
Vol.:(0123456789)

TOP (2021) 29:319–350
https://doi.org/10.1007/s11750-021-00605-1

1 3

INVITED PAPER

Tabu search tutorial. A Graph Drawing Application

Fred Glover1 · Vicente Campos2 · Rafael Martí2

Accepted: 10 May 2021 / Published online: 14 June 2021 
© Sociedad de Estadística e Investigación Operativa 2021

Abstract
Tabu search is an optimization methodology that guides a local heuristic search 
procedure to explore the solution space beyond local optimality. It is substantiated 
by the hypothesis that an intelligent solving algorithm must incorporate memory to 
base its decisions on information collected during the search. The method creates 
in this way a learning pattern to explore the solution space economically and effec-
tively. Tabu search is a metaheuristic that has proved its effectiveness in a wide vari-
ety of problems, especially in combinatorial optimization. We provide here a practi-
cal description of the methodology and apply it to a novel graph drawing problem. 
The most popular method of drawing graphs is the Sugiyama’s framework, which 
obtains a drawing of a general graph by transforming it into a proper hierarchy. In 
this way, the number of edge crossing is minimized in the first stage of the proce-
dure. Many metaheuristics have been proposed to solve the crossing minimization 
problem within this drawing convention. The second stage of this procedure mini-
mizes the number of bends of long arcs without increasing the number of crossings, 
thus obtaining a readable drawing. In this paper, we propose an alternative approach 
to simultaneously minimize the two criteria: crossing and long arc bends. We apply 
tabu search to solve this problem and compare its solutions with the optimal values 
obtained with CPLEX in small and medium-size instances.

Keywords  Tabu search · Metaheuristic · Graph drawing · Crossing minimization · 
Long edges

This invited paper is discussed in the comments available at: https://​doi.​org/​10.​1007/​s11750-​021-​
00606-0, https://​doi.​org/​10.​1007/​s11750-​021-​00607-z, https://​doi.​org/​10.​1007/​s11750-​021-​00608-y.

 *	 Rafael Martí 
	 Rafael.Marti@uv.es

	 Fred Glover 
	 fredwglover@yahoo.com

	 Vicente Campos 
	 Vicente.Campos@uv.es

1	 Meta-Analytics, Inc, Boulder, CO, USA
2	 Universitat de València, Valencia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-021-00605-1&domain=pdf
https://doi.org/10.1007/s11750-021-00606-0
https://doi.org/10.1007/s11750-021-00606-0
https://doi.org/10.1007/s11750-021-00607-z
https://doi.org/10.1007/s11750-021-00608-y


320	 F. Glover et al.

1 3

1  Introduction

Tabu search (TS) is a metaheuristic methodology (Glover and Laguna 1997) based 
on the premise that problem-solving, to qualify as intelligent, must incorporate adap-
tive memory and responsive exploration. The adaptive memory feature of TS allows 
the implementation of procedures capable of searching the solution space economi-
cally and effectively. Since local choices are guided by information collected during 
the search, TS contrasts with memoryless designs that heavily rely on semi-random 
processes that implement a form of sampling. The emphasis on responsive explora-
tion in tabu search derives from the supposition that a bad strategic choice can often 
yield more information than a good random choice. It is therefore a good instance of 
how Artificial Intelligence can be applied to solve optimization problems.

The foundations of tabu search (Glover 1963) reflect the benefits of merging 
elements from the domains of artificial intelligence (AI) and operations research 
(OR). Both fields started out with the goal of developing methods to solve chal-
lenging problems, although OR focused more strongly on mathematical results 
and AI gave more attention to qualitative analyses. They provided the foundations 
for the ideas that in the eighties became the source of TS.

TS can be applied to any kind of optimization problem defined as optimize f (x) , 
subject to x ∈ X . The function f (x) may be linear, nonlinear or even stochastic, and 
the set X summarizes constraints on the vector of decision variables x. The con-
straints may similarly include linear, nonlinear or stochastic inequalities, and may 
compel all or some components of x to receive discrete values. What is even more 
important, is that TS can be applied to optimization problems where we do not have 
a mathematical model, as is the case of many practical situations. In this paper, we 
first describe the TS methodology and then apply it to solve a combinatorial optimi-
zation problem that arises in many applications, the graph drawing.

Geometric representations have been the subject of study since ancient times. 
The famous words by Archimedes “Do not disturb my circles!” ("Noli turbare 
circulos meos!") indicate the early connection between graph drawing and 
geometrics. Today, automated graph-drawing systems utilize procedures to posi-
tion nodes and arcs to produce graphs with desired properties. The literature con-
tains many different standards to represent a graph (Di Battista et al. 1998). All 
of them have readability as the main objective, although there are different ways 
to achieve this goal. Research studies of graph drawing have produced a prolific 
range of applications from trees to orthogonal graphs. In this paper, we focus on 
the realm of graph drawing called hierarchical representations.

General graphs can be drawn as hierarchical maps following Sugiyama’s 
framework, which obtains a good drawing by representing the arcs according 
to certain aesthetics that induce readability: straight lines, uniform direction, 
and low number of crossings (Sugiyama et  al. 1981). This framework has been 
applied in many settings (e.g., Kaufmann and Wagner 2001; Napoletano et  al. 
2019; or Pastore et al. 2020), and consists of three steps: assign nodes to layers, 
reduce edge crossings, and assign coordinates to nodes. We apply this method to 
the graph in Fig. 1 to illustrate its operation.



321

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

The first step in Sugiyama’s framework starts by reversing some arcs as appro-
priate. In particular, if the graph has cycles, pre-processing is applied to reverse 
the direction of some arcs to make it acyclic (Di Battista et al. 1998). The method 
identifies a set of arcs with minimum cardinality to be reversed (the so-called 
“minimum feedback arc set problem”). Note that the graph in Fig. 1 does not con-
tain any cycles and so this step is not required. After pre-processing, the method 
assigns nodes to layers in the step called layer assignment. Arcs joining nodes in 
noncontiguous layers are replaced with chains of dummy nodes and arcs (between 
consecutive layers), thus obtaining what is called a proper hierarchy.

Figure 2 shows the proper hierarchy obtained from the example in Fig. 1. We 
can easily identify chains of dummy nodes, with arcs in red, replacing long arcs. 
For example, the arc (6, 23) in Fig. 1, is replaced with the chain {(6, 11), (11,18), 
(18, 23)}. Therefore, nodes 11 and 18 are dummy and the entire chain will be 
replaced back by the original arc in the final stage of Sugiyama’s framework.

In step 2, the framework targets arc crossing minimization. This is a very 
important problem that has received extensive attention in the scientific litera-
ture. In the first implementations of Sugiyama’s framework, this step was based 
on simple ordering rules, reflecting the goal of researchers and practitioners of 

Fig. 1   Original drawing not optimized



322	 F. Glover et al.

1 3

quickly obtaining solutions of reasonable quality (Carpano 1980). However, the 
field of optimization has recently introduced complex metaheuristic methods and, 
starting with tabu search (Martí 1998; Laguna and Martí 1999), advanced solu-
tion strategies have been proposed in the last 20  years to solve graph drawing 
applications (see for example Sánchez-Oro et al. (2017) and Martí et al. (2018)). 
In Sect. 2, we provide a mathematical programming model of this NP-hard prob-
lem. Figure  3 shows the solution obtained with CPLEX with 22 arc crossings, 
which compares favorably with the 36 crossings in Fig. 2. In fact, 22 is the opti-
mum number of crossings for this problem.

In the third step of Sugiyama’s framework the method assigns x-coordinates 
to the nodes to obtain straight arcs and to center the nodes among their neigh-
bors. This is done without reordering the nodes, which implies that the number of 
crossings remains unchanged. Several heuristics have been proposed to perform 
this coordinate assignment (see for example Brandes and Köpf 2002) in a way 

Fig. 2   Layer assignment (step 1) in Sugiyama’s framework



323

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

that produces mostly straight long arcs. Specifically, given the original arc (u, v) , 
replaced with the chain with dummy nodes (u, u1), (u1, u2)… , (us, v) in step 1 of 
the method, the heuristic in step 3 tries to obtain a drawing with x

(
ui
)
= x(ui+1) 

for i = 1,… s − 1, where x(ui) is the coordinate of node ui . Long arcs ideally have 
no bends, although this goal is normally not achieved.

