Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A study of two evolutionary/tabu search approaches for the generalized max-mean dispersion problem

Xiangjing Laiª, Jin-Kao Hao^{b,c,}*, Fred Glover^d

^a *Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China*

^b *LERIA, Université d'Angers, 2 bd Lavoisier, 49045 Angers, Cedex 01, France*

^c *Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France*

^d *College of Engineering & Applied Science, University of Colorado, Boulder, Colorado 80309, USA*

ARTICLE INFO

Article history: Received 24 October 2018 Revised 19 July 2019 Accepted 29 July 2019 Available online 2 August 2019

Keywords: Combinatorial optimization Dispersion problems Tabu search Evolutionary search Heuristics

A B S T R A C T

Evolutionary computing is a general and powerful framework for solving difficult optimization problems, including those arising in expert and intelligent systems. In this work, we investigate for the first time two hybrid evolutionary algorithms incorporating tabu search for solving the generalized max-mean dispersion problem (GMaxMeanDP) which has a variety of practical applications such as web page ranking, community mining, and trust networks. The proposed algorithms integrate innovative search strategies that help the search to explore the search space effectively. We report extensive computational results of the proposed algorithms on six types of 160 benchmark instances, demonstrating their effectiveness and usefulness. In addition to the GMaxMeanDP, the proposed algorithms can help to better solve other problems that can be formulated as the GMaxMeanDP.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Many decision-making problems including those arising in expert and intelligent systems require finding a best subset of elements in a way that the selected objects optimize a dispersion or diversity criterion. Formally, given a set $V = \{1, 2, ..., n\}$ of *n* elements and the distances d_{ij} ($i < j$) between elements, a dispersion or diversity problem involves selecting a subset *M* of *V* such that an objective function defined over the distances between the elements in *M* is optimized. According to whether a cardinality constraint is imposed on the subset *M*, the dispersion problems can be divided into two categories. The first category where the cardinality of *M* is fixed to a given positive number *m* includes the maximum diversity problem (Aringhieri & Cordone, 2011; Glover, Kuo, & Dhir, 1998; [Palubeckis,](#page-13-0) 2007; Saboonchi, Hansen, & Perron, 2014; Wu & Hao, 2013), the max–min diversity problem (Della Croce, Grosso, & Locatelli, 2009; [Porumbel,](#page-13-0) Hao, & Glover, 2011; Resende, Martí, Gallego, & Duarte, 2010), the minimum differential dispersion problem (Lai, Hao, Glover, & Yue, 2019; Mladenović, Todosijević, & Urošević, 2016; Wang, Wu, & Glover, 2017;

<https://doi.org/10.1016/j.eswa.2019.112856> 0957-4174/© 2019 Elsevier Ltd. All rights reserved. Zhou & Hao, [2017\)](#page-13-0), and the maximum min-sum dispersion problem (Amirgaliyeva, Mladenović, Todosijević, & Urošević, 2017; Aringhieri, Cordone, & Grosso, 2015; Lai, Yue, Hao, & Glover, 2018; Prokopyev, Kong, & [Martinez-Torres,](#page-13-0) 2009). The second category where the cardinality of *M* is not fixed includes the Max-Mean dispersion problem [\(MaxMeanDP\)](#page-13-0) (Brimberg, Mladenović, Todosijević, & Urošević, 2017; Della Croce, Garraffa, & Salassa, 2016; Lai & Hao, 2016; Martí & Sandoya, 2013) and the generalized Max-Mean dispersion problem [\(GMaxMeanDP\)](#page-13-0) (Prokopyev et al., 2009).

This work addresses the GMaxMeanDP that is one of four dispersion problems introduced in [Prokopyev](#page-13-0) et al. (2009) and can be described by means of a weighted graph. Given a weighted complete graph $G = (V, E, D, W)$, where *V* is the set of *n* vertices, *E* is the set of $\frac{n \times (n-1)}{2}$ edges, *D* represents the set of positive, negative or zero edge weights d_{ij} ($i \neq j$), and *W* represents the set of positive vertex weights w_i ($i = 1, 2, ..., n$), the GMaxMeanDP is to select a subset *M* from *V* such that the weighted mean dispersion of the (complete) subgraph induced by *M* is maximized. In related literature, the vertices are also called the elements and the edge weights between vertices are called the distances between the elements.

Formally, the GMaxMeanDP can be formulated as an unconstrained fractional 0–1 combinatorial optimization problem with binary variables x_i that equal 1 if the element i is selected, and

Corresponding author.

E-mail addresses: lai@njupt.edu.cn (X. Lai), jin-kao.hao@univ-angers.fr (J.-K. Hao), glover@opttek.com (F. Glover).

0 otherwise [\(Prokopyev](#page-13-0) et al., 2009).

Maximize
$$
f(s) = \frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij}x_i x_j}{\sum_{i=1}^{n} w_i x_i}
$$
 (1)

$$
x_i \in \{0, 1\}, i = 1, 2, \dots, n
$$
 (2)

The Max-Mean dispersion problem that has recently received substantial attention in the literature (Brimberg et al., 2017; Carrasco et al., 2015; Della Croce et al., 2016; Lai & Hao, 2016; Martí & Sandoya, 2013) is a special case of the [GMaxMeanDP](#page-13-0) with $w_i = 1$ for $\forall i \in \{1, 2, ..., n\}$. As a result, any algorithm for the GMaxMeanDP can be directly applied to the Max-Mean dispersion problem, while the reverse is not true.

In addition to its theoretical significance as an NP-hard problem [\(Prokopyev](#page-13-0) et al., 2009), the GMaxMeanDP has a variety of potential potential [applications,](#page-13-0) such as web page ranking (Kerchove & Dooren, 2008), community mining in a signed social network (Yang, [Cheung,](#page-13-0) & Liu, 2007), and trust networks (Carrasco et al., 2015), among others. For example, the [community](#page-13-0) mining problem in a signed and weighted social network can be addressed by solving a series of GMaxMeanDP problems with smaller and smaller sizes (Yang et al., [2007\)](#page-13-0). Given a signed social network $G = (V, E, D, W)$, where *D* represents the set of positive or negative edge weights d_{ii} ($i \neq j$), and a positive (or negative) d_{ii} means that there exists an attractive (or repulsive) relationship between the vertices *i* and *j*, and *W* represents the set of vertex weights *wi* $(1 \le i \le n)$, then a community corresponds to a high-quality solution of the corresponding GMaxMeanDP (i.e., a subset of *V*) in *G*.

In spite of its importance and close relationship to other dispersion problems, the GMaxMeanDP has surprisingly received little attention in the literature. To the best of our knowledge, no heuristic or exact algorithm has ever been proposed for solving the GMaxMeanDP, even though existing heuristic or exact algorithms for the MaxMeanDP like those in [Brimberg](#page-13-0) et al. (2017), Della Croce et al. [\(2016\)](#page-13-0) and Garraffa, DellaCroce, and Salassa (2017) could be adapted to the [GMaxMeanDP.](#page-13-0) On the other hand, previous studies (Benlic & Hao, 2015; Ghosh, Begum, Sarkar, [Chakraborty,](#page-13-0) & Maulik, 2019; Ismkhan, 2017; Morra, Coccia, & Cerquitelli, 2018; Silva, Hruschka, & Gama, 2017; Zhao, Xu, & Jiang, 2015) showed that evolutionary computing is a particularly relevant approach for solving a number of difficult combinatorial optimization problems. Given the NP-hard nature of the GMaxMeanDP, evolutionary computing can be considered as a natural approach to be investigated for solving the GMaxMeanDP. We enhance this approach by forming two hybrid algorithms with tabu search, drawing on the adaptive memory features of the latter to uncover superior solutions. Our work is thus motivated by these observations with the purpose of proposing effective solution methods for the considered problem. We summarize the contributions of this work as follows.

- First, in terms of solution methods, we investigate the first perturbation-based evolutionary algorithm dedicated to the GMaxMeanDP, which integrates a multi-neighborhood tabu search procedure and a perturbation operator into the population-based framework. Additionally, we adapt the [state-of-the-art](#page-13-0) MaxMeanDP algorithm introduced in Lai and Hao (2016) to the GMaxMeanDP, where a crossover operator is used to generate offspring solutions and a tabu search procedure is employed for local optimization. Given that solution method for solving the GMaxMeanDP does not currently exist, this work fills an important gap in the literature.
- Second, we assess the computational performance of the proposed algorithms on a set of 80 MaxMeanDP benchmark instances as well as on a set of additional 80 GMaxMeanDP in-

stances that we introduce in this work and make publicly available. Our results provide a reference for performance assessment of other solution methods for the GMaxMeanDP in the future.

- Third, we analyze the effectiveness and time complexity of several key components such as the neighborhood structures used by the tabu search procedure and provide insights concerning their the impact on the behavior of the algorithm.
- Fourth, given that the GMaxMeanDP is a general model able to formulate a variety of real-world applications, the proposed algorithms can be advantageously applied to solve such practical problems.

The remainder of the paper is organized as follows. In the next section, we describe the proposed algorithms. In [Section](#page-6-0) 3, we assess and compare the performance of the proposed algorithms based on the 160 benchmark instances. We analyse in [Section](#page-10-0) 4 the influence of a key parameter on the performance of the perturbation-based evolutionary algorithm, and discuss the influence of the neighborhood size on the performance of the tabu search methods. Finally, [Section](#page-12-0) 5 gives conclusions and provides some perspectives.

2. Two hybrid evolutionary approaches for the GMaxMeanDP

In this section, we describe two hybrid evolutionary algorithms for solving the GMaxMeanDP. We first introduce the perturbationbased evolutionary algorithm (PBEA) that employs a perturbation operator to generate new solutions, and then describe briefly the memetic algorithm (denoted by MAMMDP∗) which is adapted from one of the state-of-the-art MaxMeanDP algorithms (called the MAMMDP algorithm (Lai & Hao, [2016\)](#page-13-0)).

2.1. Perturbation based evolutionary algorithm for the GMaxMeanDP

To reach a suitable tradeoff between the intensification and diversification of the search process, the perturbation-based evolutionary algorithm (PBEA) uses an effective tabu search procedure to intensify the search, a random perturbation operator to diversify the search, and a population updating strategy to manage the pool of elite solutions.

2.1.1. General procedure

As indicated in [Algorithm](#page-2-0) 1, the proposed PBEA algorithm starts with an initial population of *p* individuals (solutions) that are generated according to the procedure described in [Section](#page-2-0) 2.1.3 (line 3), and then performs a number of iterations (lines 5–16) to improve the initial population. At each iteration, the algorithm first selects randomly a solution *s* from the population, then slightly changes the solution with the perturbation operator [\(Section](#page-2-0) 2.1.4), and finally improves the perturbed solution by the tabu search procedure [\(Section](#page-2-0) 2.1.5). After that, the improved solution *s^o* is used to update the population by using a simple updating rule – the worst individual s^w in the population is replaced by s^o if s^o is distinct from any solution of the population and is better than *sw*; otherwise *s^o* is discarded. The algorithm stops and the solution *s*[∗] is returned when the timeout limit (t_{max}) is reached.

