Annals of Operations Research (2022) 314:141-183
https://doi.org/10.1007/510479-022-04634-2

ORIGINAL RESEARCH

®

Check for
updates

Quantum bridge analytics I: a tutorial on formulating
and using QUBO models

Fred Glover'® - Gary Kochenberger' - Rick Hennig' - Yu Du?

Accepted: 18 February 2022 / Published online: 7 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Quantum Bridge Analytics relates generally to methods and systems for hybrid classical-
quantum computing, and more particularly is devoted to developing tools for bridging
classical and quantum computing to gain the benefits of their alliance in the present and
enable enhanced practical application of quantum computing in the future. This is the first
of a two-part tutorial that surveys key elements of Quantum Bridge Analytics and its appli-
cations, with an emphasis on supplementing models with numerical illustrations. In Part 1
(the present paper) we focus on the Quadratic Unconstrained Binary Optimization model
which is presently the most widely applied optimization model in the quantum computing
area, and which unifies a rich variety of combinatorial optimization problems. This docu-
ment extends an original version published in 40R to include a section on advanced models
related to quantum optimization and a section reporting comparative computational results
on challenging combinatorial applications.

Keywords Quantum bridge analytics - Quantum-inspired computing - QUBO models

This is an updated version of the paper that appeared in 40R, 17 (4), 335-371 (2019).

B Fred Glover
fred @entanglement.ai

Gary Kochenberger
gary @entanglement.ai

Rick Hennig
rick@entanglement.ai

Yu Du
yu.du@ucdenver.edu

1 Entanglement, Inc., New York, NY, USA
2 Business School, University of Colorado at Denver, Denver, CO 80217, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-04634-2&domain=pdf
http://orcid.org/0000-0001-6945-0438

142 Annals of Operations Research (2022) 314:141-183

1 Introduction

The field of Combinatorial Optimization (CO) is one of the most important areas in the field
of optimization, with practical applications found in every industry, including both the private
and.

Public sectors. It is also one of the most active research areas pursued by the research
communities of Operations Research, Computer Science and Analytics as they work to
design and test new methods for solving real world CO problems.

Generally, these problems are concerned with making wise choices in settings where a
large number of yes/no decisions must be made and each set of decisions yields a corre-
sponding objective function value-like a cost or profit value. Finding good solutions in these
settings is extremely difficult. The traditional approach is for the analyst to develop a solution
algorithm that is tailored to the mathematical structure of the problem at hand. While this
approach has produced good results in certain problem settings, it has the disadvantage that
the diversity of applications arising in practice requires the creation of a diversity of solution
techniques, each with limited application outside their original intended use.

As observed in Glover et al. (2019), in recent years we have discovered that a mathe-
matical formulation known as QUBO, an acronym for a Quadratic Unconstrained Binary
Optimization problem, can embrace an exceptional variety of important CO problems found
in industry, science and government, as documented in studies such as Kochenberger et al.
(2014) and Anthony et al. (2017). Through special reformulation techniques that are easy to
apply, the power of QUBO solvers can be used to efficiently solve many important problems
once they are put into the QUBO framework.

The QUBO model has emerged as an underpinning of the quantum computing area known
as quantum annealing and Fujitsu’s digital annealing, and has become a subject of study in
neuromorphic computing. Through these connections, QUBO models lie at the heart of
experimentation carried out with quantum computers developed by D-Wave Systems and
neuromorphic computers developed by IBM. The consequences of these new discoveries
linking QUBO models to quantum computing are being explored in initiatives by organi-
zations such as IBM, Google, Amazon, Microsoft, D-Wave and Lockheed Martin in the
commercial realm and Los Alamos National Laboratory, Oak Ridge National Laboratory,
Lawrence Livermore National Laboratory and NASA’s Ames Research Center in the public
sector. Computational experience is being amassed by both the classical and the quantum
computing communities that highlights not only the potential of the QUBO model but also
its effectiveness as an alternative to traditional modeling and solution methodologies.

The connection with Quantum Bridge Analytics derives from the gains to be achieved
by building on these developments to bridge the gap between classical and quantum com-
putational methods and technologies. As emphasized in the 2019 Consensus Study Report
titled Quantum Computing: Progress and Prospects, by the National Academies of Sci-
ences, Engineering and Medicine (https://www.nap.edu/catalog/25196/quantum-computing-
progress-and-prospects) quantum computing will remain in its infancy for perhaps another
decade, and in the interim “formulating an R&D program with the aim of developing commer-
cial applications for near-term quantum computing is critical to the health of the field.” The
report further notes that such a program will rest on developing “hybrid classical-quantum
techniques.” Innovations that underlie and enable these hybrid classical-quantum techniques
are the focus of Quantum Bridge Analytics and draw heavily on the QUBO model for their
inspiration.

@ Springer

https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects

Annals of Operations Research (2022) 314:141-183 143

The significance of the ability of the QUBO model to encompass many models in com-
binatorial optimization is enhanced by the fact that the QUBO model can be shown to be
equivalent to the Ising model that plays a prominent role in physics, as highlighted in in
the paper by Lucas (2014). Consequently, the broad range of optimization problems solved
effectively by state-of-the-art QUBO solution methods are joined by an important domain of
problems arising in physics applications.

The materials provided in the sections that follow illustrate the process of reformulating
important optimization problems as QUBO models through a series of explicit examples.
Collectively these examples highlight the application breadth of the QUBO model. We dis-
close the unexpected advantages of modeling a wide range of problems in a form that differs
from the linear models classically adopted in the optimization community. We show how
many different types of constraining relationships arising in practice can be embodied within
the “unconstrained” QUBO formulation in a very natural manner using penalty functions,
yielding exact model representations in contrast to the approximate representations produced
by customary uses of penalty functions. Each step of generating such models is illustrated in
detail by simple numerical examples, to highlight the convenience of using QUBO models in
numerous settings. As part of this, we provide techniques that can be used to recast a variety
of problems that may not seem at first to fit within an unconstrained binary optimization
structure into an equivalent QUBO model. We also describe recent innovations for solving
QUBO models that offer a fertile avenue for integrating classical and quantum computing
and for applying these models in machine learning.

As pointed out in Kochenberger and Glover (2006), the QUBO model encompasses the
following important optimization problems:

Quadratic Assignment Problems
Capital Budgeting Problems

Multiple Knapsack Problems

Task Allocation Problems (distributed computer systems)
Maximum Diversity Problems
P-Median Problems

Asymmetric Assignment Problems
Symmetric Assignment Problems

Side Constrained Assignment Problems
Quadratic Knapsack Problems
Constraint Satisfaction Problems (CSPs)
Discrete Tomography Problems

Set Partitioning Problems

Set Packing Problems

Warehouse Location Problems
Maximum Clique Problems

Maximum Independent Set Problems
Maximum Cut Problems

Graph Coloring Problems

Number Partitioning Problems

Linear Ordering Problems

Clique Partitioning Problems

SAT problems

Details of such applications are elaborated more fully in Kochenberger et al. (2014).

@ Springer

144 Annals of Operations Research (2022) 314:141-183

In the following development we describe approaches that make it possible to model these
and many other types of problems in the QUBO framework and provide information about
recent developments linking QUBO to machine learning and quantum computing.

1.1 Basic QUBO problem formulation

We now give a formal definition of the QUBO model whose significance will be made clearer
by numerical examples that give a sense of the diverse array of practical QUBO applications.
Definition
The QUBO model is expressed by the optimization problem:

QUBO : minimize/maximize y = x’ Qx

where X is a vector of binary decision variables and Q is a square matrix of constants.
It is common to assume that the Q matrix is symmetric or in upper triangular form, which
can be achieved without loss of generality simply as follows:

1.1.1 Symmetric form
For all i and j except i = J, replace g;; by (gij +g,i)/2.
1.1.2 Upper triangular form

Forall i and j with j > i, replace g;; by g;; + g ;. Then replace all g;; for j < i by 0. (If the
matrix is already symmetric, this just doubles the g;; values above the main diagonal, and
then sets all values below the main diagonal to 0).

In the examples given in the following sections, we will work with the full, symmetric Q
matrix rather than adopting the “upper triangular form.”

1.1.3 Comment on the formal classification of QUBO models and their solution

QUBO models belong to a class of problems known to be NP-hard. The practical meaning of
this is that exact solvers designed to find “optimal” solutions (like the commercial CPLEX and
Gurobi solvers) will most likely be unsuccessful except for very small problem instances.
Using such methods, realistic sized problems can run for days and even weeks without
producing high quality solutions. Fortunately, as we disclose in the sections that follow,
impressive successes are being achieved by using modern metaheuristic methods that are
designed to find high quality but not necessarily optimal solutions in a modest amount of
computer time. These approaches are opening valuable possibilities for joining classical and
quantum computing.

2 lllustrative examples and definitions

Before presenting common practical applications, we first give examples and definitions to
lay the groundwork to see better how these applications can be cast in QUBO form.
To begin, consider the optimization problem.

Minimize y = —5x1 — 3x2 — 8x3 — 6x4 + 4x1x2 + 8x1x3 + 2x2x3 + 10x3x4

@ Springer

Annals of Operations Research (2022) 314:141-183 145

where the variables, x;, are binary. We can make several observations:

1. The function to be minimized is a quadratic function in binary variables with a linear part
—5x1 — 3x2 — 8x3 — 6x4 and a quadratic part 4x;xp + 8x1x5 + 2x2x3 + 10x3.x4.
2. Since binary variables satisfy x; = x/2., the linear part can be written as

—5)612 — 3x§ - 8x32 - 6x§

3. Then we can re-write the model in the following matrix form:
52 4 0 X1

2 =31 0 X2

4 1 -8 5 X3

0 0 5 -6 X4
4. In turn, this can be written in the matrix notation introduced in Sect. 1 as

Minimize y = (x{x2X3X4)

a. Minimize y = x' Qx.

b. where x is a column vector of binary variables. Note that the coefficients of the original
linear terms appear on the main diagonal of the Q matrix. In this case Q is symmetric
about the main diagonal without needing to modify the coefficients by the approach
shown in Sect. 1.

5. Other than the 0/1 restrictions on the decision variables, QUBO is an unconstrained
model with all problem data being contained in the Q matrix. These characteristics make
the QUBO model particularly attractive as a modeling framework for combinatorial opti-
mization problems, offering a novel alternative to classically constrained representations.

6. The solution to the model in (3) above is: y = —11, x1 =x4 =1, xp =x3 =0.

Remarks

e As already noted, the stipulation that Q is symmetric about the main diagonal does not
limit the generality of the model.

e As previously emphasized, a variety of optimization problems can naturally be formulated
and solved as an instance of the QUBO model. In addition, many other problems that
don’t appear to be related to QUBO problems can be re-formulated as a QUBO model.
We illustrate this special feature of the QUBO model in the sections that follow.

3 Natural QUBO formulations

As mentioned earlier, several important problems fall naturally into the QUBO class. To
illustrate such cases, we provide two examples of important applications whose formulations
naturally take the form of a QUBO model.

3.1 The number partitioning problem

The Number Partitioning problem has numerous applications cited in the Bibliography
section of these notes. A common version of this problem involves partitioning a set of
numbers into two subsets such that the subset sums are as close to each other as possible. We
model this problem as a QUBO instance as follows:

Consider a set of numbers S = {s1, 52, 53, ..., S, }. Letx; =1 ifs; is assigned to subset
1; 0 otherwise. Then the sum for subset 1 is given by.

@ Springer

146 Annals of Operations Research (2022) 314:141-183

sum; = » 7 ;s;x; and the sum for subset 2 is given by sumy = 37 ;s; —
h i=15j%j i .The difference in the sums is then.
diff = Z 9]—22 sjxj=c— 22 5ixX;.

j=1
We approach the goal of mlmmlzmg thls difference by minimizing

2
m
dif? = {c—2 Z Sixj ¢ = 2+ 4x' Ox

where
gii = 5i(si =€) qij = qji = SiSj

Dropping the additive and multiplicative constants, our QUBO optimization problem
becomes:

QUBO : min y =x'Qx

where the Q matrix is constructed with g;; and g;; as defined above.
Numerical Example: Consider the set of eight numbers

S =125, 7, 13, 31, 42,17, 21, 10}

By the development above, we have ¢ = 27, 556 and the equivalent QUBO problem is
min y = x’ Qx with

[(—3525 175 325 775 1050 425 525 250
175 —1113 91 217 294 119 147 70
325 91 —1989 403 546 221 273 130
775 217 403 —4185 1302 527 651 310
1050 294 546 1302 —-5208 714 882 420
425 119 221 527 714 2533 357 170
525 147 273 651 882 357 -—-3045 210
250 70 130 310 420 170 210 —1560 |

Solving QUBO gives x = (0,0, 0, 1, 1, 0, 0, 1) for which y = —6889, yielding perfectly
matched sums which equal 83. The development employed here can be expanded to address
other forms of the number partitioning problem, including problems where the numbers must
be partitioned into three or more subsets, as discussed in Alidaee et al. (2005).

3.2 The max-cut problem

The Max Cut problem is one of the most famous problems in combinatorial optimization.
Given an undirected graph G(V, E) with a vertex set V and an edge set E, the Max Cut
problem seeks to partition V into two sets such that the number of edges between the two
sets (considered to be severed by the cut), is a large as possible.

We can model this problem by introducing binary variables satisfying x; = 1 if vertex j is
in one setand x; = O ifitis in the other set. Viewing a cut as severing edges joining two sets,
to leave endpoints of the edges in different vertex sets, the quantity x; +x; — 2x;x; identifies
whether the edge (i, j) is in the cut. That is, if (x; + x; — 2x;x;) is equal to 1, then exactly

@ Springer

Annals of Operations Research (2022) 314:141-183 147

one of x; and x; equals 1, which implies edge (i, j) is in the cut. Otherwise (x; +x; — 2x;x;)
is equal to zero and the edge is not in the cut.
Thus, the problem of maximizing the number of edges in the cut can be formulated as.
Maximize y = Y. (x; +x; — 2x;x}).
(i,j)eE
which is an instance of

QUBO : maxy = x' Ox

The linear terms determine the elements on the main diagonal of Q and the quadratic terms
determine the off-diagonal elements. See Boros and Hammer (1991, 2002) and Kochenberger
et al. (2013) for further discussions of QUBO and the Max Cut problem.

Numerical Example: To illustrate the Max Cut problem, consider the following undirected
graph with 5 vertices and 6 edges.

O—®

3) @

Explicitly taking into account all edges in the graph gives the following formulation:

Maximize y =(x1 + x3 — 2x1x2) + (x1 + x3 — 2x1x3) + (x2 + x4 — 2x2x4)

+ (X3 + x4 — 2x3x4) + (X3 + x5 — 2x3X5) + (X4 + X5 — 2X4X5)

or

max y = 2x1 +2xp +3x3 +3x4 + 2x5 — 2x1x3 — 2x1x3 — 2x2X4 — 2X3X4 — 2X3X5 — 2X4X5

This takes the desired form

QUBO : max y =x'Qx

@ Springer

148 Annals of Operations Research (2022) 314:141-183

By writing the symmetric Q matrix as:

2 -1-10 0
-12 0 -10
O0=|-10 3 —-1-1
0 -1-13 -1
0 0 —-1-12

Solving this QUBO model gives x = (0, 1, 1, 0, 0). Hence vertices 2 and 3 are in one
set and vertices 1, 4, and 5 are in the other, with a maximum cut value of 5.

