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A B S T R A C T

In this work, we investigate the equal circle packing problem on a sphere (ECPOS), which consists in packing
𝑁 equal non-overlapping circles on a unit sphere such that the radius of circles is maximized. The problem
is of great interest in biology, engineering and operations research and thus has a rich research history both
from theoretical and computational aspects. We propose from the point of view of computational research
an effective iterated dynamic neighborhood search (IDNS) algorithm for the ECPOS problem. The algorithm
includes a multiple-stage local optimization method, a general dynamic neighborhood search method and an
adjustment method of the minimum distance between the points on the unit sphere. Extensive experiments
are conducted with the proposed algorithm on 205 instances commonly used in the literature. Computational
results show that the algorithm is highly effective by improving the best-known results for 42 instances and
matching the best-known results for other 116 instances, while missing the best-known results for only 5
instances. For the remaining 42 instances, the best-known results are reported for the first time by the IDNS
algorithm.
1. Introduction

Given 𝑁 equal non-overlapping circles and a unit sphere with the
surface 𝑆2, the circle packing problem studied in this work consists
in packing these 𝑁 circles on the surface such that the radius (or the
angular diameter) of the circles is maximized, where each circle corre-
sponds to a spherical cap defined as the inside of the circumference of a
circle on 𝑆2 (Teshima and Ogawa, 2000). This problem is also known
as the Tammes problem in the literature (Tarnai and Gáspár, 1987)
and is equivalent to the problem of maximizing the minimum distance
between 𝑁 points on 𝑆2, where each point corresponds to the center
of a spherical cap on 𝑆2. Throughout this paper, these two equivalent
descriptions of the problem will be indifferently used according to the
context.

Unlike other circle packing problems, such as packing circles into a
regular container (e.g., circle or square) (Addis et al., 2008; Castillo
et al., 2008; Huang and Ye, 2011; López and Beasley, 2011, 2016;
Mladenović et al., 2005; Specht, 2013; Szabó et al., 2007; Yuan et al.,
2022; Zeng et al., 2018), packing equal circles on the sphere does
not involve the container boundary and thus is very interesting. It
can act as a remarkable test system to evaluate various global opti-
mization techniques due to its NP-hard feature (Demaine et al., 2010)
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and the fact that the number of locally optimal solutions increases
exponentially as the number of circles 𝑁 increases. On the other hand,
this problem is a well-known global optimization model with a large
number of applications in biology, engineering, operations research
and information theory (Appelbaum and Weiss, 1999; Huang et al.,
2001; Kottwitz, 1991; Lipschütz et al., 2021; Mackay et al., 1977;
Melnyk et al., 1977; Tibor, 1984). For instance, the globally optimal
solution of the problem corresponds to the ground-state structure of
atomic clusters (Tarnai et al., 2003), while the optimal solutions of
some instances correspond to the structures of spherical pollen-grains,
and the problem with 𝑁 = 13 is the famous 13-sphere problem in
mathematics (Musin and Tarasov, 2012, 2015). Recently, this problem
was applied to find diversified neurons in the design of neural net-
works (Wang et al., 2020) and to distribute a group of 𝑁 agents on a
sphere while maximizing the minimum inter-agent distance (Anjaly and
Ratnoo, 2018). Interested readers are referred to Tarnai et al. (2003)
for more application examples.

Due to its practical importance and theoretical significance, the
ECPOS problem has received a lot of attention since 1930 and a
large number of related researches have been reported in the lit-
erature examining both theoretical and computational aspects. The
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earliest work about this problem stems from the botanist Tammes who
studied the distribution of hollows on the surface of spherical pollen-
grains (Tammes, 1930). Since then, a number of approaches were
proposed to find or prove the optimality of solutions to the problem.

Up to now, the proven optimal solutions were found only for very
small instances with 𝑁 = 1−14 and 24 (Danzer, 1986; Fejes, 1943;

usin and Tarasov, 2012, 2015; Newton and Sakajo, 2011; Robin-
on, 1961). For example, Musin and Tarasov proved the optimality of
olutions by mathematical methods for 𝑁 = 13 and 14 (Musin and

Tarasov, 2012, 2015). For larger instances, the optimality proofs of
solutions are difficult for mathematical methods and exact algorithms.
Thus, for large-scale instances, many researchers turned to methods
of finding high-quality suboptimal solutions, instead of proving the
solution optimality. The employed approaches mainly include mathe-
matical methods, construction methods based on prior knowledge of
the problem, and numerical global optimization methods.

In 1983, based on the theory of bar structures, Taenia and Gáspár
improved the best-known configurations by a mathematical method for
instances with 𝑁 = 18, 27, 34, 35 and 40 (Tarnai and Gáspár, 1983),
without giving an optimality proof.

After that, many construction methods were proposed to predict
the optimal solutions by utilizing prior knowledge of the problem. In
1987, inspired by the structure of virus coats, Tarnai and Gáspár (1987)
investigated four packing sequences of circles on the sphere by taking
into account of rotational symmetry of the regular tetrahedron, octa-
hedron and icosahedron, and obtained some multi-symmetric packing
configurations by a construction method for 𝑁 = 78, 96, 108, 144,
150, 192, 198, 270, 360, 372, 480, 492. Subsequently, Gáspár further
extended one of these sequences to several large instances with 𝑁 =
150, 216, 300, 432, 750 and 1080 (Gáspár, 1989). These highly sym-
metrical configurations were shown to be very promising candidates
for optimal solutions for the special sizes. Between 1994 and 2000,
Hardin et al. solved the ECPOS problem by some construction methods
and presented for the first time the putatively optimal solutions for all
instances in the range of 𝑁 ≤ 130. All the best solutions obtained are
available online in Sloane et al. (2022), together with some other best-
known results collected from other researchers. Moreover, the authors
also generated high-quality solutions with icosahedral symmetry for a
number of large-scale instances between 𝑁 = 60 and 𝑁 = 33002 and

ade them available online in Hardin et al. (2012). At the present time,
hese results can be regarded as the best-known results for the ECPOS
roblem. In 2000, Teshima and Ogawa proposed a novel construction
ethod named the minimum-zenith method and tested their method

n all instances in the range of 𝑁 ≤ 150. This method starts from an
nitially constructed partial solution, and then sequentially packs the
emaining circles on the surface of the unit sphere such that the zenith
ngle is as small as possible.

Besides these mathematical and construction methods, some nu-
erical global optimization methods were proposed in the literature,
ithout utilizing prior knowledge of the problem. In 1977, Mackay
t al. solved the ECPOS problem by an iterative numerical optimization
lgorithm and then listed for the first time the putatively optimal
olutions for all the instances with up to 𝑁 = 27 (Mackay et al.,
977). In 1986, Clare and Kepert improved the best-known results for a
umber of instances in the range of 𝑁 = 20−40 by minimizing orderly
series of energy functions 𝐸𝑚(𝑋) (𝑚 ≥ 1) defined on the unit sphere:

𝑚(𝑋) =
∑

1≤𝑖<𝑗≤𝑁
( 1
𝑑𝑖𝑗

)𝑚 (1)

here 𝑋 is a configuration of 𝑁 points on the unit sphere, 𝑚 is a
ositive integer and 𝑑𝑖𝑗 denotes the distance between points 𝑖 and
(Clare and Kepert, 1986). It is worth noting that the local minimum

olutions of 𝐸𝑚(𝑋) will converge to a local minimum solution of the
CPOS problem as the value of 𝑚 increases to a very large number. The
ptimization process was conducted in a multi-start fashion, each rerun
2

tarting from an initial random solution. In 1991, the same authors ap-
lied their approach to instances with 𝑁 = 19−80 and improved again
he best-known results for many of them. Their computational results
howed that the best-known configurations are generally of low sym-
etry, differing from the constructed solutions. In the same year, using
variant of this approach, Kottwitz further improved the best-known

esults for a number of instances in the range of 𝑁 = 15−90 (Kottwitz,
991). It should be noted that the algorithm proposed in the present
ork also falls into this category of optimization methods, where a
otential function is minimized via a series of random perturbations
or restarts) and gradient-based local optimizations (Clare and Kepert,
986; Kottwitz, 1991). This type of optimization methods were also
idely used to solve the related circle or sphere packing problems in

he literature (Addis et al., 2008; Birgin and Sobral, 2008; Castillo et al.,
008; Grosso et al., 2010; Lai et al., 2022)

In addition, a number of studies were dedicated to some variants of
he ECPOS problem. For example, Appelbaum and Weiss investigated
he problem of packing equal circles on a hemisphere (Appelbaum and

eiss, 1999). Tarnai et al. and Fowler et al. studied respectively the
roblems of packing regular triplets or tetrahedral quartets of circles on
sphere (Fowler et al., 2005; Tarnai and Fowler, 2007; Tarnai et al.,

003).
Our motivation is twofold in this work. First, we undertake to devise

highly effective heuristic algorithm for the ECPOS problem due to
ts important applications and computational challenges. Second, we
ropose a general-purpose approach for global optimization of non-
onvex continuous functions, thus providing more tools for global
ptimization.

The contributions of this work can be summarized as follows. First,
e propose the iterated dynamic neighborhood search (IDNS) global
ptimization algorithm for solving the ECPOS problem. Computational
esults show that the proposed algorithm performs very well and im-
roves the best-known results for a number of instances widely tested
n the literature. Second, the two main components (i.e., the dynamic
eighborhood search and the multiple-stage local optimization) of the
DNS algorithm are of general nature. The dynamic neighborhood
earch can be applied to perform global optimization of any non-convex
ifferentiable function, while the multiple-stage local optimization is
pplicable to geometry optimization problems in which the system
s composed of a number of particles interacting via a short-ranged
otential.

The rest of paper is organized as follows. In Section 2, the math-
matical formulations of the ECPOS problem and our proposed algo-
ithm are described. In Section 3, the performance of our proposed
lgorithm is assessed based on a large number of instances and the
tructural features of putatively optimal solutions are investigated.
ection 4 analyzes the key algorithmic components, including the
arameters and the local optimization method. Finally, the last section
rovides several research perspectives.

. Global optimization method

We first introduce the non-linear optimization formulations of the
CPOS problem, and then describe the iterated dynamic neighborhood
earch (IDNS) global optimization algorithm for solving it. The pro-
osed algorithm can be viewed as an iterated neighborhood search
ethod whose main idea is to control dynamically the size of neigh-

orhood to reach a good tradeoff between the intensification and
iversification of the search process. In this sense, the proposed al-
orithm shares the same idea with some popular global optimization
lgorithms, such as the basin-hopping algorithm and its variants (Leary,
000; Wales and Doye, 1997). However, to deal with our particular
roblem, the proposed IDNS algorithm integrates some innovations in
erms of global optimization as explained below.
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2.1. Formulations of the ECPOS problem

Given a positive number 𝑁 , the ECPOS problem aims to distribute
points (or circles) on the unit sphere such that the minimum dis-

ance 𝐷 between points is maximized. In three-dimensional Cartesian
coordinate system, the ECPOS problem can be described as follows:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐷 (2)

𝑠.𝑡.
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 + (𝑧𝑖 − 𝑧𝑗 )2 ≥ 𝐷, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ; (3)
√

𝑥2𝑖 + 𝑦2𝑖 + 𝑧2𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑁 ; (4)

here (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ) respectively represent the Cartesian
oordinates of points 𝑟𝑖 and 𝑟𝑗 . Constraints (3) ensure that the distance

between any two points is larger than 𝐷, and constraints (4) ensure
that all 𝑁 points are confined on the surface of the unit sphere 𝑆2.

