
Information Sciences 538 (2020) 444–466
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Bi-objective optimization of biclustering with binary data
https://doi.org/10.1016/j.ins.2020.05.078
0020-0255/� 2020 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: Said.Hanafi@uphf.fr (S. Hanafi), gintaras.palubeckis@ktu.lt (G. Palubeckis), glover@colorado.edu (F. Glover).
Saïd Hanafi a,⇑, Gintaras Palubeckis b, Fred Glover c

a LAMIH, CNRS UMR 8201, Université Polytechnique des Hauts-de-France, Valenciennes 59313, France
b Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania
cECEE- College of Engineering and Applied Science, University of Colorado –Boulder, Boulder, CO 80309, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 February 2020
Received in revised form 21 April 2020
Accepted 20 May 2020
Available online 26 May 2020

Keywords:
Bi-clustering
Bi-objective optimization
Biclique
e-Constraint method
Clustering consists of partitioning data objects into subsets called clusters according to
some similarity criteria. This paper addresses a structure for generating overlapping clus-
ters, where data objects can belong to more than one subset, which we join with bi-
objective optimization and link to biclustering for problems with binary data.
Biclustering simultaneously groups the objects and features so that a specific group of
objects has a special group of features. In recent years, biclustering has received a lot of
attention in several practical applications. First we present an integer programing formu-
lations for the bi-objective optimization of biclustering. Next we propose a constructive
heuristic based on the set intersection operation and its efficient implementation for solv-
ing a series of mono-objective problems used inside the e-constraint method (obtained by
keeping only one objective function and the other objective function is integrated into con-
straints). Finally, our experimental results show that our proposed heuristic provides very
good results and significantly reduces the computational expense compared to using the
CPLEX solver as an exact algorithm for finding an optimal solution, which drastically
increases the computational cost for large instances.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is a technique that involves the grouping a set of objects in such a way that objects in the same cluster are more
similar (in some sense) to each other than to those in other clusters, exploiting the structure of data without requiring the
assumptions common to most statistical approaches. Called unsupervised learning or unsupervised classification, clustering
is used for data analysis in many fields, including data mining, machine learning, pattern recognition, image analysis and
bioinformatics. Such techniques have been designed for a variety of data types — homogeneous and nonhomogeneous
numerical data, categorical data, binary data. This paper addresses an overlapping form of clustering, which join with bi-
objective optimization and link to biclustering.

Formally, let an input data set of m objects (samples) and n features (attributes) be given as a rectangular matrix A = (aij)-
m�n, where the value aij is the expression of the ith object in the jth feature. Clustering consists of partitioning the data
objects into disjoint subsets (clusters) according to some similarity criteria. Biclustering simultaneously groups the objects
and features so that a specific group of objects has a special group of features. More precisely, a biclustering technique iden-
tifies a subset of objects (rows) that exhibit similar patterns on a subset of features (columns) in an input data matrix A.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.05.078&domain=pdf
https://doi.org/10.1016/j.ins.2020.05.078
mailto:Said.Hanafi@uphf.fr
mailto:gintaras.palubeckis@ktu.lt
mailto:glover@colorado.edu
https://doi.org/10.1016/j.ins.2020.05.078
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 445
A variety of names are used to designate the biclustering domain, including co-clustering, bidimensional clustering, two-
mode clustering, bimodal cluster analysis, coupled two-way clustering, two-way clustering and direct clustering, among
others. The term biclustering was introduced by Mirkin [24] and was notably applied by Cheng and Church [4] to analyze
gene expression data, which significantly contributed to the popularization of biclustering techniques. However, the biclus-
tering model can be traced at least as far back as the work of Malgrange [23] and was treated in the work of Hartigan [19].

A biclustering algorithm looks for a set of biclusters such that each bicluster satisfies certain characteristics of homogene-
ity, giving rise to versions such as: i) biclusters with constant values, ii) biclusters with constant values in columns or rows,
iii) biclusters with coherent values, and iv) biclusters with coherent evolutions. (Definitions and examples of these various
bicluster types can be found in [22]) Most of the literature on biclusters presents heuristic or exact algorithms for enumer-
ating all maximal biclusters. In the general case, the biclustering problem is NP-hard [4].

Clustering is closely connected to combinatorial optimization and graph theory. In particular, biclustering is related to
bipartite graph partitioning [5,37,8,9]. An interesting connection between data matrices and graph theory can be established
as follows. The data matrix A ¼ aij

� �
can be viewed as a weighted bipartite graph G ¼ M;N; Eð Þ where each node i 2 M cor-

responds to a row and each node j 2 N corresponds to a column where an edge i; jð Þ 2 E has weight aij. A biclique of bipartite
G is a subgraph of G that is also a complete bipartite graph. A biclique of a bipartite graph therefore corresponds to a bicluster
of the associated matrix. Finding a biclique of a maximum number of vertices can be done in polynomial time [12], while
finding a biclique of a maximum number of edges is NP-complete [29]. There exist several computationally challenging
problems related to bicliques such as enumerating maximal biclique subgraphs and covering the edges of a bipartite graph
by bicliques. Other important applications of those problems arise in the context of data compression [1], automata and lan-
guage theories [11], graphs [10] and partial orders [17].

In recent years, biclustering has proved to be a powerful data analysis technique due to its wide success in various appli-
cation domains, particularly in microarray and gene expression analysis, computational biology, biomedicine, text mining,
pattern discovery, tokens and contexts in natural language processing, data exploration, marketing, web search, collabora-
tive filtering and many other applications. Useful reviews on biclustering techniques and their applications can be found in
[3,4,8,9,22,32]. The reader is also referred to a recent survey by Pavlopoulos et al. [28], that additionally covers a broad spec-
trum of problems on bipartite graphs. In the recent past, several authors have investigated a special case of the bipartite
graph partitioning problem where the data matrix A is 0–1 valued and thus represented by an unweighted graph, notably
in [6,25,30], and [33]. Analysis of the literature shows that different multiobjective biclustering problems have been consid-
ered where the objectives to optimize involve coherence, row variances and bicluster sizes or combinations of these factors.
In the literature, coherence is often expressed by a Mean Squared Residue dissimilarity measure and the row variances con-
cern the row fluctuations for the purpose of maximizing the mean row variances. Most models express bicluster size as a
mono-objective function with two arguments consisting of the number of rows and the number of columns (see
[16,20,31,38], and the references cited herein). Considering this observation, our motivation is to study a bi-objective version
of the problem where the goal is to maximize the size of each component of the biclique.

1.1. Design of the paper

In this paper, we consider three new bi-objective optimization of biclustering problems with binary data, i.e. aij 2 0;1f g
for all i 2 M and j 2 N. From graph view, the matrix A ¼ aij

� �
is the biadjacency matrix of the bipartite graph G in which aij ¼ 1

if i; jð Þ 2 E and aij ¼ 0 if i; jð Þ R E. First, we begin by defining the bipartite graph Gv ¼ M;N; Evð Þ, for v 2 0;1f g, where

Ev ¼ i; jð Þ : i 2 M; j 2 Nf such that aij ¼ vg: Note that the graph G0 is the bipartite graph complement of the graph G1 and
vice-versa. A biclique Bv I; Jð Þ of Gv is a complete bipartite subgraph of Gv induced by I#M and J#N such that I and J are
nonempty. Trivially, a biclique Bv I; Jð Þ of Gv has Ij j þ Jj j vertices and Ij j � Jj j edges. Hence, the two bi-objective biclustering
problems, for v 2 0;1f g; consist in finding a biclique Bv I; Jð Þ of Gv that simultaneously maximizes the sizes of both sets I
and J. The first two bi-objective biclustering problems, for v 2 0;1f g; can be expressed as follows
Gvð Þ max gv ¼ Ij j; Jj jð Þ
s:t: Bv I; Jð Þ is a biclique of Gv

�

The third bi-objective biclustering problem is a junction of the two first problems Gv for v 2 0;1f g; i.e. it consists of find-
ing a biclique B0 I0; J0

� �
of G0 and a biclique B1 I1; J1

� �
of G1 that simultaneously maximize the sizes of both sets I0 [I1 and

J0 [J1. This third bi-objective biclustering problems can be expressed as follows
G01ð Þ

max g01 ¼ I0 [I1
��� ���; J0 [J1

��� ���� �
s:t: B0 I0; J0

� �
is a biclique of G0

: B1 I1; J1
� �

is a biclique of G1

8>>>><
>>>>:

446 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
The remainder of this paper is organized as follows. In Section 2, we provide basic definitions for bi-objective optimiza-
tion problems and we present an e-constraint Method for a bi-objective optimization problem which solves a series of
mono-objective problems by keeping only one objective function and the other objective function is integrated into con-
straints. Section 3 presents an integer programing and biclique formulations for the bi-objective optimization biclustering
problem. Section 4 is dedicated to approximate algorithms for solving the mono-objective problems, proposing an effective
constructive heuristic and its efficient implementation. Section 5 illustrates the running of the proposed algorithms on a
small instance. Advanced considerations are covered in Section 6, including allowance for clusters to overlap. Section 7 pre-
sents the generation of the instances and the results of extensive computational experiments. Concluding remarks are given
in Section 8.

2. e-Constraint method

In this section, we recall some basic definitions for a bi-objective optimization problem (see e.g. [7]) and the adaptation of
the e-constraint method, introduced by Haimes et al. [18], for our three bi-objective biclutering problems. We assume that a
a bi-objective optimization problem is described as follows
Gð Þ max g xð Þ ¼ g1 xð Þ; g2 xð Þ� �
s:t: x 2 X

(

The objective space is defined by Y ¼ g1 xð Þ; g2 xð Þ� �
: x 2 X

� 	
: Since in general, there is no feasible solution which mini-

mizes the two objectivesg1 xð Þ and g2 xð Þ simultaneously, we search for an acceptable trade-off between them. This compro-
mise is defined by a dominance relation which corresponds to a partial order on the objective space Y .

Definition 1. (Pareto dominance). Let g and g0 be two solutions in the objective space Y of a bi-objective problem.We say that
g dominates g0, denoted by g � g0, if and only if gk � g

0k, for k = 1, 2, with at least one inequality being strict.
We remark that the widely-used concept of Pareto optimization, which appeared at the end of the 19th century [27], is

useful for finding the compromise solutions in our present context. We apply the common terminology of referring to the set
of all non-dominated solutions in the space of objectives as the optimal Pareto front [2].
Definition 2. (Pareto efficiency). A solution x 2 X is called Pareto efficient, if and only if no solution x0 2 X exists such that
g xð Þ � g x0ð Þ. The efficient set is denoted by E� ¼ x 2 X : x is Pareto efficientf g and the Pareto front is denoted by
F� ¼ g xð Þ : x 2 E�f g.

The efficient set E� and Pareto front F� contain all the Pareto efficient solutions and all the non-dominated points in the
objective space, respectively. In other words, x� 2 X is efficient if there is no other feasible solution x 2 X which leads to an
improvement in some criterion without simultaneous deterioration in at least one other.

The Ideal and Nadir points are upper and lower bounds on non-dominated points. These points give an indication of the
range of the values which non-dominated points can attain.
Definition 3. (Ideal and Nadir points). The point gI ¼ gI;1; gI;2
� �

with gI;k ¼ max gk xð Þ : x 2 X
� 	

for k = 1, 2, is called the Ideal

point. The point gN ¼ gN;1; gN;2
� �

with gN;k ¼ min gk xð Þ : x 2 E�� 	
for k = 1, 2, is called Nadir point.

The determination of the Ideal and Nadir points yields the following consequences:

i) The points gI;1; gN;2
� �

and gN;1; gI;2
� �

are efficient points, i.e. gI;1; gN;2
� �

; gN;1; gI;2
� �� 	

F�.
ii) The evaluation vector g1 xð Þ; g2 xð Þ� �

of a solution x 2 E� is bounded as follows:
gN;1 � g1 xð Þ � gI;1 and gN;2 � g2 xð Þ � gI;2:
The e-constraint method chooses a single objective to be optimized while the other objective is treated as a constraint.
More specifically, the bi-objective optimization problem G is replaced by one of the two parametric problems
G1 e2
� �� � max g1 xð Þ

s:t: g2 xð Þ P e2

x 2 X

8><
>:
and
G2 e1
� �� � max g2 xð Þ

s:t: g1 xð Þ P e1

x 2 X

8><
>:

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 447
The two parametric problems G1 e2
� �

and G2 e1
� �

can be encapsulated in the following form
Gp e3�p
� �� � max gp xð Þ

s:t: g3�p xð Þ P ep

x 2 X

8><
>:
with p 2 1;2f g.
The e-constraint method is justified by the following properties:

- For p 2 1;2f g, an optimal solution x�of GP e3�p
� �

, is weakly efficient, i.e. 9= x 2 X : gp xð Þ � gp x�ð Þ
- If there exists an unique optimal solution x� of GP e3�p

� �
for some p 2 1;2f g, then x� is strictly efficient i.e.