In the above examples, the problem characteristics led directly to an optimization problem
in QUBO form. As previously remarked, many other problems require “re-casting” to create
the desired QUBO form. We introduce a widely-used form of such re-casting in the next
section.

4 Creating QUBO models using known penalties

The “natural form” of a QUBO model illustrated thus far contains no constraints other than
those requiring the variables to be binary. However, by far the largest number of problems
of interest include additional constraints that must be satisfied as the optimizer searches for
good solutions.

Many of these constrained models can be effectively re-formulated as a QUBO model
by introducing quadratic penalties into the objective function as an alternative to explicitly
imposing constraints in the classical sense. The penalties introduced are chosen so that the
influence of the original constraints on the solution process can alternatively be achieved
by the natural functioning of the optimizer as it looks for solutions that avoid incurring the
penalties. That is, the penalties are formulated so that they equal zero for feasible solutions
and equal some positive penalty amount for infeasible solutions. For a minimization problem,
these penalties are added to create an augmented objective function to be minimized. If the
penalty terms can be driven to zero, the augmented objective function becomes the original
function to be minimized.

For certain types of constraints, quadratic penalties useful for creating QUBO models
are known in advance and readily available to be used in transforming a given constrained
problem into a QUBO model. Examples of such penalties for some commonly encountered
constraints are given in the table below. Note that in the table, all variables are intended to
be binary and the parameter P is a positive, scalar penalty value. This value must be chosen
sufficiently large to assure the penalty term is indeed equivalent to the classical constraint,
but in practice an acceptable value for P is usually easy to specify. We discuss this matter
more thoroughly later.

Classical constraint Equivalent penalty
x+y=<1 P(xy)

x+y=>1 P —x—y+xy)
x+y=1 P(1 —x—y+2xy)
x=<y P(x —xy)
x1+x+x3 <1 P(x1x2 + x1x3 + x2X3)
xX=y P(x+y—2xy)

@ Springer

Annals of Operations Research (2022) 314:141-183 149

Table of a few Known constraint/penalty pairs.
To illustrate the main idea, consider a traditionally constrained problem of the form:

Miny = f(x)
subject to the constraint
X1+x <1

where x| and x, are binary variables. Note that this constraint allows either or neither x
variable to be chosen. It explicitly precludes both from being chosen (i.e., both cannot be set
to 1).

From the 1st row in the table above, we see that a quadratic penalty that corresponds to
our constraint is

Pxixo

where P is a positive scalar. For P chosen sufficiently large, the unconstrained problem.
minimize y = f(x)+ Px1x3.

Has the same optimal solution as the original constrained problem. If f(x) is linear or
quadratic, then this unconstrained model will be in the form of a QUBO model. In our
present example, any optimizer trying to minimize y will tend to avoid solutions having both
x1 and x> equal to 1, else a large positive amount will be added to the objective function.
That is, the objective function incurs a penalty corresponding to infeasible solutions. This
simple penalty has been used effectively by Pardalos and Xue (1999) in the context of the
maximum clique and related problems.

4.1 The minimum vertex cover (MVC) problem

In Sect. 3.2 we saw how the QUBO model could be used to represent the famous Max Cut
problem. Here we consider another well-known optimization problem on graphs called the
Minimum Vertex Cover problem. Given an undirected graph with a vertex set V and an edge
set E, a vertex cover is a subset of the vertices (nodes) such that each edge in the graph is
incident to at least one vertex in the subset. The Minimum Vertex Cover problem seeks to
find a cover with a minimum number of vertices in the subset.

A standard optimization model for MVC can be formulated as follows. Let x; = 1if vertex
j is in the cover (i.e., in the subset) and x; = 0 otherwise. Then the standard constrained,
linear 0/1 optimization model for this problem is:

Minimize) x;.

jev

Subject to.

xi+x; > 1forall (i, j) € E.

Note the constraints ensure that at least one of the endpoints of each edge will be in the
cover and the objective function seeks to find the cover using the least number of vertices.
Note also that we have a constraint for each edge in the graph, meaning that even for modest
sized graphs we can have many constraints. Each constraint will alternatively be imposed by
adding a penalty to the objective function in the equivalent QUBO model.

Referring to our table above, we see that the constraints in the standard MVC model
can be represented by a penalty of the form P(1 — x — y + xy). Thus, an uncon-

strained alternative to the constrained model for MVC is. Minimizey = > x; +
jev

@ Springer

150 Annals of Operations Research (2022) 314:141-183

P(> (1 —Xi —Xj+ XX j) Where P again represents a positive scalar penalty. In turn,
(i,))€E

we can write this as minimize x’ Qx plus a constant term. Dropping the additive constant,
which has no impact on the optimization, we have an optimization problem in the form of a
QUBO model.

Remark A common extension of this problem allows a weight w; to be associated with each
vertex j. Following the development above, the QUBO model for the Weighted Vertex Cover
problem is given by:

Minimizey = > wjx; + P[Y (1 —x; — xj +xix;) | Numerical Example: Con-
jev (i,))eE
sider the graph of Sect. 3.2 again but this time we want to determine a minimum vertex

O—®

3) @

For this graph with n = 6 edges and m = 5 nodes, the model becomes:
Minimize y =x| + X2 + X3 + X4 + X5
+ P(1 —x1 —x2 +x1x2)
+ P(1 —x1 —x3+x1Xx3)
+ P(1 — xp — x4 + X2Xx4)
+ P(1 — x3 — x4 + Xx3x4)
+ P(1 — x3 — x5 + x3Xx5)
+ P(1 — x4 — x5 + x4X5)

Which can be written as

Minimize y =(1 —2P)x;1+(1 —2P)x2 + (1 —=3P)x3+(1 —3P)xg + (1 —2P)xs

@ Springer

Annals of Operations Research (2022) 314:141-183 151

+ Px1xy + Px1x3 + Pxoxq + Px3xq + Px3xs5 + Px4xs + 6P

Arbitrarily choosing P to be equal to 8 and dropping the additive constant (6P = 48) gives
our QUBO model

QUBO : min x'Qx

With the Q matrix given by

-15 4 4 0 O
4 —-15 0 4 O
4 0 23 4 4
0 4 4 23 4
0O 0 4 4 -15

Note that we went from a constrained model with 5 variables and 6 constraints to an uncon-
strained QUBO model in the same 5 variables. Solving this QUBO model gives: x’ Qx = —45
atx = (0, 1, 1,0, 1) for which y = 48 — 45 = 3, meaning that a minimum cover is given by
nodes 2, 3, and 5. It’s easy to check that at this solution, all the penalty functions are equal
to 0.

4.1.1 Comment on the scalar penalty P

As we have indicated, the reformulation process for many problems requires the introduction
of a scalar penalty P for which a numerical value must be given. These penalties are not
unique, meaning that many different values can be successfully employed. For a particular
problem, a workable value is typically set based on domain knowledge and on what needs
to be accomplished. Often, we use the same penalty for all constraints but there is nothing
wrong with having different penalties for different constraints if there is a good reason to
differentially treat various constraints. If a constraint must absolutely be satisfied, i.e., a
“hard” constraint, then P must be large enough to preclude a violation. Some constraints,
however, are “soft”, meaning that it is desirable to satisfy them but slight violations can be
tolerated. For such cases, a more moderate penalty value will suffice.

A penalty value that is too large can impede the solution process as the penalty terms
overwhelm the original objective function information, making it difficult to distinguish the
quality of one solution from another. On the other hand, a penalty value that is too small
jeopardizes the search for feasible solutions. Generally, there is a ‘Goldilocks region’ of
considerable size that contains penalty values that work well. A little preliminary thought
about the model can yield a ballpark estimate of the original objective function value. Taking
P to be some percentage (75 to 150%) of this estimate is often a good place to start. In the
end, solutions generated can always be checked for feasibility, leading to changes in penalties
and further rounds of the solution process as needed to zero in on an acceptable solution.

5 The set packing problem

The Set Packing problem is a well-known optimization problem in binary variables with a
general (traditional) formulation given by

@ Springer

152 Annals of Operations Research (2022) 314:141-183

n
max E W;Xj
j=1

st

n
Zainj <lfori=1,..m
Jj=1
where the a;; are 0/1 coefficients, the w; are weights and the x; variables are binary. Using
the penalties of the form shown in the first and fifth rows of the table given earlier, we
can easily construct a quadratic penalty corresponding to each of the constraints in the
traditional model. Then by subtracting the penalties from the objective function, we have an
unconstrained representation of the problem in the form of a QUBO model.
Numerical Example: Consider the following small example of a set packing problem:
max xip +x2 + X3 + x4
st
X1+x3+x4 <1
X1+x <1
Here all the objective function coefficients, the w; values, are equal to 1. Using the
penalties mentioned above, the equivalent unconstrained problem is:

max x|+ x3+x3+x4 — Pxjx3 — Pxixq — Px3xq — Px1x2
This has our customary QUBO form
QUBO : max x'Qx

where the Q matrix, with P arbitrarily chosen to be 6, is given by

1 -3-3-3
-3 1 0 0
-30 1 -3
-3 0 -3 1

Solving the QUBO model gives y = 2 at x = (0, 1, 1, 0). Note that at this solution, all
four penalty terms are equal to zero.

Remark Set packing problems with thousands of variables and constraints have been effi-
ciently reformulated and solved in Alidaee et al. (2008) using the QUBO reformulation
illustrated in this example.

5.1 The max 2-sat problem

Satisfiability problems, in their various guises, have applications in many different settings.
Often these problems are represented in terms of clauses, in conjunctive normal form, con-
sisting of several true/false literals. The challenge is to determine the literals so that as many
clauses as possible are satisfied.

For our optimization approach, we’ll represent the literals as 0/1 values and formulate
models that can be re-cast into the QUBO framework and solved with QUBO solvers. To

@ Springer

Annals of Operations Research (2022) 314:141-183 153

illustrate the approach, we consider the category of satisfiability problems known as Max
2-Sat problems.

For Max 2-Sat, each clause consists of two literals and a clause is satisfied if either or
both literals are true. There are three possible types of clauses for this problem, each with a
traditional constraint that must be satisfied if the clause is to be true. In turn, each of these
three constraints has a known quadratic penalty given in our previous table.

The three clause types along with their traditional constraints and associated penalties are:

1. No negations: Example (x; V x;)

Traditional constraint: x; +x; > 1
Quadratic Penalty: (1 — x; — x; +x;x;)

2. One negation: Example (x; V X ;)

Traditional constraint: x; +X; > 1
Quadratic Penalty: (x; — x;x;)

3. Two negations: Example (x; V X ;)

Traditional constraint: X; +X; > 1
Quadratic Penalty: (x;x;)

Note that x; = 1 or O denoting whether literal j is true or false. The notation X, the
complement of x;, is equal to (1 — x;).)

For each clause type, if the traditional constraint is satisfied, the corresponding penalty is
equal to zero, while if the traditional constraint is not satisfied, the quadratic penalty is equal
to 1. Given this one-to-one correspondence, we can approach the problem of maximizing the
number of clauses satisfied by equivalently minimizing the number of clauses not satisfied.
This perspective, as we will see, gives us a QUBO model.

For a given Max 2-Sat instance then, we can add the quadratic penalties associated with
the problem clauses to get a composite penalty function which we want to minimize. Since
the penalties are all quadratic, this penalty function takes the form of a QUBO model,

min y = x’ Qx. Moreover, if y turns out to be equal to zero when minimizing the QUBO
model, this means we have a solution that satisfies all of the clauses; if y turns out to equal
5, that means we have a solution that satisfies all but 5 of the clauses; and so forth.

This modeling and solution procedure is illustrated by the following example with 4
variables and 12 clauses where the penalties are determined by the clause type.

5.1.1 Clause # clause quadratic penalty

I. x1Vvxy(d—x1—x2+x1x2)
2. x1 VX2 (x3—x1x2)

3. X1V (x] —x1x2)

4. X1 VX2 (x1x2)

5. X1 Va3 (x; —x1x3)

6. X1 Vx3(x1x3)

7. xp VX3 (x3 —x2Xx3)

8. x2Vixg (1 —xp—x4+x2x4)
9. Xz Vi3 (xp—x2x3)

10. X v X3 (x2x3)

@ Springer

154 Annals of Operations Research (2022) 314:141-183

11, x3 Vx4 (1 —x3 — x4 +x3X4)
12. X3V x4 (x3x4)

Adding the individual clause penalties together gives our QUBO model

min y = 3+x; — 2x4 — X3Xx3 + X2X4 + 2X3X4

Or,
min y= 3+x'Qx
Where the Q matrix is given by
1 0 0 0
0 0 -—-1/21/2
0-1/2 0 1
012 1 =2

Solving QUBO gives: y =3 —2 =l atx; = xo = x3 = 0, x4 = 1, meaning that all
clauses but one are satisfied.

Remarks The QUBO approach illustrated above has been successfully used in Kochenberger
etal. (2005a, b, c) to solve Max 2-sat problems with hundreds of variables and thousands of
clauses. An interesting feature of this approach for solving Max 2-sat problems is that the
size of the resulting QUBO model to be solved is independent of the number of clauses in
the problem and is determined only by the number of variables at hand. Thus, a Max 2-Sat
problem with 200 variables and 30,000 clauses can be modeled and solved as a QUBO model
with just 200 variables.

6 Creating QUBO models: a general purpose approach

In this section, we illustrate how to construct an appropriate QUBO model in cases where a
QUBO formulation doesn’t arise naturally (as we saw in Sect. 3) or where useable penalties
are not known in advance (as we saw in Sect. 4). It turns out that for these more general cases,
we can always “discover” useable penalties by adopting the procedure outlined below.

For this purpose, consider the general 0/1 optimization problem of the form:

miny = x'Cx
S.t.
Ax = b, x binary

This model accommodates both quadratic and linear objective functions since the linear
case results when C is a diagonal matrix (observing that sz. = x; when x ; is a 01 variable).
Under the assumption that A and b have integer components, problems with inequality
constraints can always be put in this form by including slack variables and then representing
the slack variables by a binary expansion. (For example, this would introduce a slack variable
s to convert the inequality 4x1+5x, —x3 < 6into4x;+5x,—x3+s = 6,and sinceclearly s < 7
(incase x3 = 1), s could be represented by the binary expansion s1+2s+4s3 where s1, s2, and
s3 are additional binary variables. If it is additionally known that at not both x and x, can be
0, then s can be at most 3 and can be represented by the expansion sy +2s,. A fuller treatment
of slack variables is given subsequently.) These constrained quadratic optimization models

@ Springer

Annals of Operations Research (2022) 314:141-183 155

are converted into equivalent unconstrained QUBO models by converting the constraints
Ax = b (representing slack variables as x variables) into quadratic penalties to be added to
the objective function, following the same re-casting as we illustrated in Sect. 4.