The problem defined by Eqs. (2)–(4) is a constrained optimization
problem and intractable for the popular local optimization methods.

To make local optimization methods applicable to this constrained
optimization problem, we first convert the ECPOS problem into a series
of constraint satisfaction subproblems by successively fixing the value
of minimum allowed distance 𝐷 to a constant number, where the
goal of each subproblem is to find a solution for which the minimum
distance between points is larger than or equal to the given 𝐷 value.
Then, we solve each subproblem by a stochastic optimization approach
called the dynamic neighborhood search method. Given a set of points
𝑋 = {𝑟1, 𝑟2,… , 𝑟𝑁} on the unit sphere 𝑆2 and a fixed minimum distance
𝐷 (> 0) between points, the constraint satisfaction subproblem can
be converted into a minimization problem as follows by means of the
penalty function method:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸𝑐
𝐷(𝑋) =

𝑁−1
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝑚𝑎𝑥2{0, 𝐷 − 𝑑(𝑖, 𝑗)} (5)

𝑠.𝑡. 𝑟𝑖, 𝑟𝑗 ∈ 𝑆2, 𝑖, 𝑗 = 1, 2,… , 𝑁 (6)

where 𝑑(𝑖, 𝑗)(=
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 + (𝑧𝑖 − 𝑧𝑗 )2) represents the Eu-
clidean distance between the points 𝑟𝑖 and 𝑟𝑗 , and 𝑚𝑎𝑥{0, 𝐷 − 𝑑(𝑖, 𝑗)}
represents the overlap depth between two spherical caps with the
centers at points 𝑟𝑖 and 𝑟𝑗 . 𝐸𝑐

𝐷(𝑋) = 0 means that 𝑋 is feasible, and
infeasible otherwise. Thus, the goal of subproblem is to find a feasible
solution 𝑋 with 𝐸𝑐

𝐷(𝑋) = 0 for the given 𝐷 value.
The subproblem defined by Eqs. (5) and (6) is still a constrained

optimization problem which is not easy to handle by popular local
optimization methods like the LBFGS method. To perform the local
optimization, we convert the problem further to an unconstrained
optimization problem by using the spherical coordinate transformation
of points on 𝑆2:

⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃; (a)
𝑦 = 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃; (b)
𝑧 = 𝑐𝑜𝑠𝜑; (c)

(7)

where (𝑥, 𝑦, 𝑧) and (𝜑, 𝜃) represent respectively the Cartesian coordi-
nates and the spherical coordinates of a point 𝑟 on the unit sphere.

Thus, under the spherical coordinate system of points, a candidate
solution can be indicated as (𝑋,𝐷) in which 𝑋 = (𝜃1, 𝜑1,… , 𝜃𝑁 , 𝜑𝑁 )
nd 𝐷 denotes the minimum allowed distance between points, and the
ubproblem defined by Eqs. (5) and (6) can be equivalently expressed
s an unconstrained optimization problem as follows:

𝐸𝐷(𝜑, 𝜃) =
∑

1≤𝑖≤𝑗≤𝑁
𝑚𝑎𝑥2{0, 𝐷−

2 − 2𝑠𝑖𝑛𝜑𝑖𝑠𝑖𝑛𝜑𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗 ) − 2𝑐𝑜𝑠𝜑𝑖𝑐𝑜𝑠𝜑𝑗}
(8)

where 𝜑 = (𝜑1, 𝜑2,… , 𝜑𝑁 ) ∈ 𝑅𝑁 , 𝜃 = (𝜃1, 𝜃2,… , 𝜃𝑁 ) ∈ 𝑅𝑁 , since both
the functions 𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥) are a periodic function with respect to
the variable 𝑥 in 𝑅 (= (−∞,+∞)).
3

𝐷

2.2. General procedure of iterated dynamic neighborhood search

The IDNS algorithm is a trajectory-based stochastic optimization
approach whose pseudo-code is given in Algorithm 1, where 𝑋∗ and 𝐷∗

respectively denote the best solution found so far and the corresponding
minimum distance between points, while 𝑋 and 𝐷 respectively denote
the current solution and corresponding minimum allowed distance
between points. The algorithm includes three components, a multiple-
stage local optimization method, a dynamic neighborhood search (DNS)
method and an adjustment procedure of the minimum distance between
points.

Algorithm 1: General procedure of the Iterated dynamic
Neighborhood Search (IDNS) algorithm

Input: Number of points to be distributed (𝑁), time limit (𝑡𝑚𝑎𝑥)
Output: The best configuration found (𝑋∗, 𝐷∗)

1 𝛿 ← 0.7

2 𝐷 ← 4 ×
√

𝛿
𝑁

3 𝑋 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑁) /* Generate an initial
solution */

4 𝑋 ← 𝐿𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋,𝐷)
5 /* 𝐸𝐷(𝑋) < 10−25 means that 𝑋 is a feasible

solution */
6 while 𝐸𝐷(𝑋) < 10−25 ∧ time() ≤ 𝑡𝑚𝑎𝑥 do
7 𝛿 ← 𝛿 + 0.001

8 𝐷 ← 4 ×
√

𝛿
𝑁 /* Increase the value of 𝐷 */

9 𝑋 ← 𝐷𝑁𝑆(𝑋,𝐷) /* Minimize the function 𝐸𝐷(𝑋)
defined in Eq. (8) by the DNS method */

10 end
11 (𝑋∗, 𝐷∗) ← 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑋,𝐷) /* Adjust the

minimum distance 𝐷 between 𝑁 points */
12 while time() ≤ 𝑡𝑚𝑎𝑥 do
13 𝐷 ← 𝐷∗

14 𝑋 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑁) /* A random solution */
15 𝑋 ← 𝐷𝑁𝑆(𝑋,𝐷)
16 if 𝐸𝐷(𝑋) < 10−25 then
17 (𝑋,𝐷) ← 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑋,𝐷)
18 if 𝐷 > 𝐷∗ then
19 𝐷∗ ← 𝐷
20 𝑋∗ ← 𝑋 /* Save the best solution found */
21 end
22 end
23 end
24 return (𝑋∗, 𝐷∗)

The algorithm is performed in a two-phase fashion. At the first
phase, from an initial value of 𝐷 empirically estimated (lines 1–2), an
initial solution 𝑋 is generated by randomly distributing 𝑁 points on
the surface 𝑆2 of the unit sphere and is improved by the minimization
of the function 𝐸𝐷(𝑋). Subsequently, the algorithm enters a ‘while’
loop and performs a number of iterations until an infeasible solution
with 𝐸𝐷(𝑋) > 10−25 is reached (lines 6–10). At each iteration, the
value of 𝐷 is first progressively increased (lines 7–8) and then the DNS
rocedure is used to find a feasible solution under the current 𝐷 value
y minimizing the function 𝐸𝐷(𝑋) (line 9). After that, the result of the
NS procedure is used as the input of the next iteration. The algorithm
nters the second phase once the DNS procedure fails to find a feasible
olution for the current 𝐷 value and the given input solution.

At the second phase of the search, the algorithm performs a number
f iterations until the time limit (𝑡𝑚𝑎𝑥) is reached (lines 12–23). At
ach iteration, starting from a solution generated randomly, the DNS
rocedure is performed to optimize the objective function 𝐸𝐷(𝑋) with
∗
 set to be the value of 𝐷 (lines 13–15). Then, the minimum distance
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adjustment procedure is used to maximize the value of 𝐷 once a
easible solution 𝑋 with 𝐸𝐷(𝑋) < 10−25 is found, while maintaining the
easibility of solution (line 17). After that, the best solution 𝑋∗ found so

far and the corresponding 𝐷 value (i.e., 𝐷∗) are updated if an improved
olution is found (lines 18–21).

.3. Dynamic neighborhood search method

Algorithm 2: Dynamic neighborhood search (DNS) for the
inimization of the function 𝐸𝐷(𝑋)

1 Function DNS()
Input: Input solution 𝑋0, minimum distance allowed 𝐷

between points
Output: The best solution found (𝑋𝑏)

2 𝑋𝑐𝑢𝑟 ← 𝐿𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋0, 𝐸𝐷(⋅))
3 𝑋𝑏 ← 𝑋𝑐𝑢𝑟 /* 𝑋𝑐𝑢𝑟 denotes the current solution */
4 𝛽 ← 0
5 while (𝛽 ≤ 𝛽𝑚𝑎𝑥) ∧ (𝐸𝐷(𝑋𝑏) > 10−25) do
6 𝜂 ← 𝜂𝑓 (𝛽) /* Determine the strength of

perturbation */
7 𝑀 ← 𝑀𝑓 (𝛽) /* Determine the maximum size of

current neighborhood */
8 /* Construct a neighborhood with a maximum

cardinality 𝑀 for 𝑋𝑐𝑢𝑟 */
9 𝐸𝐷(𝑋𝑛𝑏𝑒𝑠𝑡) ← +∞ /* 𝑋𝑛𝑏𝑒𝑠𝑡 denotes the best

solution in the neighborhood */
10 for 𝑘 ← 1 to 𝑀 do
11 𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛(𝑋𝑐𝑢𝑟, 𝜂)
12 𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝐿𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝐸𝐷(⋅))
13 if 𝐸𝐷(𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝐸𝐷(𝑋𝑛𝑏𝑒𝑠𝑡) then
14 𝑋𝑛𝑏𝑒𝑠𝑡 ← 𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
15 end
16 if 𝐸𝐷(𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) < 𝐸𝐷(𝑋𝑐𝑢𝑟) then
17 𝑋𝑛𝑏𝑒𝑠𝑡 ← 𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
18 break
19 end
20 end
21 𝑋𝑐𝑢𝑟 ← 𝑋𝑛𝑏𝑒𝑠𝑡 /* update the current solution */
22 if 𝐸𝐷(𝑋𝑐𝑢𝑟) < 𝐸𝐷(𝑋𝑏) then
23 𝑋𝑏 ← 𝑋𝑐𝑢𝑟 /* Save the best solution found */
24 𝛽 ← 0
25 else
26 𝛽 ← 𝛽 + 1
27 end
28 end
29 return 𝑋𝑏

For the trajectory-based global optimization, one important issue
oncerns the strategy used to accept the new solution as the current
olution, and different strategies will result in various global optimiza-
ion algorithms. For example, the basin-hopping algorithm employs
he Metropolis acceptance rule, which depends on the change in the
bjective value and a parameter 𝑇 called the temperature, to accept
he new solution (Wales and Doye, 1997).