9= x 2 X : gk xð Þ > gk x�ð Þ, for k ¼ 1;2 (hence it is efficient).
- A solution x 2 X is efficient if and only if there exists e1; e2

� �
such that x is an optimal solution of GP e3�p

� �
for all p 2 1;2f g.

The extreme point that is computed is then used to determine the bound on the objectives, and this is repeated until there
are no new solutions left.

The e-constraint method is easy to implement, but it requires potentially high computational cost (many runs may be
required).

e-Constraint algorithm for Gv problem

Choose p 2 1;2f g;
Compute the Ideal point gI ¼ gI;1; gI;2

� �
and the Nadir pointgN ¼ gN;1; gN;2

� �
Set F ¼ gI;p; gN;3�p

� �� 	
and e3�p ¼ gN;3�p þ e, withe ¼ 1ð Þ

While e3�p � gI;3�p do

Solve GP e3�p
� �

to obtain an optimal solution x� with the values g�;p; g�;3�p
� �

Set F ¼ F [g�;p; g�;3�p
� �� 	

ande3�p ¼ g�;3�p þ e
Endwhile
Remove dominated points from F if required.
Return F.
3. Integer programing formulation of problems G , G1 2
� �

and G2 1
� �

For a subset I#M, define the intersect sets N0 Ið Þ, N1 Ið Þ and N01 Ið Þ by

N0 Ið Þ ¼ j 2 N : aij ¼ 0 for every i 2 I

� 	
N1 Ið Þ ¼ j 2 N : aij ¼ 1 for every i 2 I

� 	
N01 Ið Þ ¼ N0 Ið Þ [N1 Ið Þ
We can easily observe that for any set I#M, Bv I;Nv Ið Þð Þ is a biclique of the graph Gv : Hence, we are interested in iden-
tifying sets I#M with maximal size that maximize the size of these intersect sets, i.e., that maximize jN0 Ið Þj or jN1 Ið Þj or
jN01 Ið Þj.

More precisely, for v 2 0;1f g, the goal of identifying sets I#M that maximize simultaneously Ij j the size of the set I and
jNv Ið Þj the size of intersect set can be expressed as that of solving the following bi-objective optimization problem
Gvð Þ max gv Ið Þ ¼ Ij j; Nv Ið Þj jð Þ
s:t: I#M

�

For v ¼ 01, the bi-objective biclustering problem can be expressed as follows
G01ð Þ
max g01 I0; I1

� �
¼ I0 [I0

��� ���; k Nv I0
� �

[Nv I1
� �

k
� �

s:t: I0 #M

I1 #M

8>><
>>:
More precisely, for v 2 0;1f g, the goal of identifying sets I#M that maximize simultaneously Ij j the size of the set I and
jNv Ið Þj the size of intersect set can be expressed as that of solving the following bi-objective optimization problem

448 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
Gvð Þ max gv Ið Þ ¼ Ij j; Nv Ið Þj jð Þ
s:t: I#M

�

For v ¼ 01, the bi-objective biclustering problem can be expressed as follows
G01ð Þ
max g01 I0; I1

� �
¼ I0 [I1

��� ���; Nv I0
� �

[Nv I1
� ���� ���� �

s:t: I0 #M

I1 #M

8>><
>>:
We will call these formulations the intersection set formulations. For a given 0–1 vector x , the vector x denotes the com-
plemented vector of � given by xj ¼ 1� xj, j 2 N. For each subset J of N, xJ denotes the subvector of x defined by xJ ¼ xj

� �
j2J . A

vector of ones of arbitrary dimension will be denoted by e. Hence, we have x ¼ e� x: Since all data are binary, the intersect
sets N0 Ið Þ, N1 Ið Þ and N01 Ið Þ, can be redefined by
N0 Ið Þ ¼ j 2 N : eaIj ¼
X
i2I

aij ¼ 0

()

N1 Ið Þ ¼ j 2 N : eaIj ¼
X
i2I

aij ¼ 0

()
¼ j 2 N : eaIj ¼ Ij j� 	

N01 Ið Þ ¼ j 2 N : eaIj � eaIj ¼ 0
� 	
From the definition of intersection sets, we can deduce the following remarks.

Remark 1:. A biclique Bv I; Jð Þ is a maximal biclique of Gv if there exists no biclique Bv I0; J0ð Þ such that, I# I0, J# J0 and
I0; J0ð Þ– I; Jð Þ. Given a maximal biclique Bv I; Jð Þ, it is clear that J ¼ Nv Ið Þ, hence jNv Ið Þj ¼ Jj j: Each efficient solution of the
problem Gv corresponds to a maximal biclique of a bipartite graph Gv , although a maximal bicliquemay not correspond to an
efficient solution.
Remark 2:. For the bi-objective problem Gv , the coordinates of Ideal and Nadir points can be determined as follows:
gI;1
v ¼ max Ij j : I#Mf g ¼ Mj j ¼ m

gI;2
v ¼ max jNv Ið Þj : I#Mf g ¼ max Nv ið Þj j : i 2 Mf g if v 2 0;1f g

n if v ¼ 01

�

gN;1
v ¼ min Ij j : Nv Ið Þj j ¼ gI;2

v ; I#M
� 	 ¼ 1

gN;2
v ¼ min Nv Ið Þj j : Ij j ¼ M; I#Mf g ¼ Nv Mð Þj j
Remark 3:. We have:
m; Nv Mð Þj jð Þ; 1; gI;2
v

� �� 	
F�

v

8I 2 E�
v ;we have 1 � g1

v Ið Þ � m; and Nv Mð Þj j � g2
v Ið Þ � gI;2

v

To formulate the problems Gv for v 2 0;1;01f g as Integer Programs, we introduce the binary variables yi for i 2 M and zvj
for j 2 N, v 2 0;1f g with the following meaning
yi ¼
1 if row i is selected; i:e: i 2 I

0 Otherwise

�

zvj ¼ 1 if column j is selected; i:e: j 2 Nv Ið Þ
0 Otherwise

�

With these binary variables, the cardinalities of a subset I#M and its intersect set Nv Ið Þ can be expressed as Ij j ¼Pi2Myi,
and jNv Ið Þj ¼Pj2Nz

v
j .

Hence, the integer program IPv formulations for problems Gv for v 2 0;1; 01f g can be expressed as

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 449
IP0
� � max y0; z0ð Þ ¼ P

i2M
yi;
P
j2N

z0j

 !

s:t: 1� z0j
� �

6
P
i2M

aijyi 6 m 1� z0j
� �

; 8j 2 N CS� 0ð Þ

y 2 0;1f gm; z0 2 0;1f gn

8>>>>>><
>>>>>>:

IP1
� � max y0; z0ð Þ ¼ P

i2M
yi;
P
j2N

z1j

 !

s:t: 1� z1j
� �

6
P
i2M

1� aij
� �

yi 6 m 1� z1j
� �

; 8j 2 N CS� 1ð Þ

y 2 0;1f gm; z1 2 0;1f gn

8>>>>>><
>>>>>>:

IP01
� � max y0; z0ð Þ ¼ P

i2Myi;
P

j2N z0j þ z1j
� �� �

s:t: CS� 0ð Þ; CS� 1ð Þy 2 0;1f gm; z0; z1 2 0;1f gn

8<
:

The constraint (CS-0) expresses the fact that each component j 2 N is a member of the set N0 Ið Þ, if and only if
P

i2Maijyi ¼ 0,
hence z0j ¼ 1. Similarly, the constraint (CS-1) expresses the fact that each component j 2 N is member the set N1 Ið Þ, if and
only if

P
i2M 1� aijÞyi ¼ 0
�

, hence z1j ¼ 1.
Remark 4:. Let f j ¼
P

i2Maij and f j ¼ m� f j, hence the constraints CS� 0ð Þ and CS� 1ð Þ can be strengthened respectively as
follows
1� z0j
� �

�
X
i2M

aijyi � f j 1� z0j
� �

CS� 00ð Þ

1� z1j
� �

�
X
i2M

1� aij
� �

yi � f j 1� z0j
� �

CS� 10ð Þ
Let A ¼ ðaijÞ ¼ ð1� aijÞ, the matrix presentation of integer program IPv formulation Gv can be described as
for v 2 0;1f g
IPvð Þ
max y0; z0ð Þ ¼ ey; ezvð Þ
s:t: e� zvð Þ 6 Aþ v A

�
�A

� �� �
y 6 m e� zvð Þ

y 2 0;1f gm; zv 2 0;1f gn

8>><
>>:
And for v ¼ 01
IP01
� �

max y0; z0ð Þ ¼ ey; e z0 þ z1
� �Þ:s:t: e� zk

� � � Aþ k A� A
� �� �

y � m e� zk
� �

k 2 0;1f g : y 2 0;1f gm; zk 2 0;1f gn k 2 0;1f g
�n
Consequently, the two parametric mono objective optimization problems G1
v e2
� �

and G2
v e1
� �

solved e-constraint algo-
rithm for problem Gv are the following:

for v 2 0;1f g
G1
v e2
� �� � max y0 ¼ ey

s:t:
e� zvð Þ � Aþ v A� A

� �� �
y � m e� zvð Þ

ezv � e2

y 2 0;1f gm; zv 2 0;1f gn

8>>>><
>>>>:

G2
v e1
� �� � max z0 ¼ ezv

s:t:
e� zvð Þ 6 Aþ v A

�
�A

� �� �
y 6 m e� zvð Þ

ey P e1

y 2 0;1f gm; zv 2 0;1f gn

8>>>><
>>>>:
And for v ¼ 01

450 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
G1
01 e2
� �� �

max y0 ¼ ey

s:t:

e� z0
� �

6 Ay 6 m e� z0
� �

e� z1
� �

6 A
�
y 6 m e� z1

� �
e z0 þ z1
� �

P e2

y 2 0;1f gm; z
�0; z

�1 2 0;1f gn

8>>>>>>><
>>>>>>>:

G2
01 e1
� �� �

max y0 ¼ e z0 þ z1
� �

s:t:

e� z0
� �

6 Ay 6 m e� z0
� �

e� z1
� �

6 A
�
y 6 m e� z1

� �
ey P e1

y 2 0;1f gm; z0; z1 2 0;1f gn

8>>>>>>><
>>>>>>>:
4. Approximate algorithms for problems G1 2
� �

and G2 1
� �

We approach these problems by a constructive search process which has the same general form for each. It is useful to

organize the search for an I that solves these problems by selecting some row index i1 ¼ h 2 M as a ‘‘first row” for I. Such an
approach limits the possible remaining rows that can belong to S and aids the search for an appropriate I. The strategy of

beginning with a first row index i1 is also motivated by the fact that every I contains at least one i 2 M, and several different

rows i 2 M may reasonably give rise to the same I. Therefore, we may usefully discover different sets I by selecting a new i1

that lies outside sets previously generated to explore farther. This type of strategy is additionally appealing because the sets I
generated will typically have different properties and provide a boost to diversification.

Our constructive algorithm successively enlarges a set I (which begins as I ¼ i1
n o

for a selected row index i1 2 M) by add-

ing a single row i to create a new set I. The process relies on the following relationship, which is implied by our definitions
Nv Ið Þ ¼ Ti2INv ið Þ. This identity motivates the terminology that calls Nv Ið Þ an intersect set.