2.1.2. Search space and evaluation function

Since the GMaxMeanDP is an unconstrained binary optimization problem, any *n*-dimensional binary vector is a feasible solution. Thus, the search space to be explored by the proposed algorithm is given by

$$
\Omega = \{ (x_1, x_2, \dots, x_n) : x_i \in \{0, 1\}, 1 \le i \le n \}
$$
\n(3)

Thus, the size of search space is equal to 2^n , where *n* is the number of elements in the problem. Additionally, the quality of a

Algorithm 1 Perturbation based evolutionary algorithm (PBEA) for the GMaxMeanDP.

- 3: $POP = \{s^1, \ldots, s^p\} \leftarrow \text{Population}(G, p)$ /* Section 2.1.3 ∗/
- 4: s^* ← *arg* max{*f*(s^i) : *i* = 1, ..., *p*} /∗ s[∗] denotes the best solution found ∗/
- 5: **while** *time*() < *t*max **do**

candidate solution $s = (x_1, x_2, \ldots, x_n) \in \Omega$ is given by its objective value $f(s)$ in Eq. (1) .

2.1.3. Population initialization

An initial solution *s* is generated by randomly assigning each of its components the value 0 or 1. Then, this random solution is improved by the tabu search procedure (Section 2.1.5). We repeat this generation procedure *p* times to obtain the initial population. The pseudo-code of this initialization procedure is given in Algorithm 2.

2.1.4. Perturbation operator

In order to diversify the search, the proposed algorithm uses a perturbation operator to modify a parent solution (see Algorithm 3) that is randomly selected from the population. Specifically, we perform $\eta \times n$ random changes to the parent solution and then return the resulting solution as the perturbed solution, where η is a parameter and $\eta \times n$ is called the perturbation strength. Each random change involves first selecting a variable x_i randomly and then assigning a random value 0 or 1 to the variable. As such, a large (small) value of η leads to more (fewer) changes in the parent solution, thus inducing a strong (weak) diversification effect. In practice, our experiments show that $\eta = 0.4$ is a suitable perturbation strength for solving the instances studied in this work (see [Section](#page-10-0) 4.1 for the details). Equivalently, this perturbation operator changes the values of about $0.2 \times n$ randomly selected variables.

7: **return** *s*

2.1.5. Tabu search

The tabu search (TS) method is a popular metaheuristic for combinatorial optimization (Glover & [Laguna,](#page-13-0) 1997). Given a neighborhood structure (*N*) (see Section 2.1.6) and the evaluation function *f*, our tabu search procedure performs a number of iterations to improve the current solution. At each iteration, the algorithm replaces the current solution *s* by a best eligible neighbor solution $(s' \in N(s))$, and meanwhile records the underlying move (see Section 2.1.6) in the tabu list to prevent the reverse move from being performed for the next *tt* iterations, where *tt* is called the tabu tenure and is adjusted according to the tabu list management strategy described in [Section](#page-4-0) 2.1.8. In our TS method, a neighbor solution is eligible if it is not forbidden by the tabu list or if it is better than the best solution (s_b) found so far in the current TS run. Finally, the tabu search method stops when a maximum number (*Iter*max) of iterations is reached. The general template of the TS method is provided in Algorithm 4, and its components are explained in the next sections.

2.1.6. Neighborhood structures

In this work, we investigate the following four neighborhood structures.

(1) 1-flip neighborhood. With this basic 1-flip neighborhood (denoted by N_1), a neighbor solution can be obtained by changing the value of a single variable x_i to its complementary value 1 x_i . Clearly, this neighborhood N_1 has a size of *n*, where *n* is the number of variables.

Computational results and comparisons on the 40 MaxMeanDP instances with $n = 1500$ or 2000 from the literature. The best *f_{best}* values among all the results are indicated in boldface.

SR SR f t(s) fbest fbest favg f_{avg} f _{best}	t(s)
20/20 136.26 66.6568 136.535222 136.535222 20/20 14.21 136.535222 136.535222 MDPI1_1500	18.75
138.00 70.7226 138.341482 20/20 5.38 138.341482 138.341482 20/20 MDPI2_1500 138.341482	8.04
66.8269 MDPI3_1500 138.91 139.200599 139.200599 20/20 3.17 139.200599 139.200599 20/20	3.28
20/20 5.65 MDPI4_1500 139.81 68.0931 140.166920 140.166920 140.166920 140.166920 20/20	4.67
MDPI5_1500 136.47 66.8041 137.129630 137.129630 20/20 7.73 137.129630 137.129630 20/20	12.65
MDPI6_1500 136.22 65.6676 136.508768 136.508768 20/20 7.05 136.508768 136.508768 20/20	10.13
2.49 137.65 63.4105 137.971032 137.971032 20/20 137.971032 137.971032 20/20 MDPI7_1500	3.20
138.02 67.9306 138.728444 20/20 13.56 20/20 MDPI8_1500 138.728444 138.728444 138.728444	13.95
136.30 66.9695 136.495674 136.495674 20/20 21.39 136.495674 136.495674 MDPI9_1500 20/20	28.95
140.33 66.0519 140.333159 20/20 3.47 140.333159 20/20 MDPI10_1500 140.333159 140.333159	3.90
MDPI1_2000 158.03 55.3813 158.588217 158.588217 20/20 10.40 158.588217 158.588217 20/20	11.79
162.91 MDPI2_2000 54.2658 163.939616 163.939616 20/20 19.11 163.939616 163.939616 20/20	31.71
158.98 51.9819 159.570786 13/20 39.86 6/20 MDPI3_2000 159.545090 159.570786 159.528479	38.94
159.14 52.6407 160.185217 160.185217 20/20 28.46 160.185217 160.184761 MDPI4_2000 17/20	54.41
156.11 53.8956 156.805331 156.758147 10/20 41.25 156.805331 13/20 MDPI5_2000 156.776147	55.30
161.61 52.1516 161.839100 161.839100 20/20 11.30 161.839100 20/20 MDPI6_2000 161.839100	13.72
157.58 53.8223 20/20 9.79 MDPI7_2000 158.336131 158.336131 158.336131 158.336131 20/20	7.93
53.6872 20.03 MDPI8_2000 161.43 161.446931 161.446931 20/20 161.446931 161.446931 20/20	22.30
159.15 54.9125 160.190374 160.190374 20/20 29.21 160.190374 160.187769 17/20 MDPI9_2000	44.28
160.90 53.6239 7.60 20/20 MDPI10_2000 161.638099 161.638099 20/20 161.638099 161.638099	4.99
181.67 94.7889 182.089413 182.089413 20/20 6.33 182.089413 182.089413 20/20 MDPII1_1500	8.23
185.48 98.7439 20/20 6.78 20/20 MDPII2_1500 186.243869 186.243869 186.243869 186.243869	4.66
181.55 93.3692 182.142902 20/20 3.13 20/20 MDPII3_1500 182.142902 182.142902 182.142902	4.76
184.91 92.6379 185.557302 185.500190 8/20 42.93 185.557302 MDPII4_1500 185.514675 9/20	35.93
101.379 2.25 MDPII5_1500 190.15 190.860529 190.860529 20/20 190.860529 190.860529 20/20	1.65
183.14 99.3436 183.575336 183.575336 20/20 3.05 183.575336 20/20 MDPII6_1500 183.575336	1.90
179.34 93.6409 179.820242 179.820242 13.93 179.820242 20/20 MDPII7_1500 20/20 179.820242	18.43
186.60 96.7090 186.602804 186.602804 20/20 2.74 186.602804 186.602804 20/20 MDPII8_1500	3.30
97.7207 20/20 17.85 MDPII9_1500 181.43 181.918814 181.918814 181.918814 181.918814 20/20	14.75
182.70 99.0640 183.384692 183.384692 20/20 32.37 183.384692 183.384692 20/20 MDPII10_1500	26.01
208.85 75.3906 209.845273 209.845273 8.13 209.845273 20/20 MDPII1_2000 20/20 209.845273	11.24
16.03 218.19 81.7475 218.404860 218.404860 20/20 218.404860 218.404860 20/20 MDPII2_2000	22.40
209.57 69.9621 210.819147 210.807415 19/20 15.52 210.819147 210.819147 20/20 MDPII3_2000	18.05
16.15 20/20 MDPII4_2000 211.99 74.7847 212.424859 212.424859 20/20 212.424859 212,424859	25.81
75.5558 9.90 MDPII5_2000 215.33 216.088722 216.088722 20/20 216.088722 216.088722 20/20	8.96
MDPII6_2000 210.61 73.9974 211.769151 211.769151 20/20 10.88 211.769151 211.769151 20/20	6.88
MDPII7_2000 209.65 77.1172 209.780651 209.780651 20/20 19.95 209.780651 209.780651 20/20	25.74
212.43 80.1608 20/20 17.03 MDPII8_2000 212.575432 212.575432 212.575432 212.575432 20/20	27.75
MDPII9_2000 214.61 72.2590 215.007759 215.007759 20/20 15.87 215.007759 215.007759 20/20	12.92
28.22 MDPII10_2000 210.06 74.5694 210.735749 210.735436 15/20 210.735749 210.735561 17/20	28.19
173.30 73.2110 173.839956 173.836405 16.44 Avg. 173.839956 173.837022	19.25
#Best 2 $\bf{0}$ 40 40	
3.569e-8 3.569e-8 1.0 0.6121 p-value	

(2) 2-flip neighborhood. The 2-flip neighborhood (denoted by N_2) simultaneously changes the values of two variables x_i and x_j to their complementary values to generate a neighbor solution. The neighborhood size of N_2 is thus equal to $n(n-1)/2$.

(3) Union neighborhood. The third neighborhood N_3 is a combined neighborhood that is the union of neighborhoods N_1 and N_2 , i.e., $N_3 = N_1 \cup N_2$. Thus, the size of N_3 is equal to $n + n(n-1)/2$.

(4) Reduced union neighborhood. The fourth neighborhood (denoted by N_4) is the union of the neighborhood N_1 and a highquality subset N_2^* of N_2 , i.e., $N_4 = N_1 \cup N_2^*$. Specifically, given a solution *s*, the neighborhood $N_2^*(s)$ is defined by:

 $N_2^*(s) = \{s \oplus$ \oplus *Flip* < *i*, *j* > $i \neq j$, { Δ_i , Δ_j } > Δ_{max} – $0.05(\Delta_{\text{max}} - \Delta_{\text{min}})$ } where $\Delta_{\text{max}} = max_{l \le n} \Delta_l$, $\Delta_{\text{min}} = min_{l \le n} \Delta_l$, Δ_l represents the move value (i.e., the change of the objective value) of flipping a single variable x_l to its complementary value, and $Flip < i$, $j >$ represents a 2-flip move that simultaneously changes the values of variables x_i and x_j to their complementary values. Clearly, a neighbor solution $s' \in N_2^*$ can be obtained by consecutively performing two high-quality 1-flip moves from *s*. As a result, the size of N_4 is given by $n + |N_2^*|$ and varies dynamically during the search process.

