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a b s t r a c t 

Evolutionary computing is a general and powerful framework for solving difficult optimization problems, 

including those arising in expert and intelligent systems. In this work, we investigate for the first time 

two hybrid evolutionary algorithms incorporating tabu search for solving the generalized max-mean dis- 

persion problem (GMaxMeanDP) which has a variety of practical applications such as web page ranking, 

community mining, and trust networks. The proposed algorithms integrate innovative search strategies 

that help the search to explore the search space effectively. We report extensive computational results 

of the proposed algorithms on six types of 160 benchmark instances, demonstrating their effectiveness 

and usefulness. In addition to the GMaxMeanDP, the proposed algorithms can help to better solve other 

problems that can be formulated as the GMaxMeanDP. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many decision-making problems including those arising in ex-

ert and intelligent systems require finding a best subset of ele-

ents in a way that the selected objects optimize a dispersion or

iversity criterion. Formally, given a set V = { 1 , 2 , . . . , n } of n ele-

ents and the distances d ij ( i < j ) between elements, a dispersion

r diversity problem involves selecting a subset M of V such that

n objective function defined over the distances between the ele-

ents in M is optimized. According to whether a cardinality con-

traint is imposed on the subset M , the dispersion problems can

e divided into two categories. The first category where the car-

inality of M is fixed to a given positive number m includes the

aximum diversity problem ( Aringhieri & Cordone, 2011; Glover,

uo, & Dhir, 1998; Palubeckis, 2007; Saboonchi, Hansen, & Per-

on, 2014; Wu & Hao, 2013 ), the max–min diversity problem

 Della Croce, Grosso, & Locatelli, 2009; Porumbel, Hao, & Glover,

011; Resende, Martí, Gallego, & Duarte, 2010 ), the minimum dif-

erential dispersion problem ( Lai, Hao, Glover, & Yue, 2019; Mlade-

ovi ́c, Todosijevi ́c, & Uroševi ́c, 2016; Wang, Wu, & Glover, 2017;
∗ Corresponding author. 
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hou & Hao, 2017 ), and the maximum min-sum dispersion prob-

em ( Amirgaliyeva, Mladenovi ́c, Todosijevi ́c, & Uroševi ́c, 2017; Ar-

nghieri, Cordone, & Grosso, 2015; Lai, Yue, Hao, & Glover, 2018;

rokopyev, Kong, & Martinez-Torres, 2009 ). The second category

here the cardinality of M is not fixed includes the Max-Mean

ispersion problem (MaxMeanDP) ( Brimberg, Mladenovi ́c, Todosi-

evi ́c, & Uroševi ́c, 2017; Della Croce, Garraffa, & Salassa, 2016;

ai & Hao, 2016; Martí & Sandoya, 2013 ) and the generalized

ax-Mean dispersion problem (GMaxMeanDP) ( Prokopyev et al.,

009 ). 

This work addresses the GMaxMeanDP that is one of four dis-

ersion problems introduced in Prokopyev et al. (2009) and can be

escribed by means of a weighted graph. Given a weighted com-

lete graph G = (V, E, D, W ) , where V is the set of n vertices, E is

he set of n ×(n −1) 
2 edges, D represents the set of positive, nega-

ive or zero edge weights d ij ( i � = j ), and W represents the set of

ositive vertex weights w i ( i = 1 , 2 , . . . , n ), the GMaxMeanDP is to

elect a subset M from V such that the weighted mean dispersion

f the (complete) subgraph induced by M is maximized. In related

iterature, the vertices are also called the elements and the edge

eights between vertices are called the distances between the

lements. 

Formally, the GMaxMeanDP can be formulated as an uncon-

trained fractional 0–1 combinatorial optimization problem with

inary variables x that equal 1 if the element i is selected, and
i 
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0 otherwise ( Prokopyev et al., 2009 ). 

Maximize f (s ) = 

∑ n −1 
i =1 

∑ n 
j= i +1 d i j x i x j ∑ n 

i =1 w i x i 
(1)

x i ∈ { 0 , 1 } , i = 1 , 2 , . . . , n (2)

The Max-Mean dispersion problem that has recently received

substantial attention in the literature ( Brimberg et al., 2017; Car-

rasco et al., 2015; Della Croce et al., 2016; Lai & Hao, 2016; Martí &

Sandoya, 2013 ) is a special case of the GMaxMeanDP with w i = 1

for ∀ i ∈ { 1 , 2 , . . . , n } . As a result, any algorithm for the GMaxMe-

anDP can be directly applied to the Max-Mean dispersion problem,

while the reverse is not true. 