Figure  4 shows the final output of Sugiyama’s method in our example with 
22 arc crossings and 5 long arcs bends. To describe the entire process in sim-
ple terms, we can say that it seeks to minimize crossings in step 2 and to mini-
mize bends in step 3. Many heuristics and metaheuristics have been proposed to 
solve these two problems and yield a multiplicity of different drawings. Crossing 
minimization is a primary criterion in these methods, and bend minimization is a 
secondary one, considering that step 3 does not allow the nodes in a layer to be 
reordered, thus keeping the number of crossings fixed.

Fig. 3   Crossing minimization (step 2) in Sugiyama’s framework



324	 F. Glover et al.

1 3

In this paper, we propose an alternative to this 3-step method, where we seek 
to minimize the number of crossings subject to the constraint that long arcs have 
no bends. In our experience, bends of long arcs present an important difficulty 
when analyzing a drawing, and should not be made entirely subordinate to the 
goal of minimizing the number of crossings. A small increase in the number of 
crossings is more than acceptable in terms of readability if long arcs are properly 
displayed.

We show that our alternative framework for hierarchical graph drawing cre-
ates more readable maps than the customary sequential approach. We provide 
a mathematical formulation to solve small and medium-size instances with this 
framework, and a tabu search metaheuristic to target large instances. An empiri-
cal comparison shows that our tabu search method is able to obtain high-quality 
solutions in short computational times, an essential feature for automatic graph 
drawing systems.

Fig. 4   Coordinate assignment (step 3) in Sugiyama’s framework



325

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

2 � Tabu search

In this section, we describe the tabu search methodology in general terms; i.e., as 
a tutorial to be applied to any combinatorial optimization problem. The term tabu 
search was coined in the same paper that introduced the term metaheuristic (Glover 
1986), and it is based on four early developments:

•	 Strategies that combine decision rules based on logical restructuring and non-
monotonic search,

•	 Systematic violation and restoration of feasibility,
•	 Flexible memory based on recency and frequency,
•	 Selective processes for combining solutions, applied to a systematically main-

tained population.

Traditional approaches to solving job shop scheduling problems evolved in the 
60  s to decision criteria for generating schedules, and embedded these criteria in 
local decision rules that were previously applied in isolation from each other. This 
approach of seeking to benefit from multiple rules by intelligently alternating among 
them motivated consideration of a contrasting strategy (Glover 1963) that combines 
decision rules to create new ones. The method then generated a series of trial solu-
tions by varying the parameters determining the integrated rules. Instead of stopping 
at a local optimum of the series, the process generated a non-monotonic search pat-
tern by systematically varying the underlying parameters to produce additional trial 
solutions. From a historical perspective, this can be considered the direct ancestor of 
tabu search. Two consecutive papers in ORSA Journal on Computing (Glover 1989, 
1990) established the methodology in practical terms that permitted researchers and 
practitioners to create implementations for many different optimization problems.

To introduce the methodology, we compare a simple version of TS with a stand-
ard descent method for minimizing an objective function. Such a method only per-
mits moves to neighbor solutions that improve (reduce) the current objective func-
tion value and ends when no further improvement is possible. The final solution is 
a local optimum, since it is at least as good or better than all solutions in its neigh-
borhood. TS may start in the same way as a descent method, but instead of stop-
ping at the local optimum, it continues the search. To do that, it has to select moves 
that cause the objective function value to deteriorate, and therefore it incorporates a 
mechanism to prevent cycling when alternating between improving and non-improv-
ing moves. This is implemented in an efficient way by means of a dynamic neigh-
borhood definition.

2.1 � Short term memory

Let N(x) be the neighborhood of solution x ∈ X , where each solution y ∈ N(x) is 
reached from x applying a move. In a simple implementation of tabu search, the 
method utilizes a short-term memory function by drawing on the search history 



326	 F. Glover et al.

1 3

to modify the neighborhood. Specifically, a subset N∗(x)  of N(x) is created that 
employs a tabu classification to exclude elements of N(x) added to x by moves of 
previous iterations. Let T ⊆ X be the set of solutions visited, within a specified 
number of previous iterations, that we want to exclude from examination (and thus 
selection) in the following iterations. We label these solutions as tabu by defining 
N∗(x) = N(x) ⧵ T .

One of the TS innovations comes from the fact that instead of directly labeling 
some solutions as tabu, the methodology first identifies properties or attributes that 
are important for characterizing a solution or a move, and then labels some of them 
as tabu according to the search history. In problems where the moves are defined 
by adding and deleting elements, such as nodes, arcs, or edges in a graph, these 
elements can be used as attributes. Solutions or moves containing such tabu attrib-
utes are excluded from exploration, but important benefits are derived from record-
ing, selecting, and updating such attributes, generally giving preference to solution 
attributes over move attributes. Attributes can be coarse-grained, shared by many 
different solutions, or fine-grained, shared by few solutions. An extreme instance 
of fine-grained attributes that proves useful in certain settings occurs in so-called 
solution-based tabu search, which uses hash function values as attributes to differen-
tiate among solutions.

The most commonly used short-term memory keeps track of solutions attributes 
that have changed during the recent past, and is called recency-based memory. To 
exploit this memory, selected attributes that occur in solutions recently visited are 
labeled tabu-active, and solutions subsequently examined that contain tabu-active 
elements are those that are tabu. This memory is usually implemented by creating 
one or several tabu lists, which record the tabu-active attributes. A simple and effec-
tive implementation of the tabu list is to record the iteration number that identifies 
when the tabu-active status of an attribute starts or ends. This permits the tabu status 
of a move to be tested in constant time.

To illustrate the principles above, consider a problem in which each solution x 
is a permutation of n elements, where xi is the element in position i . The first step 
to create a short-term memory tabu search is to define a move to modify solutions. 
Say for instance that we consider an insertion move, move(x, xi, j) , in which the ele-
ment xi in position i is inserted in position j . Then, the neighborhood N(x) consists 
of all the solutions y that can be obtained when an element in x is inserted in a dif-
ferent position. We can denote it in symbolic terms as y = x⊕ move(x, xi, j) . Given 
a move mechanism, such as the insert mechanism we have selected for our example, 
the next step is to choose the attribute or attributes that will be used for the tabu 
classification. A straightforward move attribute is the element xi inserted, and we 
may record in tabu(xi) the iteration in which we move the attribute, thus preventing 
the attribute from being moved again for a certain number of iterations, called tabu 
tenure. Clearly, we may define many other attributes, such as the position j in which 
we insert the element, or both element and position together. Figure 5 shows a sim-
ple algorithm to implement the approach, where CL(x) refers to the candidate list of 
non-tabu moves.

Figure  5 shows in Steps 5 and 6 that the main difference between TS and a 
descent method is that the former always perform a move, the best available one 



327

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

from the candidate list, even if it causes the objective function to deteriorate. This 
outline of the method also makes explicit that the neighborhood composition, 
N∗(x) , only considers solutions obtained by populating the candidate list CL(x) 
with elements that are non-tabu. The parameter TabuTenure is typically adjusted 
via experimentation and depends on the size of the problem instance. No single 
rule has been designed to yield an effective tenure for all classes of problems. 
This is partly because an appropriate tabu tenure depends on the strength of the 
tabu activation rule employed.

The version of the short term tabu search depicted in Fig. 5 scans the entire 
neighborhood N∗(x) of x in search for the best neighbor solution y∗ . It is well doc-
umented in the heuristic literature that this can be computationally too expensive 
or even impractical in some problems. It is therefore customary in TS to apply 
candidate list strategies to perform a selective or simply efficient examination of 
the neighborhood, thereby additionally limiting the candidate list CL(x) to narrow 
the examination of elements of N∗(x) and achieve an effective tradeoff between 
the quality of y∗ and the effort expended to find it.

