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Finding good solutions to clique partitioning problems remains a computational challenge. With

rare exceptions, ¯nding optimal solutions for all but small instances is not practically possible.
However, choosing the most appropriate modeling structure can have a huge impact on what is

practical to obtain from exact solvers within a reasonable amount of run time. Commercial

solvers have improved tremendously in recent years and the combination of the right solver and
the right model can signi¯cantly increase our ability to compute acceptable solutions to modest-

sized problems with solvers like CPLEX, GUROBI and XPRESS. In this paper, we explore and

compare the use of three commercial solvers on modest sized test problems for clique parti-

tioning. For each problem instance, a conventional linear model from the literature and a
relatively new quadratic model are compared. Extensive computational experience indicates

that the quadratic model outperforms the classic linear model as problem size grows.

Keywords: Clique partitioning; combinatorial optimization; quadratic integer programming.

1. Introduction

Consider a graph G ¼ ðV ;EÞ with n vertices and unrestricted edge weights. The

clique partitioning problem (CPP) consists of partitioning the graph into cliques

such that the sum of the edge weights over all cliques formed is as large as possible.

This is an NP-hard problem with applications reported in such diverse areas as VLSI

layout design1–3 (MacGregor, 1978),31 program design for paged computer memo-

ry1,4 (MacGregor, 1978),31 group technology analysis5 (Oosten, 2001), image anal-

ysis,6 and cluster analysis.7,8 Related to cluster analysis, and with strong connections
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to machine learning, several authors have proposed using clique partitioning models

for community detection in networks. For these and related discussions see the

papers by Agarwal and Kempe,9 Ailon et al.,10 Alosie et al., 2010, Bruckner et al.,11

Dinh and Thai,12 Miyauchi and Sukegawa,13 Berg and Jarvisalo,14 and Miyauchi

et al.15 In addition, Ref. 16. reported modeling the airport gate scheduling as a

CPP. We comment here that the formation of alliances among countries as well as

strategic alliances and coalitions among companies as discussed in the work of

Axelrod et al.,17 can also be modeled and analyzed as a CPP.

The main objective of this work is to test alternative models to see if the model form,

independent of the solver employed, makes a di®erence in ¯nding good if not optimal

solutions for CPPs as considered here. Speci¯cally, we test and compare a quadratic

alternative to the standard linear model for clique partitioning found in the literature.

Most of the literature on solving CPP focuses on heuristic methods due to the

computational burden that CPP poses. Nonetheless, some work on exact methods has

been reported. Exact methods such as that proposed by Jaehn and Pesch,18 have

performed well on modest-sized problems with certain characteristics. Aloise et al.,19

discuss special column and row generation methods for optimally solving clique par-

titioning models for community detection in networks. These methods proved to be

successful for certain small to medium-sized problems. In contrast to such specially

crafted methods, our focus here is on commercial methods, as represented by products

such as CPLEX, Gurobi, and Xpress, which have improved substantially in recent

years and o®er a readily available alternative to special specially crafted methods.

Another of our objectives in this work is to test these three exact solvers to see

how they perform relative to each other and to understand what is currently possible

in terms of ¯nding optimal solutions for modest sized CPPs of the type considered in

this study.

The sections below present the models we are comparing along with a description

of the test problems and a discussion of the results obtained. The three exact solvers

(CPLEX, Gurobi and Xpress) are launched via the AMPL platform. All our AMPL

models and our test problems are available from the authors.

2. Basic Clique Partitioning: Alternative Models

We ¯rst describe the standard linear model for clique partitioning and then present

the quadratic alternative model we will be testing. For each model, we compare the

performance of CPLEX, Gurobi, and XPRESS on a set of test problems. Finally, we

compare the two competing models and identify the model/solver combination that

provided the best performance over the test bed considered.

2.1. Standard linear model

The standard model for clique partitioning from the literature (Oosten, 2001) and

Ref. 20 is a large 0/1 linear program we denote here as Model 1.

Model 1 : max x0 ¼
X

i;j>i

wijxij ð1Þ
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s.t.

xij þ xjk � xik � 1 1 � i < j < k � n;

xij � xjk þ xik � 1 1 � i < j < k � n;

�xij þ xjk þ xik � 1 1 � i < j < k � n;

ð2Þ

where xij ¼ 1 if nodes i and j are in the same clique, n is the number of nodes in the

graph, and the wij are unrestricted edge weights. The constraints of (2) are the well-

known clique inequality constraints and they ensure that the nodes are in fact

partitioned into cliques. Note that this is an edge-based model and thus even modest-

sized problems will have many variables and constraints. For complete graphs,

Model 1 will have nðn � 1Þ=2 variables and 3ðn3Þ constraints. We comment that if we

start with a graph that is not complete, edges can be added as needed, with penalty

edge weights, to produce a complete graph. The penalty edge weights are chosen such

that the optimizer will never choose the new edges.

As an example, consider the graph shown in Fig. 1.

Model 1 has 10 variables and 30 constraints. Solving the model gives the solution

x0 ¼ 31 with x13 ¼ x14 ¼ x34 ¼ 1; x25 ¼ 1. Thus, we have two cliques, one with nodes

1, 3, and 4 and the other with nodes 2 and 5. In the graph above, edges (1,2), (1,5),

and (3,5) illustrate the addition of new edges with penalty edge weights required to

produce a complete graph.

2.2. A quadratic alternative model

Model 1 above is the standard model for clique partitioning from the literature. An

alternative quadratic model can be developed as follows: Associating variables with

nodes instead of edges, we obtain the following model, which we will refer to asModel 2:

Model 2 : max x0 ¼
Xn�1

i¼1

Xn

j¼iþ1

wij

Xkmax

k¼1

xikxjk ð3Þ

Fig. 1. A small example for demonstration.
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s.t.