We restate Problems G1
v e2
� �

and G2
v e1
� �

by including the stipulation that I contains a given row h inM and using the alter-
native representation of Section 3. Then we state:

Problem. G1
v e2;h
� �

For a specified h 2 M, solve
G1
v e2; h
� �� � max Ij j

s:t: Nv Ið Þj j P e2

h 2 I
I#M

8>>><
>>>:
Problem. G2
v e1;h
� �

For a specified h 2 M, solve
G2
v e1; h
� �� � max Nv Ið Þj j

s:t: Ij j P e1

h 2 I
I#M

8>>><
>>>:
Let ov(P) denotes the optimal value of an optimization problem P. It is obvious that we have
ov G1
v e2
� �� �

¼ max ov G1
v e2; h
� �� �

: h 2 M
n o

;

ov G2
v e1
� �� �

¼ max ov G2
v e1; h
� �� �

: h 2 M
n o

:

4.1. Integer programming formulations for problems G1
v e2;h
� �

and G2
v e1;h
� �

Straightforward IP formulations of the problems G1
v e2;h
� �

and G2
v e1;h
� �

can be derived directly from IP1
v and IP2

v respec-
tively by setting yh ¼ 1: However, we can also exploit the fact that we know the value of ahj for j 2 N. Hence, the IP formu-

lations for the problems G1
v e2;h
� �

for v 2 0;1f g can be stated as follows:

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 451
IP1
v e2; h
� �� �

max

s:t:

y0 ¼ P
i2M�h

yiP
j2Nv hð Þ

zvj P e2

1� zvj
� �

6
P

i2M�h
aij þ v 1� 2aij

� �
yi

� �
6 m 1� zvj

� �
j 2 Nv hð Þ

y 2 0;1f gm�1
; zv 2 0;1f g Nv hð Þj j

8>>>>>>>><
>>>>>>>>:
and for v ¼ 01 the IP1
01 formulation becomes
IP1
v e2; h
� �� �

max

s:t:

y0 ¼ P
i2M�h

yi

P
j2N

z0j þ z1j
� �

P e2

1� z0j
� �

6
P

i2M�h
aijyi 6 m 1� z0j

� �
j 2 N0 hð Þ

1� z1j
� �

6
P

i2M�h
1� aij
� �

yi 6 m 1� z1j
� �

j 2 N1 hð Þ

y 2 0;1f gm�1; zv 2 0;1f g Nv hð Þj j v 2 0;1f g

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
The corresponding IP formulations for the problems G2
v e1;h
� �

for v 2 0;1f g can be stated as:
IP2
v e1; h
� �� �

max
s:t:

y0 ¼ P
j2Nv hð Þ

zvjP
i2M�h

yi P e1 � 1

1� zvj
� �

6
P

i2M�h
aij þ v 1� 2aij

� �
yi

� �
6 m 1� zvj

� �
j 2 Nv hð Þ

y 2 0;1f gm�1; zv 2 0;1f g Nv hð Þj j

8>>>>>>>><
>>>>>>>>:
and for v ¼ 01 the IP2
01 formulation becomes
IP2
01 e1;h
� �� �

max

s:t:
y0 ¼P

j2N
z0j þ z1j
� �

P
i2M�h

yi P e1 � 1

1� z0j
� �

6
P

i2M�h
aijyi 6 m 1� z0j

� �
j 2 N0 hð Þ

1� z1j
� �

6
P

i2M�h
1� aij
� �

yi 6 m 1� z1j
� �

j 2 N1 hð Þ

y 2 0;1f gm�1; zv 2 0;1f g Nv hð Þj j v 2 0;1f g

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
Remark 5:. We identify several properties that can be useful for preprocessing or that can provide valid inequalities for the

proposed integer programs IPv , IP1
v and IP2

v :

- For v 2 0;01f g, if f j ¼ 0 then j 2 Nv Ið Þ for all I#M. Hence the variable z0j can be fixed to 1 in the IPv ; IP1
v and IP2

v .

- For v 2 1;01f g, if f j ¼ m, i.e. f j ¼ 0, implies j 2 Nv Ið Þ for all I#M. Hence the variable z1j can be fixed to 1 in the IPv ; IP1
v and

IP2
v .

- For v ¼ 0, each variable z0j can be fixed to 0 for j 2 N1 hð Þ in the IP1
0 e2;h
� �

.

- For v ¼ 1, each variable z1j can be fixed to 0 for j 2 N0 hð Þ in the IP1
1 e2;h
� �

.

- For v 2 0;01f g, let I be a feasible solution for IP1
0 e2;h
� �

, (i.e. jNv Ið Þj � e2), if j 2 N0 hð Þ and f j < jIj then the variable z0j can be
fixed to 0.

- For v 2 1;01f g, let I be a feasible solution for IP1
1 e2;h
� �

, (i.e. jNv Ið Þj � e2), if j 2 N1 hð Þ and f j < jIj then the variable z0j can be
fixed to 0.

- In IP1
v e2;h
� �

, the binary variable yi can be fixed to 0 if
Nv hð Þ \ N¼ h; ið Þj j < e2 for v 2 0;1f g
N¼ h; ið Þj j < e2 for v ¼ 01

(

452 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
where N¼ h; ið Þ ¼ j 2 N : ahj ¼ aij
� 	

.

- For v 2 0;1f g; j 2 Nv Ið Þ implies jIj � f j þ v m� 2f j
� �

.

- For v ¼ 01; j 2 Nv Ið Þ implies jIj � max f j; f j
� �

.

4.2. Heuristics for problems G1
v e2;h
� �

and G2
v e1;h
� �

The heuristics described in this section for problems G1
v e2;h
� �

and G2
v e1;h
� �

provide an additional option of being used in
conjunction with the e-Constraint Algorithm for problem Gv . The ‘while’ loop in the e-Constraint Algorithm applies an exact
algorithm for finding an optimal solution which can drastically increase the computational cost for large n. Our proposed
constructive techniques can be used to replace this exact algorithm to significantly reduce the computational expense.

4.2.1. An alternative representation
Let R denote the set of rows (vectors) of the matrix A i.e. R ¼ Ai ¼ ai1; � � � ; ainð Þ : i 2 Mf g: For S#R, the intersect sets N0 Sð Þ,

N1 Sð Þ and N01 Sð Þ are defined as follows
Table 1
An exam

j

A1

A2

A3

A4
N0 Sð Þ ¼ j 2 N : xj ¼ 0 for every x 2 S
� 	

N1 Sð Þ ¼ j 2 N : xj ¼ 1 for every x 2 S
� 	

N01 Sð Þ ¼ N0 Sð Þ [N1 Sð Þ:

To visualize the constructive process subsequently described, it is convenient to define an operation \o on vectors x 2 S

that gives outcomes equivalent to the set intersection operation \ on the sets Nv xð Þ. The components xj of the x vectors that
are operated on by \o can take a value # in addition to the values 0 and 1, where xj ¼ # indicates that xj is irrelevant to
defining the intersection. The vector x ¼ x0\ox0 0 generated from two vectors x0 and x0 0 can be identified by reference to a cor-
responding operation, designated by the same symbol \o, which is carried out on each component of x0 and x0 0; that is
xj ¼ x0

j\ox
0 0
j ; j 2 N. This operation is made precise by the following rules:
xj ¼
0 if x

0
j ¼ x

0 0
j ¼ 0

1 if x
0
j ¼ x

0 0
j ¼ 1

otherwise;hence if x
0
j–x

0 0
j or if x

0
j ¼ # or x

0 0
j ¼ #

8>><
>>:
This operation be also coded simply as follows
xj ¼
x
0
j if x

0
j ¼ x

0 0
j

otherwise

(

Note that if the value # is coded by a fractional real number a 2	0;1½, then xj can be expressed simply as xj ¼
x
0
j
þx

0 0
j

2 : By
implication \o is commutative and associative, i.e., for values t;u;w 2 0;1;#f g

t\ou ¼ u\ot and t\o u\owð Þ ¼ t\ouð Þ\ow:

These same relationships hold when t;u and w are vectors, using the vector form of \o. By these definitions we can write
\o Sð Þ ¼ \o x : x 2 Sð Þ. By convention, when S consists of a single vector x, we define \o Sð Þ ¼ \o xð Þ.

Construction Example. Consider the case where S consists of the following four vectors: Table 1.1
Then we can generate a vector z ¼ \o Sð Þ in four successive stages to identify vectors z1; z2; z3 and z4, as shown in Table 1.2,

where the final vector z4 is the vector z ¼ \o Sð Þ. In sequence, these stages yield z1 ¼ A1, z2 ¼ z1\oA2, z3 ¼ z2\oA3) and finally
z4 ¼ z3\oA4.

We observe that once zj receives the value # in one of these vectors zk, it continues to receive this value in all remaining
vectors for larger values of k.
.1
ple of four vectors.

1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 1 1 1 0 1 0 0
1 1 0 0 1 1 1 1 0 0 0
0 1 0 1 1 1 0 1 1 0 0
1 1 0 1 0 1 0 1 1 1 0

Table 1.2
A vector z ¼ \o Sð Þ of four vectors.

J 1 2 3 4 5 6 7 8 9 10 11

z1 0 1 0 0 1 1 1 0 1 0 0

z2 # 1 0 0 1 1 1 # # 0 0

z3 # 1 0 # 1 1 # # # 0 0

z4 # 1 0 # # 1 # # # # 0

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 453
We now complete the connection with the intersect set Nv Sð Þ defined earlier. We call z ¼ \o Sð Þ the vector analog of S and
use it as an easy way to identify Nv Sð Þ by reference to the values zj taken by the components of z.
N0 Sð Þ ¼ j 2 N : zj ¼ 0
� 	

;N1 Sð Þ ¼ j 2 N : zj ¼ 1
� 	

N01 Sð Þ ¼ j 2 N : zj ¼ 0orzj ¼ 1
� 	 ¼ j 2 N : zj–#

� 	 ¼ N0 Sð Þ [N1 Sð Þð Þ:

Thus, a glance at the 0 and 1 components of z4 in the Construction Example above shows that N0 Sð Þ ¼ 3;11f g and

N1 Sð Þ ¼ f2,6}. (In other words, these two sets of indexes respectively identify the variables zj such that zj ¼ 0 and such that
zj ¼ 1 in every solution z in S). Then N01 Sð Þ ¼ 2;3;6;11f g.

To identify the associated cardinalities of these sets, define
jzjv ¼ j j 2 N : zj ¼ v

� 	j for v 2 0;1f g and jzjv ¼ jzj0 þ jzj1 for v ¼ 01
and thus obtain Nv Sð Þj j ¼ jzjv for v ¼ 0;1 and 01.

These relationships are used to characterize our algorithms for Problems G1
v e2;h
� �

and G2
v e1;h
� �

, and thus to identify use-
ful consistency information in the set of solutions R.

4.2.2. Constructive algorithms for problems G1
v e2;h
� �

and G2
v e1;h
� �

We restate Problems G1
v e2;h
� �

and G2
v e1;h
� �

by including the stipulation that S contains a given row Ah in R, and using the
alternative representation of Section 3, as follows.

Problem. G1
v e2;h
� �

: For a specified Ah 2 R, find a set S with analog vector z ¼ \o Sð Þ to
G1
v e2; h
� �� � max Sj j

s:t: jzjv P e2

Ah 2 S
S#R

8>>><
>>>:
Problem. G2
v e1;h
� �

: For a specified Ah 2 R, find a set S with analog vector z ¼ \o Sð Þ to
G2
v e1; h
� �� � max jzjv

s:t: Sj j P e1

Ah 2 S
S#R

8>>><
>>>:
We find an approximate vector to G1
v e2;h
� �

by identifying a maximal S in R satisfying the stated conditions and find an

approximate vector to G2
v e1;h
� �

in a similar manner. Recall jzjv = the number of components of S with zj ¼ v , interpreting
v = 01 to mean v = 0 or 1.

These algorithms rely on the principle that increasing the size of S can only decrease the value jzjv or leave it unchanged.

Algorithm 1: For problem G1
v e2;h
� �

(Maximize jSj: For Ah 2 S and e2 � jzjv)

Let zk ¼ \o Sð Þ denotes the analog vector of the current set S at iteration k. (Note that k ¼ jSj since a single solution is
added to S at each iteration.)

Choose Ah 2 R; S ¼ Ahf g; k ¼ 1; z1 ¼ Ah; Done = False;
While Done = False and S–R do
Select a row r 2 Rx that maximizes jzjv for z ¼ zk\or, and denote the chosen row

by r�. Hence r� ¼ argmax zk\or
�� ��

v : r 2 Rx
n o

;

If zk\or�
�� ��

v � e2 then set S ¼ S [r�f g, zkþ1 ¼ zk\or�, k ¼ kþ 1;
Else the method stops with the current S, Done = True;

Endwhile

Algorithm 2: For problem G2
v e1;h
� �

(Maximize jzjv : For Ah 2 S and e1 � jSjÞ

At iteration k ¼ 1;2; � � � ; let zk ¼ \o Sð Þ denote the analog vector of the current set S, where initially choose Ah 2 R;
S ¼ Ahf g; k ¼ 1; z1 ¼ Ah; Done = False;

While Done = False and S–R do
Select a row r 2 Rx that maximizes jzjv for z ¼ zk\or, and denote the chosen row

by r�. Hence r� ¼ argmax zk\or
�� ��

v : r 2 Rx
n o

;

Set S ¼ S [r�f g, zkþ1 ¼ zk\or�, k ¼ kþ 1;
If e1 ¼ Sj j ¼ kþ 1ð Þ stop with the current S, Done = True;

Endwhile

Note this Algorithm outline is the same as for Problem G1
v e2; h
� �

except for the last few instructions before ‘‘Continue next
iteration.” Specifically, the instructions

If zk\or�
�� ��

v � e2 then set S ¼ S [r�f g, zkþ1 ¼ zk\or�, k ¼ kþ 1;
Else (1) is violated and the method stops with the current S, Done = True
are replaced by the instructions
Set S ¼ S [r�f g, zkþ1 ¼ zk\or�, k ¼ kþ 1;
If e1 ¼ Sj j ¼ kþ 1ð Þ stop with the current S, Done = True;

4.2.3. Efficient implementation of constructive algorithms

In this section, we describe an efficient implementation of constructive Algorithms 1 and 2 for problems G1
v and G2

v using
set notation and the vector notation. The efficiency of these algorithms is based on the following observations.

