x j to change its value from x #
j

to 1 − x #
j

if

 j = x #
j

in the r most recent local optima by stipulating

E j (Q , x) ≥ T hreshold r (Q) (4)

here the threshold value sums the r largest weights given by

 hreshold r (Q) =

r ∑

q =1

2

Q−q = 2

Q−r (2

r − 1) (4.0)

We call the inequality (4) the recency threshold. We treat re-

ency threshold as embodying the two inequalities

 E 1 j (Q) ≥ T hreshold r (Q) (4.1)

 E 0 j (Q) ≥ T hreshold r (Q) (4.2)

here (4.1) applies to x j = 1 and requires that x j cannot be chosen

o change from 1 to 0 unless x j also equals 1 in each of the r most

ecent local optima, and (4.2) applies to x j = 0 and requires that x j
annot be chosen to change from 0 to 1 unless x j also equals 0 in

ach of the r most recent local optima.

In short, by requiring the recency threshold (4) to be satisfied

for any choice of the index j, and for a specified value x j = x #
j
),

e assure that we will not risk duplicating any of the r most re-

ent local optima by changing x j to equal 1 − x #
j
. The utility of this

equirement is that we do not need to record the most recent lo-

al optima to verify – or compel – that x j = 1 or 0 in any speci-

ed number r of these most recent solutions. All that is necessary

s to specify that E E 1
j
(Q) satisfy (4.1) or that E E 0

j
(Q) satisfy (4.2),

ccording to whether x #
j

= 1 or 0. More precisely, we have the fol-

owing proposition.

roposition 1. Let x be a binary solution where for any index j ∈ N,

 specified value is assigned x j = x #
j
, the recency threshold inequality

E j (Q , x) ≥ T hreshold r (Q)

implies that x #
j

= x
q
j

in any solution x q for q = Q − 1 , . . . , Q − r +
 .

ustification. See Appendix 1 . Implications of the recency thresh-

ld for using different α values.

Moreover, this approach can grow Q to a selected value Q max ,

nd then perform a diversification step such as the focal distance

iversification strategy of Glover and Lu (2020) to start over again

ith Q = 1 . By using more than one set of values for the parame-

ers α, β and γ (or even just changing the value of the parameter

as in the strategies with β = γ = 0), these parameters can be ap-

lied for different Q max , values, so that when one set is renewed by

tarting over another set will continue to apply to earlier local op-

ima until its Q max , value is reached. This “staggered” approach can

hen permit a parameter set that is renewed before another one to

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

c

t

l

i

v

C

c

E

E

E

a

T

w

t

p

E

i

o

E

a

T

T

w

T

w

t

c

x

c

b

{
s

N

t

A

u

t

fi

o

Q

E

Q

E

E

w

E

E

l

Q

E

t

E

a

c

o

w

s

q

t

a

T

c

a

i

U

t

e

e

x

r

a

b

E

E

ontinue in operation when the second is renewed, and so on, so

hat there is always a connection to local optima from a relatively

ong period ago. In the case where β = γ = 0 , which permits the

nductive update, the use of real arithmetic allows the “effective”

alue of Q max , to be quite large while keeping Q constant.

omplementary recency threshold. Let Q̄ = { ̄x : x ∈ Q } , it is easy to

heck the useful properties:

- EE j (Q , ̄x) = EEbase (Q) − EE j (Q , x) (4 . 1)

- E E base (Q) = E E base (̄Q)

- E E 0
j
(Q) = E E 1

j
(̄Q)

- E E 1
j
(Q) = E E 0

j
(̄Q)

- EE j (̄Q , x) = EE j (Q , ̄x)

- EE j (Q , x) = EE j (̄Q , ̄x)

Moreover, for any binary vector x and x ′ , we have

 E j
(
Q , x ′

)
=

(
1 −

∣∣x ′ j − x j
∣∣)E E j (Q , x) +

∣∣x ′ j − x j
∣∣E E j (Q , x̄) (4.3)

Or equivalently

 E j
(
Q , x ′

)
=

{
E E j (Q , x) i f x ′

j
= x j

E E j (Q , ̄x) = E E base (Q) − E E j (Q , x) i f x ′
j
= 1 −x j

(4

′ .3)

Consequently, the recency threshold (4) is equivalent to

 E j (Q , ̄x) ≤ E E base (Q) − T hreshold r (Q) (4)

Finally, we note that T hreshold r (Q) is independent of the value

ssigned to x j and define its complement by

 hreshold r (Q) = E E base (Q) − T hreshold r (Q)

hich similarly yields T hreshold r (Q) = E E base (Q) − T hreshold r
From these definitions it may be verified that the recency

hreshold EE j (Q , x) ≥ T hreshold r (Q) of (4) gives rise to the com-

lementary recency threshold (in the opposite direction)

EE j (Q , ̄x) ≤ T hreshold r (Q) (̄4)

The significance of (̄4) is that whenever the recency threshold

E j (Q , x) ≥ T hreshold r (Q) of (4) holds and x j is chosen to change

ts value from x #
j

to 1 − x #
j
, after the assignment, for the new value

f x j , we will have

 E j (Q , x) ≤ T hreshold r (Q) = E E base (Q) − T hreshold r (Q) (4

∗)

From the definitions E E base (Q) =

∑ Q
q =1

2 q −1 = 2 Q − 1

nd T hreshold r (Q) =

∑ r
q =1 2

Q−q = 2 Q−r (2 r − 1) , the quantity

 hreshold r (Q) can also be written

 hreshold r (Q) =

Q−r ∑

q =1

2

q −1 = 2

Q−r − 1

hich is evidently much smaller than T hreshold r (Q) (since 2 Q−r >

 hreshold r (Q) by the relationship 2 Q−r =

∑ Q−r
q =1

2 q −1 + 1). Hence

hen the recency threshold is satisfied for x j = x #
j
, (4 ∗) implies

he threshold cannot be satisfied after changing x j to 1 − x #
j
. The

onverse is also true, if EE j (Q , x) ≤ T hreshold r (Q) is satisfied for

 j = x #
j
, then the recency threshold will be satisfied when x j is

hanged to equal 1 − x #
j
.

The AA approach refines the partition of the neigh-

orhood set N(x) by introducing the set N

E (x) =

 j ∈ N : EE j (Q , x) ≥ T hreshold r (Q) } that identifies moves

atisfying the recency threshold inequality and the set

Ē (x) = { j ∈ N : EE j (Q , x) ≤ Ebase (Q) − T hreshold r (Q) } that iden-

ifies reverse moves satisfying the recency threshold inequality.
1041
n inductive updating formula. Now we show how to conveniently

pdate the value EE j (Q , x) after adding a new local optimum x Q+1

o Q or adding the new x Q+1 while simultaneously dropping the

rst local optimum x 1 from Q to maintains the number of local

ptima Q constant. We write EE j (Q , x) with the most recent value

first:

E j (Q , x) =

Q ∑

q =1

2

q −1
(
1 −

∣∣x j − x q
j

∣∣)
Adding a new local optimum x Q+1 at the end of the current set

 without dropping any solution from Q is achieved by

E j
(
Q + x Q+1 , x

)
=

Q+1 ∑

q =1

2

q −1 (1 −
∣∣x j − x q

j

∣∣)
 E j

(
Q + x Q+1 , x

)
= E E j (Q , x) + 2

Q
(
1 −

∣∣x j − x Q+1
j

∣∣)
Dropping the first local optimum x 1 from the current set Q

ithout dropping any solution from Q is achieved by

E j
(
Q − x 1 , x

)
=

Q ∑

q =2

2

q −2 (1 −
∣∣x j − x q

j

∣∣)
 E j

(
Q − x 1 , x

)
= 2

−1 E E j (Q , x) − 2

−1
(
1 −

∣∣x j − x 1 j

∣∣)
Adding the new x Q+1 while simultaneously dropping the first

ocal optimum x 1 from Q to maintains the number of local optima

constant, is achieved by

E j
(
Q − x 1 + x Q+1 , x

)
= 2

−1 EE j (Q , x) + 2

Q−1
(
1 −

∣∣x j − x Q+1
j

∣∣)
−2

−1
(
1 −

∣∣x j − x 1 j

∣∣) (5)

If we use integer arithmetic that rounds fractional values less

han 1 down to 0, the update Eq. (5) becomes

 E j
(
Q − x 1 + x Q+1 , x

)
= 2

−1 E E j (Q , x) + 2

Q−1
(
1 −

∣∣x j − x Q+1
j

∣∣)
(5.1)

If real (floating point) arithmetic is used instead of integer

rithmetic, the declining influence of earlier x j values will pro-

eed in the same manner as if Q had been chosen to be larger,

r equivalently as if we allowed q to become negative, with each

eight w q −1 = 2 −1 w q . By the relationship w q = 2 q −1 this corre-

ponds to the weights 2 −1 , 2 −2 , 2 −3 , … and so forth. The values

 = 0 , −1 , −2 , . . . need not be created or accessed, of course, since

hey are merely a notational convention to convey how using real

rithmetic will have the same effect as permitting Q to be larger.

his can be relevant when using α values different than 2, as dis-

ussed in Appendix 1 .

The inductive update conveniently permits us to start with Q

t its maximum desired value and use the formula (5.1) at each

teration of generating a new local optimum to update EE j (Q , x) .

ntil Q local optima have been generated, EE j (Q , x) will not refer

o terms that go all the way back to q = 1 . For example, after gen-

rating s local optima for s < Q , EE j (Q , x) determined by (5.1) will

ffectively yield EE j (Q , x) =

∑ Q
q = s 2 q −1 (1 − | x j − x

q
j
|) .

Hence, if we want to apply the recency threshold to assure

 j = x #
j

in the r most recent local optima, we must remember that

cannot exceed s . Fortunately, the inductive update handles this

utomatically.

First, we observe that when the first local optimum is obtained,

oth EE j (Q , x) and EEbase (Q) can be determined by setting

 E base (Q) = 2

Q−1 (5.2a)

E j (Q , x) = 2

Q−1
(
1 −

∣∣x j − x Q
j

∣∣) for j = 1 = 1 to n (5.2b)

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

E

E

E

E

E

i

x

s

t

l

E

w

t

E

t

E

E

a

(

t

E

y

w

s

T

T

w

w

3

t

t

E

s

l

v

E

s

t

o

v

s

S

e

w

(

S

p

N

t

x

p

m

s

l

l

x

s

i

s

c

c

f

t

e

b

s

s

s

g

t

g

l

m

a

The update formula (5.1) can be simplified if the evaluation

E j (Q , x) refers to the last local optimum x Q . Let

E j
(
Q , x Q

)
=

Q ∑

q =1

2

q −1
(
1 −

∣∣x Q
j

− x q
j

∣∣).
From (5.1) we have

 E j
(
Q − x 1 + x Q+1 , x Q+1

)
= 2

−1 E E j
(
Q , x Q+1

)
+ 2

Q−1

While from (4.3) we have

 E j
(
Q , x Q+1

)
=

{

E E j
(
Q , x Q

)
i f x Q+1

j
= x Q

j (5 . 2c)

E E j
(
Q , x Q

)
i f x Q+1

j
= 1 − x Q

j (5 . 2d)

Hence

EE j
(
Q − x 1 + x Q+1 , x Q+1

)
=

{

2

Q−1 + 2

−1 EE j
(
Q , x Q

)
i f x Q+1

j
= x Q

j

2

Q−1 + 2

−1 EE j
(
Q , x Q

)
i f x Q+1

j
= 1 − x Q

j

This update can be expressed by the inductive formula

 E j
(
Q − x 1 + x Q+1 , x Q+1

)
= 2

Q−1 + 2

−1 E E j
(
Q , x Q

)
Due to the complementary relationship expressed in (4 . 1) and

f the new local optimum x Q+1 corresponds to the current solution

 , the update (5) can then be expressed by

EE j
(
Q − x 1 + x Q+1 , x

)
=

{
2

Q−1 + 2

−1 EE j
(
Q , x Q

)
i f x #

j
= x Q

j

2

Q−1 + 2

−1
(
E E base (Q) − E E j

(
Q , x Q

))
i f x #

j
= 1 − x Q

j

(5.2)

We can perform this update without having saved the value x Q
j

ince each time a variable x k changes its current value x #
k

by set-

ing x k = 1 − x #
k

during the iterations between obtaining successive

ocal optima, the value EE k (Q , x Q) is updated by setting

 E k
(
Q , x Q

)
= E E base (Q) − E E k

(
Q , x Q

)
(5.3)

hich is essential to assure that the update Eq. (5.2) is equivalent

o

 E j (Q) = 2

Q−1 + 2

−1 E E j (Q)

Following this update, E E base (Q) itself can also be updated by

he inductive formula

 E base (Q) = 2

Q−1 + 2

−1 E E base (Q) (5.4)

By consequence, the initialization step (5.2b) becomes

E j (Q) = 2

Q−1 for j = 1 to n (5.5)

Finally, rather than wait until obtaining a first local optimum as

 basis for determining the first E E base (Q) and EE j (Q) values by

5.1), we can perform the following simple initialization to precede

he first iteration of the algorithm

 E base (Q) = 0 and E E j (Q) = 0 for j = 1 to n (5.6)

Then the updates of (5.2), (5.3) and (5.4) will automatically

ield the correct values for E E base (Q) and EE j (Q) given by (5.1)

hen the first local optimum is obtained.

In the same way, the value of T hreshold r can only refer to the

 most recent local optima when s < r. We can inductively update

 hreshold r by letting

 hreshold r = min

(
E E base (Q) , 2

Q−r (2

r − 1)
)

(5.7)

here 2 Q−r (2 r − 1) corresponds to T hreshold r =

∑ Q
q = Q−r+1

2 q −1

here once r is selected.
1042
.2. Exploiting local optimality based on exponential extrapolation

We refer to the iterations that begin upon reaching a local op-

imum with an Ascent Phase as a Post-Ascent Phase. We are in-

erested in two principal strategies to guide the Post-Ascent Phase.

ach depends on the existence of an opportunity to interrupt the

earch by removing Tabu restrictions and then to proceed to a new

ocal optimum.