Xkmax

k¼1

xik ¼ 1 i ¼ 1; n; ð4Þ

where xik ¼ 1 if node i is assigned to clique k, 0 otherwise, and kmax ¼ the maximum

number of cliques allowed, some ofwhichmight prove to be empty.Here, the constraints

require that each node is assigned to one of the cliques that are formed. AswithModel 1,

the objective function sumsup theweights overall of the cliques formed,whichwe seek to

maximize. The parameter kmax is set based on domain knowledge and/or an educated

guess.

Since a solution to Model 2 assigns each node to a clique, it also corresponds to a

solution for Model 1. It follows that for the extreme case when kmax ¼ n, an optimal

solution to Model 2 corresponds to an optimal solution for Model 1. That is, the

models have equivalent solutions when kmax ¼ n. Based on extensive computational

experience, however, we ¯nd that Model 1 and Model 2 have corresponding optimal

solutions for kmax values much smaller than n, leading us to comment in general that

Model 1 and Model 2 are equivalent for a su±ciently large kmax �n. Guided by

domain knowledge, the issue of setting kmax has not been a problem in any of the

testing we have undertaken. Further discussion about the relationship of Model 1

and Model 2 can be found in Appendix A.

It is clear that the choice of kmax can have major impact on the performance of

Model 2. If kmax is set lower than the optimal number of cliques, the optimal solution

derived from Model 2 will be sub-optimal compared to the optimal solution to

Model 1. If kmax is set equal to or great than the optimal number of cliques needed,

the optimal solutions derived from the two models will be equivalent. However, the

computational advantage derived from Model 2 decreases rapidly as kmax gets un-

necessarily large compared to the optimal number of cliques. An example illustrating

the impact of kmax on Model 2 performance can be found in Appendix B.

Since our decision variables in Model 2 are node-based rather than edge-based as

in Model 1, Model 2 typically has many fewer variables (and many fewer constraints)

than Model 1. As problem size grows, the discrepancy between Models 1 and 2 in

terms of number of variables and number of constraints grows rapidly to increasingly

favor the quadratic model on both dimensions.

For the very small example considered above, we observe that the size di®erence is

negligible. If we take kmax to be three, meaning that we allow for as many as three

cliques to be formed, Model 2 has 15 variables and 5 constraints. Solving this qua-

dratic model yields the same result as we obtained via Model 1 above: x0 ¼ 31 with

x11 ¼ x31 ¼ x41 ¼ 1; x22 ¼ x52 ¼ 1 showing that nodes 1, 3, and 4 are assigned to

clique #1 and nodes 2 and 5 are assigned to clique # 2. Potential clique number 3 is

empty. (Recall that the variables, xij , have di®erent de¯nitions in the two models.)

We comment that in earlier work, the authors have employed Model 2 with

specially crafted heuristic solution methods for solving certain clustering problems,
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some with special properties. See for instance Refs. 5 and 8. Our focus in this paper is

to test the performance of exact commercial solvers on the two models, as opposed to

heuristic methods, on CPPs of varying structures and sizes.

To test the alternative models and solvers, three sets of test problems were

employed, one set of new randomly generated problems and two sets from the lit-

erature referenced as follows:

. Set 1: A set of randomly generated test problems

. Set 2: A set of test problems from the paper by Jaehn and Pesch,18

. Set 3: A set of problems from the paper by Aloise et al.,19

All the results reported in the following tables came from a Dell PC with 2.4GHz

and 16 GB RAM. All computations were carried out using the AMPL modeling and

solution system.

3. Computational Experiments Regarding Problem Set 1

For our initial testing, we generated a set of random problems of size 25, 35, 45, 50, 65

and 100 nodes. All test problems correspond to complete graphs with unrestricted

edge weights. Eighty percent of the edge weights were randomly generated from

U(0,100) and 20% of the edges were given edge weights equal to �99. For each

problem size, four instances were generated, giving a total of 24 basic problems which

formed the core of our computational testing for this section.

3.1. Comparing the exact solvers on Model 1

Table 1 presents the results obtained from Model 1 from each of the exact solvers

Gurobi version 7.5.0, CPLEX version 12.7.1 and XPRESS version 31.01. In all cases,

the default settings were used. For each problem, the table gives the best solution

found by each solver, along with the percent di®erence between a given result and the

best of the three, along with the time to best for each. All times are in seconds and

with the exception of Table 2, all results presented are based on a time limit of 1 h for

each problem. Looking at the CPLEX results for problem 45-1, for example, an

objective function value of 10,822, the best value the solver found within 3600 s, was

found at time 2532.

Examining Table 1, we see that all three solvers were quickly able to ¯nd optimal

solutions for the four 25 node problems. However, XPRESS was not able to prove

optimality for any of the four problems. CPLEX proved optimality for three of the

four problems while Gurobi proved optimality for all four problems. Likewise, for the

n ¼ 35 node problems, all three solvers found the optimal solution within the allotted

time of 1 h. Both Gurobi and CPLEX proved optimality for these four problems.

XPRESS found the optimal solutions but failed to establish optimality for any of the

four problems in the time allotted.

For the n ¼ 45, n ¼ 50, n ¼ 65 and n ¼ 100 node problems, none of the solvers

were able to prove optimality in the allotted time limit of 1 h. Looking across the
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entire test bed of 24 problems, Gurobi produced the best solution (of those found

by the three methods) 16 out of the 24 times, CPLEX produced the best solution

13 times, and XPRESS matched the best solution 11 times. It is interesting to note

that while XPRESS lagged behind Gurobi and CPLEX in terms of number of best

solutions found across all 24 problems, its relative performance picked up with in-

creasing problem size and in fact XPRESS produced 3 of the best solutions found for

the n ¼ 100 node problems, outperforming Gurobi and CPLEX by a substantial

Table 1. Model 1 results (1 h time limit for each problem).