Observation 1: Once zj receives the value # at iteration k, it continues to receive this value in all iterations with larger
values of k. To exploit this, it is not necessary to compute the intersection vectors z\0rand z\0r� for all components j 2 N but
just over the set N� ¼ j 2 N : zj–#

� 	 ¼ j 2 N : zj 2 0;1f g� 	
.

The consequences of this observation are exploited in the determination of r� ¼ argmax zk\or
�� ��

v : r 2 Rx
n o

and also in the

update step.
Observation 2: Let S0 and S0 0 be two subsets in R. Then

454 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
jNv S
0 [S

0 0� �
j � min Nv S

0� ���� ���; jNv S
0 0� �

j
� �
and
if S
0
S

0 0
or S

0 0
S

0
then Nv S

0 [S
0 0� ���� ��� ¼ min Nv S

0� ���� ���; jNv S
0 0� �

j
� �
In our constructive algorithm we will observe this relationship for the case where we want to enlarge a set S by adding a
row r to it to create the set S [rf g. Then
jNv S [rf gð Þj � min Nv Sð Þj j; jNv rf gð Þjð Þ

The consequences of this second observation are exploited in the initialization phase by excluding rows r 2 R such that

jrjv < e2 for v 2 0;1f g and also in the While loop, if r ¼ Ah is not feasible for Problem G1
v e2;h
� �

and will never be feasible on
later. In the pseudo-code, the set F is used to save the excluded rows.

In summary, the method goes through all r 2 RleftðS [FÞ and picks the one r� that gives the largest n�
v value for

nv ¼ Nv S [rð Þ. This r� is added to S if n�
v � e2, and the method terminates otherwise.

Accelerated Algorithm 1: For problem G1
v e2;h
� �

(Maximize jSj: For Ah 2 S and e2 � jzjv)

Choose Ah 2 R; S ¼ Ahf g; F ¼ £; z ¼ Ah; N
� ¼ Nv zð Þ, Done = False;

For each r 2 RleftðS [FÞ do % This need only be executed forv 2 0;1f g
If jrjv < e2 thenF ¼ F [rf g

Endfor
While Done = False and S [F–R andN�–do
n*v = �1;
For each r 2 RleftðS [FÞ do

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 455
nv ¼ j j 2 N� : zj\0rj ¼ v
� 	j

If nv> n�
v then n�

v ¼ nv , r� ¼ r
If nv < e2 thenF ¼ F [rf g

Endfor

% Execute Update/Terminate Routine for Problem G1
v e2;h
� �

If n�
v � e2 then

S ¼ S [r�f g
For j 2 N� dozj ¼ zj\0r�j
N� ¼ N�leftfj 2 N� : zj ¼ #g

Else
Done = True

Endif
Endwhile
The detailed algorithm for Problem G2
v e1;h
� �

employs a corresponding design, which can be inferred from the above and the

description of the G2
v e1;h
� �

algorithm in Section 4.2.2.
The supplementary document [14] shows how the foregoing algorithms can be equivalently expressed by reference to

notation involving the index sets Nv xð Þ in place of the vectors zv and gives a more fully detailed version of Algorithm 1
designed for greater efficiency.

Next, we describe advanced considerations for these algorithms and then in Section 6 give a numerical example of apply-
ing these algorithms. The following illustration discloses additional advanced considerations that become apparent by
numerical example.

5. Illustration

5.1. Algorithm 1 for Problem G1
v

We illustrate Algorithm 1 for Problem G1
v by reference to a set R containing 12 rows, labeled A1 to A12. These rows are

organized in the Algorithm Example below so that the sets S derived from each of the three objectives associated with
v ¼ 0;1 and 01 can be illustrated simultaneously in the table for this example. Later comments show how the example
can be applied to Algorithm 2, and to an adaptive method that may be viewed as an extension of both Algorithms 1 and 2.

It should be observed that our following illustration does not show the z vectors corresponding to the successive sets S
generated for a given v value. (Consequently, no ‘‘# components” appear in the vectors.) However, the z vectors can readily
be inferred by inspection based on our associated commentary and the fact that the size of S for each case is small. This has
an advantage of allowing the outcomes for different choices of v to be considered in a single table. Specifically, the jzjv values
listed immediately to the right of the rows include all three cases for v ¼ 0;1 and 01. For emphasis, the entries for jzjv values
that correspond to the goal of maximizing jSj in each case are shown in bold face.

The Algorithm Example shown here is extended in in the supplementary document [14] to identify the z vectors for the
cases v ¼ 0 and v ¼ 1, starting from the point where Table 2.1 in the Algorithm Example leaves off. The seed rows for
v ¼ 0;1 and 01 for this example are given by Ah ¼ A1, A4 and A6 respectively. The choices for Ah correspond to those given
in the Master Algorithm of Section 6. Thus Ah ¼ A1 for v ¼ 0 because A1 is the row containing the most components equal to
0, i.e. N0 A1ð Þj j ¼ max N0 Aið Þj j : i 2 Mf g, and similarly Ah ¼ A4 for v ¼ 1 because A4 is the row containing the most components
equal to 1, i.e. N1 A4ð Þj j ¼ max N1 Aið Þj j : i 2 Mf g. Finally, Ah ¼ A6 for v ¼ 01 because that the number of components equal to 0
and 1 are more nearly balanced in A6, i.e. N01 A6ð Þj j ¼ max N01 Aið Þj j : i 2 Mf g.

We first consider the case for v ¼ 0 which appears first in the Algorithm Example. Here, S is built in three iterations start-
ing with S ¼ A1f g (since Ah ¼ A1). This yields a value for jzj0 of 8 as shown in bold to the right of A1 (in the column under
v ¼ 0). The value jzj0 ¼ 8 for S ¼ A1f g is confirmed by counting the number of 0 s in A1. The next iteration adds A2 to S
(as shown under ‘‘S ¼”), because A2 is the row that maximizes jzj0 when added to S ¼ A1f g. This yields a value for jzj0 of
6, as confirmed by counting the number of components equal to 0 in both A1 and A2 (and as listed in the column under
v ¼ 0 for A2). We note that it is easy to identify which row yields the largest jzj0 value when added to S.

Finally, the third S produced for v ¼ 0 in the Algorithm Example shows that A3 is the best row to join the set S ¼ A1;A2f g
when v ¼ 0, by yielding jzj0 ¼ 5. This jzj0 value may be similarly confirmed by counting the components equal to 0 in all
three solutions A1, A2 and A3. Since the lower bound e20 ¼ 5, the only way to expand S further would be to find a row to
add to S ¼ A1;A2;A3f g that again yields jzj0 ¼ 5. However, the best solution to add to the current S yields jzj0 ¼ 3, and con-
sequently the construction of S for v ¼ 0 ends here.

Algorithm Example: Lower bounds e20 ¼ 5, e21 ¼ 4, e201 ¼ 9.

Table 2.1
The algorithm example.

j= Rows in R

jzjv ¼ jNv Sð Þjforv ¼ S ¼
1 2 3 4 5 6 7 8 9 10 11 12 0 1 01

A1 1 1 0 1 0 0 0 0 1 0 0 0 8 4 12 {A1}
A2 0 0 1 1 1 0 0 0 1 0 0 0 6 2 8 {A1, A2}
A3 1 1 1 0 1 0 1 0 1 0 0 0 5 1 6 {A1, A2, A3}

Above generates S for v ¼ 0 (with Sj j ¼ 3)
A4 1 1 1 1 1 1 1 1 0 0 0 0 4 8 12 {A4}
A5 1 1 1 0 1 1 1 0 0 0 1 0 3 6 9 {A4, A5}
A3* 1 1 1 0 1 0 1 0 1 0 0 0 2 5 7 {A4, A5, A3}

Above generates S for v ¼ 1 (with Sj j ¼ 3)
A6 0 1 0 1 0 1 0 1 0 1 0 1 6 6 12 {A6}
A7 0 1 0 1 0 1 0 1 0 0 1 1 5 5 10 {A6, A7}
A8 0 1 0 0 0 1 0 1 0 1 1 1 5 4 9 {A6, A7, A8}

Above generates S for v ¼ 01 (with Sj j ¼ 3)
A9 0 0 0 0 1 0 1 1 1 1 1 1 5 7 12 {A9}
A10 0 1 0 0 0 0 1 1 1 1 1 1 4 6 10 {A9, A10}
A11 1 0 0 0 0 0 1 1 1 1 0 1 3 5 8 {A9, A10, A11}
A12 0 0 0 0 1 0 1 1 1 1 0 1 3 5 8 {A9, A10, A11, A12}
Above generates different S for v ¼ 1 (with Sj j ¼ 4)

456 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
We next consider the case where v ¼ 1 and Ah ¼ A4. A similar progression ensues by adding first A5 and then A3, to yield a
succession of sets S ¼ A4f g, S ¼ A4;A5f g and S ¼ A4;A5;A3f g with corresponding jzj1 values given by jzj1 ¼ 8;6 and 5. (By
chance, this is the same succession of values produced for jzj0 in the v ¼ 0 case previously illustrated.) The row A3 is dupli-
cated in the Algorithm Example (and marked the second time with ‘‘*”) to allow the basis for adding A3 as the third solution
for the v ¼ 1 case to be seen more easily. Here we stop after adding A3 with jzj1 ¼ 5. Although the lower bound for v ¼ 1 is
e21 ¼ 4, we observe that the next row to be added to S yields jzj1 ¼ 2.

5.2. e-constraint method

We show in Table 2.2 the execution of e-Constraint algorithm for Gv problem for p ¼ 1 on the example described in
Section 5.1 with m ¼ n ¼ 12.
6. Advanced considerations

The determination of the set S by Algorithms 1 and 2 for problems G1
v and G2

v can be modified in several ways. First, we
consider how these algorithms can be extended by applying them to different choices of the starting row Ah to generate more
than one set S.

6.1. The choice of the starting row

One possibility for generating multiple sets S from different starting rows Ah is to select a new Ah to be the last solution
added to create a previous S. Although ideally it should be possible to generate the same S by starting from any of its com-
ponent rows, this may not happen because Algorithms 1 and 2 are approximation methods. Starting from the last row added
to S gives an increased chance to discover variations caused by the inexact nature of these algorithms. (Such a process could
be continued, for example, until a final S duplicates a previous S, not necessarily the immediate predecessor.) However, to
avoid unnecessary generation of sets that may not differ substantially from each other, it seems worthwhile to select
new rows Ah that lie outside sets previously generated. We formalize this in the following algorithm that employs the algo-
rithms for problems G1

v and G2
v as subroutines.

We make use of an upper limit U on the number nS of sets S generated and a lower limit L on the size of S so that when
either nS reaches U or a set S generated fails to satisfy jSj � L the generation of new sets S terminates. (L has a function similar
to that of e1v in Algorithm 2 for G2

v , in this case functioning as an ultimate limit.)

Table 2.2
The execution of e-Constraint algorithm.

Iter e1v jS�j jNv S�ð Þj S� Nv S�ð Þ
v ¼ 0; Fj j ¼ 7

1 0 12 0 R £
2 1 8 1 {A1, A6, A7, A8, A9, A10, A11, A12} {3}
3 2 6 2 {A1, A6, A7, A8, A10, A11} {3, 5}
4 3 4 3 {A1, A2, A3, A4} {10, 11, 12}
5 4 3 5 {A1, A2, A3} {6, 8, 10, 11, 12}
6 6 2 6 {A1, A2} {6, 7, 8, 10, 11, 12}
7 7 1 8 {A1} {3, 5, 6, 7, 8, 10, 11, 12}

v ¼ 1; Fj j ¼ 8
1 0 12 0 R £
2 1 8 1 {A1, A3, A4, A5, A6, A7, A8, A10} {2}
3 2 7 2 {A6, A7, A8, A9, A10, A11, A12} {8, 12}
4 3 6 3 {A6, A8, A9, A10, A11, A12} {8, 10, 12}
5 4 4 5 {A9, A10, A11, A12} {7, 8, 9, 10, 12}
6 6 2 6 {A9, A12} {5, 7, 8, 9, 10, 12}
7 7 1 7 {A9} {5, 7, 8, 9, 10, 11, 12}
8 8 1 8 {A4} {1, 2, 3, 4, 5, 6, 7, 8}

v ¼ 01; Fj j ¼ 11
1 0 12 0 R £
2 1 8 1 {A1, A3, A4, A5, A6, A7, A8, A10} {2}
3 2 7 3 {A6, A7, A8, A9, A10, A11, A12} {3, 8, 12}
4 4 6 4 {A6, A8, A9, A10, A11, A12} {3, 8, 10, 12}
5 5 5 5 {A6, A9, A10, A11, A12} {3, 4, 8, 10, 12}
6 6 4 6 {A6, A7, A8, A10} {1, 2, 3, 5, 8, 12}
7 7 4 8 {A9, A10, A11, A12} {3, 4, 6, 7, 8, 9, 10, 12}
8 9 3 9 {A6, A7, A8} {1, 2, 3, 5, 6, 7, 8, 9, 12}
9 10 2 10 {A6, A8} {1, 2, 3, 5, 6, 7, 8, 9, 10, 12}
10 11 2 11 {A9, A12} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}
11 12 1 12 {A11} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 457
Master Algorithm:
Initialization: nS ¼ 0 = 0, C = £.