Status S = .
We refer to three key conditions that may be satisfied by a

ariable x j after a local optimum is reached (where, to begin,

v al j (x) ≤ 0 for all variables x j).

(i) x #
j

= x Q
j

.

(ii) Ev al j (x) > 0 and x j is not tabu.

(iii) EE j (Q , x) ≥ T hreshold r (Q) .

A variable x j that satisfies (i) and (ii) will be said to have an S +

tatus . The “S” in S + simply refers to “Status,” while the “+ ” refers

o the fact that Ev al j (x) > 0 , which implies that changing the value

f x j will produce an improvement in the objective function x 0 . A

ariable with an S + status will be given a higher priority to be

elected as the variable x k than a variable that does not have an

+ status. In other words, any non-tabu variable with a profitable

valuation has a higher priority of receiving a new value than one

ith a non-profitable evaluation.

A variable x j that satisfies all three conditions (i), (ii) and (iii)

or equivalently, the conditions (i) and (iii)) will be said to have an

= status. The S = status dominates the S + status by having a higher

riority to be chosen as the variable x k that receives a new value.

ote this implies that the recency threshold acts like an aspira-

ion criterion that overrides a tabu restriction to allow a variable

 j to be selected when Ev al j (x) > 0 . We do not allow this to hap-

en when Ev al j (x) ≤ 0 . The importance of the S = status is that it

eans that the choice of x j to become x k can participate in a deci-

ion to trigger an assent to a new local optimum, as described be-

ow. The way that the S = status contributes to this process is as fol-

ows. The recency threshold EE j (Q , x) ≥ T hreshold r (Q) implies that

 j = x #
j

in each of the r most recent local optima. Hence if x j is

elected as x k to set x k = 1 − x #
k

on the current move, the result-

ng solution cannot move toward any of these local optima. An S =

tatus is realized by assigning x k its new profitable value, thereby

ausing its new x #
k

value to be the complement of its current value.

The value of r must be chosen large enough (analogous to the

hoice of a tabu tenure in tabu search) to drive the search away

rom an appropriate number of previous local optima. At the same

ime, the inequality EE j (Q , x) ≥ T hreshold r (Q) is stronger than nec-

ssary to avoid visiting these r local optima. Consequently, it can

e preferable to avoid making r too large, which may unduly re-

trict the new solutions that can be reached. (This observation also

uggests that it may be valuable to explore options for setting α
maller than 2. This issue is examined in Appendix 1 .)

The principal observation to be made at present is that the

reater the number of variables x j that receive an S = status and

hat have been chosen to be x k , the greater is the motive for trig-

ering an ascent to a new local optimum.

Status S � = .
The second strategy arises where a variable x j satisfies the fol-

owing conditions:

(i) x #
j

� = x Q
j

.

(ii) Ev al j (x) < 0 .

(iii) EE j (Q , x Q) ≥ T hreshold r (Q) .

Note that a variable x j that satisfies x #
j

� = x Q
j

will have been

ade tabu after reaching the local optimum x Q by the customary

pproach of making any variable tabu when it changes its value.

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

T

e

p

W

e

E

t

t

s

s

p

t

i

w

t

t

f

e

c

w

t

a

s

r

v

v

r

t

a

o

n

v

b

a

s

m

e

E

v

g

t

t

s

i

t

c

q

f

v

i

t

v

r

t

c

c

t

o

N

c

k

l

t

x

H

{
N

a

T

v

h

t

d

S

v

l

n

t

i

c

t

t

e

t

t

T

t

i

o

a

d

a

r

t

C

r

A

p

C

i

he variable will continue to be tabu unless its T enure value has

xpired in the interim after receiving this new value. We will sup-

ose that we make T enure large enough to avoid this eventuality.

hen the move occurred to change x j ’s value to x Q
j

, the original

valuation Ev al j (x) ≤ 0 would have reversed its sign to become

v al j (x) ≥ 0 (which, if Ev al j (x) > 0 , would have made x j profitable

o change back to its previous value except for the Tabu restric-

ion). The current evaluation Ev al j (x) < 0 by (v) contrasts with the

ituation that created (iv). This current evaluation is therefore con-

istent with considering the previous change of x j to have been a

rofitable move rather than a non-profitable move (since the nega-

ion of Ev al j (x) for a profitable move would cause Ev al j (x) < 0 as

n (v)).

A variable x j that satisfies all three conditions (iv), (v) and (vi)

ill be said to have an S � = status. The importance of the S � = sta-

us is that, like an S = status, it qualifies x j participate in a decision

o trigger an assent to a new local optimum. (This results from the

act that the move that has given x j its new value x #
j

receives an

valuation as if it had originally been profitable and, in addition,

auses x j to satisfy the recency threshold for x j = x Q
j

.) In sum, as

e indicate below, once a sufficient number of variables have ei-

her an S = status or an S � = status, then these variables activate

n Ascent Phase that proceeds to a new local optimum. It may be

een that (vi) is identical to (iii) by noting that x #
j

in (iii) also cor-

esponds to x Q
j

. The difference between (iii) and (vi) is that the

alue x Q
j

in (vi) differs from the current value x #
j

for x j . Because

ariables are made tabu when they are assigned a new value after

eaching a local optimum, this implies that an S = status deals with

he case where x j has not yet changed its local optimum value and

n S � = status deals with the case where such a change has already

ccurred.

In short, the new value not yet assigned to x j in (iii) and the

ew value already assigned to x j in (vi) must be different than the

alue of x j in each of the r most recent local optima, and hence

y receiving this value, the current solution moves in a direction

way from these most recent local optima. It should also be ob-

erved that EE j (Q , x Q) is determined in (vi) refer to the comple-

ent EE j (Q , ̄x) . As shown earlier in (4 ∗), this implies that the in-

quality of (vi) becomes

 E j (Q , x) ≤ E E base (Q) − T hreshold r (Q)

This is relevant for choice rules, since it further implies that the

alue of EE j (Q , x) will be relatively small than EE j (Q , x Q) , and in

eneral, just as EE j (Q , x) benefits from being larger in order for

he recency threshold EE j (Q , x) ≥ T hreshold r (Q) to hold (which es-

ablishes S = status when Ev al j (x) > 0 and makes it desirable to

elect x j to become x k and change its value), the corresponding

nequality EE j (Q , ̄x) ≤ EEbase (Q) − T hreshold r (Q) from (vi) shows

hat when Ev al j (x) ≤ 0 , a smaller EE j (Q , x) is associated with a

ase where it is undesirable to select x j to change its value. Conse-

uently, regardless of the sign of Ev al j (x) , there is a motivation to

avor a larger EE j (Q , x) when choosing a variable x j to change its

alue.

The two status conditions S = and S � = , where an S = status

dentifies a variable that should change the value it received in

he most recent local optimum and an S � = status identifies a

ariable that should retain its value that differs from its value

eceived in the most recent local optimum, make it possible

o further refine the partition of the neighborhood set N(x) by

onsidering the N

S = (x) to be the set of moves satisfying the three

onditions of status S = , and N

S � = (x) to the set of moves satisfying

he three conditions of status S � = . First, observe that the partition

f the neighborhood set N(x) defined by the two disjoint sets

= (x) = { j ∈ N : x #
j

= x Q
j
} and N

� = (x) = { j ∈ N : x #
j

� = x Q
j
} can be
1043
onstructed without having saved the value x Q
j

as a result of

nowing the value EE j (Q , x) . In particular, we can construct the

ast local optimum from the value of the current solution x #
j

and

he value EE j (Q , x) :

Q
j

=

{
x j i f EE j (Q , x) ≥ 2

Q

1 − x j i f EE j (Q , x) ≤ 2

Q − 1

ence, we have N

= (x) = { j ∈ N : EE j (Q , x) ≥ 2 Q } and N � = (x) =

 j ∈ N : EE j (Q , x) ≤ 2 Q − 1 } . Consequently, the sets N

S = (x) and

S � = (x) may be defined as N

S = (x) = N

= (x) ∩ N

+ (x) ∩ N

T̄ (x) ∩ N

E (x)

nd N

S � = (x) = N

� = (x) ∩ N

−(x) ∩ N

Ē (x) .

rigger an ascent phase based on status S = and S � = . We introduce

ariables nS = and nS � = that count the number of variables x j that

ave an S = or S � = status. Temporarily, for convenience, we refer to

he sum of these by nS. As illustrated in the next section, nS may

ecrease on some iterations, because a variable x j with an S = or

� = status may lose this status after a move involving a different

ariable is made. The following trigger threshold provides a rule for

aunching an ascent to a new local optimum

S ≥ T rigger (6)

Once the trigger threshold is satisfied, we know that if we con-

inue to hold any of the x j variables with an S = or S � = status at

ts current value then we cannot duplicate any of the r most re-

ent local optima. Thus, we can select the last of these variables

o remain tabu and, as intimated earlier, remove the tabu restric-

ions on all other variables and freely choose those with positive

valuations to ascend to a conditional local optimum – a solution

hat is locally optimal subject to retaining the Tabu restriction on

he last variable. Upon reaching the conditional local optimum, the

abu restriction on the remaining variable is likewise removed and

he method proceeds to a true local optimum. (A natural variation

s to allow all Tabu restrictions to be removed from the beginning

f the ascent in the expectation that the Trigger threshold will cre-

te a high probability that the new local optimum reached will not

uplicate any of the r most recent local optima. A contrasting vari-

tion would retain all variables with an S = and S � = status tabu and

elease them all together from their Tabu restrictions at the condi-

ional local optimum.)

andidate list exploiting status S = and S � = . To differentiate moves

elated to the criteria used to determine an S = and S � = status, the

A algorithm uses two subsets of (x) :

- N

1 (x) = N

+ (x) ∩ (N

T̄ (x) ∩ N

E (x)) : N

1 (x) = { j ∈ N(x) : Ev al j
(x) > 0 and either T abuIter(j) < Iter or EE j (Q , x) ≥
T hreshold r (Q) } . This set is relevant in an Ascent Phase

and in a Post-Ascent Phase where some variable has an S +

or S = status.

- N

2 (x) = (N − N

+ (x)) ∩ N

T̄ (x) : N

2 (x) = { Ev al j (x) ≤ 0 and

T abuIter(j) < Iter} . This set is relevant in a Post-Ascent

Phase.

The AA algorithm explores a candidate list CL ⊆ N(x) that de-

ends on the introduced subsets, and the phase of research. The

and id ateList function return the candidate list explored at each

teration.

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

r

4

t

s

c

i

i

t

i

w

n

T

E

E

T

t

x

fi

n

D

a

W

P

r

i

fi

w

h

o

e

u

o

c

a

i

w

s

o

c

v

e

m

f

r

t

c

H

a

a

i

x

o

t

b

l

s

t

D

M

v

t

b
F unction Cand id ateList (x, Ascent) {

If N A (x) � = ∅ then CL = N A (x)

Else If N 1 (x) � = ∅ then

If N S
=
(x) � = ∅ then CL = N S

=
(x)

Else CL = N 1 (x)

Else If Ascent = F alse then

If N 2 (x) � = ∅ then CL = N 2 (x)

If N S
=
(x) = ∅ then CL = N S

� =
(x)

EndIf

EndIf

EndIf

Return CL

} // End Cand id ateList

The next section provides an extended example of how these

elationships are exploited.

. Extended illustration of exploiting strategies S = and S �=

We illustrate how the preceding data structures can be used

o implement the two strategies S = and S � = by an example of the

teps following an Ascent Phase to move away from the most re-

ent local optimum in a Post-Ascent Phase. We choose Q = 4 to

dentify the most recent local optimum x Q . For clarity, the follow-

ng Working Table shows all 4 of the most recent local optima x 1

o x 4 , although it isn’t necessary to keep a record of these solutions

n order to execute the method. The Working Table also shows the

eighted sums E E 1
j
(Q) and E E 0

j
(Q) whose values appear just be-

eath the solution x Q = x 4 (the last solution shown) (Table 1).

As a prelude to discussing the moves shown in the Working

able, recall that Strategies S = and S � = always use (a) EE j (Q , x) =
 E 1

j
(Q) when the most recent solution x Q has x Q

j
= 1 and (b)

E j (Q , x) = EE 0
j
(Q) when the most recent solution x Q has x Q

j
= 0 .

he values shown in the row for “EE j (Q , x) ” in the Working Table

herefore refer to E E 1
j
(Q) when x Q

j
= 1 and refer to E E 0

j
(Q) when

Q
j

= 0 in the local optimum x 4 . (This correspondence can be con-

rmed by computing E E 1
j
(Q) and E E 0

j
(Q) using (3) and (3.2).)

We have chosen a T rigger value of 3 for the trigger threshold

S ≥ T rigger in (6) that launches an ascent to a new local optimum.

etails of the following Working Table are discussed immediately

fter the table.

orking table explanation. The method begins the Post-Ascent

hase with the most recent local optimum x 4 = x Q with the cor-
Table 1

Working Table, 1 The new x 1 , x 2 , x 3 are the previous soluti

q w q x q x 1 x 2 x 3 x 4 x 5

1 1 x 1 1 1 1 1 0

2 2 x 2 0 1 0 1 1

3 4 x 3 0 1 0 0 0

4 8 x 4 1 1 0 0 0

EE j (Q , x) 9 15 ∗ 14 ∗ 12 13

Move (Begin a Post-Ascent Phase)

1 0

2 0

3 1

4 S � = 1

5 1

6 X

7 S � =

8 S � =

Launch a new Ascent Phase

Q w(q) x q (Obtain a new local optimum x 4) 1

4 8 x 4 1 0 1 0 0

EE j (Q , x) 12 8 8 14 ∗ 14 ∗

1044
esponding values for EE j (Q , x) (EE 1
j
(Q) and EE 0

j
(Q)). An aster-

sk (∗) has been attached to each value EE j (Q , x) value that satis-

es EE j (Q , x) ≥ T hreshold r , which is relevant for identifying moves

ith an S = or S � = status that will cause nS to change. Here we

ave chosen r = 3 , yielding T hreshold 3 = 8 + 4 + 2 = 14 (the sum

f the three largest w q values). Hence an asterisk is attached to

ach EE j (Q , x) value that is at least 14.