In the proposed PBEA algorithm, we select *N*⁴ as the neighborhood structure of the tabu search procedure, since *N*⁴ is able to reach a desirable tradeoff between computing efficiency and solution quality according to our computational experiments (see [Section](#page-11-0) 4.2 for the details).

Computational results and comparisons on the 40 large MaxMeanDP instances with $n = 3000$ or 5000 from the literature. The dominating f_{best} and f_{avg} values among the compared results are indicated in boldface.

Instance	LocalSolver	MAMMDP* (this work)				PBEA (this work)			
	\mathbf{f}	f _{best}	f_{avg}	SR	t(s)	fbest	f_{avg}	SR	t(s)
MDPI1_3000	72.8274	189.048965	189.048965	20/20	54.08	189.048965	189.048965	20/20	75.99
MDPI2_3000	72.8196	187.387292	187.387292	20/20	50.59	187.387292	187.387292	20/20	81.62
MDPI3_3000	71.1284	185.666806	185.642604	5/20	310.42	185.666806	185.640815	4/20	173.32
MDPI4_3000	67.3049	186.163727	186.159939	19/20	165.94	186.163727	186.156150	18/20	121.87
MDPI5_3000	68.5859	187.545515	187.545515	20/20	56.64	187.545515	187.545515	20/20	124.46
MDPI6_3000	71.5833	189.431257	189.431257	20/20	36.28	189.431257	189.431257	20/20	71.08
MDPI7_3000	65.0592	188.242583	188.242583	20/20	90.13	188.242583	188.242583	20/20	76.43
MDPI8_3000	68.5892	186.796814	186.796814	20/20	36.91	186.796814	186.796814	20/20	75.72
MDPI9_3000	70.9764	188.231264	188.228646	19/20	65.43	188.231264	188.231264	20/20	84.02
MDPI10_3000	69.1644	185.682511	185.572559	4/20	105.14	185.682511	185.632187	11/20	197.56
MDPII1_3000	97.6705	252.320433	252.320433	20/20	46.18	252.320433	252.320433	20/20	90.08
MDPII2_3000	101.229	250.062137	250.062137	20/20	127.57	250.062137	250.060127	16/20	248.03
MDPII3_3000	104.731	251.906270	251.906270	20/20	99.94	251.906270	251.906270	20/20	142.28
MDPII4_3000	99.7977	253.941007	253.936173	14/20	187.38	253.941007	253.939366	16/20	208.28
MDPII5_3000	103.008	253.260423	253.260302	15/20	190.57	253.260423	253.260278	14/20	256.84
MDPII6_3000	104.409	250.677750	250.677750	20/20	49.99	250.677750	250.677750	20/20	58.46
MDPII7_3000	100.621	251.134413	251.134413	20/20	55.07	251.134413	251.134413	20/20	99.94
MDPII8_3000	105.536	252.999648	252.999648	20/20	74.56	252.999648	252.999648	20/20	83.54
MDPII9_3000	100.811	252,425770	252,425770	20/20	45.77	252,425770	252,425770	20/20	114.67
MDPII10_3000	99.4736	252.396590	252.396590	20/20	16.30	252.396590	252.396590	20/20	15.39
MDPI1_5000	NA	240.141212	240.070982	9/20	464.66	240.162535	240.015046	1/20	644.69
MDPI2_5000	NA	241.827401	241.744421	5/20	360.20	241.827401	241.735443	2/20	495.52
MDPI3_5000	NA	240.890819	240.865427	15/20	410.53	240.890819	240.812439	11/20	466.86
MDPI4_5000	NA	240.997186	240.951055	4/20	592.65	240.997186	240.955450	4/20	656.19
MDPI5_5000	NA	242.480129	242.471643	18/20	269.86	242.480129	242.454732	14/20	612.06
MDPI6_5000	NA	240.322850	240.304443	14/20	33.30	240.376038	240.281210	1/20	585.48
MDPI7_5000	NA	242.820139	242.771514	4/20	490.60	242.820139	242.771003	1/20	604.73
MDPI8_5000	NA	241.194990	241.154430	13/20	111.35	241.194990	241.138956	5/20	568.30
MDPI9_5000	NA	239.760560	239.566397	7/20	139.82	239.681094	239.498462	3/20	536.47
MDPI10_5000	NA	243.385487	243.345183	8/20	548.48	243.473734	243.334446	1/20	521.23
MDPII1_5000	NA	322.235897	322.177715	4/20	298.40	322.235897	322.148548	2/20	581.82
MDPII2_5000	NA	327.301910	326.996573	5/20	729.93	327.301910	326.970214	4/20	551.71
MDPII3_5000	NA	324.813456	324.792109	9/20	290.15	324.813456	324.785177	3/20	482.32
MDPII4_5000	NA	322,227657	322.182679	6/20	422.89	322.237586	322.126451	2/20	705.12
MDPII5_5000	NA	322.491211	322.355484	3/20	506.35	322.491211	322.365463	4/20	556.09
MDPII6_5000	NA	322.728902	322.638339	3/20	101.37	322.950488	322.629351	2/20	678.45
MDPII7_5000	NA	322.850438	322,773052	8/20	606.48	322.850438	322.787011	9/20	415.61
MDPII8_5000	NA	323.112120	323.009085	6/20	285.51	323.112120	322.948455	2/20	555.26
MDPII9_5000	NA	323.543775	323.299190	5/20	774.36	323.543775	323.182444	1/20	574.49
MDPII10_5000	NA	324.519908	324.456763	17/20	440.56	324.519908	324.335221	12/20	500.37
Avg.	NA	251.124181	251.077554		243.56	251.132051	251.062725		342.31
#Best	$\mathbf{0}$	36				39			
p-value	NA	0.173	3.649e-3						

2.1.7. Fast neighborhood evaluation method

To rapidly examine the neighborhood, we employ a fast incremental evaluation method that ensures a high computational efficiency of the tabu search procedure.

Following Lai and Hao [\(2016\),](#page-13-0) our neighborhood evaluation method maintains an *n*-dimensional vector $P = (p_1, p_2, \ldots, p_n)$ to rapidly calculate the move value of the possible moves applicable to the solution *s* by means of 1-flip or 2-flip operators, where the entry p_i is defined as the sum of distances between the element *i* and the selected elements in the current solution, i.e., $p_i = \sum_{j \in M; \, j \neq i} d_{ij}$, where *M* is the set of selected elements.

If a 1-flip move is performed, then the corresponding move value Δ_i can be easily calculated as follows:

$$
\Delta_{i} = \begin{cases}\n\frac{-f(s)w_{i}}{5M + w_{i}} + \frac{p_{i}}{5M + w_{i}}, & \text{for } x_{i} = 0; \\
\frac{f(s)w_{i}}{5M - w_{i}} - \frac{p_{i}}{5M - w_{i}}, & \text{for } x_{i} = 1;\n\end{cases}
$$
\n(4)

where *f*(*s*) is the objective value of the solution *s* and *SM* is the sum of vertex weights of selected elements in *s*, i.e., SM = $\sum_{i\in M}w_i.$ Subsequently, the vector *P* can be updated as follows:

$$
p_j = \begin{cases} p_j + d_{ij}, & \text{for } x_i = 0, j \neq i; \\ p_j - d_{ij}, & \text{for } x_i = 1, j \neq i; \\ p_j, & \text{for } j = i; \end{cases}
$$
(6)
(8)

If a 2-flip move is performed by simultaneously flipping variables x_i and x_i , then the corresponding move value Δ_{ii} can be conveniently obtained by:

$$
\int \frac{-f(s)(w_i + w_j) + p_i + p_j + d_{ij}}{SM + w_i + w_j}, \quad \text{for } x_i = 0, x_j = 0;
$$
 (9)

$$
\Delta_{ij} = \begin{cases}\n\frac{f(s)(w_i + w_j - p_i - p_j + d_{ij})}{sM - w_i - w_j + w_j}, & \text{for } x_i = 1, x_j = 1; \\
\frac{f(s)(w_i - w_i) + p_i - p_i + 2d_{ij}}{sM - w_i + s_j - s_j + 2d_{ij}}, & \text{for } y_i = 1, y_j = 1;\n\end{cases}
$$
\n(10)

$$
\Delta_{ij} = \begin{cases}\n\frac{f(s)(w_i - w_j) + p_j - p_i + 2d_{ij}}{SM - w_i + w_j}, & \text{for } x_i = 1, x_j = 0; \\
\frac{f(s)(w_i - w_j) + p_i - p_i + 2d_{ij}}{SM - w_i + w_j}, & \text{for } x_i = 1, x_j = 0; \n\end{cases}
$$

$$
\begin{cases}\n\frac{SM - w_i + w_j}{(1 - y_i - w_j) + p_i - p_j + 2d_{ij}}, & \text{for } x_i = 0, x_j = 1; \\
\frac{f(s)(w_j - w_i) + p_i - p_j + 2d_{ij}}{SM - w_j + w_i}, & \text{for } x_i = 0, x_j = 1;\n\end{cases}
$$
\n(12)

where $f(s)$ is the objective value of the solution *s*, *SM* = $\sum_{i \in M} w_i$, and *dij* is the distance between elements *i* and *j*. Subsequently, the vector *P* is consecutively updated two times by formula (6–8), since one 2-flip move is composed of two consecutively performed 1-flip moves.

As in Lai and Hao [\(2016\),](#page-13-0) the vector *P* can be initialized in $O(n^2)$ time at the beginning of the tabu search procedure, and updated in *O*(*n*) time after each neighborhood transition.

2.1.8. Tabu list management strategy

The tabu list management strategy plays a key role in the performance of a tabu search algorithm. In our case, we adopt a pop-

Computational results and comparisons on the 40 large GMaxMeanDP instances (weighted instances) with $n = 3000$. The dominating f_{best} and f_{avg} values among the compared results are indicated in boldface.