Model 1 Gurobi Cplex Xpress

ID Objective Di® (%) Time Objective Di® (%) Time Objective Di® (%) Time

25-1 4535 0% 8 4636 0% 12 4636 0% 10

25-2 4023 0% 3 4023 0% 12 4023 0% 6
25-3 5043 0% 10 5043 0% 10 5043 0% 11

25-4 4554 0% 11 4564 0% 10 4564 0% 11

35-1 7837 0% 496 7837 0% 497 7837 0% 682

35-2 7215 0% 403 7215 0% 661 7215 0% 448

35-3 7633 0% 95 7633 0% 398 7633 0% 101

35-4 7652 0% 292 7652 0% 278 7652 0% 404

45-1 11545 0% 1305 10882 �6% 2532 9415 �18% 474

45-2 12137 0% 2492 11903 �2% 2464 10497 �14% 465

45-3 11672 0% 2325 11521 �1% 2500 10100 �13% 674
45-4 10338 0% 2615 10080 �2% 2411 9919 �4% 451

50-1 12373 0% 3173 11200 �9% 2000 9840 �20% 1038
50-2 13543 0% 3011 12172 �10% 2405 11724 �13% 999

50-3 12191 0% 2553 10935 �10% 1856 11024 �10% 127

50-4 13009 0% 2544 12242 �6% 2141 11500 −12% 121

65-1 11073 �30% 3399 15865 0% 3600 14978 �6% 170

65-2 11273 �28% 3348 15764 0% 3600 12773 �19% 41

65-3 11298 �23% 3336 14652 0% 3600 10468 �29% 144

65-4 12351 �17% 3550 14811 0% 3600 13081 �12% 145

100-1 16809 �18% 18 20387 0% 3600 18395 �10% 1220

100-2 15456 �22% 648 12668 �36% 3600 19742 0% 829
100-3 15749 �24% 17 11345 �45% 3600 20760 0% 565

100-4 12738 �24% 836 7861 �53% 3600 16809 0% 236

Table 2. Longer Gurobi runs on Model 1.

Problem ID Objective Time Gap (Extended runs) Gap (at 1 h)

45-1 11,545 1,305 0.52 % (8 h) 5.7%

45-2 12,137 2,492 0.74% (8 h) 1.95%
45-3 11,880 7,595 0.09% (8 h) 7.8%

45-4 10,506 4,280 1.35% (8 h) 8.3%

50-1 13,453 46,616 6.21% (24 h) 17.6%
50-2 14,080 18,831 3.54% (24 h) 17.4%

50-3 13,034 50,630 7.45% (24 h) 21.3%

50-4 13,728 69,040 7.03% (24 h) 35.4%
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margin on these largest problems in the time allotted. However, the results produced

by all three solvers on the n ¼ 65 and n ¼ 100 node problems are far from optimal as

revealed in Table 3 presented later in this section.

Note that a time of 3600 in the tables denotes that the algorithm ran into the time

limit before moving beyond the root node calculations.

Based on the results given in Table 1 for Model 1, Gurobi gave the best overall

performance, followed in order by CPLEX and then XPRESS. As expected, the

di±culty of proving optimality can be mitigated by going to longer run times.

Table 2, for instance, shows the results of running Gurobi using Model 1 on the

n ¼ 45 node problems for an extended time period of 8 h and on the n ¼ 50 node

problems for an extended limit of 24 h. For reference, we also show the optimality

gaps reported at the end of the 1 h runs.

Looking at the Table 2 results for the 45 node problems, we see that increasing the

time limit from 1 h to 8 h substantially reduced the ¯nal gaps while modestly im-

proving the objective function values, as shown in Table 1, for problems 45-3 and

45-4. The objective function values for 45-1 and 45-2 were not changed by increasing

the run times. The improved gaps for all 4 of the 45 node problems suggest that the

results shown in Table 2 are most likely optimal. Longer runs for a limit of 16 h for

these four problems con¯rmed that this is the case. Nevertheless, we emphasize that

these are relatively small problems.

The results shown in Table 2 for the 50 node problems, where the time limit was

raised from 1 h to 24 h, indicating how di±cult these problems are to solve to opti-

mality. At the end of 24 h of computational time, the objective function values for all

four problems have improved modestly over the previous 1 h results and the ¯nal

gaps, while much improved, suggest that the solutions in the table are likely of high

quality but not necessarily optimal. We note that the results reported in Table 2,

obtained from Gurobi, are illustrative of the behavior of the other solvers as well.

The di±culty in solving these problems to optimality is not unexpected due to the

size of Model 1 as we go to larger graphs. Branch and Cut methodologies, while

greatly improved, are nonetheless challenged to ¯nd good solutions from Model 1 as

the size of the graphs being analyzed grows.

3.2. Comparing exact solvers on Model 2

Table 3 presents the results obtained from running the solvers on the quadratic

formulation of Model 2, the alternative to Model 1. For the n ¼ 25, n ¼ 35, and

n ¼ 45 node problems, kmax was set to 7. A value of kmax ¼ 10 was used for the larger

problems with n > 45. In all cases, these values for kmax proved to be more than

su±cient to provide high-quality solutions.

All three solvers have the capability, in principle, of solving quadratic models of

the type represented by Model 2. In fact, both Gurobi and CPLEX o®er two options:

Solve the quadratic problem by ¯rst linearizing the quadratic objective function,

converting the problem to a large MIP; or, solve without linearizing by employing
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continuous quadratic relaxations. XPRESS, in contrast, does not o®er the

\quadratic relaxation" option and only proceeds by ¯rst linearizing the problem. The

linearizations used by CPLEX and Gurobi are based on the standard technique of

replacing a product term with a new binary variable and adding linear constraints to

ensure the new linear representation is equivalent to the original quadratic formu-

lation (see Glover and Woolsey, 1974).