As an initial step, we design a new metaheuristic approach called
ynamic neighborhood search (DNS) to search for the global optimum
f an unconstrained continuous optimization problem with the first-
rder derivative. The pseudo-code of the DNS method is given in
lgorithm 2, where 𝑋𝑐𝑢𝑟 and 𝑋𝑏 respectively denote the current solu-

ion and the best solution found by the current DNS run. Starting from
n input solution 𝑋0, the DNS method performs a number of iterations
o improve its quality until an optimal solution 𝑋 (i.e., 𝐸𝐷(𝑋) = 0 for

the present study) is encountered or the best solution 𝑋𝑏 cannot be
improved during 𝛽𝑚𝑎𝑥 consecutive iterations (lines 5–28), where 𝛽𝑚𝑎𝑥
s a parameter called the maximum search depth.
4

t

Fig. 1. A schematic diagram illustrating the dynamic neighborhood search (DNS)
approach, where the size of neighborhood varies dynamically according to a function
𝑀𝑓 (⋅) with respect to the search depth 𝛽.

At each iteration, the DNS method first constructs a neighborhood
𝑁(𝑋𝑐𝑢𝑟) for the current solution 𝑋𝑐𝑢𝑟 (lines 10–20) and then selects
a best solution from 𝑁(𝑋𝑐𝑢𝑟) to replace the current solution (line
1), where the size of the constructed neighborhood is dynamically
ontrolled by a function (line 7). Fig. 1 provides a schematic diagram to
llustrate the search process of the DNS method. One can observe from
he figure that the size of the neighborhood varies dynamically during
he search and that the DNS method is allowed to accept deteriorated
olutions to escape from local optima.

To construct a neighborhood of the current solution, the DNS
ethod employs a perturbation operator and a subsequent local op-

imization procedure to generate each neighboring solution (lines 11–
2). Specifically, a random perturbation operator with a strength 𝜂 is
irst applied to the current solution 𝑋𝑐𝑢𝑟 and then a local optimization

procedure is applied to the perturbed solution to improve its qual-
ity, and the resulting solution is used as a member of the current
neighborhood. This process is repeated at most 𝑀 times to generate
the members of the current neighborhood 𝑁(𝑋𝑐𝑢𝑟), where 𝑀 is the

aximum size of the neighborhood. The neighborhood construction
rocess stops once a better neighborhood solution than the current
olution 𝑋𝑐𝑢𝑟 is encountered (lines 16–19).

To reach a suitable tradeoff between diversification and intensifi-
ation of the search, the DNS algorithm determines dynamically the
erturbation strength 𝜂 in an interval [𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥] by using a periodic
unction 𝜂𝑓 (⋅) described by Fig. 2(b), given that a smaller perturbation
trength implies a more intensified search and a larger perturbation
trength implies a more diversified search. On the other hand, the
eighborhood size plays also a key role for the tradeoff between diversi-
ication and intensification, since a larger neighborhood allows a more
ntensified search, but requires a higher computational effort, while a
maller neighborhood allows a more diversified search. Thus, to reach
suitable tradeoff, the DNS method employs a periodic function 𝑀𝑓 (⋅)
escribed in Fig. 2(a) to dynamically determine the value of 𝑀 , making
t vary periodically in an interval [𝑀𝑚𝑖𝑛,𝑀𝑚𝑎𝑥].

Fig. 2 indicates that the neighborhood size 𝑀 and the perturbation
trength 𝜂 will respectively reach their maximum value and minimum
alue at the beginning of the search or when an improved solution is
ound (i.e., 𝛽 = 0) to reinforce search intensification, and then vary dy-
amically to reinforce search diversification. Eventually, the combined
se of dynamic strategies for 𝑀 and 𝜂 will cause the DNS algorithm to
each a desirable diversification and intensification tradeoff.

.4. Multiple-stage local optimization method

The local optimization procedure is the most time-consuming com-
onent of our IDNS algorithm and plays a crucial role for its perfor-
ance, where most of the computational time is consumed by the

valuations of the objective function 𝐸𝐷(𝑋) and its gradient 𝑔(𝑋). In

he local optimization, given that the overlaps occur only between
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Fig. 2. The variations of the strength of current perturbation (𝜂) and the size of current neighborhood (𝑀) as a function of the search depth (𝛽).
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Algorithm 3: Multiple-Stage local optimization
1 Function 𝐿𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛()
Input: Input solution 𝑋, the minimum distance allowed (𝐷)

between the points, the precisions
{𝜖0, 𝜖1, 𝜖2, 𝜖3} = {0.1𝐷, 0.01𝐷, 10−4𝐷, 10−12𝐷}, the cutoff
distances for generating the lists of neighbors of circles
{𝛥1, 𝛥2, 𝛥3} = {3𝐷, 2𝐷, 1.2𝐷}

Output: local minimum solution 𝑋
2 𝑋 ← 𝐿𝐵𝐹𝐺𝑆(𝑋, 𝜖0) /* The first stage */
3 𝐿1 ← 𝐿𝑖𝑠𝑡𝑂𝑓𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑋,𝛥1)
4 𝑋 ← 𝐿𝐵𝐹𝐺𝑆(𝑋,𝐿1, 𝜖1) /* The second stage */
5 𝐿2 ← 𝐿𝑖𝑠𝑡𝑂𝑓𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑋,𝛥2)
6 𝑋 ← 𝐿𝐵𝐹𝐺𝑆(𝑋,𝐿2, 𝜖2) /* The third stage */
7 𝐿3 ← 𝐿𝑖𝑠𝑡𝑂𝑓𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑋,𝛥3)
8 𝑋 ← 𝐿𝐵𝐹𝐺𝑆(𝑋,𝐿3, 𝜖3) /* The fourth stage */
9 return 𝑋

the neighboring circles in the candidate solution 𝑋, we speed up the
valuations of the objective function 𝐸𝐷(𝑋) and its gradient 𝑔(𝑋) by
onsidering the possible adjacency relations between circles in the
urrent solution.

To do this, the local optimization method whose pseudo-code is
iven in Algorithm 3 is performed in multiple stages, where each
tage is composed of a construction procedure that involves a list of
eighboring circles and a local search method based on the neighboring
ist.

Specifically, the local optimization method employed by the algo-
ithm is divided into four stages. At the first stage (line 2), the LBFGS
ethod (Liu and Nocedal, 1989) with a low stopping precision of

0 = 0.1𝐷 is performed to improve the input solution, where 𝐷 is
given and allowed distance between the centers of circles and the

verlap is calculated for each pair of circles in the evaluation of 𝐸𝐷(𝑋)
i.e., each pair of circles is considered to be adjacent in this stage). For
ost circles, the adjacency relations indicating whether two circles are

djacent in the resulting solution will be determined in the first stage
nd do not change in the following stages. The number of iterations
eeded at this stage is very small due to the low stopping precision,
nd the computational complexity of each iteration is high (i.e., 𝑂(𝑁2)),
hich is the same as the complexity of a single function evaluation or
radient evaluation.

At the second stage (lines 3–4), the adjacency list 𝐿1 between circles
5

s first generated by considering a cutoff distance 𝛥1, and two circles 𝑟𝑖 d
nd 𝑟𝑗 are identified as neighbors if the distance between their centers
on the unit sphere is less than 𝛥1. Then, the second LBFGS method is
performed utilizing the result of the first stage as the starting point,
where only those overlaps between circles identified by the adjacency
list 𝐿1 are considered in the evaluation of objective function 𝐸𝐷(𝑋) and
ts gradient 𝑔(𝑋). Thus, the time complexity of function and gradient
valuations is only 𝑂(𝑁), which is much cheaper than the first stage.
ubsequently, similar to the second stage, the third and fourth stages
re performed by constructing the adjacency lists 𝐿2 and 𝐿3 based
n the result of the previous stage and performing the corresponding
BFGS procedure (lines 5–8), where the cutoff distances 𝛥𝑖 (𝑖 = 2, 3)
ecrease gradually to reduce the sizes of the constructed adjacency lists
2 and 𝐿3.

The idea of this multiple-stage local optimization method is very
eneral and can be applied to a number of geometry optimization
roblems in which the interaction between two particles can be de-
cribed by a short-ranged potential with respect to their distance, such
s circle and sphere packing problems and the structural optimization
f Lennard-Jones clusters (Wales and Doye, 1997).

.5. Perturbation operator

Algorithm 4: Perturbation operator
1 Function 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛()
Input: Input solution 𝑋 = (𝜃1, 𝜑1,… , 𝜃𝑁 , 𝜑𝑁 ), parameter 𝜂1
Output: The perturbed solution 𝑋

2 /* 𝑟𝑎𝑛𝑑(−𝜂1, 𝜂1) is a random number in (−𝜂1, 𝜂1) */
3 for 𝑖 ← 1 to 𝑁 do
4 𝜃𝑖 ← 𝜃𝑖 + 𝑟𝑎𝑛𝑑(−𝜂1, 𝜂1)
5 𝜑𝑖 ← 𝜑𝑖 + 𝑟𝑎𝑛𝑑(−𝜂1, 𝜂1)
6 end
7 return 𝑋 = (𝜃1, 𝜑1,… , 𝜃𝑁 , 𝜑𝑁 )

To optimize globally the objective function 𝐸𝐷(⋅) defined in Eq. (8),
he DNS method employs a perturbation operator to escape from
he current local minimum. The pseudo-code of the perturbation op-
rator is given in Algorithm 4. Given a candidate solution 𝑋 =
(𝜃1, 𝜑1,… , 𝜃𝑁 , 𝜑𝑁 ), the perturbation operator shifts each coordinate of
he solution 𝑋 in the interval [−𝜂1, 𝜂1] to obtain a new solution, where
he value of 𝜂1 is determined as 𝜂1 = 𝜂 × 𝜃0 in which 𝜂 is a number
n (0, 1) and is called the perturbation strength and 𝜃0 represents the
inimum angle between any two points on the unit sphere and is

2−𝐷2
).
etermined as 𝜃0 = 𝑎𝑟𝑐𝑐𝑜𝑠( 2
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2.6. Minimum distance adjustment method

Algorithm 5: Adjustment method of minimum distance (𝐷)
etween points
1 Function MinDistanceAdjustment()
Input: Input solution (𝑋0, 𝐷0), maximum number of iterations 𝐾

(= 15)
Output: The feasible local optimum configuration (𝑋,𝐷)

2 𝑋 ← 𝑋0, 𝐷 ← 𝐷0, 𝜌 ← 102

3 for 𝑖 ← 1 to 𝐾 do
4 (𝑋,𝐷) ← 𝐿𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑈𝜌, 𝑋,𝐷) /* Minimize 𝑈𝜌(𝑋,𝐷)

using the LBFGS method */
5 𝜌 ← 5 × 𝜌
6 end
7 return (𝑋,𝐷)

Given a configuration (𝑋,𝐷) on the sphere, the minimum distance
adjustment method aims to slightly modify the coordinates of 𝑁 points
(i.e., the centers of spherical caps), such that no overlap occurs be-
tween any two spherical caps in the resulting configuration, while the
minimum distance 𝐷 between points is maximized. The adjustment of
minimum distance 𝐷 is equivalent to obtaining a local solution to a
constrained optimization problem.

As in Lai et al. (2022), to locally optimize the constrained optimiza-
tion problem, we employ the sequential unconstrained minimization
technique (SUMT) (Fiacco and McCormick, 1964). First, we convert
the constrained optimization problem into a series of unconstrained
optimization problems which can be written as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑈𝜌(𝑋,𝐷) = −𝐷2 + 𝜌 × 𝐸(𝑋,𝐷) (9)

here 𝜌 is a penalty factor and each given 𝜌 value defines a un-
onstrained optimization problem, 𝐷 is a variable representing the
inimum allowed distance between points, and 𝐸(𝑋,𝐷) is a penalty

term with 2𝑁 + 1 variables which measures the degree of constraint
violation in (𝑋,𝐷), and 𝐸(𝑋,𝐷) = 0 if and only if (𝑋,𝐷) is a feasible
solution.