Instance	LocalSolver	MAMMDP* (this work)				PBEA (this work)			
	$\mathbf f$	f _{best}	favg	SR	t(s)	fbest	f_{avg}	SR	t(s)
L_{3000_1}	22.7528	80.743467	80.743467	20/20	44.45	80.743467	80.743467	20/20	92.53
L_{3000-2}	25.1306	84.201027	84.201027	20/20	17.82	84.201027	84.201027	20/20	46.71
L_{3000-3}	24.4089	81.630082	81.630082	20/20	6.62	81.630082	81.630082	20/20	9.34
L_{3000_4}	25.8106	80.234334	80.234334	20/20	29.61	80.234334	80.234334	20/20	28.07
I_3000_5	24.5990	81.218062	81.218043	19/20	108.59	81.218062	81.218062	20/20	138.28
L_{3000_6}	23.5651	83.197618	83.197618	20/20	37.99	83.197618	83.197618	20/20	64.05
I_3000_7	24.0235	81.732080	81.732080	20/20	2.73	81.732080	81.732080	20/20	4.50
L_{3000} -8	22.5924	80.624273	80.624273	20/20	79.61	80.624273	80.624273	20/20	83.53
L_{3000-9}	25.3955	80.574438	80.574438	20/20	7.59	80.574438	80.574438	20/20	10.76
I_3000_10	25.0323	83.397670	83.397670	20/20	48.63	83.397670	83.397670	20/20	138.84
II_3000_1	31.2938	99.055143	99.055143	20/20	15.04	99.055143	99.055143	20/20	12.66
II_3000_2	32.1219	105.574146	105.574146	20/20	29.08	105.574146	105.574146	20/20	63.27
II_3000_3	29.8576	101.299271	101.299271	20/20	3.31	101.299271	101.299271	20/20	6.71
II_3000_4	28.9800	101.079824	101.079824	20/20	8.41	101.079824	101.079824	20/20	8.03
II_3000_5	32.9165	100.029225	100.029225	20/20	84.01	100.029225	100.028322	18/20	241.64
II_3000_6	29.1903	101.978783	101.978783	20/20	5.80	101.978783	101.978783	20/20	4.56
II_3000_7	31.5154	100.189718	100.189718	20/20	6.43	100.189718	100.189718	20/20	17.36
II_3000_8	32.0808	101.160428	101.160428	20/20	3.36	101.160428	101.160428	20/20	4.52
II_3000_9	30.5477	98.665034	98.665034	20/20	39.15	98.665034	98.665034	20/20	59.96
II_3000_10	31.4593	104.896612	104.896612	20/20	4.40	104.896612	104.896612	20/20	11.86
III_3000_1	10.8747	27.847334	27.847334	20/20	102.65	27.847334	27.847334	20/20	108.70
III_3000_2	10.9677	27.776796	27.774430	7/20	214.29	27.776796	27.774272	4/20	120.08
III_3000_3	11.8823	27.946519	27.944592	17/20	147.23	27.946519	27.946519	20/20	157.85
III_3000_4	10.6279	27.816272	27.816272	20/20	81.41	27.816272	27.816272	20/20	70.66
III_3000_5	11.3929	27.727167	27.727167	20/20	115.40	27.727167	27.727167	20/20	160.51
III_3000_6	10.9057	27.686986	27.677719	8/20	136.73	27.691682	27.686631	4/20	131.25
III_3000_7	11.3789	27.642060	27.642060	20/20	74.29	27.642060	27.642060	20/20	158.84
III_3000_8	11.0592	27.736643	27.733842	5/20	287.29	27.736643	27.734079	6/20	184.58
III_3000_9	11.4658	27.745820	27.744637	19/20	139.88	27.745820	27.745820	20/20	77.88
III_3000_10	10.7100	27.561083	27.560295	19/20	157.43	27.561083	27.561083	20/20	92.74
IV_3000_1	136,7020	278.039443	278.037117	19/20	137.79	278.039443	278.027811	15/20	151.80
IV_3000_2	131.0830	276.539877	276.530847	18/20	216.82	276.539877	276.539691	18/20	238.37
IV_3000_3	127.1120	277.334878	277.334878	20/20	31.02	277.334878	277.334878	20/20	40.40
IV_3000_4	131.6190	278.956422	278.956422	20/20	42.08	278.956422	278.956422	20/20	61.36
IV_3000_5	130.2750	276.595238	276.595238	20/20	152.28	276.595238	276.595238	20/20	108.00
IV_3000_6	127.5350	280.721533	280.721533	20/20	55.32	280.721533	280.721533	20/20	60.47
IV_3000_7	132.0830	273.653396	273.653396	20/20	84.47	273.653396	273.653396	20/20	169.85
IV_3000_8	128.6810	276.358447	276.358447	20/20	70.96	276.358447	276.358447	20/20	81.56
IV_3000_9	133.6610	274.864865	274.821773	17/20	159.03	274.864865	274.838571	18/20	241.92
IV_3000_10	132.8980	276.428571	276.411918	17/20	220.16	276.428571	276.407810	16/20	151.95
Avg.	49.4047	121.961632	121.958056		92.85	121.961632	121.959884		90.40
#Best	0	39				40			
p-value	3.569e-8	0.3173	0.3078						

ular strategy in the literature to periodically tune the tabu tenure *tt*.

In this strategy, the tabu tenure is given by a periodic step function defined on the number of iterations. We denote the current iteration by *iter*, and denote the tabu tenure of the current move by *tt*(*iter*). For each period, the tabu tenure function is defined by a sequence of values (a_1, a_2, \cdots, a_q) and a sequence of interval margins $(b_1, b_2, \dots, b_{q+1})$, such that for any *iter* in $[b_i, b_{i+1} - 1]$ we define $tt(iter) = a_i + rand(C)$, where $rand(C)$ denotes a random integer between 0 to *C* − 1, and *C* is a constant that is set to 3 in this work. The value of *q* is set to 15, and $(a)_{i=1,\dots,15}$ = $\frac{T_{\text{max}}}{8}$ \times (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1), where T_{max} is a parameter that is used to control the maximum tabu tenure. The interval margins are then defined by $b_1 = 1$, $b_{i+1} = b_i + 5a_i$ (*i* \leq 15).

For the 1-flip operator and the current number *iter* of iterations, if a variable x_i is flipped by setting x_i ← $(1 - x_i)$, then the variable *xi* is forbidden to change in the following *tt*(*iter*) iterations. For a 2 flip move, if two variables x_i and x_j are simultaneously flipped to their complementary values $1 - x_i$ and $1 - x_j$, then both of these variables are forbidden to change in the following *tt*(*iter*) iterations. On the other hand, a 2-flip move $Flip < i$, $j >$ is considered to be forbidden if and only if at least one variable is forbidden among the variables x_i and x_i .

This tabu list management strategy is adapted from a method proposed in Galinier, Boujbel, and [Fernandes](#page-13-0) (2011), whose effectiveness has been demonstrated for several hard optimization problems, such as the graph [partitioning](#page-13-0) problem (Galinier et al., 2011), the maximum diversity problem (Wu & Hao, [2013\)](#page-13-0), and the Max-Mean dispersion problem (Lai & Hao, [2016\)](#page-13-0). In principle, a small tabu tenure leads usually to a strong search intensification while a large tabu tenure favors search diversification. As such, the periodical change of the tabu tenure among several small and large values provides a strategy to reach a desirable balance between the intensification and diversification of the search.

2.2. Memetic approach for the GMaxMeanDP

The memetic algorithm MAMMDP presented in Lai and Hao (2016) is a [state-of-the-art](#page-13-0) algorithm for solving the MaxMeanDP, which is a special case of the GMaxMeanDP studied in this work. In order to verify the potential merit of the MAMMDP approach for the GMaxMeanDP, we adapt MAMMDP to the GMaxMe-

Computational results and comparisons on the 40 large GMaxMeanDP instances (weighted instances) with $n = 5000$. The dominating *f_{hest}* and *f_{avg}* values among the compared results are indicated in boldface.

Instance	MAMMDP [*] (this work)				PBEA (this work)				
	f _{best}	f_{avg}	SR	t(s)	fbest	favg	SR	t(s)	
I_5000_1	104.827798	104.803953	7/20	480.14	104.818572	104.779182	1/20	603.16	
I_5000_2	104.053704	104.053704	20/20	154.85	104.053704	104.045180	10/20	433.77	
I_5000_3	104.803139	104.794625	12/20	469.36	104.796184	104.794027	14/20	577.26	
I_5000_4	107.326793	107.300838	10/20	500.22	107.326793	107.302907	1/20	550.42	
I_5000_5	105.195058	105.191547	16/20	494.22	105.195058	105.188447	3/20	617.42	
I_5000_6	103.651929	103.635670	11/20	397.00	103.651929	103.637288	2/20	572.61	
I_5000_7	105.452981	105.427086	12/20	258.28	105.452981	105.452647	17/20	614.86	
I_5000_8	104.686123	104.686123	20/20	212.67	104.686123	104.682843	4/20	610.63	
I_5000_9	102.894130	102.891559	19/20	336.93	102.894130	102.869843	8/20	517.80	
I_5000_10	108.205395	108.205395	20/20	123.79	108.205395	108.205205	19/20	269.50	
II_5000_1	130.041711	129.903022	15/20	30.82	129.988730	129.890200	1/20	574.84	
II_5000_2	127.790529	127.790529	20/20	195.76	127.790529	127.785800	6/20	418.03	
II_5000_3	129.223564	129.223564	20/20	88.77	129.223564	129.220797	18/20	412.31	
II_5000_4	132.381785	132.381785	20/20	46.93	132.381785	132.381785	20/20	121.94	
II_5000_5	131.291478	131.273801	11/20	445.48	131.262016	131.262016	20/20	201.13	
II_5000_6	128.199403	128.199403	20/20	56.60	128.199403	128.198547	16/20	421.87	
II_5000_7	128.901011	128.901011	20/20	241.46	128.901011	128.869417	3/20	450.94	
II_5000_8	129.742428	129.742428	20/20	245.07	129.742428	129.741596	18/20	511.32	
II_5000_9	127.593892	127.585685	18/20	388.89	127.593892	127.543106	4/20	505.00	
II_5000_10	134.691155	134.691155	20/20	22.95	134.691155	134.691155	20/20	234.79	
III_5000_1	35.820098	35.809506	6/20	279.75	35.820098	35.813498	4/20	554.74	
III_5000_2	36.231529	36.214299	6/20	271.56	36.231529	36.216595	3/20	718.32	
III_5000_3	36.036199	36.030249	2/20	165.20	36.034200	36.032858	5/20	605.56	
III_5000_4	36.480238	36.462380	12/20	391.82	36.480238	36.477088	16/20	685.53	
III_5000_5	36.150412	36.141578	3/20	436.69	36.150412	36.145352	4/20	549.78	
III_5000_6	36.031067	36.025122	12/20	367.06	36.031067	36.029319	18/20	531.48	
III_5000_7	35.945148	35.932945	6/20	323.86	35.945224	35.941077	2/20	651.21	
III_5000_8	35.977378	35.958775	1/20	1397.13	35.977378	35.964061	3/20	646.35	
III_5000_9	36.174472	36.147119	5/20	407.26	36.174472	36.146802	1/20	616.11	
III_5000_10	36.450138	36.449973	18/20	174.13	36.450138	36.449407	13/20	457.63	
IV_5000_1	357.412342	357.299214	8/20	495.33	357,412342	357.355749	11/20	667.19	
IV_5000_2	363.733876	363.653599	7/20	241.50	363.733876	363.703214	5/20	641.44	
IV_5000_3	361.401490	361.233101	10/20	141.84	361.401490	361.316492	7/20	657.13	
IV_5000_4	365.320648	365.221758	7/20	379.34	365.320648	365.271635	12/20	607.23	
IV_5000_5	361.628709	361.619700	15/20	251.79	361.628709	361.627548	11/20	699.02	
IV_5000_6	358.013986	357.931943	5/20	370.20	357.976519	357.924349	6/20	740.73	
IV_5000_7	353.071271	352.935036	2/20	956.15	353.071271	352.952883	2/20	690.22	
IV_5000_8	359.201624	359.159182	17/20	377.93	359.201624	359.177581	14/20	521.58	
IV_5000_9	361.105769	361.016744	5/20	475.21	361.121622	361.088689	6/20	621.83	
IV_5000_10	361.123900	361.085726	6/20	179.52	361.123900	361.099469	5/20	718.69	
Avg.	157.856608	157.825271		331.84	157.853553	157.831891		545.03	
#Best	38				34				
p-value	9.289e-2	2.204e-1							