In keeping with these options, we denote, in Table 3, the Gurobi options by

Gurobi (Lin) and Gurobi (Quad). Similar designations are used for CPLEX. All the

other parameters are left as default. All told, then, we have 5 solutions to report for

each problem as shown in the table.

An examination of Table 3 shows that Gurobi (Lin), CPLEX (Lin), and CPLEX

(Quad) did well on the n ¼ 25 and n ¼ 35 node problems. Gurobi (Lin) and CPLEX

(Quad) found the same best solutions on all eight problems. CPLEX (Lin) was close

behind with seven best solutions. For these two problem sets, XPRESS was only able

to match the other solvers on three of the eight problems. Moving on to the larger

problems in Table 3, we see that CPLEX (Quad) completely dominates the other 4

solvers, ¯nding best solutions on 14 of the remaining 16 problems.

Across the entire set of 24 problems, CPLEX (Quad) consistently performed well,

producing best solutions for 22 of the 24 problems in the allotted time of 1 h. In no

case, however, did it or any other method terminate naturally for the runs depicted in

Table 3. On each problem, each solver terminated with an \out of time" message,

being unable to prove optimality and terminate naturally within the allotted time

limit of 1 h.

3.3. Comparing Models 1 and 2

Comparing the results from Model 1 (Table 1) and those from Model 2 (Table 3), we

see that Model 1 and Model 2 results, across all solvers, are fairly close in quality for

the n ¼ 25, n ¼ 35, and n ¼ 45 node problems. For the larger problems, however,

several of the Model 2 solvers found solutions much superior to the corresponding

results produced from Model 1. For example, for the problem instance 100-1, the best

solution produced from Model 1 (see Table 1) was 16809 while all 5 solutions

obtained from Model 2 were substantially better than this and the solution obtained

from Model 2 via CPLEX (Quad) was 34,293, more than twice the best Model 1

result.

Looking across all 24 problems and all 8 solvers represented in Tables 1 and 3, we

see that Model 2 solved by CPLEX (Quad) clearly dominates the others, ¯nding best

solutions for 21 out of the 24 problems. None of the other model/solver combinations

comes close to this performance. All told, Model 2 clearly dominates Model 1 in terms

of producing good solutions as the graphs scale in size.

The dominant performance of Model 2 as problem size scales is in large part

explained by the vast di®erence in size between Model 1 and Model 2. As noted

previously, a problem with 100 nodes produces an instance of Model 1 with 4,950
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variables and 485,100 constraints while Model 2 on the same problem and kmax ¼ 10

has 1,000 variables and 100 constraints.

It is worth noting that the use of Model 2, particularly with the quadratic solu-

tions option, often produced good solutions fairly quickly and then made slow

progress toward closing the optimality gap. For example, for Model 2 and problem

100-4, CPLEX (Quad) produced the solution of 34,293 within the 1 h time limit as

shown in Table 3.

4. Computational Experiments Regarding Problem Set 2

The paper by Jaehn and Pesch,18 presented computational experience on additional

CPPs of varying structures, including clustering problems originally due to Ref. 21,

and group technology problems due to Ref. 22. Since these problems are fairly

modest in size, we included, as part of problem set # 2, three large group technology

problems due to Ref. 5. Our computational experience with these problems is pre-

sented in the following Tables 4–6. Note in Table 4, the ¯rst six problems (wild cats

down to UNO2a) are clustering problems. The remaining problems are group tech-

nology applications.

Results of our testing are shown in Table 4 for the linear model (Model 1) using all

three solvers and in Table 5 for Model 2, the quadratic alternative model. For each

problem and solution method, a time limit of one hour was imposed.

Examining Table 4, we see that, with one exception, all three solvers were able to

quickly terminate naturally with optimal solutions for the ¯rst 13 problems within

the allotted time of 1 h. The one exception to this is for XPRESS which terminated

with a slightly inferior solution on one problem. All three solvers produced non-

optimal solutions for Wang 250. Moreover, all three terminated with an \out of

memory \error without giving a solution for test problems Wang 800 and Wang

1150. The size of the linear model (i.e., Model 1) for the Wang problems precludes

producing good solutions, or solutions at all. Considering all 16 problems in Table 4,

Gurobi turned in the best performance although there is not much di®erence between

the performances of the solvers on the 13 small problems.

Jaehn and Pesch,18 presented a branch and bound algorithm specialized for CPPs

and reported computational experience with their algorithm on the ¯rst 13 problems

in Table 4. The ¯rst six problems (wild cats through UNO2a) were optimally solved

very quickly by their method, most likely faster than we report in Table 4 considering

we used a newer computer. These clustering problems were very easy for their

method as was also the case for all three commercial methods shown in the Table 4.

However, the group technology problems (Kumar down to sule) were di±cult for

specialized method of Jaehn and Pesch and they were not able to solve these group

technology problems to optimality within the time limit they allowed of one-half

hour. In contrast, all three commercial methods we report on in Table 4 quickly

solved all 13 of these problems. Table 4 reveals, as we have seen earlier, that Model 1
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has limited utility as problem size scales upward as shown by the results for the

Wang problems.

4.1. Comparing exact solvers on Model 2

Table 5 presents the results obtained from running the solvers on the quadratic

formulation of Model 2. We set the kmax parameter in all cases so that kmax proved to

be more than su±cient for the number of cliques actually produced for each of the 16

problems of Table 5. The kmax value for clustering instances in section is the default

clique values reported from Refs. 18 and 21. The kmax value for the group technology

instances in Sec. 4.1 is the number of machines or parts, whatever is smaller. As

before, a time limit of one hour was imposed in each case.