For this example, we do not bother to specify the choice rule

sed to select variables x j to set equal to 0 or 1. A discussion

f choice rules is given in Section 6 . As a basis for tracking the

hoices made, recall that Ev al j (x) is nonpositive for all variables at

 local optimum. Hence the first choice of a variable x j to change

ts value after reaching the local optimum x 4 will be for a variable

ith Ev al j (x) ≤ 0 . Each choice of such a variable will reverse the

ign of Ev al j (x) to produce Ev al j (x) ≥ 0 , as noted in condition (iv)

f the S � = strategy.

As previously noted, we assume that each variable selected to

hange its value is made Tabu to prevent a move that changes the

ariable back to its previous value. We also assume in the present

xample that the variables x 7 and x 9 are tabu in the local opti-

um x 4 , as indicated by the superscript T attached to the values

or these variables in the x 4 row. (Variables may receive a Tabu

estriction in this way by a rule that, upon obtaining a local op-

imum, selects some number of the variables that were most re-

ently assigned values leading to this local optimum to be Tabu.

ere we may suppose x 7 and x 9 were the last Two variables to be

ssigned their current values to reach this local optimum. It would

lso be possible to apply a rule that does not make any variables

n the local optimum Tabu. However, we include the situation with

 7 and x 9 tabu to increase the scope of the illustration.)

After one or more moves have been made, the evaluation for

ne of the previously selected variables x j can change. This can be

he basis for identifying a x j that qualifies to receive an S � = status

ecause its evaluation has changed to become Ev al j (x) ≤ 0 . Simi-

arly, the evaluation of a variable x j that has not previously been

elected can change from Ev al j (x) ≤ 0 to Ev al j (x) > 0 , qualifying x j
o receive an S + or an S = status.

escription of successive moves. As shown in the Working Table,

ove 1 selects x 1 as the first variable to become x k to change its

alue, changing x 1 = 1 to x 1 = 0 , with its new value 0 shown in

he row for Move 1.

Similarly, Move 2 chooses x 2 to change from 1 to 0, as indicated

y the value 0 shown in the row for Move 2, and Move 3 chooses
ons x 2 , x 3 , x 4 .

x 6 x 7 x 8 x 9 x 10

0 0 1 1 1

0 1 1 0 1

0 1 1 1 0

0 1 T 1 1 T 0

15 ∗ 14 ∗ 15 ∗ 13 12 ∗ for ≥ 14

nS

1

S = S + 2

0 X 1

1 S + 2

1 3

1 1 1 1 1

8 15 ∗ 15 ∗ 14 ∗ 9 (∗ for ≥ 14)

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

x

r

y

M

t

t

t

i

E

t

n

a

c

t

E

f

h

f

i

a

c

t

m

c

S

i

i

c

t

c

r

x

t

f

E

t

c

n

b

m

t

v

i

i

w

N

T

l

l

p

c

i

a

v

q

p

a

w

l

a

w

s

n

c

r

v

2

m

s

w

t

a

s

s

t

i

s

t

t

a

o

h

n

l

s

x

(

n

n

a

i

p

v

t

m

s

t

t

c

p

t

p

t

a

n

T

a

a

C

a

i

a

5

a
 3 to change from 0 to 1, as indicated by the value 1 shown in the

ow for Move 3.

The next move, Move 4, chooses x 4 to change its current value,

ielding x 4 = 1 , indicated by the value 1 shown in the row for

ove 4. In addition, the symbol S � = for Strategy S � = is inserted in

his row in the column for x 2 to disclose that the result of set-

ing x 4 = 1 has changed a current evaluation Ev al 2 (x) > 0 for x 2
o a new evaluation Ev al 2 (x) < 0 , and in addition E E 1 2 (Q) ≥ 14 , as

ndicated by asterisk attached to the value 15 for E E 1
2
(Q) (where

E 2 (Q , x) = EE 1
2
(Q) is defined in relation to x 2 = x Q

2
= 1), shows

hat x 2 qualifies for the S � = status of Strategy S � = . As a result, the

S in the far-right column of the table is incremented to 1 (from

n implicit initial value of 0).

Move 5 selects x 5 to change from 0 to 1, and now this move

auses x 7 and x 10 , which have not yet changed their values in

he local optimum x 4 , to receive new evaluations Ev al 7 (x) a nd

v al 10 (x) > 0, hence making them profitable and qualifying them

or the S + status. In addition, x 7 satisfies the recency threshold and

ence qualifies for the S = status. Thus, we show S = in the column

or x 7 and S + in the column for x 10 , and the S = status for x 7 results

n incrementing nS to 2 in the far-right column.

The status S = and S + for x 7 and x 10 (which also identifies them

s improving moves) give both variables priority to be selected to

hange their values. Since the S = status is higher than the S + sta-

us, we select x 7 to change its value from 1 to 0 in Move 6. We

ake this move in spite of the fact that x 7 begins tabu (as indi-

ated by the superscript T attached to its value in x 4), because the

= priority also overrules the tabu status.

Move 6 to set x 7 = 0 additionally has two other consequences

n this example. The X’s in the columns for x 2 and x 10 are used to

ndicate that S � = and S + statuses of these variables have been can-

eled because of the move setting x 7 = 0 – a situation indicating

hat setting x 7 = 0 causes to become positive and Ev al 10 (x) to be-

ome nonpositive. Because of cancelling the S � = status of x 2 , nS is

educed from 2 to 1.

There now remain three variables that are not Tabu, x 6 , x 8 and

 10 (unless the tabu tenure attached to x 9 is small enough that the

abu status of x 9 has expired). Move 7 selects x 6 to change its value

rom 0 to 1. According to the table, this move causes Ev al 2 (x) and

v al 10 (x) once again to become nonpositive and positive, respec-

ively, and consequently reinstates their S � = and S + status that was

anceled on the previous move. (Such a rapid fluctuation of the

onpositive and positive evaluations of variables may be unlikely,

ut we show such a change to illustrate conditions that potentially

ay happen.) The recovery of the S � = status by x 2 causes nS again

o grow to 2.

Variable x 10 with its S + status now has priority above other

ariables to be chosen as x k , and the assignment x 10 = 1 occurs

n Move 8. This move causes x 3 to receive an S � = status (by chang-

ng Ev al 3 (x) > 0 back to Ev al 2 (x) ≤ 0 and observing E E 1 2 (Q) = 15

hich is larger enough for x 2 to satisfy the recency threshold).

ow nS increases again, to equal 3.

Since we have chosen T rigger to be 3, the trigger threshold nS ≥
 rigger is now satisfied and the ascent to a new local optimum is

aunched. The variable x 3 is held tabu until reaching a conditional

ocal optimum, and then its tabu restriction is released as well to

roceed to a true local optimum.

The next to last row of the Working Table identifies the new lo-

al optimum, again designated x 4 by keeping Q = 4 . This shifts the

ndexing of the previous local optima so that the previous x 2 , x 3

nd x 4 now become x 1 , x 2 and x 3 . The new E E 1
j
(Q) and E E 0

j
(Q)

alues may be verified by consulting the new vectors that now

ualify as x 1 through x 4 . Alternatively, these values can be com-

uted from the inductive formula EE j (Q , x) = 2 Q−1 + EE j (Q , x) / 2

s expressed in (5 . 2c) and (5 . 2d) . (For example, in the case of x ,
1 i

1045
hich currently equals 1 and also equals 1 in the previous x 4 so-

ution, the new value for EE j (Q , x) = EE 1 1 (Q)) is given by (5 . 2c)

s EE j (Q , x) = 2 Q−1 +

EE j (Q ,x)

2 = 8 +

9
2 = 12 . 5 , and rounding down

ith integer arithmetic gives = E E 1 1 (Q) = 12 . (There is no neces-

ity to round down, of course, and there is some advantage for

ot doing so, particularly when α is chosen less than 2 as dis-

ussed in Appendix 1 .) Similarly, in the case of x 2 , which cur-

ently equals 0 but equals 1 in the previous x 4 solution, the new

alue for EE 2 (Q , x) (= EE 0
2
(Q)) is given by (5 . 2d) as EE j (Q , x) =

Q−1 + (E E base (Q) − EE j (Q , x))/2 = 8 +

15 −15
2 = 8 .)

This example brings up an additional characteristic of the

ethod. The final Move 8 that gives x 3 an S � = status affords the

implest way to launch an Ascent Phase. Specifically, a variable x j
ith an S � = status that becomes the “last variable” to satisfy the

rigger threshold already has received an evaluation Ev al j (x) ≤ 0

nd is already tabu. Thus, no change is required in x j or its tabu

tatus to launch a new ascent.

However, if a last variable to satisfy the trigger threshold does

o by receiving an S = status, then it would be necessary to make

he move that gives x j its new value. (This could have happened

n the Working Table if Move 8 had caused x 8 to qualify for an S =

tatus instead of causing x 3 to qualify for an S � = status.) Then, af-

er giving x j its new value, its evaluation Ev al j (x) will be negated

o yield Ev al j (x) < 0 and x j will be made tabu to launch the new

scent. This final move could cause nS to drop if it cancels the S =

r S � = status of some other variable(s), but there is a simple way to

andle this. By keeping a separate value nS = for an S = status and

S � = for an S � = status, it is not necessary to keep track of cancel-

ations. We only increase nS = by 1 when a variable x j with an S =

tatus is chosen to change its value (which locks in the value for

 j). Then, each time a variable changes its value we recompute nS � =

starting over from nS � = = 0). Consequently, we identify the current

S � = value at the same time as scanning the variables to select a

ew x j to change its value.

However, there is an added subtlety. The properties that define

n S � = status, as previously noted, are the same as those exhib-

ted by a variable that has a Post- S = status, i.e., a variable that

reviously had an S = status and then was chosen to change its

alue. Consequently, by counting the variables with an S � = sta-

us, we also are counting the variables with a Post- S = status – or

ore precisely, variables with an active Post- S = status, that still

atisfy the conditions when they changed their values. Thus, the

rigger threshold inequality nS = ≥ T rigger tallies just the variables

hat have Post- S = status, but not necessarily an active one (be-

ause the Eval value may have subsequently changed its sign). This

rovides a useful way to take advantage of both types of trigger

hreshold inequalities, as disclosed in the pseudocode subsequently

rovided for an advanced version of the algorithm illustrated in

he Working Table. For a uniform notation, we refer to T rigger =

nd T rigger � = to identify the trigger thresholds nS = ≥ T rigger = and

S � = ≥ T rigger � = . In our present design we let T rigger = = T rigger � = =
 rigger, but other options are possible.

We call this algorithm, that alternates between an Ascent Phase

nd a Post-Ascent Phase, by exploiting the recency threshold

nd the trigger thresholds, an Alternating Ascent (AA) algorithm.

hoice rules for selecting a variable x j to become x k in the AA

lgorithm are discussed in Section 5 followed by the pseudocode

n Section 6 that provides an effective way to implement the

lgorithm.

. Choice rules of exploiting Ev al j (x) and EE j (Q , x)

Customary choice rules to select a variable x j to become x k
nd change its value from x k = x #

k
to x k = 1 − x #

k
can be extended

n the context of the AA algorithm to take advantage of the val-

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

u

c

b

a

d

p

s

i

a

p

o

s

e

a

t

w

M

E

s

b

I

t

fi

s

S

b

E

W

t

w

i

m

l

t

r

v

S

t

R

t

C

I

i

s

S

d

c

C

I

w

0

t

C

a

t

b

c

u

f

p

w

f

v

r

m

v

t

e

c

t

es EE j (Q , x) incorporated in the recency threshold. A good choice

onsists of selecting a variable x k that optimizes simultaneously

oth Ev al j (x) and EE j (Q , x) over the selected candidate list CL . In

 multi-objective optimization problem, the quality of a solution is

etermined by the dominance relation. This bi-objective selection

roblem has not just one “optimal” solution but several “efficient”

olutions that satisfy tradeoffs between EE j (Q , x) and Ev al j (x) . We

dentify three options for doing this, a simple weighting scheme,

 simple cutoff (threshold) scheme and a more advanced cutoff

rocedure using an evaluation tradeoff analysis. The algorithm will

nly use one of these options, hence providing three different ver-

ions of the algorithm. These choice rule options depend on differ-

ntiating two conditions related to the criteria used to determine

n S = and S � = status identified by the candidate list function.

To provide a compact description of the move selection func-

ion, we introduce the following notation. Let f be a scalar vector

ith components f j for j ∈ L . Then we denote

f Max
L = Max

{
f j : j ∈ L

}
ax f

L
= Argmax

{
f j : j ∈ L

}
=

{
j ∈ L : f j = f Max

L

}
.

First, we look for a move that maximizes the two objectives

 v al j (x) and E E j (Q , x) simultaneously. This move, if it exists, corre-

ponds to an ideal decision. Identifying this move is accomplished

y the following instruction

f M ax Ev al
CL ∩ M ax EE

CL � = ∅ then select k ∈ M ax Ev al
CL ∩ M ax EE

CL

If an ideal move is not available, then the method uses one of

he following three options.