In addition to its theoretical significance as an NP-hard prob-

lem ( Prokopyev et al., 2009 ), the GMaxMeanDP has a variety of po-

tential potential applications, such as web page ranking ( Kerchove

& Dooren, 2008 ), community mining in a signed social network

( Yang, Cheung, & Liu, 2007 ), and trust networks ( Carrasco et al.,

2015 ), among others. For example, the community mining prob-

lem in a signed and weighted social network can be addressed

by solving a series of GMaxMeanDP problems with smaller and

smaller sizes ( Yang et al., 2007 ). Given a signed social network

G = (V, E, D, W ) , where D represents the set of positive or nega-

tive edge weights d ij ( i � = j ), and a positive (or negative) d ij means

that there exists an attractive (or repulsive) relationship between

the vertices i and j , and W represents the set of vertex weights w i 

(1 ≤ i ≤ n ), then a community corresponds to a high-quality solu-

tion of the corresponding GMaxMeanDP (i.e., a subset of V ) in G . 

In spite of its importance and close relationship to other

dispersion problems, the GMaxMeanDP has surprisingly received

little attention in the literature. To the best of our knowl-

edge, no heuristic or exact algorithm has ever been proposed

for solving the GMaxMeanDP, even though existing heuris-

tic or exact algorithms for the MaxMeanDP like those in

Brimberg et al. (2017) , Della Croce et al. (2016) and Garraffa, Del-

laCroce, and Salassa (2017) could be adapted to the GMaxMeanDP.

On the other hand, previous studies ( Benlic & Hao, 2015; Ghosh,

Begum, Sarkar, Chakraborty, & Maulik, 2019; Ismkhan, 2017; Morra,

Coccia, & Cerquitelli, 2018; Silva, Hruschka, & Gama, 2017; Zhao,

Xu, & Jiang, 2015 ) showed that evolutionary computing is a par-

ticularly relevant approach for solving a number of difficult com-

binatorial optimization problems. Given the NP-hard nature of the

GMaxMeanDP, evolutionary computing can be considered as a nat-

ural approach to be investigated for solving the GMaxMeanDP. We

enhance this approach by forming two hybrid algorithms with

tabu search, drawing on the adaptive memory features of the lat-

ter to uncover superior solutions. Our work is thus motivated by

these observations with the purpose of proposing effective solution

methods for the considered problem. We summarize the contribu-

tions of this work as follows. 

• First, in terms of solution methods, we investigate the

first perturbation-based evolutionary algorithm dedicated to

the GMaxMeanDP, which integrates a multi-neighborhood

tabu search procedure and a perturbation operator into

the population-based framework. Additionally, we adapt the

state-of-the-art MaxMeanDP algorithm introduced in Lai and

Hao (2016) to the GMaxMeanDP, where a crossover operator

is used to generate offspring solutions and a tabu search pro-

cedure is employed for local optimization. Given that solution

method for solving the GMaxMeanDP does not currently exist,

this work fills an important gap in the literature. 
• Second, we assess the computational performance of the pro-

posed algorithms on a set of 80 MaxMeanDP benchmark in-

stances as well as on a set of additional 80 GMaxMeanDP in-
stances that we introduce in this work and make publicly avail-

able. Our results provide a reference for performance assess-

ment of other solution methods for the GMaxMeanDP in the

future. 
• Third, we analyze the effectiveness and time complexity of sev-

eral key components such as the neighborhood structures used

by the tabu search procedure and provide insights concerning

their the impact on the behavior of the algorithm. 
• Fourth, given that the GMaxMeanDP is a general model able to

formulate a variety of real-world applications, the proposed al-

gorithms can be advantageously applied to solve such practical

problems. 

The remainder of the paper is organized as follows. In the

ext section, we describe the proposed algorithms. In Section 3 ,

e assess and compare the performance of the proposed algo-

ithms based on the 160 benchmark instances. We analyse in

ection 4 the influence of a key parameter on the performance of

he perturbation-based evolutionary algorithm, and discuss the in-

uence of the neighborhood size on the performance of the tabu

earch methods. Finally, Section 5 gives conclusions and provides

ome perspectives. 

. Two hybrid evolutionary approaches for the GMaxMeanDP 

In this section, we describe two hybrid evolutionary algorithms

or solving the GMaxMeanDP. We first introduce the perturbation-

ased evolutionary algorithm (PBEA) that employs a perturba-

ion operator to generate new solutions, and then describe briefly

he memetic algorithm (denoted by MAMMDP ∗) which is adapted

rom one of the state-of-the-art MaxMeanDP algorithms (called the

AMMDP algorithm ( Lai & Hao, 2016 )). 