Specifically, for a positive scalar P, we add a quadratic penalty P(Ax — b)' (Ax — b) to
the objective function to get

y =x'Cx + P(Ax — b)' (Ax — b)
=x'Cx+x'Dx+c
=x"Qx+c

=x'"0Ox+c

where the matrix D and the additive constant ¢ result directly from the matrix multiplica-
tion indicated. Dropping the additive constant, the equivalent unconstrained version of the
constrained problem becomes

QUBO : minx'Qx, x binary
Remarks

1. A suitable choice of the penalty scalar P, as we commented earlier, can always be chosen
so that the optimal solution to QUBO is the optimal solution to the original constrained
problem. Solutions obtained can always be checked for feasibility to confirm whether or
not appropriate penalty choices have been made.

2. Forease of reference, the preceding procedure that transforms the general problem into an
equivalent QUBO model will be called Transformation # 1. The mechanics of Transfor-
mation #1 can be employed whenever we need to convert linear constraints of the form
Ax = b into usable quadratic penalties in our efforts to re-cast a given problem with
equality constraints into the QUBO form. Boros and Hammer (2002) give a discussion
of this approach which is the basis for establishing the generality of QUBO.

For realistic applications, a program will need to be written implementing Transformation
1 and producing the Q matrix needed for the QUBO model. Any convenient language,
like C++, Python, Matlab, etc., can be used for this purpose. For small problems, or for
preliminary tests preceding large-scale applications, we can usually proceed manually as
we’ll do in these notes.

3. Note that the additive constant, ¢, does not impact the optimization and can be ignored
during the optimization process. Once the QUBO model has been solved, the constant
¢ can be used to recover the original objective function value. Alternatively, the original
objective function value can always be determined by using the optimal x; found when
QUBO is solved.

Transformation #1 is the “go to” approach in cases where appropriate quadratic penalty
functions are not known in advance. In general, it represents an approach that can be adopted
for any problem. Due to this generality, Transformation # 1 has proven to be an important
modeling tool in many problem settings.

Before moving on to applications in this section, we want to single out another con-
straint/penalty pair for special recognition that we worked with before in Sect. 4:

(xi +x; < 1) = P(x;ixj)

Constraints of this form appear in many important applications. Due to their importance
and frequency of use, we refer to this special case as Transformation #2. We’ll have occasion
to use this as well as Transformation # 1 later in this section.

@ Springer

156 Annals of Operations Research (2022) 314:141-183

6.1 Set partitioning

The set partitioning problem (SPP) has to do with partitioning a set of items into subsets so that
each item appears in exactly one subset and the cost of the subsets chosen is minimized. This
problem appears in many settings including the airline and other industries and is traditionally
formulated in binary variables as

n
mianA,-xj
j=1
st
n
Z ajjxj = 1 fori =], ...m
j=1

where x; denotes whether or not subset j is chosen, c; is the cost of subset j, and the a;;
coefficients are O or 1 denoting whether or not variable x; explicitly appears in constraint i.
Note that his model has the form of the general model given at the beginning of this section
where, in this case, the objective function matrix C is a diagonal matrix with all off-diagonal
elements equal to zero and the diagonal elements are given by the original linear objective
function coefficients. Thus, we can re-cast the model into a QUBO model directly by using
Transformation # 1. We illustrate this with the following example.
Numerical Example: Consider a set partitioning problem

min y = 3x1 + 2xp + x3 + x4 + 3x5 + 2x¢
Subject to
X1 +X3+Xx6 = 1
Xo+Xx3+x5+x6 =1
X3+x4+x5=1
X1 +Xx2+x4+x6=1
And x binary. Normally, Transformation # 1 would be embodied in a supporting computer
routine and employed to re-cast this problem into an equivalent instance of a QUBO model.
For this small example, however, we can proceed manually as follows: The conversion to

an equivalent QUBO model via Transformation # 1 involves forming quadratic penalties
and adding them to the original objective function. In general, the quadratic penalties to be

2
added (for a minimization problem) are givenby P) (Z;’: | QijXij — bi> where the outer
i

summation is taken over all constraints in the system Ax = b.
For our example we have

miny = 3x7 + 2x3 + x3 + x4 + 3x5 + 2x¢
+P(x1] +x3+x6 — 1)2+ P(xy +x3+ x5+ x6 — 1)2
+P(x3 + x4 + x5 — 1)2+ P(x1+x2+ x4 +x6 — l)2

Arbitrarily taking P to be 10, and recalling that sz = x; since our variables are binary,

this becomes 5 5 5 5 5 5
miny = —17x7 — 18x5 — 29x3 — 19x5 — 17x5 — 28xg + 20x1x3 + 20x1x3 + 20x1 x4 + 40x1 X6

+20x2x3 + 20x2x4 + 20x2x5 + 40x2x6 + 20x3x4 + 40x3x5 + 40x3x6 + 20x4 X5
+ 20x4x6 + 20x5x6 + 40

@ Springer

Annals of Operations Research (2022) 314:141-183 157

Dropping the additive constant 40, we then have our QUBO model

min x’ Qx, x binary

where the Q matrix is

[[—17 10 10 10 0 20
10 —18 10 10 10 20
10 10 =29 10 20 20
10 10 10 —19 10 10
0 10 20 10 —17 10
20 20 20 10 10 —28 |

Solving this QUBO formulation gives an optimal solution x; = x5 = 1 (with all other

variables equal to 0) to yield y = 6.

Remarks:

1.

The QUBO approach to solving set partitioning problems has been successfully applied
in Lewis et al. (2008) to solve large instances with thousands of variables and hundreds
of constraints.

The special nature of the set partitioning model allows an alternative to Transformation
#1 for constructing the QUBO model. Let k; denote the number of 1’s in the jth column
of the constraint matrix A and let r;; denote the number of times variables i and j appear in
the same constraint. Then the diagonal elements of Q are given by g;; = ¢; — Pk; and the
off—diagonal elements of Q are given by ¢g;; = ¢;; = Pr;;. The additive constant is given
by m x P. These relationships make it easy to formulate the QUBO model for any set
partitioning problem without having to go through the explicit algebra of Transformation
#1.

The set partitioning problem may be viewed as a form of clustering problem and is
elaborated further in Sect. 6.

6.2 Graph coloring

In many applications, Transformation # 1 and Transformation # 2 can be used in concert to
produce an equivalent QUBO model, as demonstrated next in the context of graph coloring.
Vertex coloring problems seek to assign colors to nodes of a graph in such a way that adjacent
nodes receive different colors. The K-coloring problem attempts to find such a coloring using
exactly K colors. A wide range of applications, ranging from frequency assignment problems
to printed circuit board design problems, can be represented by the K-coloring model.

These problems can be modeled as satisfiability problems as follows:
Let x;; = 1 if node i is assigned color j, and O otherwise.
Since each node must be colored, we have the constraints

K
inj =1i= 1,...,71
j=1

where n is the number of nodes in the graph. A feasible coloring, in which adjacent nodes
are assigned different colors, is assured by imposing the constraints

Xip+xjp<1lp=1..,K

@ Springer

158 Annals of Operations Research (2022) 314:141-183

For all adjacent nodes (i,j) in the graph.

This problem, then, can be re-cast in the form of a QUBO model by using Transformation
1 on the node assignment constraints and using Transformation # 2 on the adjacency
constraints. This problem does not have an objective function in its original formulation,
meaning our focus is on finding a feasible coloring using the K colors allowed. As a result,
any positive value for the penalty P will do. (The resulting QUBO model of course has an
objective function given by x’ Qx where Q is determined by the foregoing re-formulation.)

Numerical Example: Consider the problem of finding a feasible coloring of the following
graph using K = 3 colors.

A

Given the discussion above, we see that the goal is to find a solution to the system:
Xi1+xpp+xi3=1i=1,5
Xip+xjp <1lp=13
(for all adjacent nodes i and j)

In this traditional form, the model has 15 variables and 26 constraints. As suggested above,
to recast this problem into the QUBO form, we can use Transformation # 1 on the node
assignment equations and Transformation # 2 on adjacency inequalities. One way to proceed
here is to start with a 15-by-15 Q matrix where initially all the elements are equal to zero and
then re-define appropriate elements based on the penalties obtained from Transformations #
1 and # 2. To clarify the approach, we’ll take these two sources of penalties one at a time.
For ease of notation and to be consistent with earlier applications, we’ll first re-number the
variables using a single subscript, from 1 to 15, as follows:

(x11, X12, X13, X21, X22, X23, X31, - - - X52, X53) = (X1, X2, X3, X4, X5, X6, X7, - . . X14, X15)

As we develop our QUBO model, we’ll use the variables with a single subscript.
First, we’ll consider the node assignment equations and the penalties we get from Trans-
formation # 1. Taking these equations in turn we have.

P(x1+xp+x3 — l)zwhich becomes P(—x| — xp — x3 +2x1x2 + 2x1x3 + 2x2x3) + P
P(x4 + x5 +x6 — l)zwhich becomes P(—x4 — x5 — X + 2X4X5 + 2x4X¢ + 2X5Xx¢) + P

P(x7 +xg3 +x9 — l)zwhich becomes P(—x7 — xg — x9 + 2x7xg + 2x7Xx9 + 2xgx9) + P

P(xjo+x11 +x12 — l)zwhich becomes P(—x1g

— X11 — X12 + 2x10Xx11 + 2x10X12 + 2X11X12) + P

@ Springer

Annals of Operations Research (2022) 314:141-183 159

P(xi3+x14 +x15 — 1)2which becomes P(—x3
— X14 — X15 + 2X13X14 + 2X13X15 + 2X14X15) + P
Taking P to equal 4 and inserting these penalties in the “developing” Q matrix gives the

following partially completed Q matrix along with an additive constant of 5P.

(44 4000000000000
4 4400000000000 0
4 4 4000000000000
00 0-4440000°00°000
0004440000000 00
0004 4-4000000000
0 000O0O0-4440200000
0000 0O 444000000
0 0000044400000 0
00000O0O0O0O0-444000
00000O0O0O OO0 444000
00 000O0O0O OO0 444000
00000O0O0O0O0O0O0O0-44 4
000000000000 444
(00000000 O0O0O0O0 4 4 —4]

Note the block diagonal structure. Many problems have patterns that can be exploited in
developing Q matrices needed for their QUBO representation. Looking for patterns is often
a useful de-bugging tool.

To complete our Q matrix, it’s a simple matter of inserting the penalties representing the
adjacency constraints into the above matrix. For these, we use the penalties of Transformation
#2, namely Px;x;, for each adjacent pair of nodes and each of the three allowed colors. We
have 7 adjacent pairs of nodes and three colors, yielding a total of 21 adjacency constraints.
Allowing for symmetry, we’ll insert 42 penalties into the matrix, augmenting the penalties
already in place. For example, for the constraint ensuring that nodes 1 and 2 can not both have
color #1, the penalty is Pxjx4, implying that we insert the penalty value “2” in row 1 and
column 4 of our matrix and also in column 1 and row 4. (Recall that we have relabeled our
variables so that the original variables x; 1 and x2 | are now variables x| and x4.) Including
the penalties for the other adjacency constraints completes the Q matrix as shown below

@ Springer

160 Annals of Operations Research (2022) 314:141-183

-4 4 4 2 0 0 0 0 0 0 0 0 2 0 O
4 44 0 2 00 0O0O0O0O0OO0Z20
4 4-40 0 2 0000 O0O0O0O0 2
2 0 0-44 4200200200
020 4440200220020
0 0 244 -4020250202200 2
0 0020 0-4442 00000
O0g=]10 0 0 0 2 0 44402 00 0O
0 0000 2 4 4-40022000O0
0 002002 00-4442200
000 0 2 00204 -4420 20
00000 20024 4-400 2
20 02 00 O0O0O0200-44 4
02002 0O0O0O0O0Z20 4-44
L 00 200200000 2 4 4 —4]

The above matrix incorporates all of the constraints of our coloring problem, yielding the
equivalent QUBO model
QUBO : minx'Qx

Solving this model yields the feasible coloring:

X3 = X4 = x9 = x1] = x15 = 1 with all other variables equal to zero.

Switching back to our original variables, this solution means that nodes 1 and 4 get color
#2, node 2 gets color # 1, and nodes 3 and 5 get color # 3.

Remark This approach to graph coloring problems has proven to be very effective for a wide
variety of coloring instances with hundreds of nodes, as demonstrated in Kochenberger et.
al. (20054, b, ¢).

6.3 General 0/1 programming

Many important problems in industry and government can be modeled as 0/1 linear programs
with a mixture of constraint types. The general problem of this nature can be represented in
matrix form by
max cx
st
Ax=>b
x binary
where slack variables are introduced as needed to convert inequality constraints into equal-
ities. Given a problem in this form, Transformation # 1 can be used to re-cast the problem
into the QUBO form
max xp = x' Ox
st x binary

As discussed earlier, problems with inequality constraints can be handled by introducing
slack variables, via a binary expansion, to create the system of constraints Ax = b.

@ Springer

Annals of Operations Research (2022) 314:141-183 161

Numerical Example: Consider the general 0/1 problem

max 6xq +4xy + 8x3 + 5x4 + S5x5
st
2x1 +2xp +4x3 +3x4 +2x5 <7
Ix; +2xp +2x3 + 1x4 +2x5 = 4
3x1+3xp +2x3+4x4+4x5 > 5
x €{0, 1}

Since Transformation # 1 requires all constraints to be equations rather than inequalities,
we convert the 1st and 3rd constraints to equations by including slack variables via a binary
expansion. To do this, we first estimate upper bounds on the slack activities as a basis for
determining how many binary variables will be required to represent the slack variables in
the binary expansions. Typically, the upper bounds are determined simply by examining the
constraints and estimating a reasonable value for how large the slack activity could be. For
the problem at hand, we can refer to the slack variables for constraints 1 and 3 as s1 and s3
with upper bounds 3 and 6 respectively. Our binary expansions are:

0<s1 <3 = s1=1x5+2x7
0<s3<6 = s53=1x3+2x9+4x10

where x¢, x7, xg, X9 and x1¢ are new binary variables. Note that these new variables will have
objective function coefficients equal to zero. Including these slack variables gives the system
Ax = b with A given by:
22432120 0 O
A=112212000 0 O
3324400—-1-2—-4
We can now use Transformation # 1 to reformulate our problem as a QUBO instance.
Adding the penalties to the objective function gives

max y = 6x1 +4xp + 8x3 + Sx4 + Sx5
— P(2x1 +2x2 +4x3 + 3x4 + 2x5 + 1x6 + 2x7 — 7)2
— P(Ix] +2x7 + 2x3 + lxg + 2x5 — 4)?
— P(Bxy +3xp +2x3 +4x4 +4x5 — 1xg — 2x9 — 4x10 — 5)2
Taking P = 10 and re-writing this in the QUBO format gives

max y=x'Qx

With an additive constant of -900 and a Q matrix.