anDP by basically replacing its local search component with the tabu search method in [Section](#page-2-0) 2.1.5 in which the fast neighborhood N_1 is adopted while keeping its other ingredients (e.g., crossover and pool updating) unchanged. We use MAMMDP[∗] to denote this adapted algorithm for the GMaxMeanDP. Thus, the main difference between the MAMMDP[∗] and MAMMDP algorithms lies at their local search methods. In the local search method of MAMMDP∗, in order to consider the weights of vertices, we employ an extended incremental neighborhood evaluation technique that uses [Eqs.](#page-1-0) (4) and [\(5\)](#page-1-0) to calculate quickly the move values of neighborhood moves.

MAMMDP[∗] is composed of four components: a population initialization procedure, a tabu search based optimization procedure, a crossover operator, and a population updating rule. For the sake of completeness, the pseudo-code of the MAMMDP[∗] algorithm, which closely follows the [MAMMDP](#page-13-0) algorithm in Lai and Hao (2016), is shown in [Algorithm](#page-7-0) 5, where $POP = \{s^1, \ldots, s^p\}$ denotes the current population, *s^o* denotes the new solution generated by the crossover operator or by the tabu search procedure, *s*[∗] and *s^w* denote respectively the best solution found so far and the worst solution in *POP*, and *PairSet* represents the set of solution pairs that have not been used by the crossover operator in *POP*.

MAMMDP[∗] starts with the initial population generated by the initialization procedure in [Section](#page-2-0) 2.1.3 and then performs a number of generations until the timeout limit *t*max is reached, i.e., $time() \geq t_{\text{max}}$. At each generation, a solution pair (s^i, s^j) is randomly chosen from *PairSet* (line 12), and then used to generate a new solution *s^o* by the standard uniform crossover operator [\(Syswerda,](#page-13-0) 1989) (line 13). The quality of *s^o* is improved by the tabu search procedure (line 14). Subsequently, *s*∗, *POP* and *PairSet* are accordingly updated (lines 15–24). Finally, to diversify the search, the population *POP* and the associated *PairSet* are reinitialized each time *PairSet* becomes empty, while keeping *s*[∗] in the new population (lines 4–10).

3. Computational experiments

We perform computational experiments on six types of 160 benchmark instances to assess the proposed algorithms. The benchmark instances, the experimental protocol, and the computational results are presented in the following subsections.

3.1. Benchmark instances

For the GMaxMeanDP, no vertex-weighted benchmark instance is available in the literature. To evaluate the performance of our algorithms, we generated four types of instances, each containing 20 vertex-weighted instances.¹ For each type, we generated 10 instances with $n = 3000$ and 10 instances with $n = 5000$, where the distances between elements and the vertex weights were randomly selected from a given set with the uniform probability distribution. Given that any MaxMeanDP instance can be viewed as a special GMaxMeanDP instance in which all vertex weights take the value of 1, we additionally used two types of 80 MaxMeanDP instances, 2 which were used in [Brimberg](#page-13-0) et al. (2017) or Lai and Hao [\(2016\)](#page-13-0) to assess the MaxMeanDP algorithms. The characteristics of these 160 instances are as follows:

- Type I (20 instances): The distances d_{ii} between elements were randomly generated in the interval $[-10, 10]$, and the vertex weights w_i ($i = 1, 2, ..., n$) were randomly generated in the interval [1,5].
- Type II (20 instances): The distances *dij* between elements were randomly taken in the interval $[-10, -5]$ ∪ $[5, 10]$, and the vertex weights w_i ($i = 1, 2, ..., n$) were randomly generated in the interval [1,6].
- Type III (20 instances): The distances d_{ij} between elements were randomly selected from the set $\{-1, 0, 1\}$, and the ver-

tex weights w_i ($i = 1, 2, ..., n$) were randomly generated in the interval [0.9,1.1].

- Type IV (20 instances): The distances d_{ii} between elements were randomly taken from the set $\{-10, 0, 10\}$, and the vertex weights w_i ($i = 1, 2, ..., n$) were uniformly set to 1.
- Type MDPI (40 instances): This set of MaxMeanDP instances includes 10 instances for each *n* ∈ {1500, 2000, 3000, 5000}. The distances between elements were uniformly randomly generated in the interval $[-10, 10]$, and the vertex weights w_i ($i =$ $1, 2, \ldots, n$ were uniformly set to 1.
- Type MDPII (40 instances): This set of MaxMeanDP instances includes 10 instances for each *n* ∈ {1500, 2000, 3000, 5000}. The distances between elements were randomly generated in the interval $[-10, -5] \cup [5, 10]$, and the vertex weights w_i (*i* = $1, 2, \ldots, n$) were uniformly set to 1.

3.2. Experimental protocol

The PBEA algorithm adopts four parameters, including the population size *p*, the maximum number *Iter*max of iterations and the maximum tabu tenure *T*_{max} for the tabu search procedure, and the coefficient η used to control the perturbation strength, whose values are empirically set as in [Table](#page-3-0) 1. The MAMMDP[∗] algorithm has three parameters: the population size *p* which was set to 10 following the setting of original [MAMMDP](#page-13-0) algorithm in Lai and Hao (2016), *Iter*max and *T*max whose values were set as in [Table](#page-3-0) 1. In addition, both MAMMDP[∗] and PBEA were implemented in C and compiled by the g++ compiler with the -O3 option, and the corresponding experiments were carried out on a computing platform with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the Linux operating system. The source codes of the proposed MAMMDP[∗] and PBEA algorithms will be available at http: [//www.info.univ-angers.fr/pub/hao/gmaxmeandp.html.](http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html)

In addition, due to the stochastic feature of both algorithms, PBEA and MAMMDP^{*} were independently run 20 times to solve each instance based on the same time limit t_{max} for each run, where *t*max was set to 100, 500 and 1000 s for the instances with $n \le 2000$, $n = 3000$ and $n = 5000$, respectively. Finally, we employed a commercial software called LocalSolver (https://www. [localsolver.com/\)](https://www.localsolver.com/) as our reference algorithm, since no direct reference algorithm is available in the literature for the GMaxMeanDP. In our experiment, we ran LocalSolver once for each instance with the same time limit *t*max as our proposed algorithms on a computer with a Intel i7-6700 processor (3.4 GHz CPU and 4G RAM), running Windows 10 operating system, since we only obtained an academic license of LocalSolver on this computer.

3.3. Computational results and comparisons on the MaxMeanDP instances

The first experiment aims to assess and compare the proposed PBEA algorithm and the adapted MAMMDP[∗] algorithm on the MaxMeanDP instances (i.e., the unweighted GMaxMeanDP instances), since the MaxMeanDP is a special case of the GMaxMeanDP in which all vertex weights take the value of 1 and any algorithm for the GMaxMeanDP problem can be directly applied to the MaxMeanDP problem as well. The experimental results on the 40 medium-sized instances with $n = 1500, 2000$ and the 40 large instances with $n = 3000, 5000$ from the MDPI and MDPII sets are summarized in [Tables](#page-3-0) 2 and [3](#page-4-0) respectively. For this experiment, in addition to LocalSolver, we also adopted as another reference method the VNS algorithm, which is one of the state of the art MaxMeanDP algorithms [\(Brimberg](#page-13-0) et al., 2017). Please note that when it is applied to the MaxMeanDP, the MAMMDP[∗] algorithm becomes MAMMDP presented in Lai and Hao [\(2016\).](#page-13-0)

¹ Available at [http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html.](http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html)

² Available at [http://www.info.univ-angers.fr/pub/hao/maxmeandp.html](http://www.mi.sanu.ac.rs/~nenad/edp/) and http: //www.mi.sanu.ac.rs/[∼]nenad/edp/ .

Avg 157.82 **157.83** 157.82 157.82 157.82 **157.83** 157.82 **157.83** 157.82 157.82

Table 6 Influence of the parameter η on the performance of the PBEA algorithm.

In [Table](#page-3-0) 2 (for the 40 medium-sized instances with $n = 1500$ or 2000), the first column gives the names of instances, columns 2–3 report respectively the best results from the VNS algorithm and the results of LocalSolver. Columns 4–7 report the results of the MAMMDP[∗] algorithm over 20 runs, including the best objective value (*fbest*), the average objective value (*favg*), the success rate (SR) to reach the associated f_{best} value, and the average run time (*t*(*s*)) in seconds to obtain its final result. Columns 8–11 report the results of the PBEA algorithm with the same information as in the columns 4–7. The row *Avg.* shows the average result for each associated column. The row *#Best* shows the number of instances for which an algorithm finds the best results in terms of *f_{best}* among the compared algorithms. Finally, to verify the statistical difference between the dedicated PBEA algorithm and other algorithms in terms of *fbest* and *favg*, the *p-values* from the Wilcoxon signed-rank tests are given in the last row of the tables, where a *p-value* less than 0.05 means that there exists a significant difference between the compared results. Moreover, the results of LocalSolver are compared with the average results of PBEA algorithm, since LocalSolver was run once for each instance.

[Table](#page-4-0) 3 reports the results on the 40 large instances with $n = 3000$ and 5000 in the same way as in [Table](#page-3-0) 2, where 'NA' indicates that LocalSolver failed to provide a result due to the memory limitation of the computer used. We ignore the VNS algorithm in [Table](#page-4-0) 3 since the results on these large instances are not reported in [Brimberg](#page-13-0) et al. (2017) for this method.