An examination of Table 5 shows that all ¯ve solution methods did well on the

¯rst 13 problems, ¯nding and proving optimal solutions quickly in all but one case.

Note that, with one exception, all ¯ve solvers reported solutions for each of the three

Wang problems within the one-hour limit. However, the quality of these solutions

varies widely with Gurobi (Quad) turning in the best performance by far. Consid-

ering all the problems in Table 5, Gurobi (Quad) produced the best solutions for all

the 16 problem instances.

4.2. Comparing Models 1 and 2

Comparing the results from Table 4 (Model 1) with those from Table 5 (Model 2), we

see that the Model 1 and Model 2 results, across all solvers, are fairly close in quality

for the ¯rst 13 problems. For the larger group technology problems, however, several

of the Model 2 solvers found solutions far superior to the corresponding results

produced from Model 1. For the two largest Wang problems, all ¯ve solvers for

Model 2 produced solutions within the one-hour time limit, in contrast to the fact

that none of the three solvers applied to Model 1 were able to report a solution

(at all) within this time limit.

The results, shown in Tables 4 and 5, highlight again how di±cult it is for exact

methods to ¯nd good solutions to CPPs as they scale in size. This di±culty is

particularly on display for the Wang problems where the linear model struggled to

produce solutions at all in the allotted time limit of 1 h. The quadratic model

(Table 5) generally produced solutions but the gaps at the 1 h mark are enormous,

suggesting that the \1-h" solutions are of low quality.

To get a sense of the time-quality tradeo®, Wang 250 was solved again via Gurobi

with an increased time limit of 24 h on Model 1. Moreover, all three Wang problems

were solved again using Gurobi (Quad) on Model 2, allowing for the new time limit of

24 h. Results from these runs are shown in Table 6, where both the 1 and 24 h results

are reported to enable easy comparisons.

Examining three Wang problems, we see that increasing the time limit from 1h to

24 h signi¯cantly improved both the gaps and the objective function values. Note

that for Wang 250, the 24 hour result obtained from Model 1 is now slightly better

70 Y. Du et al.



T
ab

le
5.

R
es
u
lt
s
fr
om

M
od

el
2
(1

h
ti
m
e
li
m
it
).

M
od

el
2

G
u
ro
b
i
(L

in
)

G
u
ro
b
i
(Q

u
ad

)
C
p
le
x
(L

in
)

C
p
le
x
(Q

u
ad

)
X
p
re
ss

ID
N
od

e
K
m
ax

O
b
je
ct
iv
e

D
i®
(%

)
T
im

e
O
b
je
ct
iv
e
D
i®
(%

)
T
im

e
O
b
je
ct
iv
e

D
i®
(%

)
T
im

e
O
b
je
ct
iv
e

D
i®
(%

)
T
im

e
O
b
je
ct
iv
e

D
i®
(%

)
T
im

e

w
il
d
ca
ts

30
4

13
04

0%
0

13
04

0%
0

13
04

0%
0.
09

13
04

0%
0.
02

13
04
.0
0

0
%

0
ca
rs

33
3

15
01

0%
0

15
01

0%
0

15
01

0%
0.
13

15
01

0%
0.
03

15
01
.0
0

0
%

1

w
or
k
er
s

34
4

96
4

0%
0

96
4

0%
0

96
4

0%
1.
78

96
4

0%
0.
09

96
4.
00

0
%

4

U
N
O

54
5

77
8

0%
2

77
8

0%
6

77
8

0%
16

.2
7

77
8

0%
4.
2

77
8.
00

0
%

1
9

U
N
O
1a

15
8

6
12

19
7

0%
15

4.
1

12
19
7

0%
26

0
12

19
7

0%
12

0.
73

12
19
7

0%
12

0.
66

12
19
7.
00

0
%

6
1

U
N
O
2a

15
8

3
72

82
0

0%
22

72
82
0

0%
60

72
82

0
0%

4
72

82
0

0%
0.
34

72
82
0.
00

0
%

3

k
u
m
ar

24
6

23
0%

0
23

0%
0

23
0%

0.
08

23
0%

0.
06

23
.0
0

0
%

0

b
oc

59
10

67
0%

14
67

0%
3

67
0%

2.
47

67
0%

28
65

.0
0

�2
.9
9
%

3
0
5

gr
oo
v
er

43
8

55
0%

88
55

0%
4

55
0%

46
.9
1

55
0%

5.
17

55
.0
0

0
%

3
1
1

le
sk
ow

sk
y

38
10

30
0%

1
30

0%
21

1
30

0%
2.
7

30
0%

5.
05

30
.0
0

0
%

3

m
cc
or
m
ic
k

39
9

43
0%

2
43

0%
0

43
0%

1.
06

43
0%

5.
22

43
.0
0

0
%

5

se
if
od

d
in
i

33
5

54
0%

0
54

0%
0

54
0%

0.
14

54
0%

0.
11

54
.0
0

0
%

1
su
le

31
5

46
0%

0
46

0%
0

46
0%

0.
13

46
0%

0.
02

46
.0
0

0
%

1

W
an

g
25

0
25

0
14

27
5

�2
5%

36
00

36
8

0%
36

00
28

8
−
22

%
33

57
.0
5

33
7

�8
%

36
00

28
4.
00

�2
3
%

2
0
8
5

W
an

g
80

0
80

0
9

48
8

�7
.0
5%

49
0

52
5

0%
36

00
19

5
−
62

.8
6%

13
01

.9
9

43
−9

1.
81

%
27

43
.5

�3
83

.0
0

�1
7
2
.9
5
%

3
0
7

W
an

g
11

50
11

50
11

14
3

−
81

.7
8%

36
00

78
5

0%
33

35
0

�1
00

.0
0%

36
03

.2
61

�9
2.
23
%

33
11

.3
6
�6

85
2.
00

�9
7
2
.8
7
%

2
0
5

Solving Clique Partitioning Problems 71



T
ab

le
6.