@ Springer

162 Annals of Operations Research (2022) 314:141-183

[526 —150 —160 —190 —180 —20 —40 30 60 120
—150 574 —180 —200 —200 —20 —40 30 60 120
—160 —180 688 —220 —200 —40 —80 20 40 80
—190 —200 —220 645 —240 —-30 —60 40 80 160
—180 —200 —200 —240 605 —20 —40 40 80 160
-20 —-20 —40 -30 —20 130 —20 O 0 0
—40 —40 —-80 —60 —40 —20240 O 0 0
30 30 20 40 40 0O O —110 —20 —40
60 60 40 8 8 O O —20 —240 -80
120 120 80 160 160 0 0 —40 —80 —560
Solviﬁg max y = x’Qx gives the non-zero values -

X =X4 =X5 =Xx9 =x10 =1

For which y = 916. Note that the third constraint is loose. Adjusting for the additive
constant, it gives an objective function value of 16. Alternatively, we could have simply
evaluated the original objective function at the solution x; = x4 = x5 = 1 to get the
objective function value of 16.

Remarks Any problem in linear constraints and bounded integer variables can be converted
through a binary expansion into max y = x’Qx as illustrated here. In such applications,
however, the elements of the Q matrix can, depending on the data, get unacceptably large
and may require suitable scaling to mitigate this problem.

6.4 Quadratic assignment

The Quadratic Assignment Problem (QAP) is a renowned problem in combinatorial opti-
mization with applications in a wide variety of settings. It is also one of the more challenging
models to solve. The problem setting is as follows: We are given n facilities and n locations
along with a flow matrix (f;;) denoting the flow of material between facilities i and j. A
distance matrix (d;;) specifies the distance between sites i and j. The optimization problem
is to find an assignment of facilities to locations to minimize the weighted flow across the
system. Cost information can be explicitly introduced to yield a cost minimization model, as
is common in some applications.

The decision variables are x;; = 1 if facility i is assigned to location j; otherwise, x;; = 0.
Then the classic QAP model can be stated as:

n n n

n
Minimize Y~ Y > Y fijduxikxji.
i=1 j=1k=1i=1

n
le'j =1 j=1n
i=1

Subject to Z":

Xij = 1 i= 1, n
j=1
xij€{0,1},i,j=1,n
All QAP problems have n? variables, which often yields large models in practical settings.

This model has the general form presented at the beginning of this section and consequently
Transformation # 1 can be used to convert any QAP problem into a QUBO instance.

@ Springer

Annals of Operations Research (2022) 314:141-183 163

Numerical Example: Consider a small example with n = 3 facilities and 3 locations with

052 0 815
flow and Distance matrices respectively given as follows: [503 |and | 8 0 13
230 1513 0

It is convenient to re-label the variables using only a single subscript as we did previously
in the graph coloring problem, thus replacing.

(x11, X12, X13, X21, X22, X23, X31, X32, X33) by (x1, X2, X3, X4, X5, X6, X7, X8, X9)
Given the flow and distance matrices our QAP model becomes:

min xg =80x1xs5 + 150x1x¢ + 32x1x8 + 60x1x9 + 80xx4 + 130x2x6 + 60x2x7 + 52x7x9
+ 150x3x4 + 130x3x5 + 60x3x7 + 52x3x8 + 48x4Xx8 + 90x4X9 + 78x5X9 + T8x6X8

X1+xp2+x3=1
X4+x5+x5=1
. X7 +xg+x9g =1
Subject to
X1 +xg+x7=1
X2+ x5 +xg =1
X3+Xx6+x9=1
Converting the constraints into quadratic penalty terms and adding them to the objective
function gives the unconstrained quadratic model

min y = 80x1x5 + 150x1x6 + 32x1x8 + 60x1x9 + 80x2x4 + 130x2x6 + 60x2x7 + 52x2x9
+ 150x3x4 + 130x3x5 + 60x3x7 + 52x3x8 + 48x4x8 + 90x4x9 + 78x5x9 + T8x6X3
+P(x1 +x3 +x3 — 1)2 + P(x4 + x5+ x6 — 1)2 + P(x7 + xg +x9 — 1)2
+P(x1 +x4+x7 — 1)2 + P(x2 + x5+ x3 — 1)2 + P(x3 +x6 + X9 — 1)2
Choosing a penalty value of P = 200, this becomes the standard QUBO problem.
QUBO: min y = x'Qx.
With an additive constant of 1200 and the following 9-by-9 Q matrix:

[—400 200 200 200 40 75 200 16 30 7
200 —400 200 40 200 65 16 200 26
200 200 —400 75 65 200 30 26 200
200 40 75 —400 200 200 200 24 45
40 200 65 200 —400 200 24 200 39
75 65 200 200 200 —400 45 39 200
200 16 30 200 24 45 —400 200 200
16 200 26 24 200 39 200 —400 200

L 30 26 200 45 39 200 200 200 —400 |

Solving QUBO gives y = —982 at x; = x5 = x9 = 1 and all other variables = 0.
Adjusting for the additive constant, we get the original objective function value of 1200 —
982 = 218.

Remark A QUBO approach to solving QAP problems, as illustrated above, has been suc-
cessfully applied to problems with more than 30 facilities and locations in (Wang et al.
2016).

@ Springer

164 Annals of Operations Research (2022) 314:141-183

6.5 Quadratic knapsack

Knapsack problems, like the other problems presented earlier in this section, play a prominent
role in the field of combinatorial optimization, having widespread application in such areas as
project selection and capital budgeting. In such settings, a set of attractive potential projects
is identified and the goal is to identify a subset of maximum value (or profit) that satisfies the
budget limitations. The classic linear knapsack problem applies when the value of a project
depends only on the individual projects under consideration. The quadratic version of this
problem arises when there is an interaction between pairs of projects affecting the value
obtained.

For the general case with n projects, the Quadratic Knapsack Problem (QKP) is commonly
modeled as

n—1 n

max Z Z VijXiXj

i=1 j=i

Subject to the budget constraint

n
E ajx; < b
j=1

where x; = 1 if project j is chosen: else, x; = 0. The parameters v;;, a; and b represent,
respectively, the value associated with choosing projects i and j, the resource requirement
of project j, and the total resource budget. Generalizations involving multiple knapsack
constraints are found in a variety of application settings.
Numerical Example: Consider the QKP model with four projects:
max 2xq + S5xp +2x3 +4x4 + 8x1x2 + 6x1x3+

IOX1X4 + 2xzx3 + 6)(2)(4 + 4X3X4
Subject to the knapsack constraint:
8x1 +6xp +5x3+3x4 <16

We re-cast this into the form of a QUBO model by first converting the constraint into
an equation and then using the ideas embedded in Transformation # 1. Introducing a slack
variable in the form of the binary expansion 1xs + 2x¢, we get the equality constraint

8x1 +6xp +5x3 +3x4 + 1x5+2x6 = 16

Which we can convert to penalties to produce our QUBO model as follows.
Including the penalty term in the objective function gives the unconstrained quadratic
model:

max y = 2x1 + 5xp + 2x3 + 4x4 + 8x1x2 + 6x1x3
+10x1x4 + 2x2x3 + 6xpx4 + 4Xx3X4

—P(8x] +6x2 + 5x3 + 3x4 + 1x5 + 2x6 — 16)?

Choosing a penalty P = 10, and cleaning up the algebra gives the QUBO model.
QUBO: max y = x'Qx.

@ Springer

Annals of Operations Research (2022) 314:141-183 165

With an additive constant of — 2560 and the Q matrix

1922 —476 —397 —235 —80 —160 |
—476 1565 —299 —177 —60 —120
—397 —299 1352 —148 —50 —100
—235 —177 —148 874 —30 —60
—80 —60 —50 —30 310 —20

| —160 —120 —100 —60 —20 600

Solving QUBO gives y = 2588 at x = (1,0, 1, 1, 0, 0). Adjusting for the additive con-
stant, gives the value 28 for the original objective function.

Remark The QUBO approach to QKP has proven to be successful on problems with several
hundred variables as shown in Glover et al. (2002a, b).

7 Connections to quantum computing and machine learning
7.1 Quantum computing QUBO developments

As noted in Sect. 1, one of the most significant applications of QUBO emerges from its
equivalence to the famous Ising problem in physics. In common with the earlier demonstration
that a remarkable array of NP-hard problems can converted into the QUBO form, (Lucas,
2014) more recently has observed that such problems can be converted into the Ising form,
including graph and number partitioning, covering and set packing, satisfiability, matching,
and constrained spanning tree problems, among others. Pakin (2017) presents an algorithm
for finding the shortest path through a maze by expressing the shortest path as the globally
optimal value of an Ising Hamiltonian instead of via a traditional backtracking mechanism.
Ising problems replace x € {0, 1} by x € {— 1, 1} " and can be put in the QUBO form by
defining x;; = (x; + 1)/2 and then redefining x; to be xj’.l Efforts to solve Ising problems
are often carried out with annealing approaches, motivated by the perspective in physics of
applying annealing methods to find a lowest energy state.

More effective methods for QUBO problems, and hence for Ising problems, are obtained
using modern metaheuristics. Among the best metaheuristic methods for QUBO are those
based on tabu search and path relinking as described in Glover (1996, 1997), Glover and
Laguna (1997) and adapted to QUBO in Wang et al. (2012, 2013).

A bonus from this development has been to create a link between QUBO problems and
quantum computing.2 A quantum computer based on quantum annealing with an integrated
physical network structure of qubits known as a Chimera graph has incorporated ideas from
Wang et al. (2012) in its software and has been implemented on the D-Wave System. The
ability to obtain a quantum speedup effect for this system applied to QUBO problems has
been demonstrated in Boixo et al. (2014).

Additional advances incorporating methodology from Wang et al. (2012, 2013) are pro-
vided in the D-Wave open source software system Qbsolv (2017) and in the supplementary
QMASM system by Pakin (2018). Qbsolv is a hyrid classical/hardware accelerator tool,

! This adds a constant to (1), which is irrelevant for optimization.

2 Reference to quantum computing would not be complete without mentioning Google’s recent claim to
achieving ‘quantum supremacy.” This outcome has no bearing on the computational considerations discussed
here. See, for example, Preskill (2019).

@ Springer

166 Annals of Operations Research (2022) 314:141-183

which takes as input a QUBO that may be larger/denser/higher-precision than the accel-
erator, and solves subQUBOs on an accelerator and combines the results for full QUBO
solution. It has enabled widespread experimentation to map optimization problems to the
QUBO form for execution on classical and D-wave computers. D-Wave has now upgraded
this system by drawing on the MIT Kerberos system (Kerberos, 2019) which offers many
convenience features for users. The Quantum Bridge Analytics perspective, as elaborated
below, is providing additional gains.

Recent QUBO quantum computing applications, complementing earlier applications on
classical computing systems, include those for graph partitioning problems in Mniszewski
et al. (2017) and Ushijima-Mwesigwa et al. (2017); graph clustering (quantum community
detection problems) in Negre et al. (2019); traffic-flow optimization in Neukart et al. (2017);
vehicle routing problems in Feld et al. (2018), Clark et al. (2019) and Ohzeki et al.(2018);
maximum clique problems in Chapuis et al. (2018); cybersecurity problems in Munch et al.
(2018) and Reinhardt et al. (2018); predictive health analytics problems in Oliveira et al.
(2018) and Sahner et al. (2018); and financial portfolio management problems in Elsokkary
et al. (2017) and Kalra et al. (2018). In another recent development, QUBO models are
being studied using the IBM neuromorphic computer at as reported in Alom et al. (2017)
and Aimone et al. (2018). Still more recently, Aramon, et al. (2019) have investigated and
tested the Fujitsu Digital Annealer approach, which is also designed to solve fully connected
QUBO problems, implemented on application-specific CMOS hardware and solved problems
of 1024 variables.

Multiple quantum computational paradigms are emerging as important research topics,
and their relative merits have been the source of some controversy. One of the most active
debates concerns the promise of quantum gate systems, also known as quantum circuit sys-
tems, versus the promise of adiabatic or quantum annealing systems. Part of this debate has
concerned the question of whether adiabatic quantum computing incorporates the critical ele-
ment of quantum entanglement. After some period, the debate was finally resolved by Albash
et al. (2015) and Lanting et al. (2014), demonstrating that this question can be answered in
the affirmative.

Yet another key consideration involves the role of decoherence. Some of the main issues
are discussed in Amin et al. (2008) and Albash and Lidar (2015). The challenge is for the
gate model to handle decoherence effectively. Superconducting qubit techniques have very
short-lived coherence times and the adiabatic approach does not require them, while the gate
model does.

An important discovery by Yu et al. (2018) shows that the adiabatic and gate systems
offer effectively the same potential for achieving the gains inherent in quantum computing
processes, with a mathematical demonstration that the quantum circuit algorithm can be
transformed into the quantum adiabatic algorithm with the exact same time complexity. This
has useful implications for the relevance of QUBO models that have been implemented in
an adiabatic quantum annealing setting, disclosing that analogous advances associated with
QUBO models may ultimately be realized through quantum circuit systems.

Complementing this analysis, Shaydulin et al. (2018) have conducted a first performance
comparison of these two leading paradigms, showing that quantum local search approach
with both frameworks can achieve results comparable to state-of-the-art local search using
classical computing architectures, with a potential for the quantum approaches to outperform
the classical systems as hardware evolves. However, the time frame for realizing such potential
has been estimated by some analysts to lie 10 or more years in the future (Debenedictis, 2019;
Reedy, 2017).

@ Springer

Annals of Operations Research (2022) 314:141-183 167

Regardless of which quantum paradigm proves superior (and when this paradigm will
become competitive with the best classical computing systems), the studies of Alom et al.
(2017) and Aimone et al. (2018) in neuromorphic computing reinforce the studies of adiabatic
and gate based models by indicating the growing significance of the QUBO/Ising model
across multiple frameworks.

However, to set the stage for solving QUBO problems on quantum computers, these
problems must be embedded (or compiled) onto quantum computing hardware, which in itself
is a very hard problem. Date et al. (2019) address this issue by proposing an efficient algorithm
for embedding QUBO problems that runs fast, uses less qubits than previous approaches and
gets an objective function value close to the global minimum value. In a computational
comparison, they find that their embedding algorithm outperforms the embedding algorithm
of D-Wave, which is the current state of the art.

Vyskocil et al. (2019) observe that the transformation in Sect. 5.3 for handling general
inequality constraints of the form)}, x; < k introduces penalties for numerous cross
products, which poses difficulties for current quantum annealers such as those by D-Wave
Systems. The authors give a scalable and modular two-level approach for handling this
situation that first solves a small preliminary mixed integer optimization problem with 16
binary variables and 16 constraints, and then uses this to create a transformation that increases
the number of QUBO variables but keeps the number of cross product terms in check, thereby
aiding a quantum computer implementation.