Do{
Select Ah 2 R�C that maximizes jrjv (the number of components rj that equal v) for
v ¼ 0 or 1, or that maximizes j rj j1 � rj j0j| for v ¼ 01;

Execute Algorithm 1 or Algorithm 2 starting from Ah to generate a set S;
nS ¼ nS þ 1
C ¼ C [S;

} While jSj � L and nS < U;

Remark 6:. If the convention v ¼ 01 is coded by v ¼ 1=2, the instruction
Select Ah 2 R�C that maximizes jrjv (the number of components rj that equal v) for
v ¼ 0 or 1, or that maximizes j rj j1 � rj j0j| for v ¼ 01;
can be replaced by
Ah ¼ argmax j 1� vð Þ rj j0 � v rj j1j : r 2 R�C
� 	
or equivalently
Ah ¼ argmax 1� vð Þer � verj j : r 2 R�Cf g

We now elaborate this description of the Master Algorithm with several important considerations.
6.2. Overlapping clusters

We note the interesting fact that the sets S for v ¼ 0 and v ¼ 1 can have overlaps, here consisting of the row A3. The exis-
tence of overlapping clusters in the present setting, where the sets are generated from different starting rows and con-

458 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
structed according to different goals, invites exploration to see whether such overlaps are common for problems commonly
encountered, and to identify the significance of such overlaps when they occur. (If the values chosen for e2v are small enough,
however, it is clear that a large number of overlaps may be expected.)

The case for v ¼ 01 in the preceding example generates a set S that does not overlap with those for other v values and
produces sets Swith larger values of zj jv . It should not be surprising that v ¼ 01 enables a larger number of components to be
fixed than in the cases for v ¼ 0 and v ¼ 1, though the relevance of this undoubtedly depends on the problem setting. In the
present example, we have set a lower bound e201 ¼ 9 for v ¼ 01, which is somewhat larger than the lower bounds chosen for
v ¼ 0 and v ¼ 1.

Finally, the Algorithm Example shows the result of picking a different starting row Ah for v ¼ 1. This second choice for Ah

follows the proposal of the Master Algorithm in Section 4, which selects a new starting row to be one that contains a largest
number of components equal to v , subject to the condition that this row does not lie in a set S previously generated for v.
Thus, A9, which does not belong to the previous set S for v ¼ 1, and which contains 7 components equal to 1, is the new
choice for Ah.

Although S ¼ A9f g does not yield jzj1 as large as produced by the earlier choice that gives S ¼ A4f g, the ultimate set
S ¼ A9;A10;A11;A12f g has a larger size (Sj j ¼ 4) than in the previous instance. The two sets S generated for v ¼ 1 in this exam-
ple are disjoint, suggesting that the two cases have a meaningful difference from the standpoint of forming clusters.

This illustrates another interesting phenomenon. Suppose we use a simple frequency count of the number of times that
the assignments equal to v appear in the rows A1 to A12 as a basis for assigning probabilities for creating new rows, and con-
sider the case for v ¼ 1. The resulting frequencies are shown in Table 2.3.

Grouped by frequency, r2 and r8 are the most attractive for setting rj ¼ 1, followed by r7; r9 and r12, while r1; r3; r4; r5 and
r11 are the least attractive. However, r2 ¼ 1 does not show up in any rows where r8 receives the value 1, but instead is asso-
ciated with the less attractive variables r1; r3 and r5 (in the set S ¼ A3;A4;A5f g generated above). This shows that a measure of
‘‘attractiveness” by frequency counts can be misleading and fail to capture associations between components. Interestingly,
however, the example suggests that we may use the appearance of a component in more than one set S based on the same
v ¼ 0 or 1 as an indication of being strongly determined without the computational expense otherwise required to identify
such components. Here, r7 ¼ 1 appears in both of the sets S illustrated in the Algorithm Example for v ¼ 1, and hence may be
viewed as strongly determined (in spite of the fact that r2 and r8 have higher frequency counts). In short, a ‘‘higher order”
frequency count, which identifies the number of occurrences of rj ¼ v in the sets S generated by Algorithm 1 or 2 for a given
v , gives a useful basis for identifying variables that may be considered strongly determined.

As alluded to in earlier comments, a further elaboration of the underlying algorithmic processes for this example is pos-
sible by examining ‘‘next S sets” starting from the final sets in this example. Pursuing this strategy shows that the best
remaining evaluation for v ¼ 0 yields |z|0 = 3 as remarked above. If e20 was selected to be 3 instead of 4 (as currently stipu-
lated), the next solution added to S for v ¼ 0 after A3 in the Algorithm Example would be A4 or A5. However, this drop from
zj j0 ¼ 5 to zj j0 ¼ 3 represents a decline in zj j0 from 0:42� n to 0:25� n. An even greater decline occurs for the case v ¼ 1,
where zj j1 ¼ 5 drops to zj j1 ¼ 2. Consequently, this suggests that the algorithm might be modified to adaptively monitor
zj jv to allow the method to stop before allowing a significant decline in zj jv by adding one more solution to S. The structure
of the algorithm is congenial to making such a modification.
7. Computational results

The proposed algorithms were implemented in C++ and run on a PC computer with a 2.9 Ghz processor. The MIPs were
solved using CPLEX 12.6.1. To perform the computational experiments, we note that an instance of the problem is charac-
terized by an input binary matrix A m;nð Þ where m is the number of rows and n is the number of columns (see Section 1.1).
Several sources exist in the literature where these matrices can be obtained from real-world data. In this paper, the binary
matrices are generated randomly using a simple uniform distribution provided by the Microsoft Visual Studio. Specifically,
for a given dimension (i.e. m and n are fixed), a component aij of the matrix A, is generated randomly in {0, 1}. For each fixed
dimension m;nð Þ, 10 instances are generated randomly.

We compare the performance of the proposed integer program IP1
v e2;h
� �

with the constructive heuristic and its acceler-
ated version. The maximum size of m� n is fixed to 500� 500 or 200� 2000 according the memory capacity of the com-
puter used. The computation time for each integer program IP1

v e2;h
� �

is limited to 3600 s. For some hard instances, we
found that CPLEX crashed with an ‘‘Out of memory” message before reaching the time limit. In such cases we reduced
the time limit to lie between 100 and 360 s in order to obtain a feasible solution for comparison.

For all computational tests we choose the target row Ah as follows:
Table 2.3
The frequency.

j 1 2 3 4 5 6 7 8 9 10 11 12

Frequency =
Pm¼12

i¼1 aij 5 8 4 5 6 5 7 8 7 6 5 7

Table 3
Compar

m

12
12
12
12
25
25
25
25
62
62
62
62
Aver

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 459
Ah ¼
argmax jNv Aið Þj : i 2 Mf g if v 2 0;1f g

argmax N0 Aið Þj j � jN1 Aið Þjj j : i 2 Mf g if v ¼ 01

�

For each instance with fixed dimension n and m, the lower bound is chosen by setting:
e2v ¼ jNv Rð Þj þ a Nv Ahð Þj j � jNv Rð Þj� �
a 2 0:2;0:4;0:6;0:8f g
The legend of the columns of the tables uses the following conventions:

- CPLEX refers to the MIP solver of CPLEX used to solve IP1
v e2;h
� �

:

- H corresponds to the constructive heuristic described in Algorithm 1
- AH corresponds to the accelerated version of the constructive heuristic described in Algorithm 2.
- jS�j is the size of the best set of rows generated by the corresponding approach.
- jNv S�ð Þj is the size of the intersect set corresponding to S�.
- CPU is the computation time in seconds needed by the procedure.
- #Opt is the number of instances solved optimally by CPLEX.
- #E1 is the number of best solutions generated by the constructive heuristics with the same first objective jS�j as used by
CPLEX (i.e. MIP(jS�j) = H(jS�j)).

- #E2 is the number of best solutions generated by the constructive heuristics with the same first objective value jS�j as
generated by CPLEX and the second objective value jNv S�ð Þj is strictly greater than the one generated by CPLEX (i.e.
MIP(jS�j) = H(jS�jÞ and MIP(jNv S�ð Þj) < H(jNv S�ð Þj)). Hence #E2 identifies the number of solutions generated by the con-
structive heuristics that dominate those obtained by CPLEX.

Each row is an average of the values computed over various instances and the last row corresponds to the average of all
instances.

Tables 3.1–3.3 compare the results of the MIP solver (CPLEX), the constructive heuristic (H) and its accelerated version
(AH) for value v = 0, 1 and 01 respectively, on small-sized instances with n = 125, m 2 12;25;62f g and
a 2 0:2;0:4; 0:6;0:8f g. Each line corresponds to the average of 50 instances (10 randomly generated instances with 5 differ-
ent densities). The computational time for the heuristics H and AH are not reported since they are negligible (i.e. less than
0.0005 s). Also, the solution objective values jS�j and jNv S�ð Þj for H and AH are the same in all cases and hence are reported
under the single heading ‘‘H – AH‘‘.

For v ¼ 0 (see Table 3.1), most of the 600 instances are solved optimally except for 7 instances for m = 62 and
a 2 0:2;0:4f g (i.e. six instances are not solved optimally due to the memory limitation ‘‘Out of Memory” error and one
instance is not solved optimally within the time limit of one hour). Table 3.1 shows also that the constructive heuristic
reaches an optimal value for 84% of the instances and, significantly, provides solutions that dominate those provided by
CPLEX in 49% of the instances. For v ¼ 1 (see Table 3.2), all 600 instances are solved optimally by CPLEX. The constructive
heuristic reaches an optimal value for 97% of the instances and provides solutions that dominate those provided by CPLEX in
24% of the instances. For v ¼ 01 (see Table 3.3), CPLEX solves optimally 98% of the instances (11 instances are not solved
optimally due to the memory limitation ‘‘Out of Memory” error) while the constructive heuristic reaches optimal value
for 87% of the instances and provides solutions that dominate those provided by CPLEX in 43% of the instances. Note also
that regarding the CPU time, the hardest instances correspond to instances with the parameters (v 2 0;1;01f g, m = 62
and a 2 0:2;0:4f gÞ.
.1
ison of MIP, Heuristic and Accelerated Heuristic for n = 125 and v = 0.

a MIP H – AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj
0.2 6.36 26.60 0.069 6.30 29.00 50 47 31
0.4 4.24 45.70 0.064 4.20 49.00 50 47 37
0.6 2.66 68.20 0.030 2.60 71.00 50 47 24
0.8 1.60 87.80 0.005 1.60 88.00 50 50 6
0.2 9.52 20.60 1.200 9.10 23.00 50 30 19
0.4 5.66 41.30 0.340 5.50 46.00 50 43 36
0.6 3.52 63.10 0.120 3.50 65.00 50 48 32
0.8 1.78 87.70 0.027 1.80 89.00 50 49 16
0.2 13.80 19.30 450.000 13.00 20.00 45 18 12
0.4 7.48 39.50 250.000 7.00 44.00 48 30 27
0.6 4.32 60.10 8.300 4.20 63.00 50 47 34
0.8 2.06 88.00 0.220 2.10 89.00 50 50 17

age 5.25 53.99 59.20 5.08 56.33 49.42 42.17 24.25

Table 3.2
Comparison of MIP, Heuristic and Accelerated Heuristic for n = 125 and v = 1.

m a MIP H – AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj
12 0.2 2.64 10.20 0.056 2.60 12.00 50 49 27
12 0.4 1.52 28.50 0.033 1.50 30.00 50 50 16
12 0.6 1.04 44.10 0.003 1.00 44.00 50 50 1
12 0.8 1.00 45.30 0.002 1.00 45.00 50 50 0
25 0.2 2.96 9.62 0.120 2.80 12.00 50 44 34
25 0.4 1.74 26.00 0.072 1.70 28.00 50 49 16
25 0.6 1.12 43.20 0.004 1.10 43.00 50 50 1
25 0.8 1.00 46.60 0.003 1.00 47.00 50 50 0
62 0.2 3.50 9.64 1.500 3.30 11.00 50 42 22
62 0.4 1.86 25.40 0.460 1.80 28.00 50 47 21
62 0.6 1.18 43.30 0.008 1.20 43.00 50 50 5
62 0.8 1.00 48.70 0.006 1.00 49.00 50 50 0
Average 1.71 31.71 0.19 1.67 32.67 50.00 48.42 11.92