From [Table](#page-3-0) 2, we observe that both the proposed PBEA algorithm and the adapted MAMMDP[∗] algorithm dominate the VNS algorithm and the general-purpose LocalSolver software on the medium-sized MaxMeanDP instances. Compared with the dedicated VNS algorithm designed for MaxMeanDP in [Brimberg](#page-13-0) et al. (2017), MAMMDP[∗] and PBEA obtain better results in terms of *fbest* for 38 out of 40 instances and the same results for the two remaining instances. It is worth noting that for these instances the results of VNS algorithms were obtained in [Brimberg](#page-13-0) et al. (2017) by using a time limit of $t_{\text{max}} = n$ that is much longer than the time used in this work ($t_{\text{max}} = 100$). Compared with LocalSolver, the dominance of MAMMDP[∗] and PBEA is even more evident for all tested instances. The small *p-value* confirms that there is a significant difference between the proposed PBEA algorithm and these two reference algorithms in terms of *fbest*. On the other hand, MAMMDP[∗] and PBEA perform similarly on these instances. First, both algorithms obtain the same f_{best} values for all 40 instances. Second, both algorithms have a high success rate ($SR = 100\%$) for most instances, while the computation time to obtain their final results is less than 1.0 minute for any instance. Moreover, the large *p-values* indicate that there does not exist a significant difference between the results of MAMMDP[∗] and PBEA in terms of *fbest* and *favg*. These outcomes imply that

Comparative results of tabu search procedures with different neighborhoods under the same maximum number of iterations. Each instance was solved 20 times by each tabu search variant, and the average objective values and the run times are recorded.

Instance	Average objective value					Average computing time (s)				
	N_1	N_4	N ₂	N_3	N_1	N_4	N ₂	N_3		
1_3000_1	80.370223	80.331709	80.419228	80.397729	1.70	2.48	1196.98	1211.05		
I_3000_2	84.160923	84.175919	84.132061	84.156005	1.70	2.62	1234.33	1181.27		
L_{3000} _3	81.543666	81.563254	81.493745	81.567133	1.71	2.36	1178.35	1281.49		
I_3000_4	80.009048	80.044790	80.074550	80.099239	1.70	2.40	1219.60	1294.26		
1_3000_5	81.105796	81.086351	81.028486	81.129050	1.70	2.26	1289.05	1177.42		
1_3000_6	83.122833	83.139438	83.053114	83.136528	1.77	2.25	1178.04	1190.21		
1_3000_7	81.68306	81.727730	81.683873	81.724791	1.69	2.25	1167.27	1173.33		
1_3000_8	80.525859	80.526347	80.477204	80.528973	1.70	2.37	1253.14	1192.05		
I_3000_9	80.556881	80.560794	80.502281	80.556804	1.78	2.51	1179.42	1193.18		
I_3000_10	83.326823	83.320350	83.315442	83.320493	1.70	2.37	1200.32	1194.71		
II_3000_1	98.980639	99.000333	98.969911	98.980702	1.74	2.30	1177.97	1193.19		
II_3000_2	105.448977	105.488372	105.387800	105.468175	1.74	2.36	1280.10	1159.60		
II_3000_3	101.099149	101.134966	101.043572	101.198633	1.70	2.59	1172.63	1163.89		
II_3000_4	101.074346	101.078024	101.064486	101.075638	1.77	2.41	1202.44	1156.11		
II_3000_5	99.876333	99.893006	99.789128	99.869741	1.71	2.42	1256.77	1243.89		
II_3000_6	101.970764	101.968581	101.869966	101.961902	1.71	2.30	1163.45	1155.65		
II_3000_7	100.132899	100.123789	100.103272	100.158365	1.70	2.33	1171.30	1194.30		
II_3000_8	101.105064	101.027986	100.970914	101.154872	1.69	2.26	1167.71	1241.09		
II_3000_9	98.601737	98.596904	98.508047	98.598148	1.70	2.27	1273.98	1172.29		
II_3000_10	104.862917	104.887103	104.795615	104.874885	1.68	2.30	1183.17	1164.99		
III_3000_1	27.754071	27.774755	27.818733	27.781418	1.69	2.53	1298.58	1355.77		
III_3000_2	27.702657	27.719219	27.757757	27.716593	1.73	2.48	1397.21	1349.85		
III_3000_3	27.881157	27.885209	27.920852	27.897084	1.69	2.36	1317.78	1367.02		
III_3000_4	27.723692	27.732678	27.766265	27.744262	1.72	2.27	1293.15	1320.68		
III_3000_5	27.66126	27.643878	27.699754	27.671768	1.69	2.37	1416.65	1370.78		
III_3000_6	27.612341	27.627724	27.638232	27.631653	1.68	2.34	1431.19	1302.33		
III_3000_7	27.580934	27.582994	27.605799	27.574759	1.74	2.34	1303.56	1354.12		
III_3000_8	27.671951	27.680622	27.712513	27.693571	1.69	2.55	1297.23	1365.41		
III_3000_9	27.650248	27.651881	27.685241	27.665465	1.70	2.52	1419.31	1372.90		
III_3000_10	27.462855	27.471166	27.503728	27.480884	1.78	2.61	1306.16	1311.41		
IV_3000_1	277.297445	277,456078	277.707822	277.411484	1.70	2.32	1309.75	1369.06		
IV_3000_2	275.569955	275.505513	275.964659	275.865817	1.70	2.33	1303.08	1368.02		
IV_3000_3	276.736029	277.062846	277.089373	276.904170	1.70	2.24	1319.46	1379.99		
IV_3000_4	278.244348	278.299395	278.576349	278.460311	1.75	2.37	1391.38	1382.73		
IV_3000_5	275.912872	275.856499	276.179065	276.011616	1.69	2.36	1319.15	1386.32		
IV_3000_6	279.908391	280.232102	280.348491	280.295156	1.68	2.31	1437.05	1357.70		
IV_3000_7	272,736927	272.878628	273.156411	272.960018	1.73	2.48	1312.67	1373.88		
IV_3000_8	275.456754	275.566789	275.983281	275.651022	1.70	2.56	1427.62	1403.40		
IV_3000_9	273.611056	273.878003	274.185110	273.944759	1.75	2.43	1306.62	1492.63		
IV_3000_10	275.58143	275.532812	275.907729	275.621588	1.69	2.31	1315.50	1356.68		
#Better		28	23	33		0	$\bf{0}$	$\bf{0}$		
#Equal		0	0	0		0	$\bf{0}$	$\pmb{0}$		
#Worse		12	17	$\overline{7}$		40	40	40		

MAMMDP[∗] and PBEA are both highly efficient for solving the medium-sized MaxMeanDP instances, and the crossover operator of the MAMMDP[∗] algorithm and the perturbation operator of the PBEA algorithm have a similar diversification ability.

[Table](#page-4-0) 3 shows that the PBEA algorithm and the adapted MAMMDP[∗] algorithm significantly outperform the LocalSolver software on these large-scale instances with $n = 3000, 5000$. Between MAMMDP[∗] and PBEA, one observes that they obtain the same result in *f_{hest}* for 35 out of the 40 instances. Even if PBEA performs marginally better in terms of *fbest* with four better *fbest* results for PBEA against one better f_{best} result for MAMMDP^{*} (*p*-value > 0.05), MAMMDP[∗] is better in terms of *favg* with 21 better *favg* results against six better *favg* results for PBEA with a *p-value* < 0.05. Finally, the success rates decrease significantly for both MAMMDP[∗] and PBEA as the size of instance increases, indicating the high difficulty of these largest instances.

In summary, this experiment indicates that when they are applied to the MaxMeanDP which is a special case of GMaxMeanDP, both the PBEA algorithm and the adapted MAMMDP[∗] algorithm perform very competitively compared to the generalpurpose software LocalSolver and the dedicated VNS algorithm. In the next section, we assess the MAMMDP[∗] and PBEA algorithm for solving the GMaxMeanDP for which they were designed.

3.4. Computational results and comparisons on the weighted instances

We now turn our attention to the assessment of MAMMDP[∗] and PBEA on the set of 40 large GMaxMeanDP for which these algorithms are designed. We report in [Tables](#page-5-0) 4 and [5](#page-6-0) the computational results of MAMMDP[∗] and PBEA on the instances with $n = 3000$, 5000 respectively. [Table](#page-5-0) 4 also includes the results of LocalSolver while the instances with $n = 5000$ are too large for Local-Solver on our computer. In these tables, the same information as in the last section is reported.

We observe from [Table](#page-5-0) 4 that both the MAMMDP[∗] and PBEA algorithms largely dominate the general-purpose LocalSolver software in terms of solution quality. For each instance, MAMMDP[∗] and PBEA obtain a much better solution than LocalSolver. On the other hand, the MAMMDP[∗] and PBEA algorithms have a similar performance for these instances with $n = 3000$. First, the two algorithms obtain the same result in term of *fbest* for 39 out of 40 instances (p -value > 0.05). In terms of f_{avg} , PBEA has a slightly bet-

Comparative results of tabu search procedures with different neighborhoods under the same time limit. Each instance was solved 20 times by each tabu search variant, and the average objective values are recorded. The best *fbest* values among the compared results are indicated in boldface.

Instance	$t_{\text{max}}(s)$	f_{avg}					
		N_1	N_4	N ₂	N ₃		
$L_{.}3000_{.}1$	2.5	80.249099	80.311231	11.721149	11.721149		
I_3000_2	2.5	84.162707	84.162944	12.370702	12.370702		
I_3000_3	2.5	81.543361	81.536433	14.916785	14.916785		
I_3000_4	2.5	80.106844	80.014370	12.227146	12.227146		
I_3000_5	2.5	81.116207	81.090353	15.303211	15.303211		
I_3000_6	2.5	83.081651	83.098734	11.820082	11.820082		
I_3000_7	2.5	81.698899	81.715287	13.997985	13.997985		
I_3000_8	2.5	80.509067	80.523652	14.891707	14.891707		
I_3000_9	2.5	80.557968	80.564241	14.067301	14.067301		
I_3000_10	2.5	83.325346	83.339849	10.676445	10.676445		
II_3000_1	2.5	98.977606	98.997774	12.915757	12.915757		
II_3000_2	2.5	105.442076	105.446369	12.575737	12.575737		
II 3000 3	2.5	101.196340	101.099364	12.540325	12.540325		
II_3000_4	2.5	101.078750	101.073721	17.414740	17.414740		
II_3000_5	2.5	99.898393	99.865010	14.157223	14.157223		
II_3000_6	2.5	101.974963	101.955398	13.611427	13.611427		
II_3000_7	2.5	100.132530	100.131676	12.576563	12.576563		
II_3000_8	2.5	101.081766	100.999474	12.955339	12.955339		
II_3000_9	2.5	98.566209	98.565474	12.533706	12.533706		
II_3000_10	2.5	104.882068	104.883430	11.974704	11.974704		
III_3000_1	2.5	27.760076	27.747686	6.015289	6.015289		
III_3000_2	2.5	27.690291	27.713241	4.333629	4.333629		
III_3000_3	2.5	27.882708	27.892154	4.663547	4.663547		
III_3000_4	2.5	27.717461	27.721817	4.703571	4.703571		
III_3000_5	2.5	27.650975	27.660587	4.752437	4.752437		
III_3000_6	2.5	27.626892	27.619878	4.267233	4.267233		
III 3000 7	2.5	27.572748	27.558271	4.498055	4.498055		
III_3000_8	2.5	27.682396	27.662442	4.441804	4.441804		
III_3000_9	2.5	27.641488	27.658272	4.584740	4.584740		
III_3000_10	2.5	27.439402	27.464877	4.591576	4.591576		
IV_3000_1	2.5	277.438126	277.103842	47.790044	47.790044		
IV_3000_2	2.5	275.520943	275.601493	44.924906	44.924906		
IV_3000_3	2.5	276.956653	276.880232	48.493625	48.493625		
IV_3000_4	2.5	278.319177	278.030400	46.031313	46.031313		
IV_3000_5	2.5	275.669572	275.722372	44.559275	44.559275		
IV_3000_6	2.5	280.009358	280.102139	50.117318	50.117318		
IV_3000_7	2.5	272.933195	272.763686	44.694693	44.694693		
IV_3000_8	2.5	275.364275	275.436477	58.228575	58.228575		
IV_3000_9	2.5	273.757565	273.852615	45.895074	45.895074		
IV_3000_10	2.5	275.490623	275.465413	61.333437	61.333437		
#Best		19	21	$\bf{0}$	0		

ter result than MAMMDP[∗] (121.959884 vs. 121.958056) (*p-value* > 0.05). Furthermore, both algorithms report the same f_{best} value with a success rate of 100% for the 28 instances, indicating that they are highly robust for these instances. These outcomes indicate that the PBEA and MAMMDP[∗] algorithms perform similarly on the GMaxMeanDP instances with $n = 3000$.