Nevertheless, other considerations are relevant for evaluating the performance of different
computational paradigms for solving QUBO problems, among them the use of reduction and
preprocessing methods for decomposing large scale QUBO problem instances into smaller
ones. Hahn et al. (2017) and Pelofske et al. (2019) investigate such preprocessing methods that
utilize upper and lower bound heuristics in conjunction with graph decomposition, vertex and
edge extraction and persistency analysis. Additional preprocessing methods are introduced
in) as described subsequently in the context of machine learning.

7.2 Quantum bridge analytics: joining classical and quantum computing paradigms

As emphasized in the 2019 Consensus Study Report titled Quantum Computing: Progress
and Prospects, by the National Academies of Sciences, Engineering and Medicine (2019),
quantum computing will remain in its infancy for some years to come, and in the interim
“formulating an R&D program with the aim of developing commercial applications for near-
term quantum computing is critical to the health of the field.” As noted in this report, such a
program will rest on developing “hybrid classical-quantum techniques,” which is the focus
of Quantum Bridge Analytics. With the emergence of Quantum Bridge Analytics (QBA), a
field devoted to bridging the gap between classical and quantum computational methods and
technologies, the creation of effective foundations for such hybrid systems is being actively
pursued with the development of the AlphaQUBO solver (AlphaQUBO, 2021). This work
is paving the way for a wide range of additional QUBO and QUBO-related applications
in commercial and academic research settings. The power of the QBA approach has been
demonstrated in Glover and Kochenberger (2019), with computational tests showing that
a predecessor of AlphaQUBO solves QUBO problems between 100 and 500 variables up
to three orders of magnitude faster than a mainstream quantum computing system using
Kerberos, and as noted in Sect. 8, AlphaQUBO is additionally capable of solving much
larger problems involving upward of a million variables.

@ Springer

168 Annals of Operations Research (2022) 314:141-183

Another blend of classical and quantum computing, known as the Quantum Approximate
Optimization Algorithm (QAOA), is a hybrid variational algorithm introduced by Farhi et al.
(2014) that produces approximate solutions for combinatorial optimization problems. The
QAOA approach has been recently been applied in Zhou et al. (2018) to MaxCut (MC)
problems, including a variant in process for Max Independent Set (MIS) problems, and is
claimed by its authors to have the potential to challenge the leading classical algorithms. In
theory, QAOA methods can be applied to more types of combinatorial optimization problems
than embraced by the QUBO model, but at present the MC and MIS problems studied by
QAOA are a very small segment of the QUBO family and no time frame is offered for gaining
the ability to tackle additional QUBO problem instances. Significantly, the parameters of the
QAOA framework must be modified to produce different algorithms to appropriately handle
different problem types. Whether this may limit the universality of this approach in a practical
sense remains to be seen.

Wang and Abdullah (2018) acknowledge that the acclaim given to QAOA for exhibiting
the feature called "quantum supremacy" does not imply that QAOA will be able to outperform
classical algorithms on important combinatorial optimization problems such as Constraint
Satisfaction Problems, and current implementations of QAOA are subject to a gate fidelity
limitation, where the potential advantages of larger values of the parameter p in QAOA
applications are likely to be countered by a decrease in solution accuracy.

QAOA has inspired many researchers to laud its potential virtues, though the practical
significance of this potential at present is not well established. Investigations are currently
underway in Kochenberger et al. (2019) to examine this issue by computational testing on
a range of QUBO models that fall within the scope of QAOA implementations presently
available, to determine the promise of QAOA in relation to classical optimization on these
models.

We now examine realms of QUBO models that are actively being investigated apart from
issues of alternative computational frameworks for solving them efficiently.

7.3 Unsupervised machine learning with QUBO

One of the most salient forms of unsupervised machine learning is represented by clustering.
The QUBO set partitioning model provides a very natural form of clustering and gives this
model a useful link to unsupervised machine learning. As observed in Ailon et al. (2008) and
Aloise et al. (2010), the CPP (clique partitioning problem) is popular in the area of machine
learning as it offers a general model for correlation clustering (CC) and the modularity
maximization (MM). Pudenz and Lidar (2013) further show how a QUBO based quantum
computing model can be used in unsupervised machine learning. A related application in
O’Malley et al. (2018) investigates nonnegative/binary matrix factorization with a D-Wave
quantum annealer.

An application of QUBO to unsupervised machine learning in) provides an approach that
can be employed either together with quantum computing or independently. In a complemen-
tary development, clustering is used to facilitate the solution of QUBO models in Samorani
etal. (2019), thereby providing a foundation for studying additional uses of clustering in this
context.

@ Springer

Annals of Operations Research (2022) 314:141-183 169

7.4 Supervised machine learning with QUBO

A proposal to use QUBO in supervised machine learning is introduced in Schneidman et al.
(2006). From the physics perspective, the authors argue that the equivalent Ising model is
useful for any representation of neural function, based on the supposition that a statistical
model for neural activity should be chosen using the principle of maximum entropy. Con-
sequently, this model has a natural role in statistical neural models of supervised machine
learning. Hamilton et al. (2018) discussed the potential to use advance computing such as
neuromorphic processing units and quantum annealers in spin-glass networks, Boltzmann
machines, convolutional neural networks and constraint satisfaction problems.

7.5 Machine learning to improve QUBO solution processes

The development of rules and strategies to learn the implications of specific model instances
has had a long history. Today this type of machine learning permeates the field of mixed
integer programming to identify relationships such as values (or bounds) that can be assigned
to variables, or inequalities that can constrain feasible spaces more tightly. Although not
traditionally viewed through the lens of machine learning, due in part to being classified under
the name of preprocessing, these approaches are now widely acknowledged to constitute a
viable and important part of the machine learning domain.

Efforts to apply machine learning to uncover the implications of QUBO problem structures
have proceeded more slowly than those devoted to identifying such implications in the mixed
integer programming field. A landmark paper in the QUBO area is the work of Boros et al.
(2008), which uses roof duality and a max-flow algorithm to provide useful model inferences.
More recently, sets of logical tests have been developed in Glover et al. (2018a, b) to learn
relationships among variables in QUBO applications which achieved a 45% reduction in size
for about half of the problems tested, and in 10 cases succeeded in fixing all the variables,
exactly solving these problems. The rules also identified implied relationships between pairs
of variables that resulted in simple logical inequalities to facilitate solving these problems.

Other types of machine learning approaches also merit a closer look in the future for
applications with QUBO. Among these are the Programming by Optimization approach
of Hoos (2012) and the Integrative Population Analysis approach of Glover et al. (1998a,
1998b).

8 Advanced quantum-related applications
We examine developments in quantum-related models that have recently gained particular

attention in the quantum computing community and exhibit the diverse possibilities for
handling important applications using the QUBO model.

8.1 Satellite tracking formulations

Satellite tracking problems that involve scheduling the daily communications between satel-
lites and ground station are becoming increasingly critical with the growth in the number of
satellites and the number of important targets to be tracked by them. These problems come in
a variety of forms. The following identifies three instances of a fundamental tracking problem

@ Springer

170 Annals of Operations Research (2022) 314:141-183

that will give an idea of QUBO formations for others. (See, for example, Lu et al. 2017; Xie
et al. 2019)

The fundamental problem is to schedule the tracking done by satellites in order to satisfy
a set of requests RQy, h € H for viewing particular targets by the satellites.

Each request RQy, consists of a set of resources i € RQp, and may be interpreted as
identifying a target object Ty, (satellite, space debris, etc.) to be viewed by all resources i
€ RQp, using different time slots to view the target Ty, for each resource (so that no two
resources are engaged in viewing T}, simultaneously). The time units are discretized and
target Ty, is viewed for as many time periods as possible within the collective span of periods
the resources are available for viewing Ty,.

Let StartView(h,i) = the starting time for the period when Ty becomes available for
viewing with resource i, and let EndView(h,i) = the ending time for this view period. These
starting and ending times are given by the problem data and depend on both the target object
Ty, being viewed (determined by request RQy,) and the resource i used to view Ty. The period
available for viewing Ty, by resource i is therefore given by

ViewPeriod(h, i) = {t: StartView(h,i) < t < EndView(h, i)}

The actual span of periods during which viewing takes place is determined by the decision
variable xp ; defined below. However, not all times t within this view period are admissible for
starting the observation of Ty, by resource i, and we let StartTime(h,i) = the set of admissible
starting values t within the view period. Then, also by definition

StartTime(h, i) = {t: StartView(h,i) < t < EndView(h, i) — d(h, i)}

Observation: The value d(h,i) can be the same value for all resources i and all targets T,
or may depend only on resource i, or only on the target T}, (determined by the request RQy,),
or may depend on both h and i.

8.1.1 Decision variable

We introduce a 0—1 decision variable xp i, where h € H, i € RQp, and t € StartTime(h,1), and
where setting xpi; = 1 corresponds to choosing to view the target object Ty, with resource i
during the time interval from t to t + d(h,1).

Restriction 1 If i € RQp, then we must choose exactly one (or at most one) variable Xy j ¢
to receive the value xpi¢ = 1 for t € StartTime(h,i).

Restriction 1 may be represented formally as follows.

Formulation 1: For each h € H and each i € RQ,

> (xnig : tStartTime(h, i)) = 1(or < 1) 1)

The constraint (1) is readily represented by a quadratic penalty term in a QUBO formu-
lation for both the “ = 1”7 and the “ < 1” versions. The “ < 1” version can produce a more
versatile QUBO formulation by starting with an objective function

Maximize x, = Z(Xh,i,ti hiH, iiRQh, tiStartTime(h, 1))

And then subtracting the weighted penalty terms from this X, representation to produce a
quadratic objective for a QUBO problem as shown in Sect. 4.

The maximization of the sum of the Xy, ;; variables assures that the solution will make as
many of these variables equal to 1 as possible, and hence the “ = 1" version will be achieved
in an optimal solution if (1) admits a feasible solution for the “ = 1” case. Instead of giving

@ Springer

Annals of Operations Research (2022) 314:141-183 171

each xp, i variable a coefficient of 1 in this starting X, expression, a positive coefficient cpj ¢
can be used, giving the possibility to compel xp ;¢ = 1 for some variables in preference to
others, hence for viewing some targets Ty, more thoroughly than others or employing some
resources for viewing more intensively than others.

Restriction 2 No two resources il and i2 € RQy, are allowed to view the target object Ty,
in the same time period t.

This restriction is introduced chiefly for the purpose of economy, since viewing T}, by more
than one resource in each time period is wasteful. Without it, the maximization of the sum
of the xp,i¢ variables in X, would produce unnecessary viewings, and such viewings could
likewise result even if the coefficients for the xp, j ; variables in x, were all 0 before introducing
the penalty terms. To express Restriction 2 more formally, it and to facilitate the discussion
of its implications with the diagrams that follow, we define tj;(start) = StartView(h,il) and
tii(end) = EndView(h,il), and similarly define tjp(start) = StartView(h,i2) and tj3(end) =
EndView(h,i2). Then the interval [tj;(start), t;j(end)] corresponds to ViewPeriod(h,il), and
the interval [tj>(start), ti>(end)] corresponds to ViewPeriod(h,i2).

Formulation 2 By the preceding definitions, Restriction 2 is equivalent to stipulating

Xh,it,tl + Xpi2,2 < 1 (2)
For all time periods t1 and t2 such that
tl € StartTime(h, i1), t2 € StartTime(h, i2) 2.1)
And such that there is a non-empty intersection of the intervals
[t1, t1 — d(h,il1)] and [tj>(start), tjp(end)] 2.2)
And of the intervals
[t2, t2 — d(h, i2)] and [t;; (start), tij(end)] (2.3)

The inequality (2) is readily penalized and taken into the objective function for a QUBO
problem, again as shown in Sect. 4.

It is useful to identify the implication of the conditions formulated for (2.1), (2.2) and
(2.3) to understand how the model captures the key problem elements and to get a clearer
understanding of the problem. Assume without loss of generality that t;j (start) < tj>(start).
Then we have the following three cases.

Case 1. tj1(end) < tpp(start).

This case may be visualized as follows.

ti1(start) tir(end) tio(start) tiz(end)

Then no t2 value for i2 in the interval [tj>(start), ti>(end)] that overlaps with any t1 in the
interval [t;; (start), t;;(end)], and hence there are no restrictions to be expressed by (2).

Case 2. tip(start) < tjj(end) and tjp(end) < tj;(end).

This case may be visualized by.

tii(start) tio(start) tiz(end) ti1(end)

@ Springer

172 Annals of Operations Research (2022) 314:141-183

In this instance the interval [tj>(start), ti>(end)] lies entirely inside the [tj (start), tj; (end)]
interval. Hence any t1 that satisfies.

tl < tj;(start) and t1—d(h, i1) < tjp(start) (2a)

Will cause the interval [t1, t1 —d(h,i1)] to have a non-empty intersection with the interval
[tia(start), tix(end)], and any t2 at all such that.

t2 € [tip(start), tpp(end)] (2b)

Will cause the interval [t2, t2 — d(h,i2)] to have a non-empty intersection with the interval
[ti1 (start), tj; (end)]. Hence, for Case 2 the inequality (2) must hold for all t1 satisfying (2a)
and all t2 satisfying (2b).

Case 3. tip(start) < tj;(end) and tj; (end) < tjz(end).

The visualization for this case is given by.

ti1(start) tio(start) tir(end) tiz(end)

Consequently, any t1 that satisfies.
tl € [t (start), tjj(end)] and t1—d(h, il) < tjp(start) (3a)

Will cause the interval [t1, t1 —d(h,il)] to have a non-empty intersection with the interval
[tio(start), tix(end)]. Also, all t2 satisfying.

t2 < tpp(start) and t2 < tj; (end) (3b)

Will cause the interval [t2, t2 — d(h,i2)] to have a non-empty intersection with the interval
[ti1 (start), t;; (end)]. Hence, for Case 3 the inequality (2) must be imposed for all t1 satisfying
(3a) and all t2 satistying (3b).

As in the case of the equation or inequality (1) for Formulation 1, in all of the Cases 1, 2
and 3, the inequality (2) for Formulation 2 is readily translated into a quadratic penalty for a
QUBO problem as previously observed.

Formulations 1 and 2 make no mention of the case where a resource il may be assigned to
view a target T}, and a resource i2 may be assigned to view a target Tpy. This case is handled
automatically by the formulations without imposing any restrictions.

8.2 Portfolio optimization formulations

The optimization community, from both the conventional and quantum computing sides,
have shown a strong interest in testing the applicability of the QUBO model for addressing
important problems arising in a variety of financial areas. In these pursuits, applications have
been reported in problem domains such as index tracking (QC Ware Corporation 2018; Hong
et.al., 2021), credit scoring (1Qbit, 2017), and credit fraud (Multivers 2020a, b).