𝐸(𝑋,𝐷) =
𝑁−1
∑

𝑖=1

𝑁
∑

𝑗=𝑖+1
𝑚𝑎𝑥2{0, 𝐷 − 𝑑(𝑖, 𝑗)} (10)

where 𝑚𝑎𝑥{0, 𝐷 − 𝑑(𝑖, 𝑗)} represents the overlap depth between two
spherical caps and 𝑑(𝑖, 𝑗) is the Euclidean distance between two points
(i.e., the centers of two spherical caps) and can be written as:

𝑑(𝑖, 𝑗) =
√

2 − 2𝑠𝑖𝑛𝜑𝑖𝑠𝑖𝑛𝜑𝑗𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗 ) − 2𝑐𝑜𝑠𝜑𝑖𝑐𝑜𝑠𝜑𝑗 (11)

Then, the adjustment method (see Algorithm 5) solves in order
a series of unconstrained optimization problems defined by Eq. (9)
with increasing 𝜌 values. Starting from a configuration (𝑋0, 𝐷0) to be
adjusted and an initial 𝜌 value (𝜌0 = 102), the adjustment procedure
performs 𝐾 iterations. At each iteration, the procedure locally optimize
the function defined in Eq. (9) by a LBFGS method (Liu and Nocedal,
1989) and the resulting solution is used as the input solution of the next
iteration, followed by increasing the value of 𝜌 by setting 𝜌 ← 5 × 𝜌.
As 𝜌 increases to a very large value, the adjustment method converges
to a feasible solution with 𝐸(𝑋,𝐷) = 0 in which the value of 𝐷 is
maximized.

3. Computational results and comparisons

To evaluate the performance of the IDNS algorithm and predict the
globally optimal configuration of the ECPOS problem, we conducted ex-
tensive experiments whose experimental conditions and computational
results are given in the following subsections.
6

p

Table 1
Settings of parameters.

Parameters Section Description Values

𝑀𝑚𝑖𝑛 2.3 Minimum size of neighborhood 1
𝑀𝑚𝑎𝑥 2.3 Maximum size of neighborhood 6
𝜂𝑚𝑖𝑛 2.3 Minimum strength of perturbation 0.3
𝜂𝑚𝑎𝑥 2.3 Maximum strength of perturbation 0.6
𝜂𝑠 2.3 Incremental change of strength of perturbation 0.01
𝛽𝑚𝑎𝑥 2.3 Maximum depth of search 500

3.1. Parameter settings and experimental protocol

The algorithm adopts several parameters whose default settings are
given in Table 1, which were determined by a preliminary experiment
described in Section 4. In this study, all computational experiments
were carried out with the parameter default settings. It is worth noting
that these settings are not optimal and fine-tuning some parameters
could help the algorithm to find improved results1

The IDNS algorithm was implemented in the C++ language and
all computational experiments were carried out on a computer with
an Intel(R) Xeon (R) Platinum 9242 CPU (2.3 GHz),2 running a Linux
operating system. Given its stochastic feature, the IDNS algorithm was
run 10 times on each instance in the range of 5 ≤ 𝑁 ≤ 200 and on
several selected large-scale instances with 201 ≤ 𝑁 ≤ 1080 to assess
its average performance. The stopping criterion of the algorithm is
a maximum time limit 𝑡𝑚𝑎𝑥 which was set according to the size of
instances. Considering that the ECPOS problem is very hard to solve
especially for the large-scale instances and that the time complexity of
evaluating the objective function in Eq. (8) is high, 𝑡𝑚𝑎𝑥 was set to 5𝑁
minutes.

3.2. Computational results and comparison on the instances with 𝑁 ≤ 200

This section aims to assess the performance of the IDNS algorithm
on the instances with 𝑁 ≤ 200 and show the structural features of best
configurations found. Section 3.2.1 shows the computational results
and makes a comparison with the best-known results in the literature.
Section 3.2.2 makes a comparison between the IDNS algorithm and
the popular basin-hopping algorithm. Section 3.2.3 plots the packing
densities and presents some representative configurations for the best
solutions found in this work.

3.2.1. Comparison with the best-known results
The computational results of our IDNS algorithm on the instances

with 𝑁 ≤ 200 are summarized in Tables 2–5. The first and second
columns of the tables give the sizes of instances (𝑁) and the best-
known results (BKR) in the literature in terms of the angular diameter
𝑑 ∈ [0, 360] (in degree) of packed circles, where the notation ‘N/A’
means that the corresponding result is not available. It should be noted
that these best-known results were generated by previous researchers
using various approaches, such as mathematical methods, construction
algorithms and global optimization algorithms. Most of them were
collected over past 30 years by Sloane et al. and are available online at
a website maintained by Sloane et al. (2022). The computational results
of our IDNS algorithm are reported in the last five columns, including
the largest angular diameter of circles found over 10 independent
runs (𝑑𝑏𝑒𝑠𝑡), the average angular diameter (𝑑𝑎𝑣𝑔), the smallest angular
iameter (𝑑𝑤𝑜𝑟𝑠𝑡), the standard deviation of angular diameter (𝜎), and

the average computational time in seconds to reach its final result

1 We indeed obtained a number of better results than those reported in this
aper by using alternative parameters values.

2 The executable code of the IDNS algorithm and the best solutions reported
n this work are online available at https://github.com/XiangjingLai/Tammes-
roblem.

https://github.com/XiangjingLai/Tammes-problem
https://github.com/XiangjingLai/Tammes-problem
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Table 2
Computational results and comparison on small instances in the range of 6 ≤ 𝑁 ≤ 50.

N BKR (deg) 𝑑𝑏𝑒𝑠𝑡 (deg) 𝑑𝑎𝑣𝑔 (deg) 𝑑𝑤𝑜𝑟𝑠𝑡 (deg) 𝜎 Time (s)

6 90.000000000 90.000000000 90.000000000 90.000000000 0.0 0
7 77.869542155 77.869542155 77.869542155 77.869542155 0.0 0
8 74.858492186 74.858492186 74.858492186 74.858492186 0.0 1
9 70.528779366 70.528779366 70.528779366 70.528779366 0.0 1
10 66.146821988 66.146821988 66.146821988 66.146821988 0.0 1
11 63.434948823 63.434948823 63.434948823 63.434948823 0.0 1
12 63.434948823 63.434948823 63.434948823 63.434948823 0.0 1
13 57.136703078 57.136703078 57.136703078 57.136703078 0.0 2
14 55.670569996 55.670569996 55.670569996 55.670569996 0.0 3
15 53.657850130 53.657850130 53.657850130 53.657850130 0.0 5
16 52.244395753 52.244395753 52.244395753 52.244395753 0.0 3
17 51.090328552 51.090328552 51.090328552 51.090328552 0.0 5
18 49.556654768 49.556654768 49.556654768 49.556654768 0.0 7
19 47.691914109 47.691914109 47.691914109 47.691914109 0.0 9
20 47.431036227 47.431036227 47.431036227 47.431036227 0.0 4
21 45.613223106 45.613223106 45.613223106 45.613223106 0.0 14
22 44.740161167 44.740161167 44.740161167 44.740161167 0.0 16
23 43.709964205 43.709964205 43.709964205 43.709964205 0.0 13
24 43.690767108 43.690767108 43.690767108 43.690767108 0.0 4
25 41.634461260 41.634461260 41.634461260 41.634461260 0.0 17
26 41.037661607 41.037661607 41.037661607 41.037661607 0.0 14
27 40.677600685 40.677600685 40.677600685 40.677600685 0.0 15
28 39.355143569 39.355143569 39.355143569 39.355143569 0.0 17
29 38.713651194 38.713651194 38.713651194 38.713651194 0.0 20
30 38.597115954 38.597115954 38.597115954 38.597115954 0.0 26
31 37.709829144 37.709829144 37.709829144 37.709829144 0.0 25
32 37.475213975 37.475213975 37.475213975 37.475213975 0.0 17
33 36.254552976 36.254552976 36.254552976 36.254552976 0.0 22
34 35.807784396 35.807784396 35.807784396 35.807784396 0.0 28
35 35.319807591 35.319807591 35.319807591 35.319807591 0.0 29
36 35.189732258 35.189732258 35.189732258 35.189732258 0.0 31
37 34.422408009 34.422408009 34.422408009 34.422408009 0.0 38
38 34.250660672 34.250660672 34.250660672 34.250660672 0.0 22
39 33.489046580 33.489046580 33.489046580 33.489046580 0.0 40
40 33.158356264 33.158356264 33.158356264 33.158356264 0.0 31
41 32.729094415 32.729094415 32.729094415 32.729094415 0.0 36
42 32.506386350 32.506386350 32.506386350 32.506386350 0.0 26
43 32.090624406 32.090624406 32.090624406 32.090624406 0.0 47
44 31.983423033 31.983423033 31.983423033 31.983423033 0.0 47
45 31.323081434 31.323081434 31.323081434 31.323081434 0.0 67
46 30.959163488 30.959163488 30.959163488 30.959163488 0.0 57
47 30.781815961 30.781815961 30.781815961 30.781815961 0.0 41
48 30.762785551 30.762785551 30.762785551 30.762785551 0.0 17
49 29.923585114 29.923585114 29.923585114 29.923585114 0.0 62
50 29.752956397 29.752956397 29.752956397 29.752956397 0.0 55

#Improved 0 0 0
#Equal 45 45 45
#Worse 0 0 0
f
i
𝑁
k
f
a
2
o
v
t
i

for each run of IDNS (𝑡𝑖𝑚𝑒). In addition, the last rows ‘#Improved’,
#Equal’ and ‘#Worse’ in Tables 2–4 show the number of instances
or which the IDNS algorithm obtained a better, equal or worse result
ompared to the best-known result in the literature in terms of 𝑑𝑏𝑒𝑠𝑡,
𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡.

Tables 2 and 3 show that the IDNS algorithm is very efficient for
he instances in the range of 6 ≤ 𝑁 ≤ 100, which are widely studied in
he literature. For 92 out of 95 instances, the proposed IDNS algorithm
atched the best-known result with a success rate of 100%. Moreover,

or the instance with 𝑁 = 97, the IDNS algorithm consistently improves
he best-known result. For other two instances, the IDNS algorithm
atched the best-known results in terms of 𝑑𝑏𝑒𝑠𝑡, but the average

esult and worst result are worse than the best-known result with a
uccess rate of less than 100%. In terms of computational efficiency,
he IDNS algorithm is very fast for most instances. Specifically, the
verage computational time is less than 500 s except for 3 instances
ith 𝑁 ∈ {81, 90, 94}.