.1. Perturbation based evolutionary algorithm for the GMaxMeanDP 

To reach a suitable tradeoff between the intensification and di-

ersification of the search process, the perturbation-based evolu-

ionary algorithm (PBEA) uses an effective tabu search procedure

o intensify the search, a random perturbation operator to diver-

ify the search, and a population updating strategy to manage the

ool of elite solutions. 

.1.1. General procedure 

As indicated in Algorithm 1 , the proposed PBEA algorithm starts

ith an initial population of p individuals (solutions) that are gen-

rated according to the procedure described in Section 2.1.3 (line

), and then performs a number of iterations (lines 5–16) to im-

rove the initial population. At each iteration, the algorithm first

elects randomly a solution s from the population, then slightly

hanges the solution with the perturbation operator ( Section 2.1.4 ),

nd finally improves the perturbed solution by the tabu search

rocedure ( Section 2.1.5 ). After that, the improved solution s o is

sed to update the population by using a simple updating rule –

he worst individual s w in the population is replaced by s o if s o is

istinct from any solution of the population and is better than s w ;

therwise s o is discarded. The algorithm stops and the solution s ∗

s returned when the timeout limit ( t max ) is reached. 

.1.2. Search space and evaluation function 

Since the GMaxMeanDP is an unconstrained binary optimiza-

ion problem, any n -dimensional binary vector is a feasible solu-

ion. Thus, the search space to be explored by the proposed algo-

ithm is given by 

= { (x 1 , x 2 , . . . , x n ) : x i ∈ { 0 , 1 } , 1 ≤ i ≤ n } (3)

Thus, the size of search space is equal to 2 n , where n is the

umber of elements in the problem. Additionally, the quality of a
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Algorithm 1 Perturbation based evolutionary algorithm (PBEA) for 

the GMaxMeanDP. 

1: Input : The set V = { v 1 , v 2 , . . . , v n } of n elements, the associated 

distance matrix D = [ d i j ] n ×n , the set W = { w 1 , w 2 , . . . , w n } of ver- 

tex weights, the population size p, the timeout limit t max . 

2: Output : the best solution s ∗ found 

3: P OP = { s 1 , . . . , s p } ← PopInitialization( G, p) / ∗
Section 2.1.3 ∗/ 

4: s ∗ ← arg max { f (s i ) : i = 1 , . . . , p} / ∗ s ∗ denotes the best 

solution found ∗/ 
5: while time () < t max do 

6: Randomly select a solution s from P OP 

7: s o ← Per tur bation (s ) / ∗
Section 2.1.4 ∗/ 

8: s o ← T abuSearch (s o ) / ∗
Section 2.1.5 ∗/ 

9: if f (s o ) > f (s ∗) then 

10: s ∗ ← s o 

11: end if

12: s w ← arg min { f (s i ) : i = 1 , . . . , p} 
13: if s o does not exist in P OP and f (s o ) > f (s w ) then 

14: P OP ← P OP ∪ { s o } \ { s w } 
15: end if 

16: end while 
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Algorithm 3 Perturbation operator. 

1: Input : Input solution s = (x 1 , x 2 , . . . , x n ) , the perturbation strength 

η × n 

2: Output : a p erturb ed solution s 

3: for l ← 1 to η × n do 

4: i ← Rand() mod n /* Randomly pick a 

variable x i */ 

5: s.x i ← Rand() mod 2 /* Assign to x i of s a random value 

from { 0 , 1 } */ 

6: end for

7: return s 
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andidate solution s = (x 1 , x 2 , . . . , x n ) ∈ � is given by its objective

alue f ( s ) in Eq. (1) . 

.1.3. Population initialization 

An initial solution s is generated by randomly assigning each

f its components the value 0 or 1. Then, this random solution

s improved by the tabu search procedure ( Section 2.1.5 ). We re-

eat this generation procedure p times to obtain the initial popu-

ation. The pseudo-code of this initialization procedure is given in

lgorithm 2 . 

lgorithm 2 Initial solution procedure. 