Table 3.3
Comparison of MIP, Heuristic and Accelerated Heuristic for n = 125 and v = 01.

m a MIP H – AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj
12 0.2 5.78 33.60 0.088 5.70 36.00 50 46 32
12 0.4 3.66 61.90 0.100 3.60 67.00 50 47 40
12 0.6 2.24 95.70 0.039 2.20 97.00 50 49 19
12 0.8 1.20 122.00 0.005 1.20 120.00 50 50 3
25 0.2 8.64 26.60 1.700 8.30 30.00 50 35 26
25 0.4 5.06 54.50 0.370 5.00 59.00 50 45 33
25 0.6 2.90 86.50 0.120 2.90 89.00 50 50 29
25 0.8 1.46 119.00 0.025 1.50 120.00 50 50 3
62 0.2 12.40 25.20 830.000 11.00 27.00 41 23 15
62 0.4 6.60 52.30 97.000 6.30 56.00 48 37 26
62 0.6 3.72 78.60 7.100 3.60 83.00 50 43 25
62 0.8 1.76 116.00 0.150 1.70 120.00 50 48 8
Average 4.62 72.66 78.06 4.42 75.33 49.08 43.58 21.58

460 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
Tables 4.1–4.3 compare the results of the MIP solver (CPLEX), the constructive heuristic (H) and its accelerated version
(AH) for value v ¼ 0;1 and 01 respectively, on medium-sized instances with n 2 125;250;500f g, m ¼ bbnc with
b 2 0:1;0:2;0:5;1f g and a 2 0:2;0:4;0:6; 0:8f g. Each line corresponds to the average of 10 randomly generated instances
for a fixed value of n, m and a. Once again, H and AH obtain the same objective values but now their solution times differ
enough in some cases to be reported separately.

For v ¼ 0 (see Table 4.1), 86% of the instances are solved optimally except for 68 instances over 480 (i.e. only one instance
is not solved optimally in the time limit of one hour and the other 67 instances are not solved optimally due to the memory
limitation ‘‘Out of Memory” error). Table 4.1 shows also that the constructive heuristic reaches optimal value for 90% of the
instances and provides solutions that dominate those provided by CPLEX in 36% of the instances. For v ¼ 1 (see Table 4.2),
87% of the instances are solved optimally except for 63 instances over 480 (i.e. the other 63 instances are not solved opti-
mally due to the memory limitation ‘‘Out of Memory” error). Table 4.2 shows that the constructive heuristic reaches an opti-
mal value for 93% of the instances and provides solutions that dominate those provided by CPLEX in 40% of the instances. For
v ¼ 01 (see Table 4.3), 84% of the instances are solved optimally except for 79 instances over 480 (i.e. 10 instances are not
solved optimally in the time limit of one hour and the other 69 instances are not solved optimally due to the memory lim-
itation ‘‘Out of Memory” error). The constructive heuristic reaches an optimal value for 95% of the instances and provides
solutions that dominate those provided by CPLEX in 43% of the instances. Note also that regarding the CPU time consumed
by CPLEX, the hardest instances correspond to instances with the parameter a 2 0:2;0:4f g.

Tables 5.1–5.3 compare the results of the MIP solver (CPLEX), the constructive heuristic (H) and its accelerated version
(AH) for value v ¼ 0;1 and 01 respectively, on large-sized instances with n ¼ 2000 and m ¼ 50. Each line corresponds to
the average of 4 randomly generated instances for a fixed value of n, m. For v ¼ 0 (see Table 5.1), 94% of the instances
are solved optimally except for 4 instances over 72 (i.e. only one instance is not solved optimally due to the memory lim-
itation ‘‘Out of Memory” error and the other 3 instances are not solved optimally in the time limit of one hour). Table 5.1
shows also that the constructive heuristic reaches an optimal value for 71% of the instances and provides solutions that dom-
inate those provided by CPLEX in 64% of the cases. For v ¼ 1 (see Table 5.2), all 72 instances are solved optimally. Table 3.2
shows that the constructive heuristic reaches optimal value for 96% of the instances and provides solutions that dominate
those provided by CPLEX in 33% of the instances. For v ¼ 01 (see Table 5.3), 79% of the instances are solved optimally except

Table 4.1
Comparison of MIP, Heuristic and Accelerated Heuristic for v = 0.

n m a MIP H AH #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU

125 12 0.2 4.0 14.4 0.125 3.9 15.8 0.000 0.000 10 9 3
125 12 0.4 2.0 37.6 0.135 2.0 41.8 0.000 0.000 10 10 8
125 12 0.6 1.3 63.1 0.004 1.3 63.1 0.000 0.000 10 10 0
125 12 0.8 1.0 71.9 0.006 1.0 71.9 0.000 0.000 10 10 0
125 25 0.2 4.4 14.5 0.401 4.1 17.1 0.000 0.000 10 7 6
125 25 0.4 2.5 33.8 0.180 2.5 36.7 0.000 0.000 10 10 6
125 25 0.6 1.7 53.7 0.006 1.7 54.4 0.000 0.000 10 10 3
125 25 0.8 1.0 73.9 0.003 1.0 73.9 0.000 0.000 10 10 0
125 62 0.2 5.0 14.8 5.610 4.6 17.0 0.000 0.000 10 6 4
125 62 0.4 2.7 33.8 1.707 2.6 37.2 0.000 0.000 10 9 2
125 62 0.6 2.0 45.3 0.015 2.0 46.2 0.000 0.000 10 10 6
125 62 0.8 1.0 75.1 0.009 1.0 75.1 0.001 0.000 10 10 0
125 125 0.2 5.5 15.0 66.747 5.3 16.3 0.001 0.000 10 8 5
125 125 0.4 3.0 30.7 7.153 3.0 32.9 0.000 0.000 10 10 9
125 125 0.6 2.0 47.6 0.072 2.0 49.6 0.000 0.000 10 10 7
125 125 0.8 1.0 76.6 0.014 1.0 76.6 0.000 0.000 10 10 0
250 25 0.2 3.9 28.8 0.707 3.9 33.1 0.000 0.000 10 10 10
250 25 0.4 2.0 73.6 0.279 2.0 82.3 0.000 0.000 10 10 9
250 25 0.6 1.3 124.1 0.006 1.3 124.1 0.000 0.000 10 10 0
250 25 0.8 1.0 141.1 0.006 1.0 141.1 0.000 0.000 10 10 0
250 50 0.2 4.0 27.9 9.831 4.0 33.9 0.000 0.000 10 10 10
250 50 0.4 2.0 72.9 2.329 2.0 84.3 0.002 0.000 10 10 10
250 50 0.6 1.7 102.2 0.013 1.7 102.2 0.000 0.000 10 10 0
250 50 0.8 1.0 141.6 0.008 1.0 141.6 0.000 0.000 10 10 0
250 125 0.2 4.4 29.0 810.670 4.0 37.1 0.000 0.000 9 6 6
250 125 0.4 2.5 68.4 32.983 2.4 76.3 0.000 0.000 10 9 4
250 125 0.6 1.6 113.1 0.021 1.6 113.6 0.000 0.000 10 10 1
250 125 0.8 1.0 146.8 0.019 1.0 146.8 0.000 0.000 10 10 0
250 250 0.2 4.0 29.3 252.044 4.5 33.9 0.002 0.001 0 5 5
250 250 0.4 2.6 64.7 268.853 2.5 74.7 0.001 0.001 3 9 5
250 250 0.6 1.9 95.3 0.054 1.9 96.2 0.002 0.000 10 10 3
250 250 0.8 1.0 146.8 0.033 1.0 146.8 0.002 0.000 10 10 0
500 50 0.2 4.0 54.9 41.723 3.5 73.3 0.001 0.000 10 5 2
500 50 0.4 2.0 133.8 5.237 2.0 156.4 0.002 0.000 10 10 10
500 50 0.6 1.1 263.7 0.020 1.1 263.7 0.000 0.000 10 10 0
500 50 0.8 1.0 275.0 0.019 1.0 275.0 0.001 0.000 10 10 0
500 100 0.2 3.6 59.3 166.053 4.0 57.5 0.004 0.001 0 6 6
500 100 0.4 2.0 137.0 142.226 2.0 160.4 0.001 0.000 10 10 10
500 100 0.6 1.0 278.1 0.027 1.0 278.1 0.000 0.000 10 10 0
500 100 0.8 1.0 278.1 0.026 1.0 278.1 0.000 0.000 10 10 0
500 250 0.2 3.2 65.0 100.035 4.0 63.5 0.003 0.003 0 2 2
500 250 0.4 2.0 137.0 100.032 2.0 166.6 0.002 0.001 0 10 10
500 250 0.6 1.5 225.9 0.054 1.5 225.9 0.001 0.000 10 10 0
500 250 0.8 1.0 282.1 0.052 1.0 282.1 0.003 0.001 10 10 0
500 500 0.2 3.1 72.5 120.069 4.0 64.8 0.007 0.003 0 1 1
500 500 0.4 2.0 144.1 120.185 2.0 166.0 0.008 0.003 0 10 10
500 500 0.6 1.1 271.8 4.323 1.1 271.8 0.004 0.002 10 10 0
500 500 0.8 1.0 283.0 3.417 1.0 283.0 0.002 0.001 10 10 0
Average 2.2 105.6 47.157 2.2 109.6 0.001 0.000 8.6 9.0 3.6

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 461
for 15 instances over 72 (i.e. 3 instances are not solved optimally in the time limit of one hour and the other 12 instances are
not solved optimally due to the memory limitation ‘‘Out of Memory” error). The constructive heuristic reaches an optimal
value for 76% of the instances and provides solutions that dominate those provided by CPLEX in 56% of the instances.

Table 6 compares the CPU time consumed by the constructive heuristic (H) and its accelerated version (AH) for value
v ¼ 0;1 and 01, on large-sized instances with n ¼ 2000 and m 2 100;200f g. Each line corresponds to the average of 4 ran-
domly generated instances for a fixed value of m. For v ¼ 0 and v ¼ 1, the CPU time of the accelerated heuristic is half of the
CPU time consumed by the constructive heuristic on average.
8. Conclusions

In addition to applications of our algorithms to clustering, the exploitation of consistency by the approaches described
above open a number of opportunities for applying our algorithms to generate reference sets for evolutionary metaheuris-

Table 4.2
Comparison of MIP, Heuristic and Accelerated Heuristic for v = 1.