Table 4 gives the computational results on the 50 instances with
01 ≤ 𝑁 ≤ 150, where the first 30 instances with 101 ≤ 𝑁 ≤ 130
ere widely studied in the literature and the next 20 instances with
31 ≤ 𝑁 ≤ 150 were mainly studied in Teshima and Ogawa (2000).
7

ne observes that the IDNS algorithm improved the best-known results
or 26 out of these 50 instances in this range, where 6 instances lie
n the range of 𝑁 ∈ [101, 130] and 20 instances lie in the range of

∈ [131, 150]. Nevertheless, the IDNS algorithm missed the best-
nown results for 3 instances, implying that they are hard instances
or the IDNS algorithm. In terms of 𝑑𝑎𝑣𝑔 , our IDNS algorithm obtains

better or equal result with respect to the best-known result for
4 and 21 instances, respectively, indicating a strong search ability
f the algorithm. Moreover, the standard deviation of the objective
alues is very small for most instances, implying a good robustness of
he algorithm. The computational time which reflects the hardness of
nstances, varies drastically in the interval [200, 30000] depending on

the instances to be solved.
Table 5 shows the computational results on the instances in the

range of 151 ≤ 𝑁 ≤ 200 which were rarely studied in the literature,
where the available best-known results for several instances are taken
from the website maintained by Hardin et al. (2012) and two previous
papers (Gáspár, 1989; Tarnai and Gáspár, 1987). For most instances
in this range, the putatively optimum solutions are generated for the
first time by us. One can observe from Table 5 that for most instances,
the standard deviation of the objective values obtained by the IDNS
algorithm is very small, indicating a good algorithmic robustness. For

the eight instances whose best-known results have been reported in
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Table 3
Computational results and comparison on the instances in the range of 51 ≤ 𝑁 ≤ 100. The improved results are indicated in bold compared
with the best known results in the literature in terms of 𝑑𝑏𝑒𝑠𝑡, 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡.

N BKR (deg) 𝑑𝑏𝑒𝑠𝑡 (deg) 𝑑𝑎𝑣𝑔 (deg) 𝑑𝑤𝑜𝑟𝑠𝑡 (deg) 𝜎 Time (s)

51 29.368406881 29.368406881 29.368406881 29.368406881 0.0 59
52 29.194757905 29.194757905 29.194757905 29.194757905 0.0 43
53 28.813897205 28.813897205 28.813897205 28.813897205 0.0 63
54 28.716920530 28.716920530 28.716920530 28.716920530 0.0 81
55 28.262791418 28.262791418 28.262791418 28.262791418 0.0 60
56 28.148046651 28.148046651 28.148046651 28.148046651 0.0 51
57 27.826675948 27.826675948 27.826675948 27.826675948 0.0 61
58 27.556415956 27.556415956 27.556415956 27.556415956 0.0 69
59 27.394975670 27.394975670 27.394975670 27.394975670 0.0 72
60 27.192830003 27.192830003 27.192830003 27.192830003 0.0 65
61 26.873277866 26.873277866 26.873277866 26.873277866 0.0 80
62 26.683996996 26.683996996 26.683996996 26.683996996 0.0 83
63 26.486922511 26.486922511 26.486922511 26.486922511 0.0 66
64 26.235043312 26.235043312 26.235043312 26.235043312 0.0 80
65 26.069829948 26.069829948 26.069829948 26.069829948 0.0 102
66 25.947443691 25.947443691 25.947443691 25.947443691 0.0 80
67 25.683981345 25.683981345 25.683981345 25.683981345 0.0 101
68 25.463824458 25.463824458 25.463824458 25.463824458 0.0 69
69 25.333636438 25.333636438 25.333636438 25.333636438 0.0 271
70 25.170919984 25.170919984 25.170919984 25.170919984 0.0 146
71 24.987938062 24.987938062 24.987938062 24.987938062 0.0 424
72 24.926486081 24.926486081 24.926486081 24.926486081 0.0 131
73 24.553779249 24.553779249 24.553779249 24.553779249 0.0 177
74 24.420939780 24.420939780 24.420939780 24.420939780 0.0 121
75 24.301722513 24.301722513 24.301722513 24.301722513 0.0 192
76 24.128194442 24.128194442 24.128194442 24.128194442 0.0 263
77 24.001283683 24.001283683 24.001283683 24.001283683 0.0 180
78 23.931025420 23.931025420 23.931025420 23.931025420 0.0 275
79 23.623991696 23.623991696 23.623991696 23.623991696 0.0 134
80 23.553067202 23.553067202 23.553067202 23.553067202 0.0 159
81 23.347637682 23.347637682 23.347637632 23.347637599 4.09E−08 6557
82 23.194607406 23.194607406 23.194607406 23.194607406 0.0 468
83 23.082997639 23.082997639 23.082997639 23.082997639 0.0 123
84 23.051730642 23.051730642 23.051730642 23.051730642 0.0 152
85 22.779162071 22.779162071 22.779162071 22.779162071 0.0 207
86 22.674369389 22.674369389 22.674369389 22.674369389 0.0 179
87 22.546657426 22.546657426 22.546657426 22.546657426 0.0 163
88 22.467881045 22.467881045 22.467881045 22.467881045 0.0 119
89 22.316602355 22.316602355 22.316602355 22.316602355 0.0 243
90 22.154023258 22.154023258 22.154023258 22.154023258 0.0 1002
91 22.051796329 22.051796329 22.051796329 22.051796329 0.0 197
92 22.027581468 22.027581468 22.027581468 22.027581468 0.0 174
93 21.810380126 21.810380126 21.810380126 21.810380126 0.0 244
94 21.723713484 21.723713484 21.723709135 21.723708651 1.45E−06 1320
95 21.594550060 21.594550060 21.594550060 21.594550060 0.0 226
96 21.520609925 21.520609925 21.520609925 21.520609925 0.0 183
97 21.400619755 21.400650276 21.400650276 21.400650276 0.0 309
98 21.371060736 21.371060736 21.371060736 21.371060736 0.0 153
99 21.135967381 21.135967381 21.135967381 21.135967381 0.0 248
100 21.031202000 21.031202000 21.031202000 21.031202000 0.0 229

#Improved 1 1 1
#Equal 49 47 47
#Worse 0 2 2
s
c
p

the previous studies, the best, average and worst objective values of
the IDNS algorithm are superior to the best-known results except for
𝑁 = 200. On the other hand, the table shows that the computational
time of the IDNS algorithm on these large instances is usually much
longer than on the smaller instances in Tables 2–4, which means the
difficulty increases significantly as the size 𝑁 increases in the general
cases.

To give an intuitive interpretation for the solutions of the ECPOS
problem, Fig. 3 provides a graphical representation of the best solutions
of four representative instances, i.e., 𝑁 = 149, 150, 171 and 177, where
each point on the sphere corresponds to a circle with angular diameter
of 𝑑𝑏𝑒𝑠𝑡. Fig. 3 shows that the best packing configuration found for these
four instances has a high symmetry.

As demonstrated above, our IDNS algorithm improves the best-
known results for 7 out of 125 instances with 𝑁 ≤ 130 which are
the most studied in the literature. To disclose the differences between
the improved solutions and the previous best-known solutions, we
8

give the Voronoi representations for three representative instances in
Fig. 4, since be the Voronoi representation of solutions is able to more
clearly exhibit the features of the configuration compared to the direct
representation in Fig. 3.

The Voronoi representation is a configuration consisting of 𝑁
points on the sphere, constituting a partition of the spherical surface
𝑆2. Specifically, the spherical surface 𝑆2 is partitioned to 𝑁 disjoint
Voronoi cells 𝐶1, 𝐶2, … , 𝐶𝑁 , where each cell 𝐶𝑖 is a polygon on the
phere and corresponds to a given point 𝑟𝑖 that is the spherical cap
enter. Each polygon is colored according to the number of its edges to
ortray its configuration characteristics. Formally, a cell 𝐶𝑖 on 𝑆2 can

be written as follows (Saff and Kuijlaars, 1997):

𝐶𝑖 = {𝑥 ∈ 𝑆2 ∶ |𝑥 − 𝑟𝑖| = 𝑚𝑖𝑛1≤𝑘≤𝑁 |𝑥 − 𝑟𝑘|} (12)

The configuration of solutions in the Voronoi representation is
characterized by its topological defects, where a topological defect can
be defined as a building block of one or several adjacent non-hexagonal



Computers and Operations Research 151 (2023) 106121X. Lai et al.
Table 4
Computational results and comparison on the instances in the range of 101 ≤ 𝑁 ≤ 150. The improved results are indicated in bold compared
with the best known results in the literature in terms of 𝑑𝑏𝑒𝑠𝑡, 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡, and the worse results are indicated in italic.

N BKR (deg) 𝑑𝑏𝑒𝑠𝑡 (deg) 𝑑𝑎𝑣𝑔 (deg) 𝑑𝑤𝑜𝑟𝑠𝑡 (deg) 𝜎 Time (s)

101 20.928683418 20.928683418 20.928683418 20.928683418 0.0 231
102 20.855688715 20.855688715 20.855688715 20.855688715 0.0 1029
103 20.738269268 20.738269268 20.738269268 20.738269268 0.0 444
104 20.656620961 20.656620961 20.656620961 20.656620961 0.0 332
105 20.538852367 20.538852367 20.538852367 20.538852367 0.0 245
106 20.439408913 20.439408913 20.439408913 20.439408913 0.0 357
107 20.361203471 20.361203471 20.361199947 20.361198437 2.31E−06 5073
108 20.304444715 20.304444715 20.304444715 20.304444715 0.0 324
109 20.149319591 20.149319591 20.149319591 20.149319591 0.0 579
110 20.111327602 20.096120236 20.096117678 20.096117039 1.28E−06 4025
111 19.982476901 19.993724800 19.975084380 19.968707889 1.02E−02 6454
112 19.891304375 19.891304375 19.891304375 19.891304375 0.0 8305
113 19.805601302 19.805601302 19.805601302 19.805601302 0.0 287
114 19.745009357 19.745009357 19.745009357 19.745009357 0.0 309
115 19.623993121 19.623993121 19.623993121 19.623993121 0.0 1854
116 19.549796869 19.549796869 19.549796869 19.549796869 0.0 378
117 19.461291100 19.461291100 19.461291100 19.461291100 0.0 284
118 19.389349705 19.389510434 19.389510434 19.389510434 0.0 3504
119 19.325751352 19.314184273 19.314061399 19.313118887 3.18E−04 21 104
120 19.324020069 19.264740121 19.264740121 19.264740121 0.0 251
121 19.135729782 19.146164522 19.146161475 19.146151839 4.20E−06 21 761
122 19.070036856 19.075939806 19.071748646 19.070036856 2.18E−03 4927
123 19.006389067 19.006389067 19.006389067 19.006389067 0.0 678
124 18.953911647 18.953911647 18.953911647 18.953911647 0.0 633
125 18.844815070 18.844831207 18.836924324 18.832117202 5.93E−03 12 947
126 18.781585614 18.781585614 18.781585614 18.781585614 0.0 302
127 18.690056810 18.690313825 18.690133280 18.690056810 1.13E−04 9012
128 18.634972596 18.634972596 18.634972596 18.634972596 0.0 1050
129 18.563472647 18.563472647 18.563472647 18.563472647 0.0 359
130 18.510352167 18.510352167 18.510352167 18.510352167 0.0 295
131 18.2831860 18.420047209 18.420047209 18.420047209 0.0 397
132 18.3665155 18.384277320 18.384275633 18.384268888 3.37E−06 12 680
133 18.1164476 18.273124165 18.273124165 18.273124165 0.0 371
134 18.0352521 18.200068456 18.200068456 18.200068456 0.0 1590
135 17.8995373 18.136512220 18.136512220 18.136512220 0.0 464
136 17.8995373 18.078032313 18.077511271 18.075228366 9.95E−04 29 274
137 17.8597825 18.005882786 18.005882786 18.005882786 0.0 389
138 17.6717639 17.943942754 17.943942739 17.943942678 3.04E−08 20 303
139 17.6355493 17.883394318 17.883394318 17.883394318 0.0 3195
140 16.5945958 17.828027560 17.828027560 17.828027560 0.0 1365
141 17.5598327 17.751660456 17.747822554 17.746935482 1.78E−03 10 294
142 17.4217485 17.693922247 17.693922247 17.693922247 0.0 682
143 17.4136350 17.636328052 17.622533056 17.621000295 4.60E−03 2635
144 17.4803100 17.592390582 17.583784340 17.582828097 2.87E−03 413
145 17.3587143 17.520387535 17.508005494 17.496640380 9.33E−03 28 443
146 17.3312211 17.466893736 17.454847184 17.440061598 1.17E−02 24 851
147 17.1801361 17.401249997 17.395218183 17.383314817 7.42E−03 22 485
148 17.0450209 17.343053927 17.342073075 17.340310702 7.77E−04 23 831
149 17.0020507 17.281266525 17.281266525 17.281266525 0.0 701
150 17.1075768 17.249816554 17.249816554 17.249816554 0.0 696