Simple Weighted Sum Rule: The evaluation Ev al j (x) is modi-

ed to take in account of the evaluation EE j (Q , x) to produce the

urrogate evaluation S j (Q , x, w) given by

 j (Q , x, w) = Ev al j (x) + w × EE j (Q , x)

EEbase (Q)

The pseudo code of this Simple Weighted Sum Rule is described

ellow:

F unction S impleW eighted S um (CL , w) {

If M ax Ev al
CL ∩ M ax EE

CL � = ∅ then select k ∈ M ax Ev al
CL ∩ M ax EE

CL

Else select k ∈ Argmax { S j (Q , x, w) : j ∈ CL }
Return k

} // End S impleW eighted S um

The normalization of dividing EE j (Q , x) by EEbase (Q) gives 0 ≤
 E j (Q , x) /E E base (Q) ≤ 1 , which makes the calibration of w easier.

eight parameters w 1 for the candidate list CL = N

1 (x) and w 2 for

he candidate list CL = N

2 (x) are differentiated. The weight value

 = w 1 producing S j (Q , x, w) for N

1 (x) will generally be small, as

n performing a tie-breaking function. The value w = w 2 for N

2 (x)

ay also be small, but intuition suggests it may preferably be

arger, perhaps in some instances large enough to cause EE j (Q , x)

o dominate Ev al j (x) . The possibilities for both w 1 and w 2 may

ange, for example, from 0.1 to Ev al Max
CL

the maximum expected

alue for Ev al j (x) .

imple and advanced cutoff rules. The remaining choice rule op-

ions are given by the Simple Cutoff Rule and the Advanced Cutoff

ule, and are preceded by checking a secondary dominance condi-

ion. This is assured by the following instructions

L ∗1 = Argmax
{

Ev al j (x) : EE j (Q , x) ≥ EE Max
CL , j ∈ CL

}
f CL ∗1 � = ∅ then select k ∈ CL ∗1

n the Simple Cutoff and the Advanced Cutoff function. When the

econdary dominance condition is not satisfied (i.e. CL ∗
1

= ∅) the

imple and Advanced Cutoff Rules (which are applied separately in

ifferent versions of the algorithm) are as follows.
1046
Simple Cutoff Rule: This rule select a move from the following

andidate list CL ∗2 , if it is not empty:

L ∗2 = Argmax
{

Ev al j (x) : EE j (Q , x) ≥ Cutof f, j ∈ CL
}

f CL ∗2 � = ∅ then select k ∈ CL ∗2

here Cutof f = F × E E Max
CL

and F is a fraction chosen between

.5 and 0.9 (or more restrictively, between 0.7 and 0.9). In

he special case where the S = status applies (i.e. N

S = (x) � = ∅),
utof f = max (F × E E Max

CL
, T hreshold r) , the Simple Cutoff function is

s follows

F unction SimpleCutof f (CL , F) {

k = 0

If M ax Ev al
CL ∩ M ax EE

CL � = ∅ then select k ∈ M ax Ev al
CL ∩ M ax EE

CL

Else CL ∗1 = Argmax { Ev al j (x) : EE j (Q , x) ≥ E E Max
CL , j ∈ CL }

If CL ∗1 � = ∅ then select k ∈ CL ∗1
Else Cutof f = F × E E Max

CL

If N S
=
(x) � = ∅ then Cutof f = Max (Cutof f, T hreshold r)

CL ∗2 = Argmax { Ev al j (x) : EE j (Q , x) ≥ C utof f, j ∈ C L }
If CL ∗2 � = ∅ then select k ∈ CL ∗2

EndIf

EndIf

Return k

} // End SimpleCutof f

Advanced Cutoff Rule: The Advanced Cutoff Rule is based on

he same Cutof f value but uses a criterion to identify tradeoffs

etween EE j (Q , x) and Ev al j (x) , expressed as

CL ∗1 = Argmax { Ev al j (x) × EE j (Q , x) : EE j (Q , x) ≥ Cutof f, j ∈ CL }
If CL ∗1 � = ∅ then select k ∈ CL ∗1

in the case N 1 (x) � = ∅ , and as

CL ∗2 = Argmax { EE j (Q ,x)

Ev al j (x)
: EE j (Q , x) ≥ Cutof f, j ∈ CL }

If CL ∗2 � = ∅ then select k ∈ CL ∗2
when N 1 (x) = ∅ and Ascent = F alse . The Advanced Cutoff function is

F unction Ad v ancedCutof f (CL , F , Ascent) {

k = 0

If M ax Ev al
CL ∩ M ax EE

CL � = ∅ then select k ∈ M ax Ev al
CL ∩ M ax EE

CL

Else Cutof f = F × E E Max
CL

If N 1 (x) � = ∅ then

If N S
=
(x) � = ∅ then Cutof f = Max (Cutof f, T hreshold r)

CL ∗1 = Argmax { Ev al j (x) × EE j (Q , x) : EE j (Q , x) ≥ Cutof f, j ∈ CL }
If CL ∗1 � = ∅ then select k ∈ CL ∗1
Else If Ascent = F alse then

CL ∗2 = Argmax { EE j (Q ,x)

Ev al j (x)
: EE j (Q , x) ≥ Cutof f, j ∈ CL }

If CL ∗2 � = ∅ then select k ∈ CL ∗2
EndIf

EndIf

EndIf

EndIf

Return k

} // End Ad v ancedCutof f

The analysis underlying the tradeoff choices in the advanced

utoff rule are explained in Appendix 2 . For the move selection

sing the cutoff thresholds, there may be merit in choosing the

raction F larger (for example, closer to 0.5) when N

1 (x) � = ∅ , and

erhaps larger still when N

1 (x) � = ∅ , because in these cases a some-

hat smaller range of x j variables are candidates to be selected

or x k . For example, setting F = 0 . 7 when restricting attention to

ariables with Ev al j (x) > 0 , and setting F = 0 . 5 when additionally

estricting attention to variables satisfying the recency threshold,

ay roughly correspond to setting F = 0 . 9 when considering all

ariables without restriction.

As previously noted, each of these choice rule options gives rise

o a different version of the AA algorithm. Hence, given the param-

ters: candidate list CL , weight w , fraction F , state of AA Ascent and

hoice rule option Choice , the following SelectMov e function returns

he selected move k ∈ CL if it exists and returns 0 otherwise.

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

6

P

A

a

T

t

p

g

fi

t

t

A

c

o

r

P

s

a

n

t

p

a

b

n

E

s

P

t

s

t

c

t

T

f

a

f

P

i

c

t

s

d

0

R

t

t

t

i

A

i

x

r

A

a

s

a

j

p

c

b

x

b

a

v

s

l

i

m

I

w

a

c

i

u

n

r

A

C

F

a
F unction SelectMo v e (CL , w, F , Ascent , Choice) {

Switch (Choice){

Case 1: k = SimpleWeightedSum (CL, w)

Case 2: k = SimpleC utof f (C L, F)

Case 3: k = Ad v anced C utof f (C L, F, Ascent)

}

Return k

} // End SelectMo v e

. General AA algorithm design and pseudocode

An AA algorithm oscillates between the Ascent Phase and the

ost-Ascent Phase which is controlled by the boolean variable

scent = T rue if the state of the AA algorithm is in Ascent Phase

nd Ascent = F alse when the AA algorithm is in Post-Ascent Phase.

he pseudocode that follows is organized to facilitate experimenta-

ion with the ideas for exploiting local optimality described in the

receding sections.

The AA algorithm starts with an initialization phase where all

lobal variables of AA are determined once the parameters are

xed. At each current iteration, a C urrentIt er() procedure is called

o choose a next move k to be selected depending on whether

he search is in the Ascent Phase or the Post-Ascent Phase (i.e.

scent = T rue or F alse). After this current phase, a post update pro-

edure is launched to update the state of search. The pseudo code

f the main AA algorithm may be stated as follows:

Algorithm AA () {

Init italizat ion ()

For Iter = 1 to IterMax do // or until the expiration of a time limit

k = C urrentIt er()

If k > 0 then PostIt erU pdat eMov e (k) // move k is selected

Else PostIt erU pdat eNoMov e () // no move exists, i.e. k = 0

EndFor

} // End AA

The instructions for the three key components of the AA algo-

ithm – the Initialization, the Current Iteration Routine and the

ost Iteration Update – are as follows. To recapitulate, we as-

ume that we start with an initial solution x = 0 , Ascent = T rue

nd we do not keep the best solution found but just its value de-

oted x ∗
0
. The AA algorithm can be easily adjusted to keep also

he best found solution x ∗ during the search. In the algorithms

resented below, x denotes the current solution and we abbrevi-

te the notation of E v al j (x) , E E j (Q , x) , E E base (Q) , T hreshold r (Q)

y referring to E v al j , E E j , E E base , and T hreshold r . Starting with

ull solution x = 0 , this simplifies the initialization of Ev al j , EE j ,

 E base, x 0 , and x ∗0 as described in (Section 2.2 and Section 3.3),

ee Init italizat ion (Q, r, Ascent) algorithm.

The Tabu restrictions required during the Ascent Phase and the

ost-Ascent Phase of the AA algorithm take a simple form where

he tenure is given by setting T enure = Lar ge , where Lar ge repre-

ents a large positive number. This approach is made possible by

he fact that Tabu restrictions will be overruled by the aspiration

riterion and by an S = status, which, together with the trigger

hreshold, implicitly determine the duration of a tabu restriction.

he AA algorithm starts with no variables tabu (i.e. T abuIter(j) = 0

or j = 1 to n) and initializes the record of the 3 most recent vari-

bles x j assigned values in the Ascent Phase. This can be done

or any number of recent variables assigned values in the Ascent

hase (i.e. R 1 = R 2 = R 3 = 0). This memory refresh is also done dur-

ng the search except that a Last move is identified to avoid cy-

ling as in Tabu Search. For this reason, we introduce an impor-

ant convention which introduces a term T abuIter(0) , which is as-

igned a value as T abuIter(Last) when Last = 0 . Likewise, we intro-

uce a term Ev al 0 which is permanently assigned the value Ev al 0 =
 . With these conventions, the AA algorithm calls the following

esetMemory (Last) with Last = 0 in the initialization phase:
1047
Procedure ResetMemory (Last) {

For j = 1 to n do TabuIter(j) = 0

TabuIter(Last) = Iter + Tenure

R 1 = R 2 = R 3 = 0

} // End ResetMemory

These dummy values T abuIter(0) and Ev al 0 save computational

ime for checking valid cases. Our AA algorithm oscillates between

he Ascent Phase and the Post-Ascent Phase which is controlled by

he boolean variable Ascent . Ascent = T rue if the AA algorithm is

n Ascent Phase and Ascent = F alse when AA algorithm is in Post-

scent Phase.

The initialization phase of the AA algorithm starts with an

nitial solution x # with objective value x #
0

, and sets x = x # , x ∗
0

=

0

where x ∗
0

denotes the best known value, and initializes the

ecord of the 3 most recent variables x j assigned values in the

scent Phase. This can be done for any number of recent vari-

bles assigned values in the Ascent Phase (R 1 = R 2 = R 3 = 0). Con-

equently, the initialization phase of the AA algorithm is described

s follows:

Procedure Init ializat ion () {

Set x ∗0 = x # 0 , x = x #

Ev al 0 = 0 , For j = 1 to n do Compute Ev al j for the initial solution with x j = x

Tenure = Large ; Red uced Tenure = min (16 , n/ 12)

R 1 = R 2 = R 3 = 0 , For j = 1 to n do TabuIter(j) = 0

Last = Last S = = 0

E E base = 0 , For j = 1 to n do EE j = 0

T hreshold r = 2 Q−r (2 r − 1)

nS = = 0

ResetMemory (Last)

Ascent = T rue

} // End Init ializat ion

Each iteration of the AA algorithm begins by checking the as-

iration criterion for overriding a Tabu restriction to see whether

hanging the value of x j will yield a value for x 0 (currently given

y x 0 = x # 0) that improves upon the best value x ∗0 , as indicated by

0 + Ev al j (x) > x ∗0 . Hence, when N

A (x) � = ∅ , the method selects a

est move k ∈ Argmax { Ev al j (x) : j ∈ N

A (x) } .

F unction CurrentIter () {

If N A (x) � = ∅ then select k ∈ Argmax { Ev al j : j ∈ N A (x) } ; Return k ;

If N S
=
(x) � = ∅ then k = SelectMov e (N S = (x) , w 1 , F, Ascent, Choice 1) ; Return k ;

If N 1 (x) � = ∅ then k = SelectMov e (N 1 (x) , w 1 , F, Ascent, Choice 1) ; Return k ;

If Ascent = F alse then

If N 2 (x) � = ∅ then k = SelectMov e (N 2 (x) , w 2 , 1 /F, Ascent, Choice 2) ; Return k ;

If N S
� =
(x) � = ∅ then select Last S � = ∈ N S � = (x)

EndIf

Return 0

} // End CurrentIter

The Post Iteration Update PostIt erU pdat eMov e (k) procedure has

s argument the index k of the chosen variable x k to change its

alue . When N

A (x) = ∅ , nS � = includes the count for active Post - S =

tatus. Whenever nS = ≥ T rigger (= Trigger in the current design),

aunch a new ascent even if N

1 (x) � = ∅ , because even if Ev al j > 0

s encountered, possibly the influence of the previous x k assign-

ent could create nS � = ≥ T rigger (by increasing nS � = in the Current

teration Routine). The only exception is if N

S = (x) � = ∅ , since then

e first update x k before considering the possibility of launching

 new ascent. Hence, next checks for N

S = (x) = ∅ as a basis for

hecking if nS � = ≥ T rigger will launch an Ascent before too many

mproving choices are made. Don’t launch new ascent if N

A (x) � = ∅
ntil after updating x k . It would be possible to drop “N

S = (x) = ∅ ”
ext, because this will be checked in the Post Iteration Update

outine. Moreover, if N

A (x) = N

S = (x) = ∅ and nS � = ≥ T rigger then

scent = F alse is implicit here because nS � = only changes in the

urrent Iteration Routine to become greater than 0 when Ascent =

 alse . In addition, no variable should be assigned a value, just

s if k = 0 . In this case, we free all variables from Tabu restric-

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

t

s

t

n

a

U

u

x

t

t

N

L

o

S

w

c

p

T

c

A

o

n

t

p

a

t

t

P

7

A

(

e

a

7

l

b

l

(

w

c

t

i

E

E

e

s

A

E

P

v

t

E

a

e

ions, except for Last = Last S � = by calling ResetMemory (Last) and

etting Ascent = T rue . These updates are done before updating for

he choice of x k , because the x k choice may be different when a

ew ascent is launched as here. Subsequently, launch a new ascent

fter updating x k if nS � = ≥ T rigger.