1: Input : An input instance G 

2: Output : A random initial solution s = (x 1 , x 2 , . . . , x n ) 

3: for i ← 1 to n do 

4: s.x i ← Rand() mod 2 /* Assign to x i of s a random value in

{ 0 , 1 } */ 

5: end for

6: s ← T abuSearch (s ) / ∗ Section 2.1.5 ∗/ 
7: return s 

.1.4. Perturbation operator 

In order to diversify the search, the proposed algorithm

ses a perturbation operator to modify a parent solution (see

lgorithm 3 ) that is randomly selected from the population. Specif-

cally, we perform η × n random changes to the parent solution and

hen return the resulting solution as the perturbed solution, where

is a parameter and η × n is called the perturbation strength. Each

andom change involves first selecting a variable x i randomly and

hen assigning a random value 0 or 1 to the variable. As such, a

arge (small) value of η leads to more (fewer) changes in the par-

nt solution, thus inducing a strong (weak) diversification effect. In

ractice, our experiments show that η = 0 . 4 is a suitable perturba-

ion strength for solving the instances studied in this work (see

ection 4.1 for the details). Equivalently, this perturbation operator

hanges the values of about 0.2 × n randomly selected variables. 
.1.5. Tabu search 

The tabu search (TS) method is a popular metaheuristic for

ombinatorial optimization ( Glover & Laguna, 1997 ). Given a neigh-

orhood structure ( N ) (see Section 2.1.6 ) and the evaluation func-

ion f , our tabu search procedure performs a number of iterations

o improve the current solution. At each iteration, the algorithm

eplaces the current solution s by a best eligible neighbor solu-

ion ( s 
′ ∈ N(s ) ), and meanwhile records the underlying move (see

ection 2.1.6 ) in the tabu list to prevent the reverse move from

eing performed for the next tt iterations, where tt is called the

abu tenure and is adjusted according to the tabu list management

trategy described in Section 2.1.8 . In our TS method, a neighbor

olution is eligible if it is not forbidden by the tabu list or if it is

etter than the best solution ( s b ) found so far in the current TS

un. Finally, the tabu search method stops when a maximum num-

er ( Iter max ) of iterations is reached. The general template of the

S method is provided in Algorithm 4 , and its components are ex-

lained in the next sections. 

lgorithm 4 T abuSearch (s 0 , N(s ) , f, Iter max ) . 

1: Input : Input solution s 0 , neighb orho o d structure N(s ) , evaluation

function f (s ) , maximum number of iterations Iter max 

2: Output : The best solution s b found in the current TS run 

3: s ← s 0 /* s denotes the current solution */ 

4: s b ← s /* s b denotes the best solution found so far in the current

TS run */ 

5: it er ← 0 /* it er denotes the current number of iterations */

6: repeat 

7: Choose randomly a best eligible neighbor solution s ′ ∈ N(s ) /*

Section 2.1.6 */ 

/* s ′ is identified to be eligible if it is not forbidden by the tabu

list or better than s b */ 

8: s ← s ′ 
9: Update tabu list T abuT enure [ n ] with s 

/* T abuT enure [ n ] is a n -dimensional vector, Section2.1.8 */ 

10: if f (s ) > f (s b ) then 

11: s b ← s , 

12: end if

13: it er ← it er + 1 

14: until it er = It er max 

15: return s b 

.1.6. Neighborhood structures 

In this work, we investigate the following four neighborhood

tructures. 

(1) 1-flip neighborhood . With this basic 1-flip neighborhood

denoted by N 1 ), a neighbor solution can be obtained by changing

he value of a single variable x i to its complementary value 1 −
 i . Clearly, this neighborhood N 1 has a size of n , where n is the

umber of variables. 
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Table 1 

Settings of parameters. 

Parameters Section Description Values 

p 2.1.1 size of population 20 

Iter max 2.1.5 maximum number of iterations for the tabu search 5 × 10 4 

T max 2.1.8 the maximum tabu tenure 80 + Rand (100) 

η 2.1.4 strength of the perturbation operator 0.4 

Table 2 

Computational results and comparisons on the 40 MaxMeanDP instances with n = 150 0 or 20 0 0 from the literature. The best f best values among all the results 

are indicated in boldface. 