#Improved 26 24 22
#Equal 21 21 23
#Worse 3 5 5
Fig. 3. Best packing configurations found in this work for four representative instances, where each circle is colored according to its number of nearest neighbors.
9
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Table 5
Computational results and comparison on the instances in the range of 151 ≤ 𝑁 ≤ 200. The improved results are indicated in bold compared
with the best-known results in the literature in terms of 𝑑𝑏𝑒𝑠𝑡, 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡.

N BKR (deg) 𝑑𝑏𝑒𝑠𝑡 (deg) 𝑑𝑎𝑣𝑔 (deg) 𝑑𝑤𝑜𝑟𝑠𝑡 (deg) 𝜎 Time (s)

151 N/A 17.174585202 17.174335564 17.173790743 2.75E−04 28 925
152 16.22487558 17.127321801 17.125969412 17.114890190 3.70E−03 28 376
153 N/A 17.072410149 17.070127387 17.050645569 6.50E−03 31 578
154 N/A 17.020367720 17.020306724 17.020198307 5.93E−05 31 959
155 N/A 16.957032553 16.957011737 16.956958629 2.82E−05 36 105
156 N/A 16.921870518 16.916458988 16.896145681 1.01E−02 28 653
157 N/A 16.844221939 16.843639388 16.841328510 1.04E−03 34 454
158 N/A 16.795708629 16.795185682 16.794085637 4.86E−04 32 221
159 N/A 16.746475459 16.742873946 16.736992394 4.27E−03 26 687
160 N/A 16.693204542 16.688543911 16.683883308 4.66E−03 21 204
161 N/A 16.638778470 16.636422193 16.632985911 2.00E−03 34 002
162 16.132192103 16.606770297 16.602243974 16.594900388 4.93E−03 26 900
163 N/A 16.541137966 16.540163192 16.534523100 1.92E−03 30 097
164 N/A 16.485809203 16.484338634 16.483441050 9.05E−04 20 602
165 N/A 16.434849648 16.433901863 16.433104855 6.11E−04 33 673
166 N/A 16.397996521 16.397966946 16.397743224 7.56E−05 37 243
167 N/A 16.336594952 16.331890626 16.327290716 3.75E−03 34 163
168 N/A 16.293215766 16.289906102 16.285491526 2.59E−03 32 061
169 N/A 16.255546787 16.250942915 16.234537037 5.86E−03 25 506
170 14.845631806 16.236217883 16.236081108 16.235783104 1.54E−04 28 226
171 N/A 16.166465249 16.163859419 16.159066566 2.47E−03 31 094
172 N/A 16.130878909 16.123784273 16.107224050 1.08E−02 41 078
173 N/A 16.056631001 16.056626463 16.056603037 8.24E−06 39 171
174 N/A 16.022382474 16.021977313 16.020436609 7.12E−04 39 804
175 N/A 15.985629022 15.984740458 15.983094748 9.48E−04 39 044
176 N/A 15.930734011 15.928351550 15.925833252 1.81E−03 36 209
177 N/A 15.881694787 15.881482809 15.880798140 2.74E−04 34 020
178 N/A 15.853104024 15.852002724 15.848687784 1.67E−03 41 147
179 N/A 15.825647953 15.825626868 15.825488740 4.64E−05 44 799
180 15.818759283 15.818759336 15.818759336 15.818759336 0.0 34 856
181 N/A 15.738653922 15.738644273 15.738627742 6.57E−06 28 114
182 14.515037788 15.676673420 15.676534933 15.675344730 3.97E−04 38 433
183 N/A 15.637263188 15.635386225 15.632446644 1.90E−03 29 236
184 N/A 15.586160863 15.586153058 15.586089294 2.13E−05 46 139
185 N/A 15.549278801 15.549094271 15.548645292 2.04E−04 48 282
186 N/A 15.506034396 15.506029750 15.506008334 7.91E−06 30 011
187 N/A 15.451118279 15.451106542 15.451043774 2.45E−05 32 681
188 N/A 15.420083491 15.420083403 15.420083394 2.91E−08 27 161
189 N/A 15.379486067 15.379418380 15.379108477 1.08E−04 42 820
190 N/A 15.357312790 15.356122097 15.348075717 2.73E−03 44 676
191 N/A 15.311391737 15.311391737 15.311391737 0.0 23 064
192 15.17866313 15.293846752 15.293846752 15.293846752 0.0 17 657
193 N/A 15.226804266 15.226804198 15.226803926 1.36E−07 25 765
194 N/A 15.185373070 15.185019272 15.183262743 6.08E−04 40 756
195 N/A 15.148661157 15.137439936 15.134135175 5.39E−03 40 147
196 N/A 15.099589969 15.097575664 15.096137624 1.18E−03 37 635
197 N/A 15.055765691 15.054106350 15.052257521 1.28E−03 30 738
198 14.60186 15.021343394 15.020387794 15.018682441 9.38E−04 40 019
199 N/A 15.001874047 14.994478168 14.989824292 4.28E−03 37 995
200 14.995766166 14.996344132 14.973669204 14.947701872 1.62E−02 43 699
v
‘
o
r
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cells. Non-hexagonal cells are inevitable for the configurations on a
sphere according to Euler’s formula 𝐹 − 𝐸 + 𝑉 = 2, where 𝐹 is the
number of faces, 𝐸 is the number of edges, and 𝑉 is the number
of vertices (Saff and Kuijlaars, 1997). In the previous studies of the
well-known Thomson problem (Wales et al., 2009; Wales and Ulker,
2006), the topological defects are widely used to characterize spherical
configurations. In this study, the Voronoi representation is able to
portray a fuller range of the structural differences between solutions.
The configurations of Fig. 4 show that the improved solutions differ
significantly from the previous best-known solutions for these three
representative instances.

3.2.2. Comparison with the popular basin-hopping algorithm
To further assess the proposed IDNS algorithm, we compared it with

the basin-hopping (BH) algorithm (Wales and Doye, 1997), which is a
very popular Monte Carlo search based global optimization algorithm
in the literature. At each iteration, the algorithm performs a perturba-
tion move followed by a local optimization step to generate the new
solution and then uses the Metropolis rule to accept the new solution.
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Specifically, the Metropolis acceptance rule is based on the objective
change (i.e., 𝛥𝑓 = 𝑓 (𝑋𝑛𝑒𝑤) −𝑓 (𝑋𝑐𝑢𝑟)) between the current solution 𝑋𝑐𝑢𝑟
and the new solution 𝑋𝑛𝑒𝑤 and a temperature parameter 𝑇 , and the new
solution is accepted to become the current solution with a probability
of 𝑚𝑖𝑛{1, 𝑒−

𝛥𝑓
𝑇 }.

To conduct our comparative study, we first created a variant BH∗

of the IDNS algorithm, where the DNS procedure is replaced by the
basin-hopping algorithm while keeping other algorithmic components
unchanged. In this experiment, the BH∗ algorithm and the IDNS algo-
rithm were respectively performed 10 times for each of 20 selected hard
instances. The computational results are reported in Table 6, including
the best objective values over 10 runs (𝑑𝑏𝑒𝑠𝑡), the average objective
alues (𝑑𝑎𝑣𝑔) and the worst objective values (𝑑𝑤𝑜𝑟𝑠𝑡). The last rows
#Better’, ‘#Equal’ and ‘#Worse’ of table respectively give the numbers
f instances for which an algorithm obtained a better, equal and worse
esult compared to its competitor.

Table 6 shows that the IDNS algorithm outperforms significantly
he BH∗ algorithm on the tested instances. In terms of 𝑑𝑏𝑒𝑠𝑡, the IDNS
lgorithm obtained a better and worst result than BH∗ respectively for
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Fig. 4. Comparisons of Voronoi representations between the previous best-known solution and the improved best solution for three representative instances in the range of 𝑁 ≤ 130.
Table 6
Comparison between the IDNS algorithm with the popular basin-hopping (BH) algorithm (Wales and Doye, 1997) on 20 hard instances in the
range of 𝑁 ≤ 200. The dominating results are indicated in bold in terms of 𝑑𝑏𝑒𝑠𝑡, 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡.

N 𝑑𝑏𝑒𝑠𝑡 𝑑𝑎𝑣𝑔 𝑑𝑤𝑜𝑟𝑠𝑡

BH∗ IDNS BH∗ IDNS BH∗ IDNS

127 18.690305208 18.690313825 18.690147913 18.690133280 18.690050921 18.690056810
146 17.465930886 17.466893736 17.451844964 17.454847184 17.441095528 17.440061598
148 17.341860444 17.343053927 17.338237872 17.342073075 17.327139650 17.340310702
151 17.174567161 17.174585202 17.158951212 17.174335564 17.151670952 17.173790743
153 17.071090417 17.072410149 17.054333877 17.070127387 17.049804683 17.050645569
156 16.921411941 16.921870518 16.900683613 16.916458988 16.893047572 16.896145681
157 16.841950790 16.844221939 16.838713157 16.843639388 16.835548149 16.841328510
159 16.738050945 16.746475459 16.736353245 16.742873946 16.732368911 16.736992394
160 16.693204542 16.693204542 16.684477146 16.688543911 16.681472974 16.683883308
166 16.397924415 16.397996521 16.396660396 16.397966946 16.391921250 16.397743224
168 16.290928822 16.293215766 16.288824441 16.289906102 16.285974926 16.285491526
170 16.197343742 16.236217883 16.194450377 16.236081108 16.191882989 16.235783104
174 16.019628627 16.022382474 16.016837296 16.021977313 16.013224168 16.020436609
176 15.925604169 15.930734011 15.922735014 15.928351550 15.920273618 15.925833252
183 15.637185316 15.637263188 15.624755792 15.635386225 15.617711750 15.632446644
185 15.547603918 15.549278801 15.541858678 15.549094271 15.538561262 15.548645292
189 15.378978288 15.379486067 15.375799277 15.379418380 15.367998919 15.379108477
195 15.133901510 15.148661157 15.132159787 15.137439936 15.131164954 15.134135175
196 15.100659852 15.099589969 15.096130061 15.097575664 15.093690564 15.096137624
200 14.955636253 14.996344132 14.951768478 14.973669204 14.945801468 14.947701872

#Better 1 18 1 19 2 18
#Equal 1 1 0 0 0 0
#Worse 18 1 19 1 18 2
p-value 4.63E−4 1.03E−4 2.19E−4
18 and 1 out of the 20 instances. In terms of 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡, the IDNS
algorithm obtained a better result respectively for 19 and 18 instances.
To assess the statistical significant differences between the results of
the compared algorithms, the Wilcoxon signed-rank test was applied to
the values of 𝑑𝑏𝑒𝑠𝑡, 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡, leading to 𝑝-values smaller than 0.05.
This experiment indicates that the IDNS algorithm is a very competitive
global optimization algorithm on the studied ECPOS problem.