L
on

ge
r
G
u
ro
b
i
ru
n
s
on

M
od

el
s
1
an

d
2.

M
od

el
s
1
an

d
2

M
od

el
1
G
u
ro
b
i
(2
4
h
)

M
od

el
1
G
u
ro
b
i
(l
h
)

M
od

el
2
G
u
ro
b
i
(Q

u
ad

)
24

h
M
od

el
2
G
u
ro
b
i
(Q

u
a
d
)
1
h

ID
O
b
je
ct
iv
e

G
ap

T
im

e
O
b
je
ct
iv
e

G
ap

T
im

e
O
b
je
ct
iv
e

G
ap

T
im

e
O
b
je
ct
iv
e

G
ap

T
im

e

W
an

g
25

0
40

3
25

.5
0%

62
06

6
36

3
53

%
22

39
39

5
19

90
%

25
59

0
36

8
22

24
%

3
6
0
0

W
an

g
80

0
N
A

N
A

N
A

N
A

N
A

N
A

10
98

39
33
%

77
59

4
52

5
84

13
%

3
6
0
2

W
an

g
11

50
N
A

N
A

N
A

N
A

N
A

N
A

15
40

41
0%

33
82

0
78

5
97

5%
3
3
3
5

72 Y. Du et al.



than the 24 h solution obtained from Model 2. However, the objective function values

obtained from Model 2 on each of the larger problems approximately doubled as the

time limit was raised from 1 to 24 h.

Table 6 shows that the Model 2 gaps, with the increase time limit, are much

improved but still very large, suggesting that even longer run times may produce

further improved solutions. All told, the results shown in Table 6 indicate once again

that Model 2, the quadratic model, is a viable alternative to Model 1 for producing

solutions from problem instances as problem size scales upward.

5. Computational Experiments Regarding Problem Set 3

In recent years, modularity maximization has become a widely used criterion for

detecting communities in networks. Since the initial work by Newmann and Girvan

(2004) several authors have proposed models and solutions methods intended to

carry out such analysis. The work by Aloise et al.19 proposed and tested four di®erent

exact methods for solving the modularity maximization problem, three of which were

based on the standard linear clique partitioning model, i.e., Model 1 considered in

this paper. Their computational experience was based on a set of test problems from

the literature and they were the ¯rst to report proven optimal solutions for all of the

test problems considered. Below we report on these same problems.

Our results are presented below in Table 7 where we show the reported optimal

solution from the Aloise et al.,19 paper along with the results we obtained by running

CPLEX on Model 1 and CPLEX(Quad) on Model 2. We point out that while Aloise

et al.,19 tested special row and column generation methods for solving Model 1, these

e®orts did not produce optimal solutions to all problems within the allotted time

limit of 100,000 seconds. Instead, they employed a special column generating method

on an alternative formulation (i.e., not Model 1) which was able to provide optimal

solutions for all their test problems. It is these results that we list as best known

solution (BKN) in Table 7 to provide a benchmark for comparison with our models.

In the table, n denotes the number of vertices in the graph, the \kmax" value for

clustering instances in Sec. 5 is the default clique values reported from Ref. 19.

\objective" denotes the best objective function found, and the timing information

denotes the \time to best." The ¯rst six problems were given a time limit of 3600 s

and the last four, following the lead of Ref. 19, were given a time limit or 100,000 s.

The results in the table highlighted in yellow are proven optimal results obtained

from our Models 1 and 2.

Looking at Table 7, we see that Model 1, as we have seen earlier in this paper,

performs well on small problems, quickly ¯nding and proving optimality for the ¯rst

six problem. As noted in Ref. 19, for the last four problems, the MIPs represented by

Model 1 are too large to be solved in any reasonable time if at all. For instance, for

the A01 problem, Model 1 has more than 7 million rows and 30 thousand columns.

For the largest problem, Circuit, Model 1 has more than 27 million rows and
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71 thousand columns. Given these sizes, Model 1 was unable to produce solutions for

these problems.

Model 2 also found optimal solutions to the ¯rst six problems but was only able to

prove optimality for the ¯rst two problems in the time allotted. With the exception of

the ¯fth problem, Books, the \time to best" for Model 2 was generally longer than

that of Model 1 for these same six problems. Note, however, that Model 2 was able to

perform rather well on the larger, last four problems, ¯nding, but not proving, the

optimal solution for the US Air problem and providing near-optimal solutions for the

others. We note the Model 2 result for the last problem, Circuit, is greater than

the result reported as optimal in Ref. 19. We suspect that this is due to an error in our

data or a reporting error in their paper. We further note that while not reported in

the table, a sample of results obtained from Gurobi on these problems proved to be

similar to those we report here obtained from CPLEX.

All told, the results shown in Table 7 indicate once again the advantage of

Model 2 over Model 1 in terms of providing good solutions to moderate sized CPPs as

problem size scales upward and Model 1 fails to be functional. We note that the last

four problems were fairly di±cult for the specialized method used by Aloise et al.,19

Yet, Model 2, and CPLEX's standard quadratic 0/1 optimizer, without any cus-

tomization, was able to ¯nd very high quality solutions in a reasonable amount of

time for these problems.