By far, however, the financial application receiving the most attention is Portfolio modeling
as evidenced by the articles of Mugel et al. (2020), Phillipson and Bhatia (2020), Grant and
Humble (2020), Venturelli and Kondratyev (2018), Palmer et al. (2021) and Meta-Analytics
(2020).

At the core of most of the Portfolio models reported in the literature is the basic Markowitz
idea of finding an optimal tradeoff between risk and return. Given a set of candidate assets,

@ Springer

Annals of Operations Research (2022) 314:141-183 173

the problem is to form a portfolio by choosing a subset of the assets that optimize the risk-
vs-return tradeoff. Following Markowitz, risk is typically represented by a covariance matrix
that is estimated from past returns. As we will show, however, a different model provides a
highly attractive alternative.

In the basic model, the decision variables, denoted by w;, represent the percentage of the
total portfolio that is represented by asset i. These decision variables are continuous between
0 and 1 and their sum, taken over all assets chosen for the portfolio, is equal to 1. Keeping
in the spirit of QUBO modeling where constraints are represented by quadratic penalties
appended to the original objective function, a Markowitz inspired model in QUBO-ready
form can we written as.

N
Minwg = —r'w + pw'Cw + Pl(Zwi - l)

i=1

2

where the various model components are defined as:
w;j :Decision variable. The percentage of the total portfolio represented by asset i.

r: Vector of Return data.

C: Covariance Matrix.

B: Risk Tolerance parameter.

N: number of assets from which a portfolio is to be formed.

P1: Constraint Penalty Parameter.

8.2.1 Transform to QUBO

QUBO models are unconstrained quadratic models in binary variables. The model above can
be transformed into a QUBO model that approximates the original model by replacing the
continuous variables by a binary expansion of the form.

w; = (@1 Xi1+.eun.. +a;jaxiq)/s where the x;; are binary variables, the a;; are appropriately
chosen constants, and s is a scale factor. We note that this basic model can be enriched to
include a variety of application driven features such as cardinality constraints, bounds on
individual asset percentages, and limits on sector investments.

8.2.2 Alternative model

As mentioned above, the classic Markowitz model is inherently continuous in nature and
in order to re-cast such models into a QUBO framework, the continuous variables must be
approximated with binary expansions. This process greatly expands the size of the model to
be solved, making the problem more difficult to solve and limiting the number of assets that
can be handled. Nonetheless, this is the approach taken by most firms where the optimization
is quantum or quantum-inspired in nature. The resulting enlarged models have proven to
perform reasonably well in practice on basic versions of the portfolio model.

An interesting variation of the portfolio model that does not involve continuous variables
nor a covariance matrix but nonetheless retains the basic ideal of balancing risk and return
was given by (Venturelli & Kondratyev, 2018). In their work, they seek to form a portfolio

@ Springer

174 Annals of Operations Research (2022) 314:141-183

from a set of assets with known attributes such as asset returns and pairwise correlations.
Their model directly takes the QUBO form:

N

N-1 N
Minimize f(x) = Zrmix,' + Z Z dijxix;

i=1 i=1 j=i+l

where
x; = 1 if asset i is selected; otherwise 0.
rm; = a measure related to the return for asset i.
dij = ameasure denoting diversity for assets i and j.

8.2.3 Comparison with the Markowitz/Covariance model

Unlike the previous portfolio model, this model is naturally built around binary variables
and thus avoids the issues associated with binary expansions of continuous variables. As
such, it is much easier (and natural) to implement in practice as a QUBO model. Moreover,
this model can be readily enhanced to include additional constraints. For example, including
a cardinality constraint to specify the number of assets to be included in the portfolio and
a budget constraint to limit the total cost of the portfolio leads to the following enhanced
model:

8.2.4 Model enhancement

N N—1 N
Minimize f(x) = Y rmix; + Y. Y. dijxixj.
i=l1 i=1 j=i+l
Subject to

N

d xj=m
Jj=1

N
ZC‘]‘)C]' <B
j=1

where m denotes the desired number of assets to be chosen, c; is the cost of asset j, and B
is the budget limit for the portfolio. Using standard methods for formulating QUBO models
(see Sect. 5), these constraints can be folded into the Q matrix to transform the model into an
equivalent QUBO model. Note that further enhancements, like imposing asset sector specific
budgets, can easily be added to the model.

8.2.5 Computational experience

Computational experience with the above portfolio models and their variations indicates
that the QUBO approach is computationally attractive, often outperforming conventional
approaches for these problems in terms of both solution quality and computational times
(Cohen et al. 2020; Elsokkary et al. 2017; Kalra et al. 2018; Venturelli & Kondratyev 2018).

@ Springer

Annals of Operations Research (2022) 314:141-183 175

9 Results of computational studies

Several studies have highlighted the value of solution methods designed especially for QUBO
models, comparing their performance with traditional solvers. For example, see the articles
by Wang et al. (2006), Oshiyama and Masayuki (2021), Scheutz et al. (2021) and Kowalsky
et al. (2021). In the section to follow, we detail a study on set partitioning problems showing
the value of a metaheuristic procedure designed for solving QUBO models and compare its
performance with a leading exact solver as well as an industry leading quantum solver.

9.1 Results for set partitioning problems

Many research groups and computer companies are interested in (1) testing the QUBO
model on various model types to see how well this modeling construct can perform in terms
of delivering high quality solutions compared to conventional models for such problems, and
(2) comparing state of the art solvers running on conventional computers with solvers coming
from the quantum companies. A rich set of results pertaining to classical combinatorial
optimization problems have recently appeared in the literature as represented by problems in
Asset Allocation (Glover et at., 2020), Task Allocation (Tomasiewicz et al., 2020), Multiple
Knapsack Problems (Forrester & Hunt-Isaak 2020), Maximum Independent Set Problems
(Yarkoni et al., 2018), Maximum Cut Problems (Dunning et al., 2018), Maximum Clique
Problems (Pelofske et al., 2019), Constraint Satisfaction Problems (Vyskocil & Djidjev,
2019), Clique Partitioning Problems (Shaydulin et al., 2018; Kochenberger et al., 2021),
Clustering Problems (Mniszewski et al., 2018; Bauckhage et al., 2019; Negre et al., 2019).

A common conclusion is that the QUBO model, as an alternative modeling construct,
is very effective in delivering high quality solutions to difficult combinatorial optimization
problems. Moreover, quantum-based solvers, due to the present state of their hardware, are
limited in the size of the problems that can be directly solved, leading quantum firms to
develop hybrid solvers in an effort to accommodate larger problems. Nonetheless, on larger
problems, the best algorithms running on conventional computers usually outperform the
quantum solvers, often by a substantial margin.

A significant example of this performance gap was given in (Du et al., 2020a) where the
authors report results from their metaheuristic solver, AlphaQUBO, on a set of challenging
set partitioning problems that were also solved by an exact solver (CPLEX) and a state of
the art quantum solver. Set Partitioning, with well-known applications in areas such as crew
scheduling, vehicle routing and many others, provides a significant real-world oriented test
of the QUBO approach to solving combinatorial optimization problems (An introduction to
the set partitioning problems is given in Sect. 5.1 of this tutorial).

The following tables show the computational results for a testbed of three sets of problems
ranging in size from 6000 variables to 100,000 variables. In all cases, CPLEX was run on
the standard linear model for set partitioning and AlphaQUBO and the quantum solver were
run on the QUBO equivalent model. Best known solutions are highlighted in yellow for easy
identification. Note that the times shown in the table are “times to best.” The quantum solver
tested in this study is denoted simply by Quantum-X.

Table 1: Seven Modest Sized Instances.

As shown in Table 1, both CPLEX and AlphaQUBO found optimal solutions for the first 6
of these modest sized problems. AlphaQUBO obtained a better solution than CPLEX on the
last problem and outperformed CPLEX on “time to best” by a wide margin on all 7 problems.
The QUANTUM-X, by contrast, was unable to produce the best known solution on any of

@ Springer

176 Annals of Operations Research (2022) 314:141-183

Table 1 Modest sized problems: comparing AlphaQUBO, CPLEX and the QUANTUM-X

1D Vars CPLEX QUANTUM-X AlphaQUBO
OFV Time (s) OFV Time (s) Gap OFV Time(s)
(%)

SPPOla 6000 10,872 7851 11,156 124 2.61 10,872 53
SPPOlc 6000 22,360 2598 22917 87 0.25 22,860 275
SPPO1d 6000 14,793 14,115 14,917 106 0.84 14,793 12
SPP02a 8000 14,959 15,348 15,332 229 2.49 14,959 34
SPP02b 8000 9621 18,071 10,037 253 4.32 9621 74
SPP02c 8000 30,425 16,423 30,929 144 1.66 30,425 95
SPP02d 8000 19,882 10,191 19,882 188 0.33 19,816 19

the 7 problems and often was off by a wide margin. All told, AlphaQUBO significantly
outperformed both CPLEX and QUANTUM-X on these test problems.

Table 2: Twenty Four Large Sized Instances

Table 2 highlights that AlphaQUBO quickly found best known solutions for all 24
problems. CPLEX was able to find best known solutions for only 11 of the 24 problems.
AlphaQUBO had a “time to best” advantage over CPLEX that typically ranged from 1 to 3
orders of magnitude. The QUANTUM-X solver was unable to find the best known solutions
for any of the 24 problems, exhibited erratic behavior on several problems, and was unable
to provide a solution for many of the problems (as indicated by NA). All told, AlphaQUBO
outperformed both CPLEX and QUANTUM-X by a wide margin in terms of both solution
quality and solution time.

Table 3: Six Very Large Instances

Table 3 shows the results for problems of size 50 to 100 k variables. The QUANTUM-X
solver was unable to return solutions to any of these problems and thus was omitted from
this table. CPLEX was unable to find the best known solution to any of these problems in
the time limit of 6 h. AlphaQUBO quickly provided best known solutions for all problems,
outperforming CPLEX in terms of solution quality and time.

Regarding the results and comparisons given in Tables 1, 2 and 3 above, it is important
to keep in mind CPLEX is an exact solver while AlphaQUBO is a metaheuristic. By their
very design, the time performance of exact methods degrades as problem size scales on
combinatorial problems due to the burden of the tree search that is undertaken in the effort to
establish optimality. Metaheuristics, without a guarantee of optimality, conduct a completely
different type of search process, typically finding a high quality solution quickly but lacking
the ability to establish optimality. Thus, the performance shown in the tables above highlight
the basic difference between well-designed exact and metaheuristic solvers for combinatorial
problems.

9.2 Preprocessing QUBO models

As problem size and complexity of QUBO models has grown, the computational burden
involved in finding good solutions for QUBO models has grown as well. This is particularly
troublesome for quantum and quantum inspired solvers where current hardware with a limited
number of qubits greatly limits the size of the problem that can be directly solved without

@ Springer

Annals of Operations Research (2022) 314:141-183 177

Table 2 Large size problems: comparing AlphaQUBO, CPLEX, and the QUANTUM-X

Instance Vars Density CPLEX QUANTUM-X AlphaQUBO
" OFV Time OFV Time (s) OFV Time (s)
(s)
1 10,000 0.25 7292 947 — 273 7292 378.2
1,012,354,297,792
2 10,000 50 4543 1543 — 293 4543 11.6
4,051,678,826,176
3 10,000 25 37,968 284 - 143 37,968 5.4
1,564,139,422,400
4 10,000 50 24,297 8683 25,157 195 24,297 1337
5 15,000 25 10,930 66 11,784 820 10,930 17.5
6 15,000 50 7174 2176 8177 768 7047 77
7 15,000 25 57,834 993 59,719 402 57,419 706.7
8 15,000 50 37,962 2373 78,837 565 37,671 556.8
9 20,000 25 14,900 9833 15,855 3480 14,900 1535.1
10 20,000 50 9412 369 10,063 2717 9412 3.6
11 20,000 25 77,448 2119 79,035 581 77,198 1729.1
12 20,000 50 50,188 4786 53,226 1082 50,188 5.7
13 25,000 25 18,517 589 NA NA 18,498 10
14 25,000 50 12,008 1847 NA NA 11,923 813.8
15 25,000 25 96,690 548 98,315 1906 96,445 14743
16 25,000 50 63,173 18,903 131,421,727 3032 63,156 98
17 30,000 25 22,405 859 NA NA 22,405 14.1
18 30,000 50 14,457 2507 NA NA 14,457 1551.7
19 30,000 25 115,950 16,031 21,487,426 3222 115,687 410.3
20 30,000 50 76,276 17,393 NA NA 75,684 11.5
21 40,000 25 30,592 2532 NA NA 30,445 894.1
22 40,000 50 19,815 7184 NA NA 19,558 11.5
23 40,000 25 155,162 19,152 NA NA 155,069 3934
24 40,000 50 101,835 10,286 NA NA 101,835 12.9
Table 3 Very large problems: comparing AlphaQUBO and CPLEX
ID Vars Constraints Density CPLEX AlphaQUBO
OFV Time (s) OFV Time (s)
spp50k 50,000 10,000 25 76,903 18,144 76,402 2315
spp60k 60,000 12,000 25 92,293 16,060 91,912 2876
spp70k 70,000 14,000 25 109,168 19,084 108,112 272
spp80k 80,000 16,000 25 125,139 18,600 123,890 175
spp90k 90,000 18,000 25 140,223 15,278 139,269 1804
spp100k 1,00,000 20,000 25 154,694 19,509 154,351 622

@ Springer

178 Annals of Operations Research (2022) 314:141-183

resorting to hybrid methods. Pure conventional solvers are much less restricted. For example,
as previously noted in Table 3, AlphaQUBO has reported directly solving problems with
upwards of 1 million variables.

Nonetheless, the scaling up of applications has prompted the development of preprocessing
methods for QUBO models in an effort to fix variables a priori before invoking a QUBO
solver, leaving a smaller model instance to be explicitly solved.

For example, on a testbed of 96 problems ranging in size from 1000 to 10,000 variables,
the preprocessing routines of Glover et al. (2018a, b) were able to fix an average of 45% of the
variables and completely resolve all variables on 10 of the problems. Many of these problems
were found to be very challenging for CPLEX before preprocessing but readily solved once
the preprocessing had produced a reduced model. For example, the solution time for one low
density 5,000 variable problem went from 3.5 h to 200 s, before and after preprocessing.

In another study, Lewis and Verma (2021) report the application of the foregoing prepro-
cessing algorithm to several classical problems, citing particularly strong problem reductions
in graph coloring problems. On one 500 node problem, for example, with 11 possible colors
for each node, the preprocessing algorithm optimally fixed all 5,500 variables.

Ongoing work to further enhance the effectiveness of preprocessing routines will likely
contribute substantially to the usefulness of the QUBO model in new and expanded problem
domains in the years ahead. Moreover, in producing smaller QUBO models to be explicitly
optimized, these methods can extend today the limited ability of quantum based solvers to
address meaningful models in certain problem domains.