A well-known way to speed up the neighborhood examination in a descent 
method is the first improving strategy that chooses the first move found that 
improves the objective function and disregards the rest of the neighborhood. This 
strategy may be reinforced by examining solutions in an appropriate ordering, where 
the most promising ones come first. Problem-specific knowledge can clearly facili-
tate this approach by evaluating the moves’ influence in the objective function to 
anticipate which ones to try first in future evaluations. The following three proce-
dures are among the candidate list strategies proposed in Glover and Laguna (1997):

•	 The Aspiration Plus strategy establishes a threshold for the quality of a move, 
based on the history of the search pattern. The procedure operates by examin-
ing moves until finding one that satisfies this threshold.

•	 The Elite Candidate List approach first builds a Master List by examining a 
large number of moves and saving some of the best moves encountered. Then at 
each subsequent iteration, the current best move from the Master List is chosen 
to be executed (without re-evaluation the list and move values), continuing until 
such a move falls below a given quality threshold and the Master List is rebuilt.

Fig. 5   A simple short term tabu search



328	 F. Glover et al.

1 3

•	 In the Successive Filter Strategy, moves are broken into component operations, 
and the set of moves examined can be reduced by restricting consideration to 
those that yield high-quality outcomes for each operation separately.

Short-term memory designs are usually accompanied by an Aspiration Crite-
rion, which in its simplest form consists of removing a tabu classification from a 
trial move when the move yields a solution better than the best obtained so far. This 
criterion is widely used, although other aspiration criteria can prove effective for 
improving the search.

2.2 � Long term memory

Many tabu search implementations limit themselves to the short-term memory strat-
egies described above. However, it can often be advantageous to include additional 
elements. In those cases, TS becomes significantly stronger by including longer term 
memory and its associated strategies that exploit tradeoffs between intensification 
and diversification.

Intensification strategies are based on modifying choice rules to encourage move 
combinations and solution features historically found good. They may also initi-
ate a return to attractive regions to search them more thoroughly. Diversification 
strategies, on the other hand, seek to incorporate new attributes and attribute com-
binations that were not included within solutions previously generated. In one form, 
these strategies undertake to drive the search into regions dissimilar to those already 
examined. It is important to keep in mind that intensification and diversification are 
mutually reinforcing.

Frequency-based memory provides a type of information that complements the 
information provided by recency-based memory. Frequencies typically consist of 
ratios, whose numerators represent counts expressed in two different measures: a 
transition measure (the number of iterations where an attribute changes), or a resi-
dence measure (the number of iterations where an attribute belongs to solutions vis-
ited on a particular trajectory). The denominators generally represent the total num-
ber of occurrences of all events represented by the numerators (sum or maximum 
depending on the case). The ratios produce transition frequencies that keep track of 
how often attributes change and residence frequencies that keep track of how often 
attributes are members of solutions generated.

A high residence frequency may indicate that an attribute is highly attractive if 
the domain consists of high-quality solutions. On the other hand, a residence fre-
quency that is high when the domain is chosen to include both high and low-quality 
solutions may point to an attribute that causes the search space to be restricted, and 
that needs to be relaxed to allow increased diversity. Attributes that have greater 
frequency measures, just as those that have greater recency measures, may trigger a 
tabu activation if they are based on consecutive solutions that end with the current 
solution. However, frequency-based memory often finds its most productive use as 
part of a longer term strategy, which employs incentives as well as restrictions to 
determine which moves are selected.



329

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

We do not have space here to describe the advanced designs, such as strategic 
oscillation or path relinking, that may complement long-term strategies to create 
complex tabu search implementations. We refer the reader to the tabu search mon-
ograph (Glover and Laguna, 1997) for a comprehensive description of the meth-
odology. Now we return to considering the graph drawing problem to provide an 
improved model and examine its solution by CPLEX and tabu search.

3 � Arc crossing and long arcs

Figures 1, 2, 3 and 4 in the introduction illustrate Sugiyama’s framework to represent 
graphs. Roughly speaking, the framework provides a readable drawing of a graph in 
which arc crossings are minimized and other aesthetic criteria are considered sec-
ondarily. In this section we propose a modification of this framework to improve the 
graph readability. We first motivate our modification and then propose a formulation 
as a mathematical programming model.

As previously noted, we can readily compute the number of arc crossings and 
identify the long arcs with bends, as illustrated in the example of Fig. 3. Here the 
number of arc crossings is 22 and the long arcs with bends are identified to be (1, 
15), (8,20), (2, 13), (21, 32), (22, 35) which have one bend each one, totalizing 5 
bends. Note however, that not all the bends are equally important in terms of read-
ability. In particular, the long arc (1, 15) appears more difficult to read than the long 
arc (8, 20), although both have one bend. We propose to consider the alignment of 
the nodes in a long arc as a way to capture its readability and generalize in this way 
the concept of bend. For example, in the case of long arc (1, 15), we can consider 
that the position ( x-coordinate) of node 1 is x = 1 , and the position of node 15 is 
x = 3 . Therefore, we observe a difference of 2 in the x-coordinates of this long arc. 
Moreover, if we also compute the x-coordinate of the intermediate dummy node in 
this arc (node 10 in Fig. 3), x = 2 , we can include this value in the computation of 
the alignment of the long arc. In general, we propose to subtract the x-coordinate of 
each intermediate dummy node and the final node from the coordinate of the ini-
tial node, and add the absolute values of these differences. Thus, for arc (1, 15) we 
obtain an alignment value of 1 + 2 = 3.

The alignment value of the long arc (8, 20) in Fig. 4 is 1, reflecting that this arc 
is more readable than arc (1,15) with an alignment value of 3 computed above. The 
alignment value of (8, 20) is derived by observing that the x-coordinate of node 8 is 
x = 2 , the dummy node 14 in this arc has a position of x = 1 , and the final node in 
the arc is 20 with a position of x = 2 . Subtract these latter two x-coordinates from 
the coordinate of the initial node 8 and summing the absolute values of these differ-
ences yields

Therefore, instead of considering the number of bends in Fig. 2b, which is 5, as 
a measure of the long arcs readability, we propose to evaluate the alignment on the 
nodes in these long arcs, which results in a value of 10 in this figure.

|1 − 2| + |2 − 2| = 1



330	 F. Glover et al.

1 3

We have empirically found that drawings with an alignment of 0, where all the 
nodes in a long arc are in the same x-position, are very easy to read. However, the 
standard 3-step method in Sugiyama’s model limits the reduction of the alignment 
in step 3 to those positions of the nodes in which the ordering obtained in step 2 
(when arc crossings are minimized) is not changed. Hence, by contrast, we consider 
a model in which we incorporate the alignment simultaneously with the minimiza-
tion of arc crossings. In this way, we merge steps 2 and 3 of Sugiyama’s method in a 
single step. In particular, we propose to minimize the number of crossings subject to 
a constraint to keep the alignment of the long arcs equal to 0.

Figure 6 shows an alternative way to draw the example shown in Fig. 4 obtained 
with our new formulation with CPLEX given below, which includes the constraint 
that each long arc has an alignment of 0, and therefore no bends.

Figure 6 has 29 arc crossings and no bends. In fact, it has an alignment value of 
0, meaning that all long arcs are drawn with a straight vertical line. Although this 
drawing has a larger number of crossings than the one in Fig. 4 (29 versus 22 cross-
ings), we believe that it is easier to read due to the alignment of the long arcs.

We have made several tests similar to this one and have shown both drawings, 
the one with minimum crossings, and the one minimizing crossings but restricted to 

Fig. 6   Crossings minimized subject to no bends



331

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

long arcs aligned, to operations research practitioners. Figures 7 and 8 illustrate one 
of these tests in which we depict the long arcs in red to make them easy to identify. 
In all the cases, the OR practitioners gave us the same answer that the new (con-
strained) model obtains better drawings than the previous (sequential) model that 
first minimizes crossings and then aligns long arcs.