n m a MIP H AH #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU

125 12 0.2 4.0 14.3 0.165 3.7 17.0 0.000 0.000 10 7 2
125 12 0.4 2.0 37.2 0.134 2.0 41.3 0.000 0.001 10 10 6
125 12 0.6 1.3 63.3 0.002 1.3 63.4 0.000 0.000 10 10 1
125 12 0.8 1.0 71.6 0.002 1.0 71.6 0.000 0.000 10 10 0
125 25 0.2 4.2 14.6 0.346 4.0 16.8 0.000 0.000 10 8 6
125 25 0.4 2.1 36.9 0.213 2.1 41.1 0.000 0.000 10 10 9
125 25 0.6 1.5 57.5 0.008 1.5 57.5 0.000 0.000 10 10 0
125 25 0.8 1.0 72.7 0.005 1.0 72.7 0.000 0.000 10 10 0
125 62 0.2 5.0 15.1 5.798 4.8 16.7 0.000 0.000 10 8 5
125 62 0.4 3.0 30.7 1.875 2.8 34.4 0.000 0.000 10 8 4
125 62 0.6 2.0 47.0 0.019 2.0 47.7 0.000 0.000 10 10 5
125 62 0.8 1.0 76.2 0.007 1.0 76.2 0.000 0.000 10 10 0
125 125 0.2 5.6 15.2 69.342 5.0 17.5 0.001 0.000 10 4 3
125 125 0.4 3.0 30.9 7.642 3.0 33.7 0.000 0.000 10 10 9
125 125 0.6 2.0 48.0 0.120 2.0 50.0 0.000 0.000 10 10 8
125 125 0.8 1.0 76.5 0.015 1.0 76.5 0.001 0.000 10 10 0
250 25 0.2 4.0 28.2 0.705 3.9 30.8 0.000 0.000 10 9 3
250 25 0.4 2.0 70.6 0.281 2.0 81.2 0.000 0.000 10 10 10
250 25 0.6 1.2 129.8 0.002 1.2 129.8 0.000 0.000 10 10 0
250 25 0.8 1.0 141.4 0.006 1.0 141.4 0.000 0.000 10 10 0
250 50 0.2 4.0 28.5 10.367 4.0 33.9 0.002 0.000 10 10 10
250 50 0.4 2.1 70.7 2.519 2.1 81.8 0.000 0.000 10 10 9
250 50 0.6 1.5 115.7 0.008 1.5 115.7 0.000 0.000 10 10 0
250 50 0.8 1.0 143.8 0.006 1.0 143.8 0.000 0.000 10 10 0
250 125 0.2 4.2 29.7 727.591 4.1 36.0 0.002 0.001 9 9 8
250 125 0.4 2.4 68.6 33.135 2.3 79.0 0.000 0.000 10 9 7
250 125 0.6 1.8 100.3 0.035 1.8 100.6 0.001 0.000 10 10 2
250 125 0.8 1.0 145.7 0.016 1.0 145.7 0.000 0.000 10 10 0
250 250 0.2 4.1 29.9 262.017 4.3 36.2 0.001 0.001 0 8 8
250 250 0.4 2.7 64.4 310.897 2.7 68.7 0.002 0.001 8 10 7
250 250 0.6 1.8 101.5 0.149 1.8 103.4 0.001 0.001 10 10 6
250 250 0.8 1.0 147.7 0.128 1.0 147.7 0.001 0.000 10 10 0
500 50 0.2 3.8 58.0 46.154 3.4 76.5 0.001 0.000 10 6 4
500 50 0.4 2.0 140.7 3.880 2.0 158.3 0.000 0.000 10 10 10
500 50 0.6 1.0 276.3 0.019 1.0 276.3 0.000 0.000 10 10 0
500 50 0.8 1.0 276.3 0.019 1.0 276.3 0.000 0.000 10 10 0
500 100 0.2 3.6 59.1 318.040 3.8 64.7 0.002 0.001 0 8 8
500 100 0.4 2.0 136.8 149.210 2.0 160.1 0.001 0.000 10 10 10
500 100 0.6 1.1 267.6 0.030 1.1 267.6 0.000 0.000 10 10 0
500 100 0.8 1.0 278.4 0.028 1.0 278.4 0.000 0.000 10 10 0
500 250 0.2 3.6 61.9 100.025 4.0 61.8 0.003 0.002 0 6 6
500 250 0.4 2.0 142.5 100.023 2.0 166.1 0.003 0.001 0 10 10
500 250 0.6 1.3 248.1 0.055 1.3 248.1 0.001 0.000 10 10 0
500 250 0.8 1.0 282.0 0.053 1.0 282.0 0.002 0.000 10 10 0
500 500 0.2 3.4 65.2 120.054 4.0 66.6 0.007 0.003 0 4 4
500 500 0.4 2.0 144.8 120.050 2.0 168.3 0.003 0.002 0 10 10
500 500 0.6 1.4 238.7 4.306 1.4 238.7 0.004 0.001 10 10 0
500 500 0.8 1.0 284.2 3.589 1.0 284.2 0.001 0.000 10 10 0
Average 2.2 105.9 49.981 2.2 110.1 0.001 0.000 8.7 9.3 4.0

462 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
tics. Questions related to such opportunities include the following, whose answers will depend in part on the evolutionary
metaheuristics employed.

1. Which values of v 2 {0, 1, 01} prove most useful for particular classes of optimization problems?
2. What values for the bounds e1v and e2v for Problems G1

v e2v
� �

and G2
v e1v
� �

are best (e.g., as a function of n)
3. If the approximation algorithm is run only for a small number of iterations to generate new instances of R after the first,

what portion of a previous R should be saved to merge with a new R?
4. What type of diversification approach should be used as a foundation for generating instances of R after the first instance?
5. What range of different sets S may be generated to give useful variation in the consistent variables identified and to iden-

tify strongly determined variables by higher order frequencies?
6. Do advantages result by using an adaptive version of Algorithms 1 and 2 as indicated in Section 6?

Table 4.3
Comparison of MIP, Heuristic and Accelerated Heuristic for v = 01.

n m a MIP H AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU

125 12 0.2 3.4 29.8 0.171 3.4 33.6 0.000 0.000 10 10 5
125 12 0.4 2.0 65.1 0.195 2.0 70.0 0.000 0.000 10 10 8
125 12 0.6 1.1 120.0 0.004 1.1 120.0 0.000 0.000 10 10 0
125 12 0.8 1.0 125.0 0.007 1.0 125.0 0.000 0.000 10 10 0
125 25 0.2 4.1 25.6 0.699 3.8 31.1 0.000 0.000 10 7 4
125 25 0.4 2.0 64.2 0.295 2.0 73.8 0.000 0.000 10 10 9
125 25 0.6 1.5 100.7 0.010 1.5 100.7 0.000 0.000 10 10 0
125 25 0.8 1.0 125.0 0.005 1.0 125.0 0.000 0.000 10 10 0
125 62 0.2 4.1 25.3 20.880 4.0 30.3 0.000 0.000 10 9 9
125 62 0.4 2.1 61.7 4.091 2.1 71.4 0.000 0.000 10 10 9
125 62 0.6 1.4 105.4 0.011 1.4 105.5 0.000 0.000 10 10 1
125 62 0.8 1.0 125.0 0.010 1.0 125.0 0.000 0.000 10 10 0
125 125 0.2 4.5 25.2 453.025 4.0 32.4 0.001 0.000 10 5 5
125 125 0.4 2.1 62.3 18.843 2.1 74.2 0.001 0.000 10 10 9
125 125 0.6 1.8 86.3 0.020 1.8 86.8 0.000 0.000 10 10 3
125 125 0.8 1.0 125.0 0.015 1.0 125.0 0.001 0.000 10 10 0
250 25 0.2 3.3 56.6 1.730 3.3 70.5 0.000 0.000 10 10 9
250 25 0.4 2.0 127.0 0.600 2.0 141.0 0.000 0.000 10 10 10
250 25 0.6 1.1 240.2 0.009 1.1 240.2 0.000 0.000 10 10 0
250 25 0.8 1.0 250.0 0.011 1.0 250.0 0.000 0.000 10 10 0
250 50 0.2 3.9 51.4 30.994 3.7 61.3 0.000 0.000 10 8 8
250 50 0.4 2.0 126.3 3.518 2.0 143.4 0.000 0.000 10 10 10
250 50 0.6 1.0 250.0 0.016 1.0 250.0 0.000 0.000 10 10 0
250 50 0.8 1.0 250.0 0.016 1.0 250.0 0.000 0.000 10 10 0
250 125 0.2 4.0 50.9 2279.830 4.0 56.1 0.003 0.002 1 10 10
250 125 0.4 2.0 123.5 182.474 2.0 145.6 0.000 0.000 10 10 10
250 125 0.6 1.0 250.0 0.033 1.0 250.0 0.000 0.000 10 10 0
250 125 0.8 1.0 250.0 0.031 1.0 250.0 0.000 0.000 10 10 0
250 250 0.2 3.7 53.0 248.032 4.0 57.8 0.002 0.001 0 7 7
250 250 0.4 2.0 124.5 2166.380 2.0 145.6 0.001 0.000 0 10 10
250 250 0.6 1.0 250.0 0.064 1.0 250.0 0.000 0.000 10 10 0
250 250 0.8 1.0 250.0 0.054 1.0 250.0 0.001 0.000 10 10 0
500 50 0.2 3.0 119.0 262.746 3.0 153.6 0.000 0.000 10 10 10
500 50 0.4 2.0 249.2 46.086 2.0 274.6 0.001 0.000 10 10 10
500 50 0.6 1.0 500.0 0.029 1.0 500.0 0.001 0.001 10 10 0
500 50 0.8 1.0 500.0 0.029 1.0 500.0 0.000 0.000 10 10 0
500 100 0.2 3.0 118.3 298.100 3.0 155.9 0.003 0.002 0 10 10
500 100 0.4 2.0 249.6 1203.750 2.0 276.1 0.001 0.000 10 10 10
500 100 0.6 1.0 500.0 0.040 1.0 500.0 0.000 0.000 10 10 0
500 100 0.8 1.0 500.0 0.040 1.0 500.0 0.000 0.000 10 10 0
500 250 0.2 3.0 121.7 100.034 3.2 151.1 0.003 0.001 0 8 8
500 250 0.4 2.0 248.4 100.051 2.0 278.9 0.000 0.000 0 10 10
500 250 0.6 1.0 500.0 0.206 1.0 500.0 0.004 0.001 10 10 0
500 250 0.8 1.0 500.0 0.233 1.0 500.0 0.004 0.000 10 10 0
500 500 0.2 2.8 162.9 116.086 3.5 132.7 0.008 0.005 0 4 4
500 500 0.4 1.8 294.1 120.250 2.0 280.4 0.008 0.004 0 8 8
500 500 0.6 1.0 500.0 0.284 1.0 500.0 0.006 0.000 10 10 0
500 500 0.8 1.0 500.0 0.296 1.0 500.0 0.007 0.000 10 10 0
Average 1.9 198.7 159.590 1.9 205.1 0.001 0.000 8.4 9.5 4.3

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 463
Metaheuristic strategies found in [13,15,21,26,34,35], and [36] are relevant to exploring the issues raised by the preceding
questions. However, the new considerations introduced in this paper invite empirical studies of forms not previously
conducted.
Table 5.1
Comparison of MIP, Heuristic and Accelerated Heuristic for n = 2000, m = 50 and v = 0.

Instance MIP H AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU

1 14.50 1274.50 197.730 14.50 1283.75 0.007 0.004 3 4 4
2 16.00 1317.50 151.897 14.50 1326.50 0.008 0.005 4 1 1
3 14.75 1229.50 1123.480 13.75 1235.75 0.005 0.003 3 1 1

(continued on next page)

Table 5.2
Comparison of MIP, Heuristic and Accelerated Heuristic for n = 2000, m = 50 and v = 1.

Instance MIP H AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU

1 2.00 130.50 0.974 2.00 130.50 0.001 0.001 4 4 0
2 2.25 132.25 1.576 2.00 137.25 0.000 0.000 4 3 1
3 1.50 160.00 0.155 1.50 160.00 0.003 0.000 4 4 0
4 2.00 134.75 1.181 2.00 137.00 0.000 0.000 4 4 2
5 2.00 132.75 1.184 2.00 135.00 0.000 0.000 4 4 2
6 2.25 133.75 1.628 2.25 134.00 0.000 0.000 4 4 1
7 2.50 132.75 6.286 2.50 138.00 0.003 0.000 4 4 2
8 2.00 132.50 1.310 2.00 138.00 0.001 0.000 4 4 2
9 2.00 133.75 0.675 2.00 134.50 0.000 0.000 4 4 1
10 1.75 132.00 0.510 1.75 137.00 0.003 0.000 4 4 1
11 2.25 130.75 0.786 2.00 137.00 0.000 0.000 4 3 1
12 2.00 131.75 0.582 2.00 135.75 0.005 0.000 4 4 2
13 1.75 135.00 0.190 1.75 136.75 0.003 0.000 4 4 1
14 2.00 133.75 1.135 2.00 135.75 0.000 0.000 4 4 1
15 2.00 131.50 1.723 2.00 136.50 0.000 0.000 4 4 2
16 2.25 134.50 0.403 2.25 138.50 0.003 0.000 4 4 2
17 2.75 130.25 2.208 2.50 138.00 0.002 0.000 4 3 1
18 2.50 132.00 2.997 2.50 138.25 0.000 0.000 4 4 2
Avg 2.10 134.14 1.417 2.06 137.65 0.001 0.000 4.00 3.83 1.33

Table 5.3
Comparison of MIP, Heuristic and Accelerated Heuristic for n = 2000, m = 50 and v = 01.