[Table](#page-6-0) 5 shows that the overall performances of both algorithms are globally quite similar: 157.856608 for MAMMDP[∗] vs 157.853553 for PBEA in terms of the average of the *f*_{best} values and 157.825271 for MAMMDP[∗] vs 157.831891 for PBEA in terms of the average of the *favg* values (*p-values* > 0.05). Meanwhile, we observe that the success rates of both algorithms are below 50% for more than 15 instances, which shows that these instances are much harder than the instances with $n = 3000$. Interestingly, we observe that MAMMDP[∗] performs better than PBEA for the instances of Types I and II, while the reverse is true for the Type III and IV instances. This indicates that these two algorithms are complementary for solving these hard instances.

4. Analysis and discussion

In this section, we perform additional experiments to analyze the influence of two key ingredients of the PBEA algorithm (i.e., the perturbation strength and the neighborhood structure of the tabu search procedure), while for MAMMDP∗, an analysis of its underlying MAMMDP algorithm can be found in Lai and Hao [\(2016\).](#page-13-0)

4.1. Sensitivity analysis of an important parameter of the PBEA algorithm

The perturbation operator is an essential ingredient of the PBEA algorithm. To understand the influence of its perturbation strength (i.e., $\eta \times n$) on the performance of the algorithm, we carried out an experiment based on the 40 large GMaxMeanDP instances with $n = 5000$, where the algorithm was run 20 times with each value of $\eta \in \{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5\}$ on each instance. Recall that given a solution composed of *n* components the perturbation operator assigns randomly a value from $\{0, 1\}$ to $\eta \times n$ variables, thus there are about $0.5 \times \eta \times \eta$ variables whose values are changed by the perturbation operator. The results are reported in [Table](#page-8-0) 6, where column 1 and row 2 give respectively the name of instances and the setting of parameter η , columns 2–11 report the average objective values (f_{avg}) over 20 runs for each η value, and the row 'Avg' indicates the average results for each column.

[Table](#page-8-0) 6 shows that the different settings of η yielded very similar results in terms of f_{avg} for each instance tested, which means

that the performance of PBEA algorithm is not sensitive to the setting of η due to the strong local search ability of its underlying tabu search procedure as well as the features of the GMaxMeanDP problem. Moreover, we observe that the settings $\eta = 0.1$, 0.3, and 0.4 lead to slightly better results in terms of *Avg* than other settings. Hence, the default value of η is set to 0.4 for the PBEA algorithm.

4.2. Influence of the neighborhoods on the performance of tabu search

As described in [Algorithm](#page-2-0) 4, at each iteration of the tabu search algorithms, a best eligible neighbor solution is selected to replace the current solution by examining the whole neighborhood. As such, for each iteration, a larger neighborhood usually offers a greater chance to encounter a neighbor solution of high quality, but requires a larger computational effort. Hence, we face the challenge of identifying an appropriate neighborhood structure to enable the resulting algorithm to reach a good tradeoff between solution quality and computing speed.

To check the influence of the neighborhoods on the tabu search algorithm and select a proper neighborhood for our tabu search algorithm, we carried out an experiment based on the 40 instances with $n = 3000$. Using the neighborhoods N_1 , N_2 , N_3 (= *N*₁ ∪ *N*₂), *N*₄(= *N*₁ ∪ *N*^{*}₂) described in [Section](#page-2-0) 2.1.6 as the neighborhood structure and setting the parameter *T*max to 100, we obtain four tabu search algorithms. Given the stochastic nature of these algorithms, we solved each instance 20 times by each of these algorithms, and recorded the average computing times and average objective values. The stopping condition was given by the maximum number *Iter*max of iterations, which was set to 5×10^4 in this experiment. The results of this experiment are summarized in [Table](#page-9-0) 7. The first column of the table gives the names of instances. Columns 2–5 report the average objective values over 20 runs for the four tabu search algorithms, and columns 6–9 report the average computing times consumed for each algorithm. The rows '#Better', '#Equal' and '#Worse' show the number of instances for which the associated neighborhood obtains a better, equal, or worse result compared to the neighborhood *N*1.

[Table](#page-9-0) 7 shows that the four tabu search algorithms obtained similar results in terms of the average objective value, implying that the four neighborhoods have a similar search ability when the same number of iterations is used. Nevertheless, compared to the neighborhood N_1 , the three other neighborhoods N_2 , N_3 and N_4 yielded a slightly better result for 28, 23, and 33 instances, respectively. In addition, the multi-neighborhood tabu search methods (with *N*₃ or *N*₄) yielded a better result than those using a single basic neighborhood (i.e., N_1 or N_2) in terms of #*Better*, and hence the combined use of multiple complementary neighborhoods enhanced the search ability of our methods in the case that the tabu search procedures employ the same *Iter*max as the stopping condition. On the other hand, [Table](#page-9-0) 7 indicates a significant difference among the four neighborhoods in terms of the computing time. First, the times required to examine the neighborhoods N_1 and N_4 are much smaller than those required to examine other two neighborhoods, since N_1 and N_4 are much smaller than N_2 and N_3 and the move values (i.e., the change of objective value) of a flip or swap move can be calculated in *O*(1) (see [Section](#page-4-0) 2.1.7). In addition, we observe that the examination of the neighborhoods N_2 and N_3 is very time-consuming due to their large sizes. Finally, the speed of examining the neighborhood *N*⁴ is slightly slower to that of examining N_1 but is much faster than that of examining N_2 and *N*3.

To assess and compare the effectiveness of the above four neighborhoods based on the same time limit, we carried out another experiment on the 40 instances mentioned above, where each instance was solved 20 times by each tabu search algorithm, and the stopping criterion was a time limit $t_{\text{max}} = 2.5$ s. The experimental results are reported in [Table](#page-10-0) 8, where the first two columns give the names of instances and the time limit used (*t*max), columns 3–6 report the average objective value (*favg*) over 20 runs for the four algorithms, respectively, and the row '#Best' shows the number of instances for which the associated algorithm yields the best result in *favg*.

[Table](#page-10-0) 8 shows that the algorithms with the neighborhood N_1 or N_4 performs much better than those with the neighborhood N_2 or N_3 . When comparing N_1 and N_4 , we observe that the two corresponding tabu search algorithms obtain similar results in '#Best', i.e., with the best results in *favg* for 19 and 21 instances, respectively. This finding further shows the merit of small neighborhoods for the tabu search algorithms.

To further compare the effectiveness of the neighborhoods *N*¹ and *N*⁴ within the proposed PBEA algorithm, we first created a variant of PBEA (called PBEA∗) by replacing the neighborhood N_4 with the neighborhood N_1 and keeping other ingredients unchanged. Then, we carried out an experiment with PBEA and PBEA[∗] on the 40 GMaxMeanDP instances with $n = 3000$, where both algorithms were performed 20 times on each instance according to the experimental protocol in [Section](#page-7-0) 3.2. The results are summarized in [Table](#page-11-0) 9, where the rows '#Better', '#Equal' and '#Worse' show the number of instances for which the associated algorithm obtains a better, equal, or worse result compared to the other algorithm.

[Table](#page-11-0) 9 shows that the PBEA and PBEA[∗] algorithms have a similar performance both in *fbest* and the success rate. Specifically, both algorithms reached the best known result for all instances tested. However, regarding the average objective value (*favg*) over 20 runs, PBEA slightly outperformed PBEA∗. For 12 and 2 out of 40 instances, PBEA obtained a better and worse result in terms of *favg* compared to PBEA∗, respectively, while matching the results of PBEA[∗] for the remaining instances. This outcome indicates that the neighborhood N_4 is superior to the neighborhood N_1 on the tested instances. On this basis we have selected the neighborhood *N*⁴ as the neighborhood structure of the tabu search procedure for the proposed PBEA algorithm.

5. Conclusions

The generalized max-mean dispersion problem (GMaxMeanDP) is a generalization of the popular NP-hard max-mean dispersion problem (MaxMeanDP). Contrary to the MaxMeanDP which has been studied intensively in the past, the GMaxMeanDP has received little research effort until now and no practical solution method has been ever proposed for it. To fill the gap in the literature produced by the absence of a solution method for this important problem, we investigate for the first time two populationbased heuristic algorithms for solving the GMaxMeanDP. The dedicated perturbation based evolutionary algorithm (PBEA) combines a tabu search procedure for solution improvement, a simple perturbation operator to diversify the search process and a population to record the elite solutions found during the search. The other algorithm (MAMMDP∗) is a simple adaptation of the state-of-the-art memetic algorithm called MAMMDP for the MaxMeanDP, which uses a crossover operator to generate new starting solutions for its tabu search improvement procedure.

We performed extensive experiments of our two algorithms on six types of 160 instances with *n* ∈ {1500, 2000, 3000, 5000}, leading to the following observations. First, an effective algorithm such as MAMMDP for the MaxMeanDP can be easily converted to an effective algorithm for the GMaxMeanDP. Second, for the GMaxMeanDP, the simple perturbation operator used in PBEA plays a similar role with respect to the crossover operator used in MAMMDP∗. Third, the two proposed algorithms are complementary since there are instances that are better solved either by MAMMDP[∗] or by PBEA. Fourth, these algorithms designed for the GMaxMeanDP also perform very well on the special MaxMeanDP. Fifth, for the tabu search method designed for the GMaxMeanDP, a small and costeffective neighborhood proves to be highly efficient.