The PostIt erU pdat eMov e (k) procedure calls the

pdateMov e (k, Ascent) procedure after the flip move k , which

pdates the value of the current solution x 0 , Ev al j for j = 1 to n ,

 k , EE k and also updates the memory when the AA algorithm is in

he Ascent Phase (see Section 2.2 and Section 3.3):

Procedure U pdateMo v e (k) {

x 0 = x 0 + Ev al k
For j = 1 to n do Update Ev al j
x k = 1 − x k
E E k = E E base − EE k

If Ascent = T rue then R 3 = R 2 ; R 2 = R 1 ; R 1 = k

} // End U pdateMo v e

When Ascent = F alse the search is in the Post-Ascent Phase and

he condition nS � = ≥ T rigger allows an ascent to be launched when

A (x) � = ∅ . The condition Ev al Last S = < 0 could be needed because

ast S = might have been recorded on a previous iteration. However,

nly accept Last S = as Last if Ev al Last S = < 0 , as it would be if its Post-

= status still applies; and check for Last S � = on same condition it

ould be preferable to hold Tabu unless it is now profitable to

hange back. Since we are only keeping variables Tabu that are un-

rofitable anyway, it seems we don’t really need to hold anything

abu during an Ascent phase, and this extra fuss is wasted effort.

Procedure PostIt erU pdat eMo v e (k) { // k > 0

If N A (x) = N S
=
(x) = ∅ and nS = ≥ T rigger then

// PA Completed: Launch a new Ascent Phase

ResetMemor y (Last S =) ; Ascent = T r ue

Return ; // Exit the Post Iteration Update

EndIf

U pdateMov e (k)

If Ascent = F alse then

TabuIter(k) = Iter + Tenure

If N S � = � = ∅ then Last S � = = k

If N A � = ∅ or N S � = � = ∅ then nS � = = nS � = + 1

If nS � = ≥ T rigger then // PA Completed: Launch a new Ascent Phase

If Ev al Last
S � = < 0 then Last = Last S � =

ResetMemory (Last) ; Ascent = T rue

EndIf

EndIf

} // End PostIt erU pdat eMo v e

In the PostIt erU pdat eNoMov e () routine, no variable x k could be

hosen to change its value, hence must end an Ascent Phase if

scent = T rue or must begin an Ascent Phase if Ascent = F alse . The

utcome k = 0 is the only way to end an Ascent Phase. Ev al j does

ot need to be updated. Each time a true local optimum is ob-

ained, the PostIt erU pdat eNoMov e procedure calls the U pdateE E ()

rocedure which updates the value of EE j for j = 1 to n , E E base

nd T hreshold r (see Section 2.2 and Section 3.3):

Procedure U pdateEE () {

For j = 1 to n do E E j = 2 Q−1 + 2 −1 E E j
E E base = 2 Q−1 + 2 −1 E E base

T hreshold r = min (E E base, 2 Q−r (2 r − 1))

} // End U pdateEE

The end of Ascent Phase is in two steps: first, free Last from its

abu restriction to complete the ascent to a local optimum, and

hen at the local optimum perform updates for the Post-Ascent

hase when Ascent = F alse .
1048
Procedure PostIt erU pdat eNoMo v e () { // k = 0

If Ascent = T rue then // End Ascent Phase

TabuIter(Last) = 0

If Ev al Last > 0 then // A conditional local optimum is reached

U pdateMov e (Last) ; Last = 0

Else // A true local optimum is obtained, and a PA Phase begins

Ascent = F alse ; nS � = = 0

Last = Last S � = = Last S = = 0

U pdateE E ()

TabuIter(j) = Iter + Red uced Tenure for j ∈ { R 1 , R 2 , R 3 }
EndIf

Else // Launch a new Ascent Phase

If nS � = > 0 and Ev al Last
S � = < 0 then Last = Last S � =

Else If nS = > 0 and Ev al Last S = < 0 then Last = Last S =

ResetMemory (Last) ; Ascent = T rue

EndIf

} // End PostIt erU pdat eNoMo v e

. Computational results of the AA algorithm on QUBO

This section presents computational results of applying the

A algorithm to the quadratic unconstrained binary optimization

QUBO) problem. We start by providing an efficient 1-flip move

valuation and describing input and output parameters of the AA

lgorithm.

.1. QUBO problem and its 1-flip move evaluation

The quadratic unconstrained binary optimization (QUBO) prob-

em is an NP-hard combinatorial optimization problem introduced

y Hammer and Rudeanu (1968), which can be expressed as fol-

ows:

QUBO)

{
maximize x 0 = xAx

s.t. x ∈ { 0 , 1 } n
here A = (a i j) is a symmetric matrix of dimension n × n where

omponent a i j are real values for i, j ∈ N = { 1 , . . . , n } . The evalua-

ion Ev al j (x) for flipping variable x j of x that identifies the change

n the objective function when x j changes its value, i.e.

v al j (x) = x ′ 0 − x 0 = x ′ Ax ′ − xAx

The move evaluation Ev al j (x) can alternatively be expressed as

v al j (x) =

(
1 − 2 x j

)(
A

j + A j

)
x + a j j

The last equation is obtained since (1 − 2 x j)
2 = 1 and a j j =

j Ae j where A

j and A j refer to column and row j of matrix A re-

pectively. If the input matrix A is a symmetric matrix the term

j + A j is equal to 2 A

j = 2 A j , hence

v al j (x) = 2

(
1 − 2 x j

)
A j x + a j j .

roposition 2. Let x ′ be the solution obtained from x by flipping the

ariable x k , i.e. x ′ = x + (1 − 2 x k) e
k . Then the update of the evalua-

ion Ev al j (x
′) can be computed using the rule

 v al j
(
x ′
)

=

⎧ ⎨

⎩

−E v al j (x) i f j = k

E v al j (x) + a ′
jk

i f j � = k and x j = x k

E v al j (x) − a ′
jk

i f j � = k and x j � = x k

where

′
jk =

{

a jk i f j < k
a j j i f j = k
a k j i f j > k

Note that if the starting solution is null, i.e. x = 0 , the initial

valuation can be computed simply as follows Ev al j (0) = a ′
j j

.

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

Table 2

Options for choice rules.

Choice 1 Choice 2

1 Weighted_Sum_Rule (w 1) Weighted_Sum_Rule (w 2)

2 Simple_Cutoff_Rule (F) Simple_Cutoff_Rule (1 /F)

3 Advanced_Cutoff_Rule (F) Advanced_Cutoff_Rule (1 /F)

v

w

G

s

L

2

c

f

t

w

s

2

a

j

u

t

l

(

r

y

o

h

a

f

7

w

M

(

t

C

d

a

t

e

Table 3

Parameters types and ranges for the IRACE experiments.

Name Type Range

w 1 r (0.1, 1)

w 2 r (0.1, 100)

F r (0.7, 0.9)

Q i (15, 30)

r i (10, 20)

C1 c (1, 2, 3)

C2 c (1, 2, 3)

T rigger i (5, 9)

w

g

r

t

b

i

t

s

s

t

a

m

fi

F

w

r

t

p

a

c

7

t

s

C

3

t

(

t

R

9

d

s

{
c

T

5

A

w

a

p

t

i

p

k

v

This efficient means of evaluating 1-flip moves is an improved

ersion of the procedure proposed by Glover and Hao (2010),

hich is used in a variety of different algorithms for QUBO (e.g.

lover, Lü, & Hao (2010), Hanafi, Rebai & Vasquez (2013)).

Experiments are carried out on two sets of benchmark in-

tances, where the first set is composed of 60 instances from OR-

ibrary with a density of 0.1 and the second set is composed of

1 instances from Palubeckis with densities from 0.5 to 1.0. Ac-

ording to the instance size, we further divide the instances into

our subsets. The ‘ small ’ set is composed of 20 instances with 50

o 100 variables. The ‘ medium ’ set is composed of 20 instances

ith 250 to 500 variables. The ‘midsize’ set is composed of 20 in-

tances with 10 0 0 to 250 0 variables. The ‘ large ’ set is composed of

1 instances with 30 0 0 to 70 0 0 variables. The OR-Library instances

re available on the website http://people.brunel.ac.uk/ ∼mastjjb/

eb/orlib/bqpinfo.html and the Palubeckis instances are available

pon request since the previous website is not available. An op-

imal value for small instances is obtained by solving the standard

inearization (see Glover & Woolsey (1974), Billionnet & Calmels

1996)) where each quadratic term in the objective function, x i x j , is

eplaced by a new binary variable, y i j , and adding new constraints

 i j ≤ x i , y i j ≤ x j , and x i + x j ≤ 1 + y i j to require that y i j = 1 if and

nly if x i = x j = 1 . Using Cplex software with 1 a time limit of

our, optimal values are known for n ≤ 250 , except for QUBO 250 , 6

nd QUBO 250 , 8 . Note that the best known values x ∗∗
0

are available

or those instances.

.2. Input and output parameters of the AA algorithm

The input parameters of the AA algorithm are:

- An initial solution x # with objective value x #
0

. In our experi-

ments, the starting solution is x # = 0 .

- Number of recent local optima: Q (the maximum value of

Q depends on the largest integer or real value that can be

supported by the computer and/or software used). For sim-

plicity, we choose Q = 30 .

- Number of most recent local optima: r < Q , for T hreshold r
(e.g., r = 8 to 20).

- Trigger thresholds: T rigger (e.g. from 5 to 9).

- Base of Exponential Extrapolation α > 0 . For simplicity, we

choose α = 2 .

- Weights for the Sum Rule: w 1 and w 2 for moves in N

1 (x)

and N

2 (x) : range from 0.1 to 100.

- Fraction of E E Max
CL

used for cutoff: F e.g., from 0.7 to 0.9.

- Memories: T enure = Large ; Red uced T enure = min (16 , n/ 12) .

- Options C hoice 1 , C hoice 2 ∈ { 1 , 2 , 3 } for N

1 (x) and N

2 (x) , re-

spectively, as identified in Table 2 following.

The AA algorithm also uses a common stopping criterion shared

ith many other heuristics: the maximum number of iterations

axIter which can be represented as a multiple of dimension n

i.e. MaxIter ∈ { 50 n, . . . , 200 n }) or the time limit (i.e. a multiple of

he time of uploading an instance of QUBO). For simplicity, we use

 1 and C 2 to denote C hoice 1 and C hoice 2 , respectively, and Cab to

enote the combined choice C1 = a and C2 = b. We use the IRACE

utomatic tuning tool to determine the best parameter settings for

he AA algorithm. Table 3 shows the specified range of the param-

ters “w , w , F , Q, r, C 1 , C 2 , T rigger” for the IRACE experiments,
1 2

1049
here type “r”, “i” and “c” denote real number, integer and cate-

ory respectively. For the types “r” and “i”, a pair of numbers rep-

esents the minimum and maximum values of the parameter set-

ings, where we set the precision to 0.1. The maximum experiment

udget is set to 10,0 0 0.

During the IRACE experiments, we observe that when all 81

nstances are included to determine the best parameter settings,

he overall computational results are not as good as when the in-

tances are divided into two categories, one consisting of 50 in-

tances with the number of variables ranging from 50 to 10 0 0 and

he other consisting of 31 instances with no less than 2500 vari-

bles. Hence, we report the two best parameter settings recom-

ended from IRACE for each category, which respectively for the

rst 50 instances and the last 31 instances are: w 1 = 0 . 7 , w 2 = 1 ,

 = 0 . 9 , Q = 24 , r = 12 , C1 = 2 , C2 = 1 , T rigger = 5 and w 1 = 0 . 4 ,

 2 = 0 . 6 , F = 0 . 9 , Q = 17 , r = 11 , C1 = 2 , C2 = 1 , T rigger = 8 . By

eference to these two settings, we observe that C1 always receives

he value 2 and C2 always receives the value 1, suggesting that the

referred options for the choice rules are the Simple_Cutoff_Rule

nd the Weighted_Sum_Rule. As the number of variables is in-

reased, we note that the value of T r igger should be larger.

.3. Computational experimentation

In this section we assess the behavior of the AA algorithm on

he 61 instances from the OR-Library and the 21 Palubeckis in-

tances. Algorithms described in this paper were implemented in

 ++ and compiled using GNU GCC 10.2.0 with -O3 flag on a Linux

.10.0–862.el7.x86_64 operating system. The computer used for

he experiments is equipped with a Intel(R) Xeon(R) Gold 6226R

2.90 GHz) processor. All CPU times reported in seconds were ob-

ained using the clock function and the CLOCKS_PER_SEC macro.

elevant options of C hoice 1 , C hoice 2 ∈ { 1 , 2 , 3 } . In total we have

 options (C 1 , C 2) ∈ { 1 , 2 , 3 } 2 where choice C1 is used for can-

idate list N

1 and choice C2 for N

2 . The computational re-

ults show that only 4 options are relevant where (C 1 , C 2) ∈

 (1 , 1) , (1 , 2) , (2 , 1) , (3 , 1) } on the 81 tested instances. For each

lass C of instances Small, Medium, Midsize, Large, we report in

able 3 the computational results obtained by fixing MaxIter =

0 × n . The quality of the performance of each execution of the

A algorithm on a given instance I is computed as Gap I =

x ∗∗
0

−x ∗
0

x ∗∗
0

,

here x ∗∗
0

denotes the best known values reported in the literature

nd x ∗
0

denotes the best value returned by the AA algorithm. We

rovide the average values Gap% = 10 2 × Gap a v g where Gap a v g = ∑

I∈ C Gap I | C| and the number # Best of instances I where Gap I = 0 (i.e.

he AA algorithm reaches the best known value). The column Best

ndicates the best result over the 4 options of the AA algorithm.