3.1 � Mathematical model

A hierarchical graph H = (V ,A, nl, L) is defined as a graphG = (V ,A) , where V  
and A represent the set of nodes and arcs, respectively, and the layering function 
L(v) ∶ V → {1,2,… , nl} indicates the number of the layer (index) where v resides. 
Hence, L(v) − L(u) is the length of the arc (u, v) ∈ A . The L function implicitly 
defines the sets of nodes Lh = {v ∈ V ∶ L(v) = h} for h = 1,2,… , nl  which we 
refer to as layers. Let nh be the number of nodes in layer h . For example, in Fig. 9 

Fig. 7   Example of Sugiyama’s output



332	 F. Glover et al.

1 3

we can identify four layers, depicted as horizontal lines, where node 8 is in layer 2 
( L(8) = 2 ), and arc (12, 19) has a length of L(19) − L(12) = 4 − 3 = 1. An arc (u, v) 
is long if L(v) > L(u) + 1.

A proper hierarchy is obtained from a hierarchy by replacing long arcs AL ⊆ A 
with a chain of dummy nodes and arcs of length 1. Given a long arc (u, v) ∈ AL , 
we replace it with a chain of arcs (u, u1), (u1, u2)… , (us, v) ∈ A� , where 
u1, u2, … , us ∈ V � are intermediate (dummy) nodes. In this way, we obtain the 
proper hierarchy PH = (V ∪ V �,A�, nl,L) , in which the set of nodes V ′ contains all 
the nodes in the original hierarchy V  and the dummy ones added in this process. The 
set of arcs A′ contains all the original arcs of length 1, and the chains of arcs replac-
ing the long arcs in A. In this way, all the arcs in A′ are of length 1.

Jünger and Mutzel (1997) proposed an integer linear formulation for arc crossing 
minimization in proper hierarchical graphs (see also Jünger et  al. 1997) based on 
binary variables cijkl that take the value 1 when a crossing between arcs (i, j), (k, l) 

Fig. 8   New model output of the example in Fig. 7



333

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

occurs. Additionally, variable xh
ij
= 1 when node i precedes node j in layer h , and 0 

otherwise. We adapt this formulation to include the alignment constraints for long 
arcs.

Constraints (1) and (2) above force cijkl to take the value 1 when the x-variables 
indicate a crossing. Constraints (3) are the so-called 3-dicycle constraints, originally 
proposed for the Linear Ordering Problem by Grötschel et al. (1984), and adapted by 
Jünger and Mutzel (1997) to the drawing problem.

Min
∑

(i,j),(k,l)∈A

cijkl

(1)xh
ik
+ xh+1

lj
− cijkl ≤ 1 (i, j), (k, l) ∈ A�, i < k, j ≠ l, h = 1,… , nl − 1

(2)xh
ki
+ xh+1

jl
− cijkl ≤ 1 (i, j), (k, l) ∈ A�, i < k, j ≠ l, h = 1,… , nl − 1

(3)xh
ij
+ xh

jk
+ xh

ki
≤ 2 1 ≤ i < j < k ≤ nh, h = 1,… , nl

(4)xh
ij
+ xh

ji
= 1 1 ≤ i < j ≤ nh, h = 1,… , nl

xh
ij
, cijkl ∈ {0, 1}

Fig. 9   Example with 3 long arcs and 4 dummy nodes



334	 F. Glover et al.

1 3

For each long arc (u, v) , from layer h to layer h + s , and intermediate 
nodesu1, u2,… , us , we add the following alignment constraints:

Note that the expression

provides the position of node u in layer h . Then, with the additional alignment con-
straints, we are adding to the classic formulation, we are indicating that all dummy 
nodes u1,… , us have the same position in the ordering of their layer as the original 
node u . This also applies to the final node v of the original arc (u, v) . In this way, we 
are constraining the model to provide solutions in which the long arcs are aligned, 
i.e., with no bends.

We illustrate now the additional constraints on a small example. Figure  9 
shows a graph with 20 nodes, in which four of them are dummy nodes modeling 
long arcs (7, 10, 11, and 14).

The graph in Fig. 9 has 4 layers with 5 nodes in each one. The three long arcs 
are: (2, 17), modeled with the dummy nodes 7 and 11, (1, 15), modeled with the 
dummy node 10, and finally (6, 18), modeled with dummy node 14. Note that, 
by design, dummy nodes always have a degree of 2. Therefore, the long-arc con-
straints that force the model to produce no-bends solutions in the case of the (2, 
17) are:

Solving the mathematical model with the long arcs constraints for the three arcs 
described above, we obtain the solution depicted in Fig. 10. It has 19 crossings and 
no bends.

∑

1≤i≤nh

xh
iu
−

∑

1≤i≤nh+1

xh+1
iu1

= 0

∑

1≤i≤nh

xh
iu
−

∑

1≤i≤nh+2

xh+2
iu2

= 0

…
∑

1≤i≤nh

xh
iu
−

∑

1≤i≤nh+s−1

xh+s−1
ius

= 0

∑

1≤i≤nh

xh
iu
−

∑

1≤i≤nh+s−1

xh+s
iv

= 0

∑

1≤i≤nh

xh
iu

∑

1≤i≤5

x1
i2
−
∑

1≤i≤5
x2
i7
= 0

∑

1≤i≤5

x1
i2
−
∑

1≤i≤5
x3
i11

= 0

∑

1≤i≤5

x1
i2
−
∑

1≤i≤5
x4
i17

= 0



335

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

The small example in Fig.  10 with 4 layers and 5 nodes in each layer, can be 
solved with CPLEX in a few seconds. Unfortunately, if we increase the size of the 
problem, CPLEX rapidly encounters difficulty in solving it optimally. It must be 
noted that the original formulation for the crossing minimization problem, is eas-
ily transformed to the well-known linear ordering model, for which efficient branch 
and cut methods have been proposed (Martí and Reinelt 2011). However, the inclu-
sion of the long-arc constraints modifies the polyhedron of solutions, resulting in 
a more complex problem. We found that CPLEX requires significantly longer run-
ning times to solve the model when we include these constraints, and therefore we 
are compelled to use a different method if we want to target medium and large size 
instances. In particular, CPLEX is not able to solve instances with 10 layers and 10 
nodes per layer in 1 h of CPU time. We propose a method based on the tabu search 
methodology to solve the problem with our new formulation.

4 � Tabu search for graph drawing

Our tabu search algorithm is designed in a flexible way for solving the arc crossing 
minimization problem subject to the long arcs alignment constraints. We have empir-
ically found that if we restrict the search to the orderings in which all long arcs are 
completely aligned (with no bends), the search only enables a fraction of the solutions 
to be explored, leading to low-quality final solutions. We, therefore, permit our algo-
rithm to explore solutions represented by any ordering of the nodes in each layer. We 

Fig. 10   Optimal solution of the Fig. 6 example



336	 F. Glover et al.

1 3

then evaluate both the alignment and the number of crossings to guide the search to 
solutions with long arcs aligned as much as possible and with a minimum number of 
crossings.

4.1 � Solution evaluation

Since the arcs in a HDAG are straight lines that join the nodes in two contiguous lay-
ers, a drawing of a hierarchical graph H = (V ,A, nl, L) defined on graph G = (V ,A) is 
given by the ordering of the nodes in each layer. Therefore, a drawing of H is defined 
asD = (H,Φ) , where Φ =

{
�1,�2,… ,�nl

}
 and �i is the ordering (permutation) of the 

nodes in the layerLi . That is, �i(j) is the node in position j in layerLi . The position of 
node v is defined as �(v) in such a way that if v = �i(j) then �(v) = j.

As described in the previous section, each long arc (u, v) ∈ AL is replaced with a 
chain of arcs (u, u1), (u1, u2)… , (us, v) ∈ A� , where u1, u2, … , us ∈ V � are intermediate 
(dummy) nodes. We compute the alignment of long arc (u, v) as:

Note that AL(u, v) , as a mathematical function, also depends on the hierarchical 
graph H and the ordering Φ , but for the sake of simplicity we do not include them in 
the AL definition. The total alignment value in a drawing D = (H,Φ) is computed as:

Although we want to obtain a drawing D with all the long arcs aligned, yielding 
AL(D) = 0 , as indicated above, we permit drawings to be generated with positive 
alignment values to give more freedom to the search process to minimize the number 
of crossings, which is by itself a hard optimization problem.