10 Concluding remarks

The benefits of re-casting problems into the QUBO framework, to enable a given binary
optimization problem to be solved by a specialized QUBO solver, strongly commend this
approach in the remarkable variety of settings where it can be implemented successfully, as
illustrated in this tutorial. We conclude by highlighting key ideas relevant to QUBO modeling
and its applications in both classical and quantum computing.

1. As previously noted, the National Academies of Sciences, Engineering and Medicine
have released a consensus study report on progress and prospects in quantum computing
(2019) that discloses the relevance of marrying quantum and classical computing, stating
that “formulating an R&D program with the aim of developing commercial applications
for near-term quantum computing is critical to the health of the field. Such a program
would include ... identification of algorithms for which hybrid classical-quantum tech-
niques using modest-size quantum subsystems can provide significant speedup.” Studies
devoted to this challenge are currently underway at the Los Alamos National Labora-
tory to investigate the possibilities for achieving such speedup by integrating quantum
computing initiatives in conjunction with classical computing approaches such as those
embedded in the AlphaQUBO system (2021).

2. Logical analysis to identify relationships between variables in the work of Glover et al.
(2017) can be implemented in the setting of quantum computing to combat the difficulties
of applying current quantum computing methods to scale effectively for solving large
problems. Approximation methods based on such analysis can be used for decomposing
and partitioning large QUBO problems to solve large problems and provide strategies
relevant to a broad range of quantum computing applications.

@ Springer

Annals of Operations Research (2022) 314:141-183 179

3. In both classical and quantum settings, the transformation to QUBO can sometimes be
aided considerably by first employing a change of variables. This is particularly useful in
settings where the original model is an edge-based graph model, as in clique partitioning
where the standard models can have millions of variables due to the number of edges in
the graph. A useful alternative is to introduce node-based variables, by replacing each
edge variable with the product of two node variables. Such a change converts a linear
model into a quadratic model with many fewer variables, since a graph normally has a
much smaller number of nodes than edges. The resulting quadratic model, then, can be
converted to a QUBO model by the methods illustrated earlier.

4. Problems involving higher order polynomials arise in certain applications and can be
re-cast into a QUBO framework by employing a reduction technique following the ideas
of Rosenberg (1975), Rodriques-Heck (2018) and. For example, consider a problem with
a cubic term xjxpx3 in binary variables. Replace the product x{x, by a binary variable,
y1 and add a penalty to the objective function of the form P(x1x2 —2x1y; —2x2y1 +3y1).
By this process, when the optimization drives the penalty term to 0, which happens only
when y; = x1x2, we have reduced the cubic term to an equivalent quadratic term (y;x3).
This procedure can be used recursively to convert higher order polynomials to quadratic
models of the QUBO form.

5. The general procedure of Transformation # 1 has similarities to the Lagrange Multiplier
approach of classical optimization. The key difference is that our scalar penalties (P) are
not “dual” variables to be determined by the optimization. Rather, they are parameters set
a priori to encourage the search process to avoid candidate solutions that are infeasible.
Moreover, the Lagrange Multiplier approach is not assured to yield a solution that satisfies
the problem constraints except in the special case of convex optimization, in contrast to
the situation with the QUBO model. To determine good values for Lagrange multipliers
(which in general only yield a lower bound instead of an optimum value for the problem
objective) recourse must be made to an additional type of optimization called subgradient
optimization, which QUBO models do not depend on.

6. Solving QUBO models: Continuing progress in the design and implementation of meth-
ods for solving QUBO models will have an impact across a wide range of practical
applications of optimization and machine learning. The bibliography that follows gives
references to some of the more prominent methods for solving these models.

Acknowledgements This tutorial was influenced by our collaborations on many papers over recent years with
several colleagues to whom we owe a major debt of gratitude. These co-workers, listed in alphabetical order,
are: Bahram Alidaee, Dick Barr, Andy Badgett, Rajesh Chawla, Jin-Kao Hao, Mark Lewis, Karen Lewis,
Zhipeng Lu, Abraham Punnen, Cesar Rego, Yang Wang, Haibo Wang and Qinghua Wu. Other collaborators
whose work has inspired us are too numerous to mention. Their names may be found listed as our coauthors
on our home pages.

References

Ailon, N., Charikar,M. A., Newman (2008) “Aggregating inconsistent information: ranking and clustering.
Journal of the ACM (JACM), 55(5), 2

Aimone,J. B., Hamilton, K. E., Mniszewsk, S., Reeder, L., Schuman, C. D., Severa,W. M. (2018). Non-neural
network applications for spiking neuromorphic hardware. In PMES Workshop.

Albash, T., Lidar D. A. (2015) Decoherence in adiabatic quantum computation. Physical Review A vol. 97,
p- 062320. arXiv:1503.08767v2.

Albash, T., Hen, ., Spedalieri, F. M., Lidar, D. A. (2015). Reexamination of the evidence for entanglement in
the D-Wave processor. Physical Review A vol. 92, pp. 62328. arXiv:1506.03539v2

@ Springer

http://arxiv.org/abs/1503.08767v2
http://arxiv.org/abs/1506.03539v2

180 Annals of Operations Research (2022) 314:141-183

Alidaee, B., Glover, F., Kochenberger, G., & Rego, C. (2005). A new modeling and solution approach for the
number partitioning problem. Journal of Applied Mathematics and Decision Sciences, 9(2), 135-145.

Alidaee, B., Kochenberger, G., Lewis, K., Lewis, M., & Wang, H. (2008). A new approach for modeling and
solving set packing problems. European Journal of Operational Research, 186(2), 504-512.

Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., & Liberti, L. (2010). Column generation algorithms
for exact modularity maximization in networks. Physical Review E, 82(4), 046112.

Alom, M. Z., Van Essen, B., Moody, A. T., Widemann, D. P., Taha, T. M. (2017). Quadratic unconstrained
binary optimization (QUBO) on neuromorphic computing system. In /EEE 2017 International joint
conference on neural networks (IJCNN). Doi https://doi.org/10.1109/ijcnn.2017.7966350.

AlphaQUBO. (2021). http://meta-analytics.net/Home/AlphaQUBO

Amin, M. H. S, Truncik, C. J. S., Averin, D. V. (2008). Role of single qubit decoherence time in adiabatic
quantum computation. Physical Review A, vol. 80, p. 022303. arXiv:0803.1196v2

Anthony, M., Boros, E., Crama, Y., & Gruber, A. (2017). Quadratic reformulations of nonlinear binary opti-
mization problems. Mathematical Programming, 162(1-2), 115-144.

Aramon, M., Rosenberger, G., Valiante, E., Tamura, H., Miyazawa, T., & Katzgraber, H. G. (2019). Physics-
inspired optimization for quadratic unconstrained problems using a digital annealer. Frontiers in Physics,
7,48.

Bauckhage, C., Piatkowski, N., Sifa, R., Hecker, D and Wrobel, S. (2019). A QUBO formulation of the
k-medoids problem. LWDA.

Berwald, J. J., Gottlieb, J. M., Munch, E. (2018). Computing wasserstein distance for persistence diagrams
on a quantum computer. arXiv:1809.06433

Boixo, S., Rgnnow, T. F,, Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M., & Troyer, M. (2014).
Evidence for quantum annealing with more than one hundred qubits. Nature Physics, 10, 218-224.

Boros, E., & Hammer, P. (1991). The max-cut problem and quadratic 0-1 optimization: polyhedral aspects,
relaxations and bounds. Annals of Operations Research, 33(3), 151-180.

Boros, E., & Hammer, P. (2002). Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1),
155-225.

Boros, E., Hammer, P. L., Sun, R., & Tavares, G. (2008). A max-flow approach to improved lower bounds for
quadratic unconstrained binary optimization (QUBO). Discrete Optimization, 5(2), 501-529.

Chapuis, G., Djidjev, H., Hahn, G., Rizk, G. (2018). Finding maximum cliques on the D-Wave quantum
annealer,” To be published in: Journal of Signal Processing Systems, DOI https://doi.org/10.1007/s11265-
018-1357-8.

Clark J., West, T., Zammit, J., Guo, X., Mason, L., Russell, D .(2019). Towards real time multi-robot routing
using quantum computing technologies In HPC Asia 2019 proceedings of the international conference
on high performance computing in Asia-Pacific Region, pp. 111-119.

Cohen, J., Khan, A., and Alexander, C. (2020). Portfolio optimization of 60 stocks using classical and quantum
algorithms. arXiv:2008.08669

Date, P., Patton, R., Schuman, C., & Potok, T. (2019). Efficiently embedding QUBO problems on adiabatic
quantum computers. Quantum Information Processing, 2019(18), 117. https://doi.org/10.1007/s11128-
019-2236-3

Debenedictis, E. P. (2019). A future with quantum machine learning. I[EEE Computing Edge, 5(3), 24-27.

Du, Y., Glover, F., Hennig, R., Kochenberger, G and Wang, H. (2020a) .Optimal solutions to the set partitioning
problem: a comparison of alternative models Working paper, University of Colorado Denver.

Du, Y., Kochenberger, G., Glover, F., Wang, H., Lewis, M., Tsuyuguchi, T., & Hulandageri, A. (2020b).
Solving clique partitioning problems: A comparison of models and commercial solvers. International
Journal of Information Technology & Decision Making, 21(01), 59-81.

Dunning, L., Gupta, S., & Silberholz, J. (2018). What works best when? A systematic evaluation of heuristics
for Max-Cut and QUBO. INFORMS Journal on Computing, 30(3), 608—624.

Elsokkary, N., Khan, E.S., Humble, T. S., Torre, D. L., & Gottlieb, J. (2017). Financial portfolio man-
agement using D-Wave’s quantum optimizer: the case of Abu Dhabi securities exchange. 2017 IEEE
High-performance Extreme Computing (HPEC).

Yarkoni, S., Plaat, A., & Back, T. (2018). First results solving arbitrarily structured maximum independent set
problems asing Q]quantum annealing. In 2018 IEEE Congress on evolutionary computation (CEC), Rio
de Janeiro, pp. 1-6. Doi: https://doi.org/10.1109/CEC.2018.8477865.

Farhi, E., Goldstone, J. (2014). A quantum approximate optimization algorithm. arXiv:1411.4028

Feld, S., Roch, C., Gabor, T., Seidel, C., Neukart, F., Galter, 1., Mauerer, W., Linnhoff-Popien, C. (2018). A
hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. arXiv:
1811.07403

Forrester, R. J., & Hunt-Isaak, N. (2020). Computational comparison of exact solution methods for 0-1
quadratic programs: recommendations for practitioners. Journal of Applied Mathematics, 2020, 21.

@ Springer

https://doi.org/10.1109/ijcnn.2017.7966350
http://meta-analytics.net/Home/AlphaQUBO
http://arxiv.org/abs/0803.1196v2
http://arxiv.org/abs/1809.06433
https://doi.org/10.1007/s11265-018-1357-8
http://arxiv.org/abs/2008.08669
https://doi.org/10.1007/s11128-019-2236-3
https://doi.org/10.1109/CEC.2018.8477865
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1811.07403

Annals of Operations Research (2022) 314:141-183 181

Glover, F. (1997). A template for scatter search and path relinking. In J.-K. Hao, E. Lutton, E. Ronald, M.
Schoenauer & D. Snyers (Eds.), Artificial evolution, lecture notes in computer science (pp. 13-54).
Springer.

Glover, F., Kochenberger, G., Alidaee, B., Amini, M. (2002b) . Solving quadratic Knapsack problems by
reformulation and Tabu search. In PM. Pardalos, A. Megados, R. Burkard (Eds.) Combinatorial and
global optimization, World Scientific Publishing Co., pp. 272-287

Glover, F., Kochenberger, G., Wang, Y. (2018a). A new QUBO model for unsupervised machine learning.
Research in Progress.

Glover, E.,, Kochenberger, G. (2019). Quantum bridge analytics & QUBO 2.0. In Quantum insight conference
2019, invited presentation 10/04/19, LHOFT—Luxembourg house of financial technology, 9, rue du
Laboratoire, Luxembourg.

Glover, F. (1977). Heuristics for Integer programming using surrogate constraints. Decision Sciences, 8(1),
156-166.

Glover, F. (1996). Tabu search and adaptive memory programming - advances, applications and challenges.
InR. S. Barr, R. V. Helgason, & J. L. Kennington (Eds.), interfaces in computer science and operations
research. Kluwer Academic Publishers Springer.

Glover, F., Alidaee, B., Rego, C., & Kochenberger, G. (2002a). One-pass heuristics for large scale unconstrained
binary quadratic problems. European Journal of Operational Research, 137(2), 272-287.

Glover, F., Kochenberger, G., & Alidaee, B. (1998a). adaptive memory tabu search for binary quadratic
programs. Management Science, 44(3), 336-345.

Glover, F., Kochenberger, G., & Du, Y. (2019). Quantum bridge analytics I: A tutorial on formulating and
using QUBO models. 4OR Quarterly Journal of Operations Research Invited Survey, 17, 335-371.

Glover, F., & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers.

Glover, F., Lewis, M., & Kochenberger, G. (2018b). Logical and inequality implications for reducing the
size and difficulty of unconstrained binary optimization problems. European Journal of Operational
Research, 265(2018), 829-842.

Glover, F.,, Mulvey, J., Bai, D., & Tapia, M. (1998b). Integrative Population analysis for better solutions to
large-scale mathematical programs. In G. Yu (Ed.), Industrial applications of combinatorial optimization
(pp. 212-237). Kluwer Academic Publishers.

Grant, E., Humble, T. (2020). Benchmarking quantum annealing controls with portfolio optimization. arXiv:
2007.03005v1.

Hahn, G., Djidjev, H. (2017). Reducing binary quadratic forms for more scalable quantum annealing.
2017 IEEE international conference on rebooting computing. DOI: https://doi.org/10.1109/ICRC.2017.
8123654.

Hamilton, K., Schuman, C.D., Young, S. R., Imam, N., Humble, T. S. (2018). Neural networks and graph
alogrithms with next-generation processors. In 2018 IEEE International parallel and distributed pro-
cessing symposium workshops (IPDPSW). DOLI: https://doi.org/10.1109/IPDPSW.2018.00184

Hong, S. W., Miasnikof, P., Kwon, R., & Lawryshyn, Y. (2021). Market graph clustering via QUBO and digital
annealing. Risk and Financial Management, 14, 34.

Hoos, H. H. (2012). Programming by optimization. Communications of the ACM, 55(2), 70-80.

Kalra, A,. Qureshi, F., Tisi, M. (2018). Portfolio asset identification using graph algorithms on a quantum
annealer. http://www.henryyuen.net/fall2018/projects/qfinance.pdf

Kerberos (2019) Kerberos: the network authentication protocol, https://web.mit.edu/kerberos/.

Kochenberger, G., Glover, F. (2006). A unified framework for modeling and solving combinatorial optimization
problems: A tutorial. In: W. Hager, S-J Huang, P. Pardalos, O. Prokopyev (Eds.),Multiscale optimization
methods and applications (pp. 101-124). Springer.