MIP H AH

Instance jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU #Opt #E1 #E2

1 12.00 1371.75 380.550 12.00 1384.50 0.007 0.005 3 4 4
2 13.00 1427.25 514.354 12.00 1429.75 0.005 0.003 4 2 1
3 11.75 1396.50 511.151 11.25 1400.00 0.003 0.005 3 2 1
4 14.00 1283.00 652.712 13.50 1294.00 0.008 0.000 3 3 2
5 13.25 1330.25 309.424 13.25 1348.50 0.005 0.003 3 4 3
6 13.75 1345.25 222.256 13.75 1366.50 0.005 0.003 3 2 2
7 15.00 1417.00 936.245 15.00 1431.25 0.006 0.003 4 4 2
8 13.75 1320.25 257.064 13.75 1323.25 0.005 0.005 3 4 2
9 12.75 1351.25 1037.430 12.75 1363.50 0.003 0.003 2 4 4
10 12.00 1361.75 555.008 11.75 1368.00 0.008 0.000 3 3 2
11 14.00 1320.75 1186.710 14.00 1336.75 0.008 0.003 3 4 3
12 13.25 1326.25 307.274 12.50 1352.00 0.007 0.000 3 1 1
13 13.75 1284.50 714.217 13.50 1314.00 0.003 0.005 4 3 2
14 12.75 1434.25 137.308 12.25 1437.25 0.005 0.003 3 2 1

Table 5.1 (continued)

Instance MIP H AH #Opt #E1 #E2

jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU

4 16.50 1169.25 300.759 16.00 1177.50 0.010 0.003 4 2 2
5 16.00 1228.00 317.072 16.00 1238.75 0.005 0.005 4 4 4
6 16.50 1241.00 489.668 16.50 1256.00 0.008 0.000 4 4 4
7 18.50 1313.00 169.470 18.50 1320.75 0.008 0.005 4 4 3
8 16.50 1200.00 384.925 16.50 1207.75 0.007 0.003 4 4 4
9 15.00 1244.50 1055.460 15.00 1260.25 0.010 0.003 3 4 3
10 15.00 1256.25 1099.630 14.25 1264.75 0.005 0.000 3 1 1
11 16.50 1223.50 212.398 16.50 1235.50 0.008 0.008 4 4 4
12 16.00 1220.00 435.857 15.00 1233.75 0.008 0.003 4 1 1
13 16.25 1181.00 586.565 16.25 1185.75 0.008 0.003 4 4 2
14 15.25 1330.00 243.923 14.75 1335.25 0.005 0.000 4 2 1
15 15.25 1255.25 604.018 15.00 1267.75 0.008 0.003 4 3 3
16 17.00 1270.75 278.472 15.50 1290.50 0.008 0.000 4 2 2
17 15.75 1296.00 253.367 16.00 1312.75 0.006 0.003 4 3 3
18 17.50 1265.75 157.707 17.25 1273.75 0.008 0.003 4 3 3
Avg 16.04 1250.88 447.911 15.65 1261.49 0.007 0.003 3.78 2.83 2.56

464 S. Hanafi et al. / Information Sciences 538 (2020) 444–466

Table 5.3 (continued)

MIP H AH

Instance jS�j jNv S�ð Þj CPU jS�j jNv S�ð Þj CPU CPU #Opt #E1 #E2

15 12.50 1365.75 782.128 12.25 1380.25 0.005 0.005 3 3 3
16 14.00 1385.50 222.542 13.25 1389.25 0.007 0.006 3 2 1
17 13.50 1407.75 760.556 13.50 1417.25 0.005 0.004 4 4 3
18 14.50 1368.25 9675.590 14.50 1389.25 0.005 0.008 3 4 3
Avg 13.31 1360.96 1064.584 13.04 1373.63 0.005 0.003 3.17 3.06 2.22

Table 6
CPU time comparison of Heuristic and Accelerated Heuristic for n = 2000.

m a v = 0 v = 1 v = 01

H AH H AH H AH

100 0.2 0.004 0.003 0.004 0.002 0.004 0.003
100 0.4 0.003 0.002 0.003 0.002 0.003 0.003
100 0.6 0.002 0.001 0.002 0.001 0.002 0.002
100 0.8 0.002 0.001 0.002 0.001 0.002 0.002
200 0.2 0.007 0.005 0.007 0.005 0.008 0.006
200 0.4 0.006 0.004 0.006 0.004 0.006 0.005
200 0.6 0.004 0.002 0.003 0.002 0.004 0.003
200 0.8 0.004 0.002 0.004 0.002 0.003 0.003
Average 0.004 0.002 0.004 0.002 0.004 0.003

S. Hanafi et al. / Information Sciences 538 (2020) 444–466 465
CRediT authorship contribution statement

Saïd Hanafi: Conceptualization, Methodology. Gintaras Palubeckis: Conceptualization, Methodology, Writing - review &
editing. Fred Glover: Conceptualization, Methodology, Writing - review & editing.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
References

[1] P.K. Agarwal, N. Alon, B. Aronov, S. Suri, Can visibility graphs be represented compactly?, Discr. Comput. Geometry 12 (3) (1994) 347–365.
[2] M. Allais, Pareto, Vilfredo: contributions to economics, In: International Encyclopedia of the Social Sciences, vol. 11, New York, 1968, pp. 399–411.
[3] S. Busygin, O. Prokopyev, P.M. Pardalos, Biclustering in data mining, Comput. Oper. Res. 35 (9) (2008) 2964–2987.
[4] Y. Cheng G.M. Church Biclustering of expression data In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology

2000 93 103
[5] I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, In: Proceedings of the seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, 2001, pp. 269–274.
[6] S. Dolnicar, S. Kaiser, K. Lazarevski, F. Leisch, Biclustering: overcoming data dimensionality problems in market segmentation, J. Travel Res. 51 (1)

(2012) 41–49.
[7] M. Ehrgott, Multicriteria Optimization, 2nd Edition., Springer, Berlin, 2005.
[8] N. Fan, N. Boyko, P.M. Pardalos, Recent advances of data biclustering with application in computational neuroscience, In: Computational Neuroscience,

Springer, New York, NY, 2010, pp. 85–112.
[9] N. Fan A. Chinchuluun P.M. Pardalos Integer programming of biclustering based on graph models, In: Optimization and Optimal Control 2010 Springer

New York, NY 479 498
[10] P.C. Fishburn, P.L. Hammer, Bipartite dimensions and bipartite degrees of graphs, Discrete Mathematics 160 (1–3) (1996) 127–148.
[11] V. Froidure, Rangs des relations binaires et semigroupes de relations non ambigus, Doctoral dissertation, Paris 6 (1995).
[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, New York, NY, 1979.
[13] F. Glover, Multi-wave algorithms for metaheuristic optimization, J. Heuristics 22 (3) (2016) 331–358.
[14] F. Glover, S. Hanafi, G. Palubeckis, Supplementary material: bi-objective clustering with binary data, arXiv: 2002.04711, http://arxiv.org/abs/

2002.04711, (2020).
[15] F. Glover, J.-K. Hao, Diversification-based learning in computing and optimization, J. Heurist. 25 (4–5) (2019) 521–537.
[16] M. Golchin, A.W.C. Liew, Parallel biclustering detection using strength Pareto front evolutionary algorithm, Inf. Sci. 415 (2017) 283–297.
[17] M. Habib, L. Nourine, O. Raynaud, A new lattice-based heuristic for taxonomy encoding, In: International KRUSE Symposium: Knowledge, Retrieval,

Use and Storage for Efficiency, Vancouver, 1997, pp. 60–71.
[18] Y.Y. Haimes, L.S. Lasdon, D.A. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE

Transactions on Systems, Man, and Cybernetics 1(3) (1971) 296–297.
[19] J.A. Hartigan, Direct clustering of a data matrix, J. Am. Stat. Assoc. 67 (337) (1972) 23–129.
[20] Q. Huang, X. Huang, Z. Kong, X. Li, D. Tao, Bi-phase evolutionary searching for biclusters in gene expression data, IEEE Trans. Evol. Comput. 23 (2019)

803–814.
[21] X. Lai, J.-K. Hao, Z. Lü, F. Glover, A learning-based path relinking algorithm for the bandwidth coloring problem, Eng. Appl. Artif. Intell. 52 (2016) 81–91.

http://refhub.elsevier.com/S0020-0255(20)30502-8/h0005
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0015
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0030
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0030
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0035
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0035
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0050
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0060
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0060
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0065
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0075
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0080
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0095
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0100
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0100
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0105

466 S. Hanafi et al. / Information Sciences 538 (2020) 444–466
[22] S.C. Madeira, A.L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE/ACM Trans. Computat. Biol. Bioinformat. (TCBB) 1 (1)
(2004) 24–45.

[23] Y. Malgrange, Recherche des sous-matrices premières d’une matrice à coefficients binaires. Applications à certains problèmes de graphe 1962
Gauthier-Villars, Paris 231 242

[24] B. Mirkin, Mathematical Classification and Clustering, Springer, 1996.
[25] P. Orzechowski, K. Boryczko, Propagation-based biclustering algorithm for extracting inclusion-maximal motifs, Comput. Inform. 35 (2) (2016) 391–

410.
[26] G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic optimization problem, Ann. Oper. Res. 131 (2004) 259–282.
[27] [27] V. Pareto, Cours d’Économie Politique, 2 volumes, F. Rouge, Éditeur, Lausanne, 1896-1897.
[28] G.A. Pavlopoulos, P.I. Kontou, A. Pavlopoulou, C. Bouyioukos, E. Markou, P. Bagos, Bipartite graphs in systems biology and medicine: a survey of

methods and applications, GigaScience 7 (4) (2018) giy014.
[29] R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Appl. Math. 131 (3) (2003) 651–654.
[30] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L. Hennig, L. Thiele, E. Zitzler, A systematic comparison and evaluation of

biclustering methods for gene expression data, Bioinformatics 22 (9) (2006) 1122–1129.
[31] K. Seridi, L. Jourdan, E.G. Talbi, Using multiobjective optimization for biclustering microarray data, Appl. Soft Comput. 33 (2015) 239–249.
[32] A. Tanay, R. Sharan, R. Shamir, Biclustering algorithms: A survey, Handbook of Computational, Mol. Biol. 9 (1–20) (2005) 122–124.
[33] B. Wang, Y. Miao, H. Zhao, J. Jin, Y. Chen, A biclustering-based method for market segmentation using customer pain points, Eng. Appl. Artif. Intell. 47

(2016) 101–109.
[34] Y. Wang, Z. Lu, F. Glover, J.-K. Hao, Path relinking for unconstrained binary quadratic programming, Eur. J. Oper. Res. 223 (3) (2012) 595–604.
[35] Y. Wang, Q. Wu, F. Glover, Effective metaheuristic algorithms for the minimum differential dispersion problem, Eur. J. Oper. Res. 258 (3) (2017) 829–

843.
[36] Y. Wang, Q. Wu, A. Punnen, F. Glover, Adaptive tabu search with strategic oscillation for the bipartite boolean quadratic programming problem with

partitioned variables, Inf. Sci. 450 (2018) 284–300.
[37] H. Zha, X. He, C. Ding, H. Simon, M. Gu, Bipartite graph partitioning and data clustering, In: Proceedings of the tenth International Conference on

Information and Knowledge Management, ACM, 2001, pp. 25–32.
[38] X. Zhu, J. Qiu, M. Xie, J. Wang, A multi-objective biclustering algorithm based on fuzzy mathematics, Neurocomputing 253 (2017) 177–182.

http://refhub.elsevier.com/S0020-0255(20)30502-8/h0110
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0110
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0120
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0120
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0125
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0125
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0130
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0140
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0140
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0145
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0150
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0150
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0155
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0160
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0165
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0165
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0170
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0175
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0175
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0180
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0180
http://refhub.elsevier.com/S0020-0255(20)30502-8/h0190

	Bi-objective optimization of biclustering with binary data
	1 Introduction
	1.1 Design of the paper

	2 &z.epsiv;-Constraint method
	3 Integer programing formulation of problems [$]{{\bi{G}}}_{\gulliverbiv}[$], [$] {{\bi{G}}}_{\gulliverbiv}^{1}\left({\boldvarepsilon}^{2}\right)[$] and [$] {{\bi{G}}}_{\gulliverbiv}^{2}\left({\boldvarepsilon}^{1}\right)[$]
	4 Approximate algorithms for problems [$] {{\bi{G}}}_{\gulliverbiv}^{1}\left({\boldvarepsilon}^{2}\right)[$] and [$] {{\bi{G}}}_{\gulliverbiv}^{2}\left({\boldvarepsilon}^{1}\right)[$]
	4.1 Integer programming formulations for problems [$] {{\bi{G}}}_{\gulliverbiv}^{1}\left({\boldvarepsilon}^{2},{\bi{h}}\right)[$] and [$] {{\bi{G}}}_{\gulliverbiv}^{2}\left({\boldvarepsilon}^{1},{\bi{h}}\right)[$]
	4.2 Heuristics for problems [$] {{\bi{G}}}_{\gulliverbiv}^{1}\left({\boldvarepsilon}^{2},{\bi{h}}\right)[$] and [$] {{\bi{G}}}_{\gulliverbiv}^{2}\left({\boldvarepsilon}^{1},{\bi{h}}\right)[$]
	4.2.1 An alternative representation
	4.2.2 Constructive algorithms for problems [$] {{\bi{G}}}_{\gulliverbiv}^{1}\left({\boldvarepsilon}^{2},{\bi{h}}\right)[$] and [$] {{\bi{G}}}_{\gulliverbiv}^{2}\left({\boldvarepsilon}^{1},{\bi{h}}\right)[$]
	4.2.3 Efficient implementation of constructive algorithms

	5 Illustration
	5.1 Algorithm 1 for Problem [$] {{\bi{G}}}_{\gulliverbiv}^{1}[$]
	5.2 &z.epsiv;-constraint method

	6 Advanced considerations
	6.1 The choice of the starting row
	6.2 Overlapping clusters

	7 Computational results
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