From Table 4 , we observe that the options C 11 , C 21 and C31

erform similarly well by obtaining percentage gaps to the best

nown values of 0.0190%, 0.0147% and 0.0152% and matching these

alues for 48, 51 and 53 instances, respectively, collectively reach-

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

Fig. 1. Comparison of 4 options of AA algorithm on all instances sets.

Table 4

Comparison of 4 options of AA algorithm.

C11 C12 C21 C31 Best

Small Gap% 0 0.9519 0 0 0

20 # Best 20 15 20 20 20

Medium Gap% 0.0231 0.7453 0.0177 0.0185 0.0108

20 # Best 11 1 14 12 15

Midsize Gap% 0.0194 0.5347 0.0087 0.0092 0.0077

20 # Best 9 0 12 12 13

Large Gap% 0.0328 0.8155 0.0315 0.0322 0.0214

21 # Best 8 0 5 9 11

All Gap% 0.0190 0.7625 0.0147 0.0152 0.0101

81 # Best 48 16 51 53 59

i

f

p

f

t

i

b

a

l

c

A

t

s

t

t

r

o

s

t

C

s

t

A

i

t

t

A

r

e

I

t

l

1

(

0

l

i

1

l

b

f

ng 59 best known values out of 81 instances. The option C12 per-

orms significantly worse than the other 3 options. The option C21

erforms better than the other 3 options in terms of Gap and # Best

or medium and midsize instances of the QUBO problem, and for

he small instances, C21 performs as well as C11 and C31 by find-

ng all the best known values. For the large instances, C31 performs

etter by obtaining the best known values but C21 obtains the best

verage gap. The overall observation that setting C2 to 1 always

eads to better results indicates that the AA algorithm is signifi-

antly affected by C2 and relatively insensitive to C1 .

Furthermore, we show in Fig. 1 the comparison results of the

A algorithm under each option when solving each instance from

he small, medium, midsize and large instances. The x-axis repre-

ents each instance and the y-axis denotes the percentage gap to

he best known value. If the percentage gap of a choice option is 0,

he y-axis is not displayed. From Fig. 1 , we observe that C12 fails to
1050
each the best known values for 5 small instances, while the other

ptions (C 11 , C 12 , C 31) can reach these values for all 20 small in-

tances. For solving each instance from the other sets of instances,

he percentage gap of C12 is much larger than that of C 11 , C 21 and

 31 . The choice C 12 only finds the best known value for the in-

tance 5 (QUBO250.5) while the options C 11 , C 21 and C 31 obtain

he best known values for most instances.

A algorithm behavior: time and iteration. Table 5 presents more

nformation about the AA algorithm behavior. Column T ime gives

he average CPU time needed to execute the Max Iter = 50 n itera-

ions over each set of instances under each choice option of the

A algorithm. Column T ∗ corresponds to the average CPU time to

each the best solution found by a run on the AA algorithm over

ach set of instances. Column % I corresponds to 10 2 × Iter ∗
Max Iter

, where

ter ∗ denotes the iteration that produced the best value. Looking at

he option C21 , for instance, the small (resp. medium, midsize and

arge) class requires on average less than 0.01 (resp. 0.12, 2.71 and

6.69) seconds for each run. The best solutions are found for small

resp. medium, midsize and large) instances in less than 0.01 (resp.

.06, 1.25 and 13.05) seconds.

The CPU time increases as the dimension n of the QUBO prob-

em increases. However, there is no general behavior regarding the

teration or time when the best value is reached. As the value % I =
00 × Iter ∗

Max Iter
gets closer to 100%, the more frequently the best so-

ution is found in the later iterations. For example, C11 reaches the

est objective values at % I = 58% for small instances and % I = 24%

or medium instances. By comparison, C12 reaches the best objec-

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

Table 5

AA Algorithm Behavior: CPU time in seconds and iterations.

Instances

C11 C12 C21 C31

T ime T ∗ % I T ime T ∗ % I T ime T ∗ % I T ime T ∗ % I

Small 0 0 58% 0 0 80% 0 0 53% 0 0 53%

Medium 0.12 0.03 24% 0.08 0.08 95% 0.12 0.06 49% 0.12 0.03 33%

Midsize 2.70 1.17 51% 2.03 1.30 71% 2.71 1.25 53% 2.71 1.31 60%

Large 16.68 11.34 71% 13.13 11.56 86% 16.69 13.05 76% 16.67 13.99 79%

t

m

8

l

r

c

t

t

l

m

i

o

p

s

d

e

t

b

d

c

D

v

A

h

s

(

t

A

d

o

n

E

r

T

c

E

E

�

H

∑
q

t

P

P

f
ive values later at % I = 80% for small instances and % I = 95% for

edium instances.

. Concluding observations and future steps

The departure from the classical approaches for responding to

ocal optimality in the strategies of the AA algorithm open a va-

iety of possibilities for exploration. Exponential Extrapolation EE j
ompresses Q recent local optima into a single vector. Moreover,

he recency threshold EE j ≥ T hreshold r is new aspiration criterion

hat prevents duplication from occurring among the r most recent

ocal optima. The organization of the pseudocode is designed to

ake these possibilities visible and easy to pursue. Questions that

nvite investigation concern the determination of preferred thresh-

ld parameters and the choice of values other than 2 for the ex-

onential extrapolation parameter α (particularly in the “mixed α
trategy” discussed in Appendix 1). Relevant questions include:

• What are the tradeoffs between r and T rigger of the recency

and trigger thresholds?
• Does an α value less than 2 become more effective as r or

T rigger becomes larger?
• How can the ability to start the AA algorithm with any so-

lution x # be exploited most effectively in a diversification

strategy?
• Do answers depend on the state of the search, e.g., on how

many iterations have elapsed or on how many Ascent and

Post-Ascent phases have been performed?
• Are there advantages to joining path relinking with the AA

algorithm?

Exploring variants of the AA algorithm that are tailored for

ifferent classes of problems likewise presents an appealing av-

nue for future research. The computational results for applying

his first version of the AA algorithm to quadratic unconstrained

inary optimization (QUBO) problems with up to 70 0 0 variables

emonstrate its effectiveness in terms of both solution quality and

omputational effort. More advanced AA algorithms, including a

ouble-Pass AA Algorithm and an AA Algorithm with dynamic di-

ersification strategies, will be examined in a sequel.

cknowledgment

We thank the referees for the suggestive comments which

elped us to improve the paper quality. This work was partially

upported by the National Natural Science Foundation of China

No. 71971172) and the Fundamental Research Funds for the Cen-

ral Universities (No. D50 0 0210834).

ppendix 1. Implications of the recency threshold for using

ifferent α values

We begin by reviewing the meaning of the more general form

f recency threshold EE j (Q , x) ≥ T hreshold r (Q) of (4) when α is

ot restricted to α = 2 . Rewriting (3) with α replacing 2 gives
1051
E j (Q , x, α) =

Q ∑

q =1

αq −1
(
1 −

∣∣x j − x q
j

∣∣). (3a)

Then the corresponding form the recency threshold of (4) for

 ∈ { 1 , . . . , Q } becomes

 hreshold r (Q , α) =

r ∑

q =1

αQ−q =

{
αQ −αQ−r

α−1
i f α � = 1

r i f α = 1

(3.1a)

We call the binary vector V j (Q , r, x, α) = (x Q
j
, x Q−1

j
, . . . , x 1

j
) ac-

eptable if it satisfies the recency threshold

E j (Q , x, α) ≥ T hreshold r (Q , α) . (4a)

First observe that EE j (Q , x, α) can be expressed as follows

E j (Q , x, α) = T hreshold Q (Q , α) −
Q ∑

q =1

αq −1
∣∣x j − x q

j

∣∣. (3

′ a)

Moreover, by calculus, we have

r (Q , α) = T hreshold Q (Q , α) − T hreshold r (Q , α)

=

{
αQ−r −1
α−1

i f α � = 1

Q − r i f α = 1

ence the recency threshold of (4 α) can rewritten as

Q

 =1

αq −1
∣∣x j − x q

j

∣∣ ≤ �r (Q , α) . (4

∗a)

Let x #
j

denote the current value for x j , the following describes

he nature of the acceptable vectors depending on the value of α.

roposition 1.

(a) For r = Q and any α, the vector V j (Q , Q, x, α) =

(x #
j
, x #

j
, . . . , x #

j
) is the single acceptable vector, i.e. ∑ Q

q =1
| x j − x

q
j
| = 0 .

(b) For α = 1 , any binary vector V j (Q , r, x, 1) is an acceptable

vector, such that

Q ∑

q =1

∣∣x j − x q
j

∣∣ ≤ Q − r (4

∗∗a)

(c) For α � = 1 , any vector V j (Q , r, x, α) such that x #
j

= x
q
j

for all q ∈ { Q, . . . , Q − r } is an acceptable vector, i.e. ∑ Q
q = r | x j − x

q
j
| = 0 .

(d) For α ≥ 2 , any vector V j (Q , r, x, α) such that x #
j

� = x s
j

for

a given s ∈ { Q, . . . , Q − r } is an unacceptable vector, i.e. ∑ Q
q = r | x j − x

q
j
| ≥ 1 .

(e) For 0 < α < 2 , there exist vectors V j (Q , r, x, α) such that

x #
j

� = x
q
j

for a given q ∈ { Q, . . . , Q − r } which is an acceptable

vector, i.e.
∑ Q

q = r | x j − x
q
j
| ≥ 1 .

roof. The statements a) and b) is trivial and are deduced directly

rom (4 ∗α). It is easy to see from (4 ∗α) that if x #
j

= x
q
j

for all

http://dx.doi.org/10.13039/501100001809

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

q ∑
m

t

α

α

w

α
f

n

1

b

t

{

a

�

t

f

V

V

V

o

V

i

∑
q

W

n

A

l

D

w

n

E

(

2

V

o

w

t

f

α

V

o

 ∈ { Q, . . . , Q − r } in a vector V j (Q , x, α) then

∑ Q
q =1

αq −1 | x j − x
q
j
| =

 Q−r
q =1

αq −1 | x j − x
q
j
| ≤ ∑ Q−r

q =1
αq −1 =

αQ−r −1
α−1 . This validates the state-

ent c). Now assume α ≥ 2 and there exists s ∈ { Q, . . . , Q − r } such

hat x #
j

� = x s
j
. Then an acceptable vector V j (Q , x, α) must satisfy

Q−s ≤
Q ∑

q =1

αq −1
∣∣x j − x q

j

∣∣ ≤ αQ−r − 1

α − 1

This is equivalent to the inequality

Q−r
(
1 − αr−s (α − 1)

)
≥ 1

hich is impossible for all α ≥ 2 and s ∈ { Q, . . . , Q − r } since
r−s (α − 1) ≥ 2 . This completes the proof of the statement d). The

ollowing example will show the validity of statement e). �
Let a αr denote the number of acceptable vectors and a + αr de-

ote the number of acceptable vectors such that
∑ Q

q = r | x j − x
q
j
| ≥

 . Observe that a αr − a + αr = 2 r which corresponds to the num-

er of acceptable vectors such that
∑ Q

q = r | x j − x
q
j
| = 0 . For Q = 7 ,

he following table shows the values of a αr and a + αr where α ∈

 2 . 0 , 1 . 9 , . . . , 0 . 2 , 0 . 1 } and r ∈ { 1 , 2 , . . . , Q − 1 } .
α a α1 a + α1

a α2 a + α2
a α3 a + α3

a α4 a + α4
a α5 a + α5

a α6 a + α6

2.0 64 0 32 0 16 0 8 0 4 0 2 0

1.9 69 5 34 2 17 1 8 0 4 0 2 0

1.8 74 10 37 5 18 2 9 1 4 0 2 0

1.7 79 15 39 7 19 3 9 1 4 0 2 0

1.6 85 21 42 10 21 5 10 2 5 1 2 0

1.5 91 27 47 15 22 6 10 2 5 1 2 0

1.4 100 36 56 24 26 10 12 4 5 1 2 0

1.3 109 45 69 37 34 18 15 7 6 2 2 0

1.2 116 52 82 50 44 28 19 11 7 3 2 0

1.1 121 57 99 67 63 47 29 21 9 5 2 0

1.0 127 63 120 88 99 83 64 56 29 25 8 6

0.9 127 63 120 88 101 85 68 60 31 27 8 6

0.8 127 63 123 91 113 97 91 83 55 51 17 15

0.7 127 63 124 92 117 101 103 95 74 70 31 29

0.6 127 63 125 93 120 104 110 102 89 85 48 46

0.5 127 63 125 93 121 105 113 105 97 93 65 63

0.4 127 63 125 93 121 105 113 105 97 93 65 63

0.3 127 63 125 93 121 105 113 105 97 93 65 63

0.2 127 63 125 93 121 105 113 105 97 93 65 63

0.1 128 64 127 95 123 107 115 107 99 95 67 65

The following table gives weights αq for q ∈ { Q − 1 = 6 , . . . , 0 }
nd α ∈ { 2 . 0 , 1 . 9 , . . . , 0 . 2 , 0 . 1 } . The last two columns correspond to

r (Q , α) and T hreshold r (Q , α) respectively for fixed r = 3 .