6. Summary and Conclusions

The computational experience reported in Secs. 3, 4 and 5 highlights the di±culty

commercial solvers have in ¯nding optimal or even near-optimal solutions to CPPs as

problem size scales upward. For Model 1 even solving the root node problem for the

linear model can become problematic as problem size grows due to the enormous size

of the associated relaxations. For example, for a problem with 500 nodes, Model 1

would have roughly 125,000 variables and more than 62,000,000 constraints.

Table 7. Test problems for modularity maximization.

Model 1 Model 2

ID n kmax BKN Objective Time Objective Time

Karate 34 4 0.4198 0.4198 <1 0.4198 <1

Dolphins 62 5 0.5285 0.5285 14 0.5285 63
Les mis 77 6 0.5600 0.5600 5 0.5600 33

A00 83 9 0.5309 0.5309 74 0.5309 236

Books 105 5 0.5272 0 5273 191 0.5273 87

Football 115 10 0.6046 0.6046 53 0.6046 453
A01 249 14 0.6329 NA NA 0.6272 12098

US Air 332 6 0.3682 NA NA 0.3682 21180

Netscience 379 19 0.8486 NA NA 0.8476 96814
Circuit 512 12 0.8194 NA NA 0.8369 45700
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By contrast, the quadratic model scales much more agreeably. Model 2, for example,

on a graph with 500 nodes and a kmax value of 10, would have just 5000 variables and

500 constraints, o®ering a clear size advantage by comparison to the linear model.

The main contribution of this paper is to highlight the advantage o®ered by the

quadratic formulation compared to the standard linear model when solutions to

CPPs are sought using commercial exact solvers. Considering the various model/

solver combinations tested in this paper, the quadratic model turned in the best

performance across the entire test bed of problems considered here by a wide margin.

Our computational experiments indicate that the ability to ¯nd good solutions

from the commercial codes using the standard linear model is limited to graphs of size

50 nodes or less for problems with the characteristic considered here. In contrast to

this, adopting the alternative quadratic model can extend the size for CPPs that can

be e®ectively solved by exact methods like CPLEX, Gurobi and XPRESS consid-

erably, as highlighted in our tables. As exact methods for solving quadratic binary

models continue to advance, the attractiveness of Model 2 relative to the linear

model will most likely grow even larger.

In addition to highlighting the superiority of the quadratic model, we have pro-

vided a comparison of the relative performance of CPLEX, Gurobi, and XPRESS, on

both the linear and the quadratic models. Looking only at the linear models, Gurobi

turned in the best performance followed by CPLEX and XPRESS in that order. On

the other hand, focusing on the quadratic models, CPLEX turned in the best per-

formance on the random problems of Table 3 while Gurobi gave the best results on

the structured problems of Table 5. XPRESS lagged behind in performance across

the board. It's interesting that the paper by Lima and Grossmann (2017), while

working on problems other than clique partitioning, reported that CPLEX far out

performed Gurobi and XPRESS when directly solving the quadratic models they

considered. This highlights that the issue of which solver is best for solving quadratic

models directly is still an open question.

Our results on the comparative performance of CPLEX, Gurobi and XPRESS are

fairly consistent with other recent comparisons given by Anand et al.,23 and Hvattum

et al.,24 on combinatorial problems. On a wide variety of problem testing, these

papers concluded, as we have, that all three solvers are greatly improved but that

CPLEX and Gurobi generally outperform XPRESS and that neither CPLEX nor

Gurobi dominates the other across all problems and performance measures.

It is interesting to re°ect on traditional practices that are commonly adopted

when solving optimization problems. These practices have long placed a premium on

linear model representations over nonlinear models whenever a choice between the

two model forms is an issue. In fact, it is often the case that when one is confronted

with a nonlinear model, the ¯rst step in seeking a solution is to re-formulate the

model in a linear form. The experience we report in this paper illustrates that doing

just the opposite has proved to be bene¯cial in the context of CPP. Opting for

linearity, as we show, is not the best choice for ¯nding high quality solutions to CPPs

when using solvers such as CPLEX, Gurobi, and XPRESS. This superior
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performance of a quadratic model over an equivalent linear model is likely to be

realized in general for optimization problems on graphs where one can go from a

linear model with edge-related variables to a quadratic model with node-related

variables as demonstrated in the work presented here.

Given the improvement in commercial solvers as tested here for solving quadratic

models in binary variables and the growing awareness of the attractiveness of

working directly with such quadratic models, the traditional practice of ¯rst looking

for a suitable linearization is being challenged. Noteworthy recent articles supporting

this adoption of quadratic models in binary variables in settings other than the clique

partitioning are reported by Wang and Alidaee (2018); Carrizosa et al. (2018) and

Matsypura et al. (2018).

We note that the improvement in commercial solvers opens the door for realistic

applications in other problem domains as can be found in the recent papers.25–27

This current project has opened up several avenues for future research that we

intend to pursue and report on in future papers. For instance, we have the following:

. The computational testing carried out in this paper on the quadratic version on

the clique partitioning model employed, as one solution option, the standard o®-

the shelf linearization methods embedded in CPLEX, Gurobi and Xpress. Cer-

tainly, other linearizations, as highlighted in the recent papers by Forrester and

Hunt-Isaak (2020), Furini and Traversi (2018), and Lima and Grossmann (2017)

hold promise for improved performance of Model 2. These important papers give

extensive computational and theoretical insights into alternative linearizations of

quadratic models and provide guidance for potential improved performance of the

quadratic model considered here for clique partitioning. Testing such alternative

linearizations is a priority for our future work.

. The performance of both Models 1 and 2 could potentially be enhanced by aug-

menting the models with additional constraints. For instance, facets as discussed

by Grotschel and Wakabayashi,21 and by Oosten et al.,22 could be implemented in

Model 1. Moreover, adopting ideas from Ref. 28, symmetry breaking constraints,

addressing a potential problem with Model 2, could be added to Model 2. We

intend to explore the impact of such changes on the ultimate comparison of the

two models as part of our future work.