The problem of minimizing the arc crossings in a HDAG may be formulated as the 
problem of finding the optimal ordering in each layer. The optimal drawing D⋆ is such 
that no other D has fewer arc crossings. An arc crossing is produced between arcs (u, v) 
and 

(
u′, v′

)
 , where u, u� ∈ Li and v, v� ∈ Li+1 when:

For nodes u, u� ∈ Li where 𝜋(u) < 𝜋(u�) , we define Ci+1(u, u
�) as the number of arc 

crossings between layers Li and Li+1 which are due to all the arcs incident to u and u′ . 
Formally,

where Λi+1(u) = Λ(u) ∩ Li+1 is the set of nodes in Li+1 that are adjacent to u and 
Λ(u) = {v ∈ V ∶ (u, v) ∈ E} is the set of all nodes adjacent tou . Similarly, we define 
Ci−1

(
u, u�

)
 as the number of crossings between layers Li−1 and Li produced by arcs 

AL(u, v) =

s∑

i=1

|||�(u) − �
(
ui
)|||

AL(D) =
∑

(u,v)∈AL

AL(u, v)

(
𝜋(u) < 𝜋

(
u�
)
∧ 𝜋(v) > 𝜋

(
v�
))

∨
(
𝜋(u) > 𝜋

(
u�
)
∧ 𝜋(v) < 𝜋

(
v�
))

Ci+1

(
u, u�

)
=

∑

v∈Λi+1(u)

|||v
� ∈ Λi+1

(
u�
)
∶ 𝜋(v) > 𝜋

(
v�
)|||



337

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

incident to u and u′ inLi . We also define Λi−1(u) = Λ(u) ∩ Li−1 as the set of nodes in 
Li−1 that are adjacent tou.

With these definitions, we can calculate the total number of arc crossings in a 
drawing D = (H,Φ) as:

In the previous section, we describe our problem with a mathematical model, 
which is equivalent to find an optimal drawing D⋆ with minimum C(D) value, overall 
possible drawings D with AL(D) = 0 . However, such a description does not consider 
the running time to obtain the solution, just the quality or properties of the optimal 
solution. To obtain relatively good solutions in short computational times, we adopt 
the goal of obtaining a drawing D close to the optimal minimum value C

(
D⋆

)
 with 

a low AL(D) value. Note that this can be easily formulated with a model in which 
the alignment constraints have a positive value on the right hand side, instead of the 
0 in our model in Sect. 3.1, reflecting the desired AL(D) value. However, we made 
some tests with such a model with CPLEX and conclude that the proposed one with 
0 alignment, requires a similar CPU time and produces better solutions.

4.2 � Neighborhood definition

The neighborhood in our tabu search method is based on a deterministic selection 
without replacement. All vertices are considered for repositioning in their corre-
sponding layer. The method sweeps the entire solution, one vertex at a time, and 
probes the movement of vertices to all positions in their layer. Thus, a vertex v 
currently in position �(v) in layer Li , is evaluated for a possible move to positions 
p = 1, 2,… ,�(v) − 1,�(v) + 1,… ||Li|| , all of them in the same layer Li.

The move of inserting vertex v in position p has two associated evaluations: the 
change in the number of crossings, and the change in the alignment value. In math-
ematical terms, if D is the current drawing (a feasible solution of our problem), and 
Dv,p is the drawing obtained when removing v from its current position �(v) and 
inserting it in position p ≠ �(v) , then we define

It is clear that if a move is able to improve both the number of crossings 
( Cval_move(D, v, p) > 0 ) and the alignment ( ALval_move(D, v, p) > 0 ), we can say 
that it is an improving move and perform it. However, the tabu search procedure 
acts beyond a standard local search in the sense that it always executes a move and 
it only stops when the time limit is reached. Therefore, we define a more elaborated 
move selection applying candidate list strategies, as it is customary in tabu search.

C(D) =

k−1∑

i=1

∑

u, u� ∈ Li
𝜋(u) < 𝜋

(
u�
)

Ci+1

(
u, u�

)
=

k∑

i=2

∑

u, u� ∈ Li
𝜋(u) < 𝜋

(
u�
)

Ci−1

(
u, u�

)

Cval_move(D, v, p) = C(D) − C
(
Dv,p

)
,

ALval_move(D, v, p) = AL(D) − AL
(
Dv,p

)
.



338	 F. Glover et al.

1 3

In this problem, we want to minimize the number of crossings C(D) subject to the 
constraint that long arcs have to be aligned ( AL(D) = 0) . However, since we treat it 
as a soft constraint, exploring solutions with positive (but low) AL-values, we pro-
pose a move classification based on their two evaluations above.

Given a drawing D and a layer Li , let moves
(
D,Li

)
 be the set of all feasible 

moves in this layer, containing all the moves that insert a vertex v ∈ Li in a posi-
tion p ≠ �(v) . We define two sets of moves contained in this sets: Gmoves

(
Li
)
 and 

Amoves
(
Li
)
 . The set Gmoves

(
Li
)
 contains the good moves associated with layer 

Li , meaning that they reduce both criteria, number of crossings, and alignment. In 
mathematical terms, if move(v, p) consists of inserting v in position p , then:

Note, however, that if the current drawing has an alignment of 0 (i.e., all long arcs 
are straight lines), then we consider that a good move reduces the number of cross-
ings and keeps the alignment 0, since it cannot be further reduced. Symmetrically if 
the current drawing has 0 crossings, we consider that a good move reduces the align-
ment while keeping the number of crossings in 0.

The set Amoves
(
D,Li

)
⊆ moves

(
D,Li

)
 contains the acceptable moves in layer 

Li . Acceptable means in this context that the move reduces the alignment but mar-
ginally increases the number of crossings. Considering that the alignment is a soft 
constraint and that crossing reduction is an objective, we give priority to the align-
ment, and if there is no move that improves both objectives ( Gmoves

(
D,Li

)
= ∅ ), 

we permit the objective to slightly deteriorate. In particular, we introduce the search 
parameter � ∈ [0,1] that indicates the maximum relative increase allowed in the 
number of crossings. For example, a value of � = 0.2 indicates that we consider 
moves that increase the number of crossings by 20% of its current value. In math-
ematical terms:

where ΔCmove(D, v, p) = C(Dv,p)−C(D)

C(D)
.

4.3 � Short term tabu search

Figure 11 depicts the pseudocode of a sweep of the algorithm, which scans all the 
layers trying to perform good moves. The complete tabu search method performs 
many consecutive sweeps, until the time limit is reached.

It must be noted that “perform the best move” refers to the move that leads to the 
minimum alignment, and if there is more than one with the same alignment evalua-
tion, then we select the one that reduces the number of crossings among them. Addi-
tionally, note that in Step 7 of Fig. 11, the term “best” has to be taken as the “least 
bad” since this step is only performed when there is no improving move in the entire 
sweep. As described in the previous section, one of the main differences between 
tabu search and the standard local search is that tabu search always performs a 

Gmoves
(
D,Li

)
=

{
move(v, p) ∈ moves

(
D,Li

)
∶ Cval_move(D, v, p) > 0,

ALval_move(D, v, p) > 0

}

Amoves
�
D,Li

�
=
�
move(v, p) ∈ moves

�
D,Li

�
∶ ΔCmove(D, v, p)⟨�,ALval_move(D, v, p)⟩0

�



339

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

move, and if none of them improves the solution, then it resorts to the least bad one 
(or one that is best by a supporting criterion such as enhancing the diversity of solu-
tions visited).

We include a memory structure in the algorithm outlined in Fig. 11 to create a 
short-term tabu search method. In particular, when we select a new vertex v and 
move it, we record in tabu(v) the number of the current iteration (sweep), in order 
to prohibit moving it in subsequent sweeps. In this way, in a given iteration iter , we 
only permit a vertex u to be moved if:

where tenure is a search parameter specifying the number of iterations that a tabu 
element cannot be selected. After this number of iterations, the tabu status of u 
changes to not-active, and u may be moved if it qualifies.