Kochenberger, G., Glover, F., Alidaee, B., & Lewis, K. (2005c¢). Using the unconstrained quadratic program
to model and solve max 2-sat problems. International Journal of OR, 1(1), 89-100.

Kochenberger, G., Glover, F., Alidaee, B., & Rego, C. (2005a). An unconstrained quadratic binary program-
ming approach to the vertex coloring problem. Annals of OR, 139(1-4), 229-241.

Kochenberger, G., Glover, F., Alidaee, B., & Wang, H. (2005b). Clustering of micro array data via clique
partitioning. Journal of Combinatorial Optimization, 10(1), 77-92.

Kochenberger, G., Hao, J.-K., Glover, E., Lewis, M., Lu, Z., Wang, H., & Wang, Y. (2014). The Unconstrained
binary quadratic programming problem: A survey. Journal of Combinatorial Optimization, 28(1), 58-81.

Kochenberger, G., Hao, J.-K., Lu, S., Wang, H., & Glover, F. (2013). Solving large scale max cut problems
via Tabu search. Journal of Heuristics, 19(4), 565-571.

Kochenberger, G., & Ma, M. (2019). Quantum computing applications of QUBO models to portfolio opti-
mization. Denver: University of Colorado.

Kochenberger, G., Du, Y. Glover, F., Wang, H., Lewis, M., Tsuyuguchi, T., & Hulandageri, A. (2021). Solving
clique partitioning problems: A comparison of models and commercial solvers, working paper.

@ Springer

http://arxiv.org/abs/2007.03005v1
https://doi.org/10.1109/ICRC.2017.8123654
https://doi.org/10.1109/IPDPSW.2018.00184
http://www.henryyuen.net/fall2018/projects/qfinance.pdf
https://web.mit.edu/kerberos/

182 Annals of Operations Research (2022) 314:141-183

Kowalsky, M., Albash, T., Hen, I., & Lidar, D. (2021). Benchmarking state of the art ising machines. APS
March Meeting 2021. Bulletin of the American Physical Society, 66(1).

Lanting, A. J., Przybysz, AYu., Smirnov, F. M., Spedalieri, M. H., Amin, A. J., Berkley, R., Harris, F., Altomare,
S., Boixo, P, Bunyk, N., Dickson, C., Enderud, J. P., Hilton, E., Hoskinson, M. W., Johnson, E., Ladizin-
sky, N., Ladizinsky, R., Neufeld, T., Oh, I., Wilson, G. R. (2014). Entanglement in a quantum annealing
processor. Physical Review. https://doi.org/10.1103/PhysRevX.4.021041

Lewis, M., Verma, A. (2021). Working Paper, Missouri Western University.

Lewis, M., Kochenberger, G., & Alidaee, B. (2008). A new modeling and solution approach for the set
partitioning problem. Computers and OR, 35(3), 807-813.

Liu, X., Laporte, G., Chen, Y., & He, R. (2017). An adaptive large neighborhood search metaheuristic for
agile satellite scheduling with time-dependent transition time. Computers and Operations Research, 86,
41-53.

Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, 5, 2.

Meta-Analytics. (2020). QUBO based portfolio model. Working paper. http://meta-analytics.net/index.php/
resources/.

Mniszewski, S., Negre, C., & Ushijima-Mwesigwa, H. (2017). Graph partitioning using the D-wave for
electronic. In Proceedings of the Second International Workshop on Post Moores Era Supercomputing
(pp- 22-29). November 2017. https://doi.org/10.1145/3149526.3149531.

Mniszewski, S. M., Negre, C. F. A., & Ushijima-Mwesigwa, H. (2018). Graph clustering approaches using
near term quantum computing. In QUBITS 2018 D-Wave Users Conference. September 2018. https:/
www.dwavesys.com/media/wafcrbie/18_wed_am_graph_lanl.pdf.

Mugel, S., Kuchkovsky, C., Sanchez, E., Fernandez-Lorenzo, S., Luis-Hita, J., Lizaso, E., Orus, R. (2020).
Dynamic Portfolio optimization with real datasets using quantum processors and quantum-inspired tensor
networks. arXiv:2007.00017v1.

Multiverse. (2020a). Credit card fraud, (A Company White paper) https://www.multiversecomputing.com/

Multiverse (2020b), Credit Scoring, (A Company White paper) https://www.multiversecomputing.com/

Negre, C. E. A., Ushijima-Mwesigwa, H., Mniszewsk, S. M. (2019). Detecting multiple communities using
quantum annealing on the D-Wave system. arXiv:1901.09756

Neukart, F., Compostella, G., Seidel, C., Dollen, D., Yarkoni, S., Parney, B. (2017). Traffic flow optimization
using a quantum annealer. arXiv:1708.01625

O’Malley, D., Vesselinov, V. V., Alexandrov, B. S., & Alexandrov, L. B. (2018). Nonnegative/binary matrix
factorization with a D-Wave quantum annealer. PLoS ONE, 13(12), €0206653. https://doi.org/10.1371/
journal.pone.0206653

Ohzeki, M., Miki, A., Miyama, M.J., Terabe, M. (2018). Control of automated guided vehicles without collision
by quantum annealer and digital devices. arXiv:1812.01532

Oliveira, N. M. D, Silva, R. M. D. A., & Oliveira, W. R. D. (2018). QUBO formulation for the contact map
overlap problem. International Journal of Quantum Information, 16(8), 1840007.

Oshiyama, H., Ohzeki, M. (2021). Benchmark of quantum-inspired heuristic solvers for quadratic uncon-
strained binary optimization. arXiv preprint arXiv:2104.14096.

Pakin, S. (2017). Navigating a maze using a quantum annealer. In Proceedings of the second international
workshop on post moores era supercomputing, Pp. 30-36.

Pakin, S. (2018) QMASM—quantum macro assembler. https://ccsweb.lanl.gov/~pakin/software/ and https://
github.com/lanl/qmasm

Palmer, S., Sahin, S., Hernandez, R., Mugel, S., Orus, R. (2021). Quantum portfolio optimization with invest-
ments bands and target volatility. arXiv:2106.06735v3

Pardalos, P., & Xue, J. (1999). The maximum clique problem. Journal of Global Optimization, 4(3), 301-328.

Pelofske, E., Hahn, G., Djidjev., H. (2019) Solving large maximum clique problems on a quantum annealer.
arXiv:1901.07657

Phillipson, F., Bhatia, H.S. (2020). Portfolio optimization using the D-Wave quantum annealer. arXiv:2012.
01121v1

Preskill, J. (2019). Why I called it ‘quantum supremacy’. Quanta Magazine. https://www.quantamagazine.
org/john-preskill-explains-quantum-supremacy-20191002/

Pudenz, K. L., & Lidar, D. A. (2013). Quantum adiabatic machine learning. Quantum Information Processing,
12(5), 2027-2070.

Qbit 1 (2017) Optimal feature selection in credit scoring and classification using a quantum annealer (A
Company White paper), http://1gbit.com/files/white-papers/1 QBit-White-Paper-%E2%80%93-Optimal-
Feature-Selection-in-Credit-Scoring-and-Classification-Using-a-Quantum-Annealer_-_2017.04.13.pdf

Qbsolv (2017). D-Wave initiates open quantum software environment. www.dwavesys.com/press-releases/d-
wave-initiates-open-quantum-software-environment.

@ Springer

https://doi.org/10.1103/PhysRevX.4.021041
http://meta-analytics.net/index.php/resources/
https://doi.org/10.1145/3149526.3149531
https://www.dwavesys.com/media/wafcrbie/18_wed_am_graph_lanl.pdf
https://www.multiversecomputing.com/
https://www.multiversecomputing.com/
http://arxiv.org/abs/1901.09756
http://arxiv.org/abs/1708.01625
https://doi.org/10.1371/journal.pone.0206653
https://ccsweb.lanl.gov/~pakin/software/
https://github.com/lanl/qmasm
http://arxiv.org/abs/1901.07657
http://arxiv.org/abs/2012.01121v1
https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002/
http://1qbit.com/files/white-papers/1QBit-White-Paper-%E2%80%93-Optimal-Feature-Selection-in-Credit-Scoring-and-Classification-Using-a-Quantum-Annealer_-_2017.04.13.pdf
http://www.dwavesys.com/press-releases/d-wave-initiates-open-quantum-software-environment

Annals of Operations Research (2022) 314:141-183 183

QC Ware Corporation. (2018). A quadratic unconstrainted binary optimization problem formulation for
single-period index tracking with cardinality constraints. http://web.stanford.edu/~rsarkar/materials/
index-tracking-white-paper.pdf.

Reedy, C. (2017). When will quantum computers be consumer products?” Futurism, https://futurism.com/
when-will-quantum-computers-be-consumer-products

Reinhardt, S. (2018). Detecting lateral movement with a compute-intense graph Kernel. http://www.clsac.org/
uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf

Rodriguez-Heck, E. (2018). Linear ad quadratic reformulations of nonlinear optimization problems in binary
variables. PhD Dissertation, Liege University

Rosenberg, 1. (1975). Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes
de Recherche Operationnelle, 17, 71-74.

Sahner, D. (2018). A potential role for quantum annealing in the enhancement of patient outcomes? https://
www.dwavesys.com/sites/default/files/Sahner.2018.pdf

Samorani, M., Wang, Y., Wang, Z., Lu, Y., & Glover, F. (2019). Clustering-driven evolutionary algorithms: An
application of path relinking to the quadratic unconstrained binary optimization problem. Special Issue
on Learning, Intensification and Diversification. Journal of Heuristics, 25, 629-642.

Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly
correlated network states in a neural population. Nature, 440(7087), 1007-1012.

Schuetz, M. J. A., Brubaker, J. K., Katzgraber, H. G. (2021). Combinatorial optimization with physics-inspired
graph neural networks. arXiv preprint arXiv:2107.01188.

Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S., Alexeev, Y. (2018). Community detection
across emerging quantum architectures. PMES workshop.

Tomasiewicz, D., Pawlik, M., Malawski., M., Rycerz, K. (2020). Foundations for workflow application
scheduling on D-Wave System. In Computational science—ICCS 2020: 20th International conference,
Amsterdam, The Netherlands, June 3-5, 2020, Proceedings, Part VI, 12142, 516-530. Doi: https://doi.
org/10.1007/978-3-030-50433-5_40

Ushijima-Mwesigwa, H., Negre, C. F. A., Mniszewsk, S. M. (2017). Graph partitioning using quantum anneal-
ing on the D-Wave System. arXiv:1705.03082.

Venturelli, D., Kondratyev, A. (2018). Reverse quantum annealing approach to portfolio optimization problems.
arXiv:1810.08584v2.

Vyskocil, T., Djidjev, H. N. (2019). Constraint embedding for solving optimization problems on quantum
annealers. In 2019 IEEE international parallel and distributed processing somposium workshops, P.
635-644.

Vyskocil, T., Pakin, S., & Djidjev, H. N. (2019). Embedding inequality constraints for quantum annealling
optimization. In S. Feld & C. Linnhoff-Popien (Eds.), Quantum technology and optimization problems
QTOP 2019. Lecture notes in computer science. Springer.

Wang, H., Wang, Y., Resende, M., Kochenberger, G. (2016). A QUBO approach to solving QAP problems.
Unpublished manuscript.

Wang, Q., Abdullah, T. (2018). An introduction to quantum optimization approximation algorithm. https://
www.cs.umd.edu/class/fall2018/cmsc657/projects/group_16.pdf

Wang, H., Alidaee, B., Glover, F., & Kochenberger, G. (2006). Solving group technology problems via clique
partitioning. International Journal of Flexible Manufacturing Systems, 18(2), 77-87.

Wang, Y., Lu, Z., Glover, F., & Hao, J.-K. (2012). Path relinking for unconstrained binary quadratic program-
ming. European Journal of Operational Research, 223(3), 595-604.

Wang, Y., Lu, Z., Glover, F., & Hao, J.-K. (2013). Backbone guided tabu search for solving the UBQP problem.
Journal of Heuristics, 19(4), 679-695.

Xie, P,, Wang, H., Chen, Y., & Wang, P. (2019). A Heuristic algorithm based on temporal conflict network
for agile earth observing satellite scheduling problem. IEEE Access Digital Object Identifier. https://doi.
org/10.1109/ACCESS.2019.2902669

Yu, H., Huang, Y., & Wu, B. (2018). Exact equivalence between quantum adiabatic algorithm and quantum
circuit algorithm. Chinese Physics Letters. https://doi.org/10.1088/0256-307X/35/11/110303

Zhou, L., Wang, S., Choi, S., Pichler, H., Lukin, M. D. (2018). Quantum approximate optimization algorithm:
performance, mechanism, and implementation on near-term devices. arXiv:1812.01041

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://web.stanford.edu/~rsarkar/materials/index-tracking-white-paper.pdf
https://futurism.com/when-will-quantum-computers-be-consumer-products
http://www.clsac.org/uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf
https://www.dwavesys.com/sites/default/files/Sahner.2018.pdf
https://doi.org/10.1007/978-3-030-50433-5_40
http://arxiv.org/abs/1810.08584v2
https://www.cs.umd.edu/class/fall2018/cmsc657/projects/group_16.pdf
https://doi.org/10.1109/ACCESS.2019.2902669
https://doi.org/10.1088/0256-307X/35/11/110303
http://arxiv.org/abs/1812.01041

	Quantum bridge analytics I: a tutorial on formulating and using QUBO models
	Abstract
	1 Introduction
	1.1 Basic QUBO problem formulation
	1.1.1 Symmetric form
	1.1.2 Upper triangular form
	1.1.3 Comment on the formal classification of QUBO models and their solution

	2 Illustrative examples and definitions
	3 Natural QUBO formulations
	3.1 The number partitioning problem
	3.2 The max-cut problem

	4 Creating QUBO models using known penalties
	4.1 The minimum vertex cover (MVC) problem
	4.1.1 Comment on the scalar penalty P

	5 The set packing problem
	5.1 The max 2-sat problem
	5.1.1 Clause # clause quadratic penalty

	6 Creating QUBO models: a general purpose approach
	6.1 Set partitioning
	6.2 Graph coloring
	6.3 General 0/1 programming
	6.4 Quadratic assignment
	6.5 Quadratic knapsack

	7 Connections to quantum computing and machine learning
	7.1 Quantum computing QUBO developments
	7.2 Quantum bridge analytics: joining classical and quantum computing paradigms
	7.3 Unsupervised machine learning with QUBO
	7.4 Supervised machine learning with QUBO
	7.5 Machine learning to improve QUBO solution processes

	8 Advanced quantum-related applications
	8.1 Satellite tracking formulations
	8.1.1 Decision variable

	8.2 Portfolio optimization formulations
	8.2.1 Transform to QUBO
	8.2.2 Alternative model
	8.2.3 Comparison with the Markowitz/Covariance model
	8.2.4 Model enhancement
	8.2.5 Computational experience

	9 Results of computational studies
	9.1 Results for set partitioning problems
	9.2 Preprocessing QUBO models

	10 Concluding remarks
	Acknowledgements
	References