α 6 5 4 3 2 1 0 �3 (Q , α) T hreshold 3 (Q , α)

2 64 32 16 8 4 2 1 15 112

1.9 47.045881 24.76099 13.032 6.859 3.61 1.9 1 13.369 84.83897

1.8 34.012224 18.89568 10.498 5.832 3.24 1.8 1 11.872 63.4055

1.7 24.137569 14.19857 8.3521 4.913 2.89 1.7 1 10.503 46.68824

1.6 16.777216 10.48576 6.5536 4.096 2.56 1.6 1 9.256 33.81658

1.5 11.390625 7.59375 5.0625 3.375 2.25 1.5 1 8.125 24.04688

1.4 7.529536 5.37824 3.8416 2.744 1.96 1.4 1 7.104 16.74938

1.3 4.826809 3.71293 2.8561 2.197 1.69 1.3 1 6.187 11.39584

1.2 2.985984 2.48832 2.0736 1.728 1.44 1.2 1 5.368 7.547904

1.1 1.771561 1.61051 1.4641 1.331 1.21 1.1 1 4.641 4.846171

1 1 1 1 1 1 1 1 4 3

0.9 0.531441 0.59049 0.6561 0.729 0.81 0.9 1 3.439 1.778031

0.8 0.262144 0.32768 0.4096 0.512 0.64 0.8 1 2.952 0.999424

0.7 0.117649 0.16807 0.2401 0.343 0.49 0.7 1 2.533 0.525819

0.6 0.046656 0.07776 0.1296 0.216 0.36 0.6 1 2.176 0.254016

0.5 0.015625 0.03125 0.0625 0.125 0.25 0.5 1 1.875 0.109375

0.4 0.004096 0.01024 0.0256 0.064 0.16 0.4 1 1.624 0.039936

0.3 0.0 0 0729 0.00243 0.0081 0.027 0.09 0.3 1 1.417 0.011259

0.2 6.4E-05 0.0 0 032 0.0016 0.008 0.04 0.2 1 1.248 0.001984

0.1 1E-06 1E-05 1E-04 1E-03 0.01 0.1 1 1.111 0.0 0 0111

To describe the next sets of acceptable vectors as a function of

he value α, we associate to an acceptable vector V j (Q , r, x, α) the

ollowing binary vector of dimension Q

˜
 j (Q , r, x, α) =

(∣∣x # j − x Q
j

∣∣, ∣∣x # j − x Q−1
j

∣∣, . . . , ∣∣x # j − x 1 j

∣∣).

e

1052
In other terms, each binary component q of ˜ V j (Q , x) is

˜

q
j (Q , r, x, α) =

{
0 i f x #

j
= x q

j

1 i f x #
j

� = x q
j

This establishes a one-one correspondence between vectors

 j (Q , r, x, α) and

˜ V j (Q , r, x, α) . For a given vector ˜ V j (Q , r, x, α) , we

btain a vector V j (Q , r, x, α) such that

q
j (Q , r, x, α) =

{
x #

j
i f ˜ V

q
j (Q , r, x, α) = 0

1 − x #
j

i f ˜ V

q
j (Q , r, x, α) = 1

Hence, we call the binary vector ˜ V j (Q , r, x, α) acceptable if it sat-

sfies the recency threshold

Q

 =1

αq −1 ˜ V

q
j (Q , r, x, α) ≤

{
αQ−r −1
α−1

i f α � = 1

Q − r i f α = 1

. (4

∗∗a)

Let A j (Q , r, x, α) be the set of acceptable vectors ˜ V j (Q , r, x, α) .

e observe for Q = 7 , and r = 3 that the sets A j (Q , r, x, α) are

ested, i.e. for 0 < α < α + ε ≤ 2 , we have

 j (Q , r, x, α) ⊆ A j (Q , r, x, α + ε)

Therefore, let # denote the option of either # = 0 or 1. The fol-

owing table provides the difference set

 j (Q , r, x, α) = A j (Q , r, x, α + ε) − A j (Q , r, x, α)

ith ε = 0 . 1 . To reduce the size of the table, we use the following

otation

 r,k =

{

y ∈ { 0 , 1 } Q :
Q ∑

i = r
y i = k

}

.

Note that A j (Q , r, x, 2) = E r, 0 , hence A j (Q , r, x, 1 . 9) =

 0 , 0 , 0 , 0 , 1 , 0 , 0) + A j (Q , r, x, 2) .

α | D j (Q , r, x, α) | D j (Q , r, x, α)

1.9 1 (0,0,0,0,1,0,0)

1.8 1 (1,0,0,0,1,0,0)

1.7 1 (0,1,0,0,1,0,0)

1.6 2 (0,0,#,0,1,0,0)

1.5 1 (0,0,0,0,0,1,0)

1.4 4 (0,0,0,1,1,0,0) + (#,1-#,0,0,0,1,0) + (1,0,1,0,1,0,0)

1.3 8 (#,0,0,0,0,0,1) + (0,0,#,1-#,0,1,0) + (0,1,0,0,0,0,1) +
(0,1,1,0,1,0,0) + (1,0,0,1,1,0,0) + (1,1,0,0,0,1,0)

1.2 10 (0,0,0,0,1,#,1-#) + (0,0,#,1-#,0,0,1) + (0,#,1-#,1,1,0,0) +
(0,1,1,0,0,1,0) + (1,0,#,1-#,0,1,0) + (1,1,0,0,0,0,1)

1.0 19 (0,0,0,0,0,1,1) + (0,0,0,1,1,#,1-#) + (#,1-#,1,0,0,0,1) +
(E 7 , 3 ∩ (E 3 , 1 – (0,#,1-#,1,1,0,0)))

0.9 36 (0,0,0,#,1-#,1,1) + E 7 , 4 – (1,1,1,1,0,0,0)

0.8 2 (0,#,1-#,1,1,1,1)

0.7 12 (0,1,1,1,1,1,1) + E 7 , 5 − E 3 , 1 − E 3 , 3 – (1,1,0,1,1,#,1-#)

0.6 4 (1,0,1,1,1,1,1) + (1,1,0,1,1,#,1-#) + (1,1,1,0,0,1,1)

0.5 3 (1,1,0,1,1,1,1) + (1,1,1,0,1,#,1-#)

0.4–2 ∅
0.1 2 (1,1,1,1,0,#,1)

First, note that the only acceptable V j (Q , r, x, α) vectors for α =

 have the form

 j (Q , r, x, 2) =

(
x # j , x

j , x

j , # , # , # , #

)
This means that x j = x #

j
in each of the 3 most recent local

ptima x Q , x Q−1 and x Q−1 (i.e., x Q
j

= x #
j
, x Q−1

j
= x #

j
and x Q−2

j
= x #

j
),

hile x j = x #
j

and x j = 1 − x #
j
are both possible in earlier local op-

ima x Q−3 to x 1 . Requiring EE j (Q , x, α) ≥ T hreshold r (Q , α) there-

ore compels x j = x #
j

in the 3 most recent local optima when

= 2 . When α < 2 , other V j (Q , r, x, α) vectors in addition to

 j (Q , r, x, 2) = (x #
j
, x #

j
, x #

j
, # , # , # , #) can satisfy the recency thresh-

ld. Consequently, in some cases x j = x #
j

may not be required for

ach of the 3 most recent local optima.

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

A

(

(

(

(

a

t

T

m

x

u

w

f

w

i

a

x

t

b

w

o

t

w

i

t

t

c

w

v

t

(

d

(

t

o

b

n

c

o

v

b

i

g

T

V

c

E

a

E

e

t

F

u

t

s

2

q

A

“

E

r

E

w

E

T

i

w

m

a

E

t

x

t

E

A

b

a

E

f

E

A

g

s

t

cceptable V j (Q , r, x, α) vectors for α = 2 , 1 . 7 and 1.5

For α = 2 : (x #
j
, x #

j
, x #

j
, # , # , # , #)

For α = 1 . 7 : (x #
j
, x #

j
, x #

j
, # , # , # , #) ,

 x #
j
, x #

j
, 1 − x #

j
, x #

j
, x #

j
, x #

j
, #) , (x #

j
, x #

j
, 1 − x #

j
, x #

j
, x #

j
, 1 − x #

j
, x #

j
) ,

3 more options than for α = 2 , accounting for # = 0 or 1)

For α = 1 . 5 : (x #
j
, x #

j
, x #

j
, # , # , # , #) , (x #

j
, x #

j
, 1 − x #

j
, x #

j
, x #

j
, # , #) ,

 x #
j
, x #

j
, 1 − x #

j
, x #

j
, 1 − x #

j
, 1 − x #

j
, 1 − x #

j
) ,

 x #
j
, 1 − x #

j
, x #

j
, x #

j
, x #

j
, x #

j
, x #

j
) , (6 more options than for α = 2 ,

ccounting for # = 0 or 1)

To further see the relevance of these differences, recall

hat Strategy S = uses the recency threshold EE j (Q , x, α) ≥
 hreshold r (Q , α) when the x j = x #

j
in the most recent local opti-

um (x Q
j

= x #
j

in x Q), and we want to decide whether to change

 j to give x j = 1 − x #
j

(under conditions where this change is eval-

ated to improve the current solution). As previously emphasized,

hen α = 2 , changing x j to give x j = 1 − x #
j

causes x j to take a dif-

erent value than in the 3 most recent local optima, and hence we

ill not duplicate any of these local optima as long as x j retains

ts new value of 1 − x #
j
.

When α = 1 . 7 above, the solutions (x #
j
, x #

j
, 1 − x #

j
, x #

j
, x #

j
, x #

j
, #)

nd (x #
j
, x #

j
, 1 − x #

j
, x #

j
, x #

j
, 1 − x #

j
, x #

j
) show that changing x j = x #

j
to

 j = 1 − x #
j

would cause the new solution to have a different value

han in the two most recent local optima (where x Q
j

= x Q−1
j

= x #
j
),

ut there are three cases where changing x j = x #
j

to x j = 1 − x #
j

ould yield the same x j value as in the third most recent local

ptimum (where x Q−2
j

= 1 − x #
j

in these solutions). Consequently,

here would be a possibility that changing x j = x #
j

to x j = 1 − x #
j

ould permit the third most recent local optimum to be revis-

ted. This possibility might not be large, considering that most of

he local optima avoided by α = 1 . 7 are represented by the solu-

ions (x #
j
, x #

j
, x #

j
, # , # , # , #) . The risk of revisiting the rth most re-

ent solution would also clearly have a smaller impact if r is some-

hat greater than 3. The risk would further be diminished if other

ariables x j likewise satisfied the recency threshold, since each of

hese instances would mostly avoid the solutions represented by

 x #
j
, x #

j
, x #

j
, # , # , # , #) .

The case for α = 1 . 5 shows this smaller α value poses ad-

itional risks beyond α = 1 . 7 of revisiting solutions other than

 x #
j
, x #

j
, x #

j
, # , # , # , #) . One of these involves a risk of duplicating

he second most recent local optimum. (Since this solution is the

ne indexed x r−1 , the significance of this risk is not very great as r

ecomes larger.)

In all of these cases, the risk may be additionally reduced as the

umber of moves away from the most recent local optimum in-

reases, since this produces a chance that the ascent to a new local

ptimum would be launched from a point farther away from pre-

ious local optima. However, greater assurance would be provided

y the trigger threshold that postpones the Ascent Phase until an

ncreased number of different x k variables are identified by Strate-

ies S = and S � = whose V k (Q , r, x, α) vectors satisfy EE k (Q , x, α) ≥
 hreshold r (Q , α) .

As in the case of α = 2 , it is not necessary to record these

 k (Q , r, x, α) vectors, since the simple update of E E 1
j
(Q) for all j

an be used with the general form of (5) where α replaces 2; i.e.,

 E 1 j (Q) = αQ−1 x Q
j

+ E E 1 j (Q) /α

nd

 E base (Q) = αQ−1 + E E base (Q) /α.

p

1053
By these observations it is clear that there may be merit in

xploring the use of α values other than α = 2 when exponen-

ial extrapolation is embedded in an adaptive memory strategy.

or example, the preceding examples show that smaller α val-

es can avoid revisiting some local optima beyond the first r, and

his might be additionally exploited by choosing larger r values for

maller α values. The chief appeal of using an α value less than

 is that it allows greater latitude in the choice of variables that

ualify for launching a new Ascent Phase by Strategy S = or S � = .

 Mixed α Strategy

When selecting an α value less than 2, it is desirable to use a

mixed α strategy” where the first term of the sequence

 E 1 j (Q) =

Q ∑

q =1

αq −1 x q
j

eplaces αq −1 x
q
j

by 2 q −1 x
q
j

to give the mixed sequence

 E 1 j (Q) =

Q ∑

q =1

2

q −1 x q
j

hich similarly gives

 E base (Q) =

Q ∑

q =1

2

q −1

 hreshold r (Q) =

r ∑

q =1

2

Q−q .

The reason for making the last coefficient in this sequence 2 Q−1

nstead of αQ−1 is to assure that satisfying the recency threshold

ill always imply that a variable cannot duplicate its value in the

ost recent solution x Q and additionally yield 2 Q−1 >

∑ Q−1
q =1

αq −1 ,

s in the case where α = 2 . This latter outcome allows us to update

 E j (Q , x) , E E base (Q) and T hreshold r by a slight generalization of

he rule for the case where α = 2 , without having to save the value

Q
j

. We won’t go through the full algebraic derivation but identify

he key changes in the formulas (5.23) (5.24 and (5.3) for updating

E j (Q , x) and EEbase (Q) , which give the following formulas. Define

 = 2 Q−1 and B = αQ−1 once a first local optimum is identified, and

efore that, initialize A = B = 0 , just as we initialize E E base (Q) = 0

nd EE j (Q , x) = 0 for all j. Then the new formulas become

 E j (Q , x) =

{

2 Q−1 +

(
E E j (Q , x) + B − A

)
/α if E E j (Q , x) ≤ 2 Q−1

2 Q−1 +

(
E E base (Q) − E E j (Q , x)

)
/α if E E j (Q , x) < 2 Q−1

These are executed sequentially each time a local optimum is

ound, followed by setting

 E base (Q) = 2

Q−1 + (E E base (Q) + B − A) /α

 = 2

Q−1 and B = αQ−1

It is easy to confirm that these formulas reduce to the formulas

iven in Section 6 when α = 2.