Since the GMaxMeanDP can formulate various real-world applications (e.g., web page ranking [\(Kerchove](#page-13-0) & Dooren, 2008), community mining in a signed social network (Yang et al., [2007\)](#page-13-0) and trust networks [\(Carrasco](#page-13-0) et al., 2015)), the proposed algorithms can be used to handle such practical problems as well. The availability of the source codes of our algorithms will certainly facilitate such applications. More generally, the approach of using an effective tabu search procedure combined with the evolutionary computing framework can be applied to solve other dispersion problems such as the max-mean dispersion problem that has recently received widespread attention. Our design for PBEA and MAMMDP[∗] can be adapted to other binary optimization problems like max-cut/maxbisection (Benlic & Hao, 2013; Ma, Hao, & Wang, 2017; Wu, Wang, & Lü, 2015). Finally, combining the present [algorithms](#page-13-0) with other approaches like path relinking [\(Glover,](#page-13-0) 1998) and learning strategies like opposition-based learning (Mahdavi, Rahnamayan, & Deb, 2018), and [diversification-based](#page-13-0) learning [\(Glover](#page-13-0) & Hao, 2018) provides other interesting possibilities for future research.

Declaration of Competing Interest

None

Credit authorship contribution statement

Xiangjing Lai: Methodology, Resources, Data curation, Formal analysis, Writing - original draft. **Jin-Kao Hao:** Methodology, Data curation, Formal analysis, Writing - original draft. **Fred Glover:** Methodology, Formal analysis, Writing - original draft.

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions which helped us to improve the paper. This work

was partially supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. [BK20170904\),](https://doi.org/10.13039/501100004608) the National Natural Science Foundation of China (Grant No. 61703213), six tal-ent peaks project in Jiangsu [Province](https://doi.org/10.13039/501100002949) (Grant No. RIFW-011), and Science foundation of Nanjing University of Posts and Telecommunications (Grant Nos. NY217154 and RK043YZZ18004).

References

- [Amirgaliyeva,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0001) Z., Mladenović, N., Todosijević, R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0001) Urošević, D. (2017). Solving the maximum min-sum dispersion by alternating formulations of two different problems. *European Journal of Operational Research, 260*, 444–459.
- [Aringhieri,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0002) R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0002) [Cordone,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0002) R. (2011). Comparing local search [metaheuristics](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0002) for the maximum diversity problem. *Journal of the Operational Research Society, 62*, 266–280.
- [Aringhieri,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0003) R., [Cordone,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0003) R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0003) [Grosso,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0003) A. (2015). Construction and [improvement](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0003) algorithms for dispersion problems. *European Journal of Operational Research, 242*(1), 21–33.
- [Benlic,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0004) U., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0004) [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0004) J. K. (2013). Breakout local search for the max-cut problem. *Engineering [Applications](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0004) of Artificial Intelligence, 26*(3), 1162–1173.
- [Benlic,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0005) U., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0005) [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0005) J. K. (2015). Memetic search for the quadratic assignment problem. *Expert Systems with [Applications,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0005) 42*, 584–595.
- [Brimberg,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0006) J., Mladenović, N., Todosijević, R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0006) Urošević, D. (2017). Less is more: Solving the max-mean diversity problem with variable [neighborhood](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0006) search. *Information Sciences, 382*, 179–200.
- [Carrasco,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) R., [Anthanh,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) P. T., [Gallego,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) M., [Gortázar,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) F., [Duarte,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) A., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) [Martí,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) R. (2015). Tabu search for the [max-mean](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0007) dispersion problem. *Knowledge Based System, 85*, 256–264.
- Della [Croce,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0008) F., [Garraffa,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0008) M., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0008) [Salassa,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0008) F. (2016). A hybrid [three-phase](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0008) approach for the max-mean dispersion problem. *Computers & Operations Research, 71*, 16–22.
- Della [Croce,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0009) F., [Grosso,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0009) A., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0009) [Locatelli,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0009) M. (2009). A heuristic approach for the max-min diversity problem based on [max-clique.](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0009) *Computers & Operations Research, 36*(8), 2429–2433.
- [Galinier,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0010) P., [Boujbel,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0010) Z., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0010) [Fernandes,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0010) M. C. (2011). An efficient memetic algorithm for the graph [partitioning](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0010) problem. *Annals of Operations Research, 191*(1), 1–22.
- [Garraffa,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0011) M., [DellaCroce,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0011) F., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0011) [Salassa,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0011) F. (2017). An exact semidefinite [programming](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0011) approach for the max-mean dispersion problem. *Journal of Combinatorial Optimization, 34*, 1–23.
- [Ghosh,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0012) M., [Begum,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0012) S., [Sarkar,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0012) R., [Chakraborty,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0012) D., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0012) [Maulik,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0012) U. (2019). Recursive memetic algorithm for gene selection in microarray data. *Expert Systems with Applications, 116*, 172–185.
- [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0013) F. (1998). A template for scatter search and path [relinking.](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0013) *Lecture Notes in Computer Science, 1363*, 13–54.
- Glover, F., & Hao, J. K. (2018). Diversification-based learning in computing and optimization. *Journal of Heuristics*. doi[:10.1007/s10732-018-9384-y.](https://doi.org/10.1007/s10732-018-9384-y)
- [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0015) F., [Kuo,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0015) C. C., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0015) [Dhir,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0015) K. S. (1998). Heuristic algorithms for the maximum diversity problem. *Journal of Information and [Optimization](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0015) Sciences, 19*(1), 109–132. [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0016) F., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0016) [Laguna,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0016) M. (1997). *Tabu search*. Boston: Kluwer Academic [Publishers.](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0016)
- [Ismkhan,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0017) H. (2017). Effective three-phase [evolutionary](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0017) algorithm to handle the large-scale colorful traveling salesman problem. *Expert Systems with Applications, 67*, 148–162.
- [Kerchove,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0018) C., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0018) [Dooren,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0018) P. V. (2008). The page trust algorithm: how to rank web pages when negative links are allowed? *Proceedings SIAM [International](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0018) Conference on Data Mining*, 346–352.
- [Lai,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0019) X. J., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0019) [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0019) J. K. (2016). A tabu search based memetic search algorithm for the [max-mean](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0019) dispersion problem. *Computers & Operations Research, 72*, 118–127.
- [Lai,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0020) X. J., [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0020) J. K., [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0020) F., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0020) [Yue,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0020) D. (2019). [Intensification-driven](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0020) tabu search for the minimum differential dispersion problem. *Knowledge-Based Systems, 167*, 68–86.
- [Lai,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0021) X. J., [Yue,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0021) D., [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0021) J. K., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0021) [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0021) F. (2018). [Solution-based](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0021) tabu search for the maximum min-sum dispersion problem. *Information Sciences, 441*, 79–94.
- [Ma,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0022) F., [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0022) J. K., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0022) [Wang,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0022) Y. (2017). An effective iterated tabu search for the maximum bisection problem. *Computers & [Operations](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0022) Research, 81*, 78–89.
- [Mahdavi,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0023) S., [Rahnamayan,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0023) S., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0023) [Deb,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0023) K. (2018). Opposition based learning: A literature review. *Swarm and Evolutionary Computation, 39*, 1–23.
- [Martí,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0024) R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0024) [Sandoya,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0024) F. (2013). GRASP and path relinking for the equitable dispersion problem. *Computers & Operations Research, 40*(12), [3091–3099.](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0024)
- Mladenović, N., Todosijević, R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0025) Urošević, D. (2016). Less is more: Basic variable [neighborhood](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0025) search for minimum differential dispersion problem. *Information Sciences, 326*, 160–171.
- [Morra,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0026) L., [Coccia,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0026) N., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0026) [Cerquitelli,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0026) T. (2018). [Optimization](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0026) of computer aided detection systems: An evolutionary approach. *Expert Systems with Applications, 100*, 145–156.
- [Palubeckis,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0027) G. (2007). Iterated tabu search for the maximum diversity problem. *Ap-*
- *plied Mathematics and [Computation,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0027) 189*(1), 371–383. [Porumbel,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0028) D. C., [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0028) J. K., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0028) [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0028) F. (2011). A simple and effective algorithm for the maxmin diversity problem. *Annals of [Operations](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0028) Research, 186*(1), 275–293.
- [Prokopyev,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0029) O. A., [Kong,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0029) N., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0029) [Martinez-Torres,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0029) D. L. (2009). The equitable dispersion problem. *European Journal of Operational Research, 197*(1), 59–67.
- [Resende,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0030) M. G. C., [Martí,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0030) R., [Gallego,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0030) M., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0030) [Duarte,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0030) A. (2010). GRASP and path relinking for the max–min diversity problem. *Computers & [Operations](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0030) Research, 37*(3), 498–508.
- [Saboonchi,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0031) B., [Hansen,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0031) P., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0031) [Perron,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0031) S. (2014). Maxminmin *p*-dispersion problem: A variable [neighborhood](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0031) search approach. *Computers & Operations Research, 52*, 251–259.
- [Silva,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0032) J. D. A., [Hruschka,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0032) E. R., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0032) [Gama,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0032) J. (2017). An [evolutionary](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0032) algorithm for clustering data streams with a variable number of clusters. *Expert Systems with Applications, 67*, 228–238.
- [Syswerda,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0033) G. (1989). Uniform crossover in genetic algorithms. In *Proceedings of the 3rd [international](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0033) conference on genetic algorithms* (pp. 2–9). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc..
- [Wang,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0034) Y., [Wu,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0034) Q., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0034) [Glover,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0034) F. (2017). Effective [metaheuristic](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0034) algorithms for the minimum differential dispersion problem. *European Journal of Operational Research, 258*, 829–843.
- [Wu,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0035) Q., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0035) [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0035) J. K. (2013). A hybrid [metaheuristic](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0035) method for the maximum diversity problem. *European Journal of Operational Research, 231*(2), 452–464.
- [Wu,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0036) Q., [Wang,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0036) Y., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0036) [Lü,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0036) Z. (2015). A tabu search based hybrid [evolutionary](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0036) algorithm for the max-cut problem. *Applied Soft Computing, 34*, 827–837.
- [Yang,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0037) B., [Cheung,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0037) W., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0037) [Liu,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0037) J. (2007). Community mining from signed social networks. *IEEE [Transactions](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0037) on Knowledge & Data Engineering, 19*(10), 1333–1348.
- [Zhao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0038) H., [Xu,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0038) W., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0038) [Jiang,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0038) R. (2015). The memetic algorithm for the [optimization](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0038) of urban transit network. *Expert Systems with Applications, 42*, 3760–3773.
- [Zhou,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0039) Y., [&](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0039) [Hao,](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0039) J. K. (2017). An iterated local search algorithm for the minimum differential dispersion problem. *[Knowledge-Based](http://refhub.elsevier.com/S0957-4174(19)30558-5/sbref0039) Systems, 125*, 26–38.