3.2.3. Packing density and representative packing patterns
This subsection investigates the packing density and the representa-

tive configurations of putatively optimal solutions. The packing density
𝑝 of a feasible packing configuration of 𝑁 equal circles with an angular
diameter of 𝑑 (∈ [0, 𝜋]) on the unit sphere is defined as the ratio of the
area of 𝑁 spherical caps to the whole area of the spherical surface and
11
is calculated as follows (Teshima and Ogawa, 2000):

𝑝(𝑁, 𝑑) = 𝑁
2
(1 − 𝑐𝑜𝑠(𝑑

2
)) (13)

The packing densities of the best configurations found in this study
are plotted in Fig. 5 as a function of 𝑁 for the instances in the range of
𝑁 ≤ 200. We observe from Fig. 5 that the packing densities of these best
configurations vary markedly at the beginning and then trend gradually
toward a stable status as the number (𝑁) of circles increases. On the
other hand, we also observe that there are some special sizes for which
the packing density is much higher or lower than its neighboring sizes,
such as 𝑁 = 7, 12, 13, 24, 48, 72, 98 and 180.

To show the structural characteristics of the best solutions found,
we give in Fig. 6 the Voronoi representation for several representative
instances, where the structural characteristics are well exhibited by
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Fig. 5. The packing densities of putatively optimal solutions as a function of the size
of instances.

Table 7
Computational results and comparison on 10 large-scale instances with 𝑁 > 200. The
improved results are indicated in bold compared with the best-known results in the
literature in terms of 𝑑𝑏𝑒𝑠𝑡, 𝑑𝑎𝑣𝑔 and 𝑑𝑤𝑜𝑟𝑠𝑡, and the worse results are indicated by italic

N BKR (deg) 𝑑𝑏𝑒𝑠𝑡 (deg) 𝑑𝑎𝑣𝑔 (deg) 𝑑𝑤𝑜𝑟𝑠𝑡 (deg) 𝜎 Time (s)

216 14.21184 14.39684 14.38763 14.38318 4.70E−03 46 560
270 12.93699 12.93699 12.91552 12.89962 1.75E−02 47 296
282 12.44139 12.62615 12.62492 12.62147 1.50E−03 61 031
360 11.20247 11.16916 11.16604 11.16304 1.76E−03 86 359
372 10.92372 10.99022 10.98682 10.98404 1.85E−03 66 034
432 9.98344 10.19665 10.19331 10.19099 1.67E−03 88 961
480 9.69375 9.67197 9.67059 9.66887 9.53E−04 107 098
492 9.46111 9.55591 9.55240 9.55028 1.97E−03 93 310
750 7.74674 7.75782 7.75632 7.75531 7.09E−04 165 102
1080 6.44607 6.47834 6.47737 6.47618 6.48E−04 232 943

#Improved 7 7 7
#Equal 1 0 0
#Worse 2 3 3

the topological defects. According to the figure, the structural char-
acteristics of these best configurations can be summarized as follows.
First, these best solutions exhibit various categories of packing patterns
which differ significantly for 𝑁 = 50, 72, 87, 89, 120, 126, 142
nd 171. Second, some best solutions share almost the same packing
attern and the only difference between their configurations lies in
he distance between topological defects. This phenomenon occurs
oticeably for 𝑁 = 50 and 110, 72 and 131, and 93 and 150. Third,
ome configurations share the same topological defects, as exemplified
y the cases for 𝑁 = 89, 93, 126 and 149. Fourth, some configurations
xhibit very similar but different packing patterns, such as 𝑁 = 105 and
26, and so on.

.3. Computational results on large-scale instances

To assess the scalability of the algorithm, we tested the IDNS
lgorithm on 10 selected large-scale instances with 𝑁 ranging from
16 to 1080 commonly studied in previous investigations (Gáspár,
989; Hardin et al., 2012; Tarnai, 2002; Tarnai and Gáspár, 1987). The
omputational results are summarized in Table 7, where most of the
est-known results were obtained by the construction methods based
n prior knowledge of the problem and the symbols have the same
eaning as in Tables 2–4.
12
Table 7 shows that the IDNS algorithm is very effective compared
o other algorithms in the literature at obtaining the best-known results
or these large-scale instances, improving the best-known result for 7
nstances and matching the best-known result for one instance, while
issing the best-known results only for two instances. The average

esult 𝑑𝑎𝑣𝑔 and the worst result 𝑑𝑤𝑜𝑟𝑠𝑡 over 10 independent runs of
he IDNS algorithm are both superior to the best-known results for 7
nstances. Such an outcome discloses that the multi-symmetric packing
onfigurations obtained by the construction methods are not optimal
ven if they have a beautiful graphical representation and are widely
onjectured to be the optimal solutions (Hardin et al., 2012).

Nevertheless, the fact that the IDNS algorithm failed to find the
est-known results for two instances indicates that the best-performing
onstruction approaches still can be competitive for some special sizes
ompared to the IDNS algorithm. In terms of the computational time,
he results of the IDNS algorithm are relatively long for these instances,
hich means that they are much harder to solve compared to the

maller instances with 𝑁 ≤ 200.
To provide an intuitive picture of the best configurations of the

arge-scale instances, we give in Fig. 7 the packing configurations and
he corresponding Voronoi representations of the best solutions found
or two representative instances with 𝑁 = 480 and 1080. The configu-
ations in Fig. 7 show that the surface 𝑆2 of the unit sphere contains a
umber of vacancies that were not covered by circles, leading to several
egular topological defects in the Voronoi representations.

. Analysis of key algorithmic components

We now turn our attention to analyzing two important compo-
ents of the IDNS algorithm: the setting of key parameters and the
ultiple-stage local optimization method.

.1. Sensitivity of key parameters

The DNS procedure of the proposed IDNS algorithm employs several
arameters. This subsection analyzes their sensitivity and undertakes
o find the appropriate settings for them. Due to a high correlation
etween parameters, we focus on the combination of three parameters
𝑚𝑎𝑥, 𝜂𝑚𝑎𝑥, 𝜂𝑠, where 𝑀𝑚𝑎𝑥 represents the maximum neighborhood

ize, 𝜂𝑚𝑎𝑥 represents the maximum perturbation strength, and 𝜂𝑠 rep-
esents the incremental change of perturbation strength per iteration.

To check the sensitivity of these three parameters, we carried out an
dditional experiment based on 20 representative instances in the range
f 𝑁 ≤ 200, where 9 parameter combinations shown in Table 8 were
ested. For each parameter combination, the IDNS algorithm was run 5
imes on each instance, and the computational results are summarized
n Table 8, where the first column gives the sizes (𝑁) of instances, the
econd row gives the parameter settings, columns 2–10 give the average
bjective values 𝑑𝑎𝑣𝑔 (in degree), and the last row shows the number
f instances for which the associated parameter combination produced
he best result among all the tested parameter combinations.

Table 8 shows that the performance of the IDNS algorithm is
ensitive to the setting of these three parameters. The parameter com-
ination of (𝑀𝑚𝑎𝑥, 𝜂𝑚𝑎𝑥, 𝜂𝑠) = (6, 0.6, 0.01) produced the best result in
erms of the average objective value for 10 out of the 20 instances, and
ther 8 combinations respectively produced the best result for 0, 3, 1,
, 2, 0, 4, 0 instances, respectively. This outcome indicates (6, 0.6, 0.01)
s the best combination for the parameters (𝑀𝑚𝑎𝑥, 𝜂𝑚𝑎𝑥, 𝜂𝑠) among the
ombinations tested, and thus was chosen as the default setting for the
DNS algorithm.

Finally, our experiments indicated that the parameters 𝑀𝑚𝑖𝑛, 𝜂𝑚𝑖𝑛 of
he DNS method also significantly impact the performance of the IDNS
lgorithm, while this is not the case for the parameter 𝛽𝑚𝑎𝑥. To sum,
he settings of parameters have a great influence on the performance
f the IDNS algorithm. Fine-tuning these parameters could lead to new
esults still better than those reported in this paper.
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Fig. 6. Voronoi representations of the best solutions for some representative instances.
Table 8
Influence of the settings of parameters on the performance of algorithm. Each instance was solved 5 times for each parameter combination of (𝑀𝑚𝑎𝑥, 𝜂𝑚𝑎𝑥, 𝜂𝑠), and the average
objective values (𝑑𝑎𝑣𝑔) over 5 runs are given in the table, where the best results among the tested parameter combinations are indicated in bold for each instance.

N/(𝑀𝑚𝑎𝑥, 𝜂𝑚𝑎𝑥, 𝜂𝑠) 𝑑𝑎𝑣𝑔
(3, 0.7, 0.03) (4, 0.7, 0.01) (4, 0.7, 0.03) (4, 0.7, 0.05) (5, 0.7, 0.01) (5, 0.7, 0.03) (6, 0.6, 0.01) (6, 0.7, 0.01) (6, 1.0, 0.01)