. Regarding the performance of Model 1, ideas coming from the work of Dinh and

Thai,12 Miyauchi and Sukegawa,13 and Miyauchi et al.,15 on removing unnecessary

constraints from this model may lead to improved performance by reducing the

problem size. We plan to explore the implementation of these ideas in our future

work.

. Our focus in this paper has been on comparing the performance of o®-the-shelf

exact solvers on the quadratic alternative to the standard linear model for clique

partitioning. An interesting alternative approach, with potential application to

the problems we consider here, is to encode the clique partitioning model (Model 1)

as a MaxSat instance to be solved optimally by exact MaxSat solvers. Such an
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approach was successfully adopted by Berg and Jarvisalo (2015) in the context of

Correlation Clustering. Their success motivates us to consider this approach as

part of our future research.

. Finally, we are curious about the interaction of exact and heuristic methods for the

models considered here, perhaps exploiting information quickly obtained from

heuristic methods to enhance the performance of the exact methods. These and

related issues are also on our list for future investigation.

Over all, we expect additional insights about models and algorithms will be

provided by further testing on CPP problem variants and other graph problems

related to clique partitioning. We plan to report on our ¯ndings in these domains in

future papers.

Appendix A. Relationship Between Model 1 and Model 2

The relationships between Model 1 and Model 2 can be stated as follows:

For the extreme case when kmax ¼ # of vertices, an optimal solution to Model 2

corresponds to an optimal solution for Model 1. That is, the models have equivalent

solutions when kmax ¼ # of vertices. However, when kmax is less than the number of

vertices, it is possible that the two models are not equivalent, meaning that the

optimal solution to Model 2 may not correspond to an optimal solution to Model 1.

We comment that based on extensive computational experience over a wide variety

of CPPs, and often with quite small values of kmax, Model 2 has consistently delivered

high quality and often optimal solutions. Nonetheless, for a given problem, if kmax is

set too low, it is possible that an optimal solution to Model 2 might not be optimal for

Model 1. It will always be a feasible solution, but not necessarily an optimal solution.

We illustrate how this could happen with the following example.

Given a graph with 2n vertices, which are denoted by f1; 2; . . . ; n, 1 0, 2 0, . . ., n 0g.
Vertices f1; . . . ; ng denote a complete subgraph with edge weights 1 and similarly,

vertices f1 0, . . ., n 0g also denote a complete subgraph with edge weights 1. Moreover,

there are n � 1 further edges to which we will refer as \connected edges". Vertex

pairs (1, 1 0), (2, 2 0), . . ., (n � 1, (n � 1) 0Þ are connected by edges (but NOT (n, n 0ÞÞ.
These edges have edge weight

n þ 1/(n � 1) (see Fig. 2). As the input of CPP has to be a complete graph, we

assume that all edges not depicted in the ¯gure are weighted with a very big negative

value.

We will analyze the optimal solution of this instance by a distinction of cases. We

will distinguish how many connected edges are considered in the solution (note that

due to the symmetry of the graph, we need not decide which connected edges are

considered). Given a certain number of connected edges, both end nodes of a con-

nected edge de¯ne their own clique (as otherwise, edges with a negative value have to

be added). The remaining vertices of each complete subgraph will all end up in the

same clique. This observation can be summarized in the following cases.
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Case 1 # connected edges: 0

. Best solution: f1; 2; . . . ; ng, f1 0; 2 0; . . . ; n 0g,

. # cliques: 2,

. Objective value: 2 nðn�1Þ
2 ¼ n2 � n,

Case 2 # connected edges: 1 � x � n � 2

. Best solutions: f1; 1 0g, f2; 2 0g;. . ., fx; x 0g, fx þ 1; . . . ; ng; fðx þ 1Þ 0; . . . ; n 0g,

. # cliques: x þ 2,

. Objective values: 2 ðn�xÞðn�x�1Þ
2 þ xðn þ 1

n�1Þ ¼ n2 � n þ x2 þ x � xn þ x
n�1,

Case 3 # connected edges: n � 1

. Best solutions: f1; 1 0g, f2, 2 0g, . . ., fn � 1, (n � 1) 0g, fng; fn 0g,

. # cliques: n þ 1,

. Objective values: ðn � 1Þðn þ 1
n�1Þ ¼ n2 � n þ 1.

We can see that the objective function value in the second case is always lower

than the objective function value in the ¯rst case (as x2 þ x � xn þ x
n�1 is always

negative for 1 � x � n � 2). Thus, if kmax � n, a solution with n � 1 connected edges

is excluded and Model 2 will always deliver a solution with only two cliques. How-

ever, the optimal solution contains n þ 1 cliques. This proves that Model 2 is not

equivalent to Model 1 with signi¯cantly less cliques than kmax.

Fig. 2. Counter example.
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Appendix B. Computational Impact of kmax

We provide additional analysis of the impact of kmax on the computational perfor-

mance of quadratic Model 2 using the sample data set (Les mis) in Table 7. The

computational burden goes up substantially due to the larger models created as kmax

is increased. We have clari¯ed this with a brief discussion and charts illustrating this

behavior on the following example.

For data set Les mis, the number of nodes is 77, kopt is 6, and the optimal objective

function value is 0.56. To provide this illustration, we solved this problem several

times with kmax values ranging from 2 to 77. Figure 3 shows the sub-optimal solutions

obtained for kmax less than the kopt value of 6 and the optimal value (0.56) for kmax

values of 6 and greater. Figure 3 shows the rapidly increasing run times as kmax

grows.
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