4.4 � Overall method

Our algorithm has three phases. In the first one, we implement a pre-processing 
step to reduce the number of crossings, ignoring the alignment. Specifically, the 
method applies a local search based on insertions in which, at each iteration, the 
best move with respect to the number of crossings is selected in moves

(
D,Li

)
 . The 

move is only performed if it reduces arc crossings. The pre-processing finishes when 
crossings cannot be further minimized. Then, the main phase, consisting of the 
short-term tabu search, is applied. As described in the previous section, this phase 
gives priority to the alignment, handling the number of crossings as a secondary 

iter − tabu(u) > tenure,

Fig. 11   A sweep of the algorithm



340	 F. Glover et al.

1 3

objective. Finally, the third phase implements a post-processing step to further 
reduce the number of crossings without deteriorating the alignment. To this end, this 
phase applies a local search based on switching between original nodes (i.e., it does 
not move the intermediate nodes in long arcs). The method performs sweeps across 
layers, performing in each one the best available exchange of vertices for the goal of 
reducing crossings. It finishes when no further crossing reduction is possible with 
node exchanges.

As will be shown in our experimentation, the three-phase method described 
above is able to solve medium size problems in about 1 or 2 s of CPU time. When 
extra time is available, we consider an extended algorithm in which we embed this 
method in a multi-start framework. In particular, we implement a long-term mem-
ory tabu search that applies iteratively the three-phase method from different initial 
solutions. These initial solutions are built for diversification purposes by inserting 
each vertex in its least frequently occupied position of the layer. To this end, during 
the entire search, we record in freq (i, p) the number of times that vertex i has been 
in position p , and then, we use this frequency value to build an initial solution in 
each global iteration. Frequency memory is one of the most commonly used types of 
memory in tabu search, both for intensification and diversification purposes. A more 
extensive discussion of different forms of frequency memory appears in Glover and 
Laguna (1993).

It must be noted that the flexibility introduced in the search by relaxing the align-
ment constraint may eventually produce final solutions with positive alignment (i.e., 
with some bends in the long arcs). However, we have empirically found that in this 
way, the tabu search method usually produces solutions with a small number of 
bends and a small number of crossings as well, and if we restrict the search to visit 
only solutions with no bends, it obtains solutions with a significantly larger number 
of crossings. In our view, a partial relaxation of the model, in terms of permitting a 
small number of bends, constitutes a good trade-off between the two criteria.

5 � Computational experiments

In this section, we evaluate the performance of both the mathematical model and 
the tabu search algorithm. Additionally, some drawings will show the final appear-
ance of the solution obtained with our method, thus illustrating in a graphical way 
its effectiveness. In particular, we generated 10 instances (hierarchical graphs) given 
the number of vertices n , number of arcs m , number of layers nl , and number of long 
arcs, m_l.

The hierarchical graphs were generated following the guidelines in the literature 
(Napoletano et al. 2019). The number of layers nl is an input to the graph genera-
tor. For each vertex u in layer Li , an arc to a randomly chosen vertex v in layer Li+1 
is included. This guarantees that all vertices in layers L1 to Lnl−1 have a degree of at 
least one. In addition, the generator checks that all vertices in the last layer have a 
degree of at least one. If a vertex in layer Lnl is found with a degree of zero, an arc is 
added to a randomly chosen vertex in layer Lnl−1 . The generator then adds m_l long 
arcs. Additional arcs are added by randomly choosing two vertices in consecutive 



341

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

layers to meet the required density of 0.2 considered in previous works (see also 
Pastore et al., 2020).

5.1 � Numerical results

Table  1 reports the parameter values for our 10 instances (number of vertices, n , 
number of arcs, m , number of layers, nl , and number of long arcs, m_l ). We gener-
ated small and medium size instances, to be able to obtain the optimal solution, or 
good upper bounds, with CPLEX implementing our formulation.

In our first experiment, we compare the two mathematical models described in 
Sect. 3.1: the original model due to Jünger and Mutzel (1997) for crossing minimi-
zation, called Original model, and our adaptation that includes additional alignment 
constraints, called Aligned model. Both models are described in Sect. 3.1. We run 
CPLEX with a time limit of 1 h for each instance and each model. Within this time 
limit, it is able to obtain the optimal solution in the first 8 instances. However, in the 
last two instances in our benchmark, 9 and 10, with 144 and 140 elements respec-
tively, it does not reach the optimal solution, and we are therefore considering the 
best lower bound found in each model. Table  2 reports the number of crossings, 
C(D) , obtained with each model, and the relative increment on the number of cross-
ings of the aligned model with respect to the original model.

Results in Table  2 confirm that, as expected, the number of crossings usually 
increases when we add alignment constraints to the original model. As a matter 
of fact, this table shows an important variability in terms of the relative increment 
when using the aligned model. The extreme cases are instance 5, in which we obtain 
the same number of crossings with both models, equal to 6, and instance 10, in 
which the number of crossings increases in an 77.3% when the alignment constraints 
are included in the model (although as mentioned above, in this instance we are 
comparing lower bounds, not optimal solutions). We can therefore conclude that, 
since it depends on each particular instance, it is recommended to have both solu-
tions, with and without alignment constraints, when solving this problem.

Table 1   Instances characteristics Instance id n m nl m_l

1 36 51 6 7
2 49 69 7 6
3 48 72 6 9
4 64 110 8 10
5 50 62 10 10
6 50 65 5 10
7 120 154 10 17
8 120 181 12 21
9 144 192 12 19
10 140 239 10 25



342	 F. Glover et al.

1 3

We can draw another important conclusion from Table 2. We need to resort to 
metaheuristic methods to solve this problem, since CPLEX requires long running 
times even for the small and medium size instances considered in our benchmark. 
It is well documented (see for example North 1996), that graph drawing systems 
require algorithms that are able to generate graphs in a few seconds. The largest 
graphs in our benchmark have around 150 vertices, which can be considered of 
medium size, and CPLEX requires more than one hour of CPU time to solve them, 
making CPLEX impractical for graph drawing systems.

We consider two versions of our tabu search algorithm, the short term tabu 
search, to provide a solution in few seconds (in a fraction of a second for small prob-
lems), and the long term tabu search, to explore the solution space more thoroughly 
(requiring longer running times). As described in Sect. 4, the long-term tabu search 
approach implements a frequency-based multi-start method, applying multiple times 
the short-term tabu search from different starting solutions. Table 3 reports the solu-
tions obtained with the short term tabu search, reporting the number of crossings, 
Tabu C(D) , the alignment value, tabu AL(D) , and the running time, CPU Time. 
This table also reports the number of crossings obtained with the CPLEX solution, 
CPLEX C(D).

Table  3 shows that the short-term tabu search is able to obtain good solutions 
in extremely short CPU times (less than 1  s on average). The number of cross-
ings is however around 30% larger on average than the optimal solution obtained 
with CPLEX. Instances 5 and 9 are especially difficult to solve by our short term 
approach since it obtains much larger numbers of crossings than CPLEX, and an 
alignment value AL(D) relatively far from 0 (which would correspond to a per-
fect alignment of long arcs). On the other hand, in many cases, the short term tabu 
search is able to obtain a solution with AL(D) = 0 , indicating the effectiveness of 
the flexible strategy that permits it to visit solutions with positive alignment values. 
Especially interesting is the result of the largest example in our test bed, number 
10 with 25 long arcs. In this example, CPLEX was not able to obtain the optimal 

Table 2   Number of crossings 
obtained with CPLEX within 
1 h of CPU

*Not certified as optimal

Instance id Original model

C(D)

Aligned model

C(D)

Rel. increment

1 27 30 11.1%
2 29 38 31.0%
3 30 34 13.3%
4 52 56 7.6%
5 6 6 0.0%
6 38 42 10.5%
7 52 69 32.7%
8 144 157 9.0%
9 107* 168* 57.0%
10 233* 413* 77.3%
Average 71.9 101.4 25.0%



343

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

solution in 1 h of CPU time, and the short-term tabu search obtains a better solution 
than CPLEX in only 4.49 s of CPU time.

Table 4 shows the results obtained with the long-term tabu search, reporting the 
same statistics shown in Table  3 but now with the more complete version of our 
method which takes more time to execute, as reflected in the CPU Time column in 
this table.