The modifications of the pseudocode are correspondingly

traightforward. The Preliminary Initialization adds the following

wo instructions:

- Choose a value for α (e.g., 1.5, 1.7 or 2)

- A = B = 0 .

Then in the procedure U pdateE E () is replaced by the following

rocedure:

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

A

a

o

W

n

B

r

A

i

C

C

b

C

C

t

E

h

i

t

A

t

a

a

A

r

t

C

a

W

t

x

o

A

a

A

E

“

a

A

a

i

C

a

h

A

n

A

A

o

−
w

n

E

n

C

−
w

C

r

o

w

P

v

t

E

Procedure U pdateMixedEE () {

For j = 1 to n do

If EE j ≥ 2 Q−1 then EE j = 2 Q−1 + (EE j + B − A) /α

Else E E j = 2 Q−1 + (E E base − E E j) /α

Endfor

A = 2 Q−1 and B = αQ−1

E E base = 2 Q−1 + 2 −1 E E base

T hreshold r = min (E E base, 2 Q−r (2 r − 1))

} // End U pd ateMixed EE

It is easy to show the following properties:

- EE j (Q , x) = EEbase (Q) − ∑ Q
q =1

2 q −1 | x j − x
q
j
|

- EE j (Q , x) = x j E E
1
j
(Q) + (1 − x j) E E

0
j
(Q)

- EE j (Q , x) = (2 x j − 1) EE 1
j
(Q) + (1 − x j) E E base (Q)

- EE j (Q , x) =

{
EE 1

j
(Q) i f x j = 1

EEbase (Q) − EE 1
j
(Q) i f x j = 0

- E E 1
j
(Q) = (2 x j − 1) EE j (Q , x) + (1 − x j) E E base (Q)

- E E 1
j
(Q) =

{
EE j (Q , x) i f x j = 1

E E base (Q) − EE j (Q , x) i f x j = 0

- E E 1
j
(Q) =

{
EE j (Q , x) i f x j = 1

E E base (Q) − EE j (Q , x) i f x j = 0

ppendix 2. Tradeoff Relationships

A refers to a current evaluation and B refers to a previous evalu-

tion, such as the best before now. A 1 and B 1 refer to the first type

f evaluation and A 2 and B 2 refer to the second type of evaluation.

e assume the second type of evaluation, A 2 and B 2 , is always

onnegative (as in the case of EE j (Q , x)), but the first type, A 1 and

 1 , can sometimes be negative (as in the case of Ev al j (x)). The cur-

ent evaluation will dominate the previous evaluation if A ≥ B ; i.e.

 1 ≥ B 1 and A 2 ≥ B 2 .

Assume dominance does not occur. Then we have two possibil-

ties.

ase 1. A 1 > B 1 and A 2 < B 2

ase 2. A 1 < B 1 and A 2 > B 2

Consider these two cases in the context of conditions satisfied

y moves in N

1 (x) and N

2 (x) , which we write as follows:

ondition 1. A 1 , B 1 ≥ 0 . A 2 , B 2 ≥ 0

ondition 2. A 1 , B 1 ≤ 0 . A 2 , B 2 ≥ 0 .

These conditions correspond to conditions defined by reference

o the sets N

1 (x) and N

2 (x) of Section 3.2 where A 1 and B 1 refer to

v al j (x) and A 2 and B 2 refer to EE j (Q , x) . However, the conditions

ere are less stringent than those of Section 3.2 , since they do not

nclude reference to Tabu restrictions or the recency threshold or

he S = status of variables. In addition, moves in N

1 (x) would imply

 1 , B 1 > 0 rather than A 1 , B 1 ≥ 0 . We note, however, that we can

ranslate every case for Condition 2 into Condition 1 by identifying

 lower bound LB for all instances A 1 and B 1 such that A 1 , B 1 ≥ LB ,

nd redefining

 1 = A 1 − LB ; B 1 = B 1 − LB.

Without identifying LB , we consider Conditions 1 and 2 sepa-

ately. For each combination of conditions and cases, we identify

he max and min values of the A and B components.

Condition 1 & Case 1: The combination of Condition 1 and

ase 1 yields A 1 > B 1 ≥ 0 , hence A 1 > 0 , and we seek a nonneg-

tive multiple x so that A 1 x dominates B 1 , as given by A 1 x ≥ B 1 .

e also have B 2 > A 2 ≥ 0 , hence B 2 > 0 , and we seek a nonnega-

ive multiple x so that A dominates B x , as given by A ≥ B x. An
2 2 2 2

1054
 that yields dominance in both situations gives A 2 /B 2 ≥ x ≥ B 1 /A 1

r equivalently

 1 A 2 /A 1 B 2 ≥ x ≥ B 1 B 2 /A 1 B 2

Hence dominance and strict dominance are respectively

chieved by

 1 A 2 ≥ B 1 B 2 and A 1 A 2 > B 1 B 2 .

In terms of Ev al j (x) and EE j (Q , x) this corresponds to

v al j (x) × EE j (Q , x) > EE
p
j
(Q , x) > Ev al

p
j
(x) × EE

p
j
(Q , x) , where the

p” exponent represents “previous”.

Condition 1 & Case 2: Corresponding analysis gives A 1 ≥ B 1 x

nd A 2 x ≥ B 2 to yield

 1 A 2 /A 2 B 1 ≥ x ≥ B 1 B 2 /A 2 B 1

nd while the denominator is different, the conclusions for dom-

nance and strict dominance are the same as in Condition 1 &

ase 1 , i.e. A 1 A 2 ≥ B 1 B 2 and A 1 A 2 > B 1 B 2 .

Condition 2 & Case 1: We now have 0 ≥ A 1 > B 1 , hence B 1 < 0 ,

nd we seek a nonnegative multiple x so that A 1 dominates B 1 x ,

ence

 1 ≥ B 1 x or − B 1 x ≥ −A 1 .

Likewise, we have B 2 > A 2 ≥ 0 , hence B 2 > 0 , and we seek a

onnegative multiple x so that A 2 dominates B 2 x , hence

 2 ≥ B 2 x.

Since −B 1 > 0 , the two inequalities become

 2 /B 2 ≥ x ≥ −A 1 / − B 1 .

r equivalently

A 2 B 1 / − B 1 B 2 ≥ x ≥ −A 1 B 2 / − B 1 B 2

ith positive denominators. Hence dominance and strict domi-

ance are achieved by

−A 2 B 1 ≥ −A 1 B 2 (A 1 B 2 ≥ A 2 B 1) and − A 2 B 1 >

−A 1 B 2 (A 1 B 2 > A 2 B 1)

In terms of Ev al j (x) and EE j (Q , x) this corresponds to

v al j (x) × EE
p
j
(Q , x) > Ev al

p
j
(x) × EE j (Q , x) , where the “p” expo-

ent again represents “previous”.

Condition 2 & Case 2: Following the line of argument as in

ondition 2 & Case 1 , we conclude

A 2 B 1 /A 1 A 2 ≥ x ≥ −A 1 B 2 /A 1 A 2

hich yields the same dominance conclusions as in Condition 2 &

ase 1 .

We remark that the conclusions in all these cases can also be

eached by a more involved derivation using a different definition

f dominance, where A dominates B if

f (A 1 , B 1) ≥ f (A 2 , B 2)

here for i = 1 , 2

f (A i , B i) = (M ax (A i , B i) − M in (A i , B i)) / (| A i | + | B i |) .

roposition 2. Let x ′ the solution obtained from x by flipping the

ariable x k , i.e. x ′ = x + (1 − 2 x k) e
k . Then the update of the evalua-

ion Ev al j (x
′) can be computed using the rule

 v al j
(
x ′
)

=

⎧ ⎨

⎩

−E v al j (x) i f j = k

E v al j (x) + a
′
jk

i f j � = k and x j = x k

E v al j (x) − a
′
jk

i f j � = k and x j � = x k

S. Hanafi, Y. Wang, F. Glover et al. European Journal of Operational Research 308 (2023) 1037–1055

J

t

a

a

t

f

E

E

E

E

E

E

E

E

R

B

F

G

G

G
G

G

G

G

G

H

K

L

Q

S

ustification. In case the input matrix A is a lower triangular ma-

rix, let A

′ = (a ′
i j
) denote its associated symmetric matrix defined

s follows

′
i j =

{

a i j i f i < j
a ii i f i = j
a ji i f i > j

Consequently, we have A

′
j
x = (A

j + A j) x − a
′
j j

x j , hence the ini-

ial evaluation Ev al j (x) can be calculated in linear time using the

ormula Ev al j (x) = (1 − 2 x j) A

′
j
x + (1 − x j) a

′
j j

. Hence, we have

v al j
(
x ′
)

=

(
1 − 2 x

′
j

)
A

′
j x

′ +

(
1 − x

′
j

)
a

′
j j

v al j
(
x ′
)

=

(
1 − 2 x ′ j

)
A

′
j

(
x + (1 − 2 x k) e

k
)

+

(
1 − x ′ j

)
a ′ j j

v al j
(
x ′
)

=

(
1 − 2 x ′ j

)
A

′
j x +

(
1 − 2 x ′ j

)
A

′
j (1 − 2 x k) e

k +

(
1 − x ′ j

)
a ′ j j

v al j
(
x ′
)

=

(
1 − 2 x ′ j

)
A

′
j x +

(
1 − 2 x ′ j

)
(1 − 2 x k) a

′
jk +

(
1 − x ′ j

)
a ′ j j

Two cases are considered:

Case 1: j � = k → x ′
j
= x j

v al j
(
x ′
)

=

(
1 − 2 x j

)
A

′
j x +

(
1 − 2 x j

)
(1 − 2 x k) a

′
jk +

(
1 − x j

)
a

′
j j

 v al j
(
x ′
)

= E v al j
(
x ′
)

+

(
1 − 2 x j

)
(1 − 2 x k) a

′
jk

Case 2: j = k → x ′
k

= 1 − x k

v al k
(
x ′
)

= (2 x k − 1) A

′
k x + (2 x k − 1) (1 − 2 x k) a

′
kk + x k a

′
kk
1055
v al k
(
x ′
)

= (2 x k − 1) A

′
k x + (x k − 1) a ′ kk

Ev al k (x
′) = −Ev al k (x) . �

eferences

arr, R. S., Glover, F., Huskinson, T., & Kochenberger, G. (2021). An extreme–

point tabu-search algorithm for fixed-charge network problems. Networks, 77 (2),

322–340 .
aigle, U., & Kern, W. (1992). Some convergence results for probabilistic Tabu search.

ORSA Journal on Computing, 4 (1), 32–37 .
endreau, M., & Potvin, J. Y. (2005). Tabu search. Search methodologies (pp. 165–186).

Boston, MA: Springer .
lover, F. (1986). Future paths for integer programming and links to artificial intel-

ligence. Computers & operations research, 13 (5), 533–549 .

lover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1 (3), 190–206 .
lover, F. (1995). Tabu thresholding: Improved search by nonmonotonic trajectories.

ORSA Journal on Computing, 7 (4), 426–442 .
lover, F. (2020). Exploiting Local Optimality in Metaheuristic Search, arXiv: 2010.

05394v3 [cs.AI].
lover, F., & Hanafi, S. (2002). Tabu search and finite convergence. Discrete Applied

Mathematics, 119 (1–2), 3–36 .
lover, F., & Laguna, M. (1997). Tabu search . Kluwer Academic Publishers, Springer .

uemri, O., Nduwayo, P., Todosijevi ́c, R., Hanafi, S., & Glover, F. (2019). Probabilis-

tic tabu search for the cross-docking assignment problem. European Journal of
Operational Research, 277 (3), 875–885 .

anafi, S. (2001). On the convergence of tabu search. Journal of heuristics, 7 (1),
47–58 .

aramichailidou, D., Kaloutsa, V., & Alexandridis, A. (2021). Wind turbine power
curve modeling using radial basis function neural networks and tabu search.

Renewable Energy, 163 , 2137–2152 .

aguna, M., & Glover, F. (1993). Integrating target analysis and tabu search for im-
proved scheduling systems. Expert Systems with Applications, 6 (3), 287–297 .

iu, M., Fu, Z., Eglese, R., & Tang, Q. (2018). A Tabu Search algorithm for the ve-
hicle routing problem with discrete split deliveries and pickups. Computers &

Operations Research, 100 , 102–116 .
ervranckx, T., & Vanhoucke, M. (2019). A tabu search procedure for the resource–

constrained project scheduling problem with alternative subgraphs. European

Journal of Operational Research, 273 (3), 841–860 .

http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0006
http://arxiv.org/abs/2010.05394v3
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00001-2/sbref0015

	Tabu search exploiting local optimality in binary optimization
	1 Introduction
	2 Background
	2.1 Binary optimization problem and move evaluation
	2.2 Adaptive memory Tabu search approach
	

	3 A more general procedure for launching a new ascent
	3.1 Exponential extrapolation
	

	3.2 Exploiting local optimality based on exponential extrapolation
	

	4 Extended illustration of exploiting strategies and
	
	

	5 Choice rules of exploiting and
	
	

	6 General AA algorithm design and pseudocode
	7 Computational results of the AA algorithm on QUBO
	7.1 QUBO problem and its 1-flip move evaluation
	7.2 Input and output parameters of the AA algorithm
	7.3 Computational experimentation
	

	8 Concluding observations and future steps
	Acknowledgment
	Appendix 1 Implications of the recency threshold for using different α values
	Acceptable vectors for and 1.5
	A Mixed Strategy

	Appendix 2 Tradeoff Relationships
	References