127 18.6901498 18.6901082 18.6902397 18.6902494 18.6901082 18.6901958 18.6901583 18.6902584 18.6901063
146 17.4482676 17.4582671 17.4477357 17.4469208 17.4471473 17.4479971 17.4472764 17.4509179 17.4461207
148 17.3382886 17.3387882 17.3417278 17.3384857 17.3356355 17.3326310 17.3356970 17.3394506 17.3353972
151 17.1644585 17.1633563 17.1681313 17.1580338 17.1582059 17.1685724 17.1738019 17.1630695 17.1695592
153 17.0590791 17.0714462 17.0589176 17.0580142 17.0604717 17.0575317 17.0683029 17.0632901 17.0672641
156 16.9090326 16.9048533 16.9093797 16.9166010 16.9216265 16.9024000 16.9179374 16.9211816 16.9169318
157 16.8404528 16.8434530 16.8417584 16.8403518 16.8421071 16.8417126 16.8439651 16.8408719 16.8417145
159 16.7365568 16.7431259 16.7381247 16.7373414 16.7431552 16.7366532 16.7407873 16.7444778 16.7432388
160 16.6847527 16.6854405 16.6854889 16.6861354 16.6838720 16.6870552 16.6881013 16.6873830 16.6820394
166 16.3923725 16.3952353 16.3932665 16.3966948 16.3956327 16.3898364 16.3979965 16.3944327 16.3958718
168 16.2876051 16.2936941 16.2896172 16.2887163 16.2899262 16.2892704 16.2901879 16.2896299 16.2894372
170 16.2163142 16.2348095 16.2153551 16.2066063 16.2193611 16.2107841 16.2125983 16.2245123 16.2251980
174 16.0158297 16.0193235 16.0188455 16.0184606 16.0175039 16.0145093 16.0214495 16.0192027 16.0214050
176 15.9270161 15.9246417 15.9276029 15.9253874 15.9275527 15.9246041 15.9296936 15.9287096 15.9275110
183 15.6320341 15.6346540 15.6346371 15.6292564 15.6354346 15.6328937 15.6348465 15.6355193 15.6334947
185 15.5410014 15.5453560 15.5443835 15.5408988 15.5446377 15.5443810 15.5480259 15.5443088 15.5467411
189 15.3747624 15.3775044 15.3739427 15.3744127 15.3759129 15.3741625 15.3785468 15.3770740 15.3779191
195 15.1327735 15.1332095 15.1324183 15.1357594 15.1399524 15.1324085 15.1349263 15.1341429 15.1340331
196 15.0952901 15.0963988 15.0977746 15.0946044 15.0980392 15.0952901 15.0985888 15.0980695 15.0958733
200 14.9528029 14.9725562 14.9592674 14.9510179 14.9716083 14.9533088 14.9688485 14.9770950 14.9544023

0 3 1 0 2 0 10 4 0
13
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Fig. 7. Best configurations found in this work and their Voronoi representations for two selected large-scale instances.
4.2. Importance of multiple-stage local optimization

The multiple-stage local optimization method is a main component
of the proposed IDNS algorithm. To check its efficiency and effec-
tiveness, we carried out a comparative experiment based on all the
instances in the range of 6 ≤ 𝑁 ≤ 200. In this experiment, for each
instance, 1000 initial solutions were first randomly generated, and then
from each initial solution the multiple-stage local optimization method
and the standard LBFGS method (i.e., one-stage local optimization
method) were respectively run to minimize the objective function
𝐸𝐷(𝑋) defined in Eq. (8), where the value of 𝐷 was set to the current
best-known result. The average running time in seconds is plotted in
Fig. 8 as a function of 𝑁 for the two local optimization methods. Thus
this is a time-to-target analysis, which illustrates the time needed for
both methods to reach the same local minimum solution from a given
starting point.

Fig. 8 shows that the multiple-stage local optimization method
significantly outperforms the popular one-stage LBFGS method in terms
of computational speed. The running time increases almost linearly
for the multiple-stage local optimization method as the size 𝑁 of
instance increases, which is a desired feature for the local optimization.
However, the running time of the one-stage LBFGS method increases
almost quadratically with respect to 𝑁 . Moreover, the running time of
the one-stage local optimization method is much longer than that of
the multiple-stage local optimization method especially for the large
instances. This experiment clearly shows that the use of the multiple-
stage local optimization method is able to significantly speed up the
search process of the IDNS algorithm.
14
Fig. 8. Comparison between the multiple-stage local optimization method and
one-stage local optimization method.
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Table 9
Comparative results of the DNS method with the popular basin-hopping (BH) algorithm (Wales and Doye, 1997) on 10
representative Lennard-Jones clusters. The best results among the compared algorithms are indicated in bold in terms of 𝑓𝑏𝑒𝑠𝑡,
𝑓𝑎𝑣𝑔 and the success rate (SR).

N BKR 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 SR

BH DNS BH DNS BH DNS

38 −173.9284 −173.9284 −173.9284 −173.8135 −173.9014 83/100 96/100
55 −279.2485 −279.2485 −279.2485 −279.2485 −279.2485 100/100 100/100
69 −359.8826 −359.8826 −359.8826 −359.8755 −359.8799 84/100 96/100
70 −366.8923 −366.8923 −366.8923 −366.8923 −366.8923 100/100 100/100
75 −397.4923 −397.4923 −397.4923 −396.2922 −396.2851 1/100 1/100
78 −414.7944 −414.7944 −414.7944 −414.7510 −414.7837 62/100 90/100
90 −492.4339 −492.4339 −492.4339 −491.6150 −492.3017 73/100 93/100
98 −543.6654 −543.6654 −543.6654 −542.4750 −543.4987 1/100 1/100
100 −557.0398 −557.0398 −557.0398 −555.3898 −556.7677 57/100 85/100
102 −569.3637 −569.3637 −569.3637 −568.3133 −568.8893 16/100 5/100

#Best 10 10 3 9 5 9
Fig. 9. Best solutions found by our DNS method for two hard instances.
To further check whether the multiple-stage local optimization
strategy can be applied to other geometry optimization problems, we
applied the method to the well-known Lennard-Jones cluster problem
and conducted an experiment on 4 representative instances (LJ200,
LJ400, LJ600 and LJ800), where the multiple-stage local optimization
method and the standard LBFGS method were respectively used in one
run of the DNS algorithm for each tested cluster. The computational
results show that the multiple-stage local optimization is faster than
the standard LBFGS method on the Lennard-Jones clusters. Specifically,
our multiple-stage local optimization method for 104 performed local
optimizations requires on average 0.015, 0.066, 0.15 and 0.235 s to
converge to the local minimum solutions respectively for LJ200, LJ400,
LJ600 and LJ800 on our computer, while the standard LBFGS method
requires 0.025, 0.115, 0.284, 0.480 s to reach the same results.

5. Generality of the DNS method

As one main component of the proposed IDNS algorithm, the dy-
namical neighborhood search (DNS) method described in Algorithm 2
is a general-purpose optimization algorithm and can be applied to other
optimization problems. To show its generality and effectiveness, we
carried out an additional experiment by applying DNS to another well-
known global optimization problem, i.e., the structural optimization of
Lennard-Jones (LJ) clusters. In this experiment, the DNS method was
performed in a multi-start fashion with the following parameter setting:
𝑀 = 5, 𝑀 = 10, 𝜂 = 0.8, 𝜂 = 0.9, 𝜂 = 0.01 and 𝛽 = 300.
15

𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑠 𝑚𝑎𝑥
To assess the performance of the DNS method, we used the very
popular basin-hopping (BH) algorithm (Wales and Doye, 1997) as
the reference algorithm. Both the temperature parameter 𝑇 and the
perturbation strength 𝜂 of the BH algorithm were set to 0.8. To make
a fair comparison, the two compared algorithms employed the same
stopping condition, which is a maximum number 𝑀𝑎𝑥𝑆𝑡𝑒𝑝 of local
optimizations fixed to 104.

The experimental results of these two algorithms are summarized in
Table 9, where the first two columns give the sizes of the instances and
the best-known results (BKR) reported in the literature. The results of
the two algorithms are shown in the remaining columns. Columns 3–
4 give the best objective values (𝑓𝑏𝑒𝑠𝑡) obtained over 100 independent
runs for the two algorithms, columns 5–6 present the average objective
values (𝑓𝑎𝑣𝑔), and columns 7–8 show the success rates (SR) of hitting
the best-known results for the two algorithm. The last row indicates the
number of instances for which the corresponding algorithm yielded the
best result between the compared algorithms in terms of 𝑓𝑏𝑒𝑠𝑡, 𝑓𝑎𝑣𝑔 and
SR.

Table 9 discloses that the DNS algorithm performed better than the
popular BH algorithm for the optimization of Lennard-Jones clusters.
Specifically, in terms of 𝑓𝑏𝑒𝑠𝑡, both algorithms found the best-known
solutions for the 10 tested instances, including the hardest instances
LJ75, LJ98 and LJ102 in the range of 𝑁 ≤ 110. For the average objective
values, the DNS method obtained the best result for 9 instances, while
the BH algorithm reached the best result only for 3 instances. In terms
of the success rate of hitting the best-known solution, DNS obtained the
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best results for 9 instances against 5 instances for BH. For an intuitive
interpretation of the solutions of Lennard-Jones clusters, we provide in
Fig. 9 the best configurations found by our DNS method for two hard
instances LJ98 and LJ102. This experiment shows the competitiveness
f the DNS method for finding Lennard-Jones clusters compared with
he popular BH algorithm. This experiment provides an example of
pplying our DNS algorithm as a general-purpose method to solve
ther challenging global optimization problems with an differentiable
bjective function. It would be very interesting to check its effectiveness
n other global optimization problems in the future.

In addition, it should be noted that there exist a number of success-
ul specific optimization algorithms for the Lennard-Jones clusters in
he literature, such as the monotonic global optimization based on a
wo-phase local search method (Locatelli and Schoen, 2003) and the
unnel hopping algorithm (Cheng et al., 2009). These algorithms out-
erform our DNS method especially on several hardest instances such
s LJ75, LJ98 and LJ102. However, these algorithms employ more or less
roblem-specific knowledge of Lennard-Jones (LJ) clusters. Compared
o those specialized methods, our DNS method has the advantage of
ider applications due to its generality.

. Conclusions and future work

We propose a novel heuristic algorithm called the iterated dynamic
eighborhood search (IDNS) algorithm for the well-known equal circle
acking problem on a sphere (ECPOS), which has a number of sig-
ificant applications in various domains. the ECPOS problem consists
f packing 𝑁 equal non-overlapping circles on a sphere such that the

radius of circles is maximized and can be modeled as a non-convex
constrained optimization problem. The proposed IDNS method relies
on a spherical coordinate transformation of points in three-dimensional
space that transforms the original constrained optimization problem
into a series of unconstrained optimization subproblems, accompanied
by a dynamic neighborhood search method to solve the unconstrained
optimization subproblems, and a minimum distance adjustment method
to adjust the minimum distance between 𝑁 centers of spherical caps
formed by circles.

The performance of the IDNS algorithm was assessed by conducting
extensive experiments on 205 widely used instances with up to 𝑁 =
1080. The experimental results showed that the IDNS algorithm was
very effective and efficient compared with other methods for obtaining
the best-known results in the literature. The algorithm improved the
best-known results for 42 instances and missed the best-known results
for only 5 instances, while matching the best-known result for the re-
maining ones. On the other hand, the IDNS algorithm obtained a result
inferior to the best-known result in the literature on several special
instances for which construction methods based on prior knowledge
of the problem hold the current best-known records. These outcomes
indicate that our IDNS algorithm and the existing construction methods
are complementary for solving the challenging Tammes problem.

The basic idea of the IDNS algorithm, i.e., transforming a con-
strained optimization problem defined on a curved surface into a
series of unconstrained optimization subproblems and then solving
them sequentially by the dynamic neighborhood search (DNS) method,
is very general, and is applicable to a number of other constrained
optimization problems such as the minimum energy configuration prob-
lems on the unit sphere. Moreover, the DNS method underlying the
IDNS algorithm is also a general-purpose heuristic approach and can
be applied to any unconstrained optimization problem with a first-
order derivative such as sphere packing problems. In the future, we
intend to further improve the DNS method by employing more effective
perturbation strategies and local optimization methods. In addition, the
multiple-stage local optimization method proposed in this study is very
efficient to speed up the search process and can be applied to other
16

related geometry optimization problems as well.
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