As expected, the results obtained with the long-term tabu search improve those 
of the short term version, although they come with larger running times. In par-
ticular, in all the instances, with the exception of number 9, our metaheuristic is 
able to obtain a solution with all the long arcs aligned ( AL(D) = 0 ), and the num-
ber of crossings is on average C(D) = 140.6 . They are larger than those obtained 
with CPLEX (on average C(D) = 101.3 ), but running times are moderate (19.73 s 
on average), while CPLEX requires running times close to 1 h. It indicates that tabu 
search is a suitable method for graph drawing systems.

Table 3   Solutions obtained with 
the Short Term Tabu Search

Instance CPLEX C(D) Tabu C(D) Tabu AL(D) CPU time

1 30 42 0 0.03
2 38 71 0 0.08
3 34 45 0 0.09
4 56 80 0 0.18
5 6 26 9 0.02
6 42 60 0 0.14
7 69 175 5 1.31
8 157 313 9 1.14
9 168 319 17 2.39
10 413 394 4 4.49
Average 101.3 152.5 4.4 0.99

Table 4   Solutions obtained with 
the long term Tabu search

Instance Cplex C(D) Tabu C(D) Tabu AL(D) CPU time

1 30 30 0 0.55
2 38 47 0 1.56
3 34 36 0 2.27
4 56 69 0 4.73
5 6 8 0 0.50
6 42 44 0 2.89
7 69 158 0 24.67
8 157 259 0 24.39
9 168 283 2 42.34
10 413 472 0 93.39
Average 101.3 140.6 0.2 19.73



344	 F. Glover et al.

1 3

5.2 � Drawings

The conventional wisdom that a picture is worth a thousand words applies here to 
evaluate our proposals. In this subsection we show some drawings obtained with 
both CPLEX and the tabu search methods, to illustrate their quality.

Figure 12 shows the solution of our mathematical formulation to minimize the 
number of crossings on instance 4 with the model to align long arcs. As shown in 
Table 2, it has C(D) = 56 arc crossings, and all long arcs aligned ( AL(D) = 0).

As shown in the numerical experiments above, the CPLEX method is too time-
consuming and we find it valuable to make use of our metaheuristic approaches to 
solve this problem in graph drawing systems. Figures  13 and 14 show the draw-
ings of two instances in our testbed, namely 4 and 5, obtained with our tabu search 
method in short running times.

Although this admittedly involves a subjective evaluation, we believe that Fig. 13, 
obtained with tabu search in 4.7 s of CPU time, is very similar to Fig. 12, obtained 
with CPLEX in about 1 h of CPU time, in terms of their readability (i.e., how easy is 
to capture information from them). As a matter of fact, both drawings have all long 

Fig. 12   Cplex solution of instance 4



345

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

arcs aligned, and the optimal one in Fig. 12 has 56 arc crossings, while the heuristic 
one in Fig. 13 has 69 crossings.

In our opinion, these drawings confirm that tabu search is able to obtain readable 
drawings automatically (without any user intervention) in very short running times, 
as required by software tools.

5.3 � Two objectives discussion

As noted, we elect to minimize the number of crossings, C(D) , subject to seeking 
an alignment of long arcs, AL(D) , that is close to 0 (a perfect alignment). In other 
words, we implement this as a soft constraint, considering solutions where AL(D) 
is relatively low without compelling it to be 0. This opens the door to considering 
AL(D) as a second objective, and therefore approaching this problem within a multi-
objective optimization framework that simultaneously optimizes C(D) and AL(D) . 
This can be the topic for future research, but we believe that keeping AL(D) as a soft 

Fig. 13   Tabu search solution of instance 4



346	 F. Glover et al.

1 3

constraint provides a good trade-off between the well-established criterion in graph 
drawing of crossing minimization, and our proposal of favoring long arcs alignment.

Our short-term tabu search applies three phases to handle these two criteria. Fig-
ure 15 illustrates the performance of the method in Instance 1 in terms of these two 
values, C(D) and AL(D) . This figure shows that the initial solution has C(D) = 95 
crossings and AL(D) = 34. In the first phase, called pre-processing, a local search 
method reduces the number of crossings, ignoring the alignment value. Specifically, 

Fig. 14   Tabu search solution of instance 5



347

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

from iteration 1 to 25 (depicted in the x-axis), the number of crossings drops from 
95 to 45, and the alignment value slightly oscillates in the interval [30, 40]. Then, 
the tabu search phase is applied, minimizing the alignment value AL(D) from 40 to 
0. The tabu search is able to reduce this value while keeping the number of crossings 
relatively low (in the interval [50, 70]). In the next iterations, from 45 to 80, the tabu 
search is not able to improve any of the two values, and it ends. Finally, the local 
search post-processing based on exchanges of the original vertices is able to further 
reduce the number of crossings to C(D) = 42 keeping AL(D) = 0 . This figure is rep-
resentative of the method performance, as confirmed by Fig. 16, where the search 
profile of Instance 2 exhibits a similar pattern.

6 � Conclusions

This paper has a twofold objective. In one hand, we provide a short tutorial on a 
metaheuristic methodology, tabu search, and on the other hand we propose a new 
model for hierarchical graph drawing. Our goal has been to show how tabu search 
provides a robust and effective alternative to target optimization problems in the 
context of graph drawing and, in general, in graphical computer science.

To amplify the relevance of these connections, we observe that the overarching 
principle of tabu search is to identify strategies for exploiting adaptive memory, 

0

20

40

60

80

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81
AL(D) C(D)

Fig. 15   Search profile in instance #1

0

20

40

60

80

100

120

140

160

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

AL(D) C(D)

Fig. 16   Search profile in instance #2



348	 F. Glover et al.

1 3

rather than following the policy of relegating decisions to random choices, as often 
is fashionable in a variety of other metaheuristic methods. The highly attractive 
results provided by the adaptive memory strategies underlying tabu search have had 
an evident impact on the design of metaheuristic methods in general and are giving 
rise to extensions that are proving valuable across a wide range of applications.

Adaptive memory in TS has the dual purpose of exploiting structure and behav-
ior. As we have emphasized, this memory is linked to differentiating various attrib-
utes of search processes that may be broadly classified as solution attributes and 
move attributes. While solution attributes take precedence for most purposes, move 
attributes, which concern the differentiation and exploitation of neighborhoods, lead 
to multi-neighborhood search strategies as in Glover et al. (1984), Xu et al. (1996, 
1997a), Yagiura et al. (2004), Wu, et al. (2013) that may be compared and contrasted 
to those used in Variable Neighborhood Search (VNS). (See, e.g., Sánchez-Oro et al. 
(2017).) The connection between attributes and frequency and recency memory also 
underlies the emphasis on probabilistic choices in TS in contrast to random choices, 
defining probabilities in relation to frequency and quality as in Lokketangen and 
Glover (1996), Xu et al. (1997b) and Guermi et al. (2019).

It is not possible within the brief space of this tutorial to fully cover these aspects 
of tabu search, and for readers who want to explore TS adaptive memory strategies 
more deeply, a selection of “Additional Suggested References” is included at the 
end of the References section. These references are divided into subsections consist-
ing of Fundamental Papers and A Sampling of Studies Establishing New Records, 
together with links for downloading papers of interest. Both groups, but particularly 
the Fundamental Papers, include proposals that have yet to be examined in detail, 
and therefore provide a source for future research: Glover et al. (2018a), Shang et al. 
(2021), Glover (1997), Glover and Laguna (2013), Barr et al. (2020), Glover et al. 
(2018b), Lai et al. (2016), Lai et al. (2018a), Lai et al. (2019), Lai et al. (2020), Lai 
et al. (2018b), Wang et al. (2014), Yagiura et al. (2006), and Yagiura et al. (2007).

Acknowledgements  This research has been partially supported by the Spanish Government, Minis-
terio de Ciencia, Innovación y Universidades, with Grant Ref. PGC2018-0953322-B-C21/MCIU/AEI/
FEDER-UE.

References

Brandes U, Köpf BA (2002) Fast and simple horizontal coordinate assignment. In: Mutzel P, Jünger M, 
Leipert S (eds) Graph drawing. Lecture Notes in Computer Science. Springer, Berlin, vol 2265, pp 
31–44

Carpano M (1980) Automatic display of hierarchized graphs for computer-aided decision analysis. IEEE 
Trans Syst Man Cybern 10(11):705–715

Di Battista G, Eades P, Tamassia R, Tollis I (1998) Graph drawing: algorithms for the visualization of 
graphs, 1st edn. Prentice Hall PTR, Upper Saddle River

Glover F (1963) Parametric combinations of local job shop rules. Chapter IV, ONR Research Memoran-
dum No. 117, GSIA, Carnegie-Mellon University, Pittsburgh

Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper 
Res 13(533):549

Glover F (1989) Tabu search, Part I. ORSA J Comput 1(3):190–206
Glover F (1990) Tabu search, Part II. ORSA J Comput 2(1):4–32



349

1 3

Tabu search tutorial. A Graph Drawing Application﻿	

Glover F, Laguna M (1993) Tabu search. In: Reeves C (ed) Chapter in modern heuristic techniques for 
combinatorial problems. Blackwell Scientific Publishing, Oxford, pp 71–140

Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston
Glover F, Glover R, McMillan C (1984) A heuristic programming approach to the employee scheduling 

problem and some thoughts on managerial robots. J Oper Manag 4(2):113–128
Glover F, Hanafi S, Guermi O, Crevits I (2018a) A simple multi-wave algorithm for the uncapacitated 

facility location problem. Front Eng Manag 5:451–465
Grötschel M, Michael Jünger J, Reinelt G (1984) A cutting plane algorithm for the linear ordering prob-

lem. Oper Res 32(6):1195–1384
Guermi O, Nduwayoa P, Todosijevic R, Hanafi S, Glover F (2019) Probabilistic Tabu search for the 

cross-docking assignment problem. Eur J Oper Res 277(3):875–885
Jünger M, Lee EK, Mutzel P, Odenthal T (1997) A polyhedral approach to the multi-layer crossing mini-

mization problem. In: International symposium on graph drawing. Springer, pp 13–24
Jünger M, Mutzel P (1997) 2-layer straightline crossing minimization: performance of exact and heuristic 

algorithms. J Gr Algorithms Appl. https://​doi.​org/​10.​1142/​97898​12777​638_​0001
Kaufmann M, Wagner D (2001) Drawing graphs: methods and models. Lecture Notes in Computer Sci-

ence. Springer, Berlin
Laguna M, Martí R (1999) GRASP and path relinking for 2-layer straight line crossing minimization. 

INFORMS J Comput 11:44–52
Løkketangen A, Glover F (1996) Probabilistic move selection in Tabu search for zero-one mixed inte-

ger programming problems. In: Osman IH, Kelly JP (eds) Meta-heuristics: theory & applications. 
Springer, Berlin, pp 467–487

Martí R (1998) A tabu search algorithm for the bipartite drawing problem. Eur J Oper Res 106:558–569
Martí R, Reinelt G (2011) The linear ordering problem. Exact and heuristic methods in combinatorial 

optimization. Springer, Heidelberg
Martí R, Campos V, Hoff A, Peiró J (2018) Heuristics for the min-max arc crossing problem in graphs. 

Expert Syst Appl 109:100–113
Napoletano A, Martínez-Gavara A, Festa P, Pastore T, Martí R (2019) Tabu search for min-max edge 

crossings in graphs. Eur J Oper Res 274:710–729
North SC (1996) Incremental layout in DynaDAG. In: Proceedings of Graph Drawing’95. Lecture Notes 

in Computer Science, vol 1027, pp 409–418. Springer, Berlin
Pastore T, Martínez-Gavara A, Napoletano A, Festa P, Martí R (2020) Heuristics for the constrained 

incremental graph drawing problem. Comput Oper Res 114:104830
Sánchez-Oro J, Martínez-Gavara A, Laguna M, Martí R, Duarte A (2017) Variable neighborhood scatter 

search for the incremental graph drawing problem. Comput Optim Appl 68:775–797
Shang Z, Hao J-K, Zhao S, Wang Y (2021) Multi-wave tabu search for the boolean quadratic program-

ming problem with generalized upper bound constraints. In: IFORS 2021, the 22nd conference of 
the International Federation of Operational Research Societies

Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system struc-
tures. IEEE Trans Syst Man Cybern SMC 11(2):109–125

Wu Q, Hao J-K, Glover F (2013) Multi-neighborhood tabu search for the maximum weight clique prob-
lem. Ann Oper Res 196(1):611–634

Xu J, Chiu S, Glover F (1996) Using Tabu search to solve the Steiner tree-star problem in telecommuni-
cations network design. Telecommunications Systems 6:117–125

Xu J, Chiu S, Glover F (1997a) Tabu search for dynamic routing communications network design. Tel-
ecommun Syst 8:1–23

Xu J, Chiu S, Glover F (1997b) Probabilistic Tabu search for telecommunications network design. Comb 
Optim: Theory Pract 1(1):69–94

Yagiura M, Iwasaki S, Ibaraki T, Glover F (2004) A very large-scale neighborhood search algorithm for 
the multi-resource generalized assignment problem. Discret Optim 1:87–98

Additional selected references:  fundamental papers

Glover F (1997) Tabu search and adaptive memory programming—advances, applications and chal-
lenges. In: Barr RS, Helgason RV, Kennington JL (eds) Interfaces in computer science and opera-
tions research. Kluwer Academic Publishers, Boston, pp 1–75

https://doi.org/10.1142/9789812777638_0001


350	 F. Glover et al.

1 3

Glover F, Laguna M (2013) Tabu Search in Analytics and Computational Science. In: Pardalos PM, Du 
D-Z, Graham RL (eds) Handbook of Combinatorial Optimization, vol XXI, 2nd edn. Kluwer Aca-
demic Publishers, Norwell, pp 3261–3362

A sampling of studies establishing new records

Barr R, Glover F, Huskinson T, Kochenberger G (2020) An extreme-point Tabu-search algorithm for 
fixed charge network problems. Netw Int J: Spec Issue Celebr 50 Years Netw: Part 2 77(2):322–340

Glover F, Hanafi S, Guermi O, Crevits I (2018b) A simple multi-wave algorithm for the uncapacitated 
facility location problem. Front Eng Manag 5(4):451–465

Lai X, Hao J-K, Lü Z, Glover F (2016) A learning-based path relinking algorithm for the bandwidth col-
oring problem. Eng Appl Artif Intell 52:81–91

Lai X, Hao J-K, Glover F, Lü Z (2018a) A two-phase tabu-evolutionary algorithm for the 0–1 multidi-
mensional knapsack problem. Inf Sci 436–437:282–301

Lai X, Hao J-K, Glover F, Yue D (2019) Intensification-driven tabu search for the minimum differential 
dispersion problem. Knowl-Based Syst 167(1):168–186

Lai X, Hao J-K, Glover F (2020) A study of two evolutionary/tabu search approaches for the generalized 
max-mean dispersion problem. Expert Syst Appl 139:112856

Lai X, Yuea D, Hao J-K, Glover F (2018b) Solution-based tabu search for the maximum min-sum disper-
sion problem. Inf Sci 441:79–94

Wang Y, Hao J-K, Glover F, Lu Z (2014) A Tabu search based memetic algorithm for the maximum 
diversity problem. Eng Appl Artif Intell 27:103–114

Yagiura M, Ibaraki T, Glover F (2006) A path relinking approach with ejection chains for the generalized 
assignment problem. Eur J Oper Res 169:548–569

Yagiura M, Komiya A, Kojima K, Nonobe K, Nagamochi H, Ibaraki T, Glover F (2007) A path relinking 
approach for the multi-resource generalized quadratic assignment problem. Lecture Notes in Com-
puter Science. Springer, Berlin, vol 4638, pp 121–135

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Tabu search tutorial. A Graph Drawing Application
	Abstract
	1 Introduction
	2 Tabu search
	2.1 Short term memory
	2.2 Long term memory

	3 Arc crossing and long arcs
	3.1 Mathematical model

	4 Tabu search for graph drawing
	4.1 Solution evaluation
	4.2 Neighborhood definition
	4.3 Short term tabu search
	4.4 Overall method

	5 Computational experiments
	5.1 Numerical results
	5.2 Drawings
	5.3 Two objectives discussion

	6 Conclusions
	Acknowledgements 
	References