Instance VNS LocalSolver MAMMDP ∗ (this work) PBEA (this work) 

f best f f best f avg SR t ( s ) f best f avg SR t ( s ) 

MDPI1_1500 136.26 66.6568 136.535222 136.535222 20/20 14.21 136.535222 136.535222 20/20 18.75 

MDPI2_1500 138.00 70.7226 138.341482 138.341482 20/20 5.38 138.341482 138.341482 20/20 8.04 

MDPI3_1500 138.91 66.8269 139.200599 139.200599 20/20 3.17 139.200599 139.200599 20/20 3.28 

MDPI4_1500 139.81 68.0931 140.166920 140.166920 20/20 5.65 140.166920 140.166920 20/20 4.67 

MDPI5_1500 136.47 66.8041 137.129630 137.129630 20/20 7.73 137.129630 137.129630 20/20 12.65 

MDPI6_1500 136.22 65.6676 136.508768 136.508768 20/20 7.05 136.508768 136.508768 20/20 10.13 

MDPI7_1500 137.65 63.4105 137.971032 137.971032 20/20 2.49 137.971032 137.971032 20/20 3.20 

MDPI8_1500 138.02 67.9306 138.728444 138.728444 20/20 13.56 138.728444 138.728444 20/20 13.95 

MDPI9_1500 136.30 66.9695 136.495674 136.495674 20/20 21.39 136.495674 136.495674 20/20 28.95 

MDPI10_1500 140.33 66.0519 140.333159 140.333159 20/20 3.47 140.333159 140.333159 20/20 3.90 

MDPI1_2000 158.03 55.3813 158.588217 158.588217 20/20 10.40 158.588217 158.588217 20/20 11.79 

MDPI2_2000 162.91 54.2658 163.939616 163.939616 20/20 19.11 163.939616 163.939616 20/20 31.71 

MDPI3_2000 158.98 51.9819 159.570786 159.545090 13/20 39.86 159.570786 159.528479 6/20 38.94 

MDPI4_2000 159.14 52.6407 160.185217 160.185217 20/20 28.46 160.185217 160.184761 17/20 54.41 

MDPI5_2000 156.11 53.8956 156.805331 156.758147 10/20 41.25 156.805331 156.776147 13/20 55.30 

MDPI6_2000 161.61 52.1516 161.839100 161.839100 20/20 11.30 161.839100 161.839100 20/20 13.72 

MDPI7_2000 157.58 53.8223 158.336131 158.336131 20/20 9.79 158.336131 158.336131 20/20 7.93 

MDPI8_2000 161.43 53.6872 161.446931 161.446931 20/20 20.03 161.446931 161.446931 20/20 22.30 

MDPI9_2000 159.15 54.9125 160.190374 160.190374 20/20 29.21 160.190374 160.187769 17/20 44.28 

MDPI10_2000 160.90 53.6239 161.638099 161.638099 20/20 7.60 161.638099 161.638099 20/20 4.99 

MDPII1_1500 181.67 94.7889 182.089413 182.089413 20/20 6.33 182.089413 182.089413 20/20 8.23 

MDPII2_1500 185.48 98.7439 186.243869 186.243869 20/20 6.78 186.243869 186.243869 20/20 4.66 

MDPII3_1500 181.55 93.3692 182.142902 182.142902 20/20 3.13 182.142902 182.142902 20/20 4.76 

MDPII4_1500 184.91 92.6379 185.557302 185.500190 8/20 42.93 185.557302 185.514675 9/20 35.93 

MDPII5_1500 190.15 101.379 190.860529 190.860529 20/20 2.25 190.860529 190.860529 20/20 1.65 

MDPII6_1500 183.14 99.3436 183.575336 183.575336 20/20 3.05 183.575336 183.575336 20/20 1.90 

MDPII7_1500 179.34 93.6409 179.820242 179.820242 20/20 13.93 179.820242 179.820242 20/20 18.43 

MDPII8_1500 186.60 96.7090 186.602804 186.602804 20/20 2.74 186.602804 186.602804 20/20 3.30 

MDPII9_1500 181.43 97.7207 181.918814 181.918814 20/20 17.85 181.918814 181.918814 20/20 14.75 

MDPII10_1500 182.70 99.0640 183.384692 183.384692 20/20 32.37 183.384692 183.384692 20/20 26.01 

MDPII1_2000 208.85 75.3906 209.845273 209.845273 20/20 8.13 209.845273 209.845273 20/20 11.24 

MDPII2_2000 218.19 81.7475 218.404860 218.404860 20/20 16.03 218.404860 218.404860 20/20 22.40 

MDPII3_2000 209.57 69.9621 210.819147 210.807415 19/20 15.52 210.819147 210.819147 20/20 18.05 

MDPII4_2000 211.99 74.7847 212.424859 212.424859 20/20 16.15 212.424859 212.424859 20/20 25.81 

MDPII5_2000 215.33 75.5558 216.088722 216.088722 20/20 9.90 216.088722 216.088722 20/20 8.96 

MDPII6_2000 210.61 73.9974 211.769151 211.769151 20/20 10.88 211.769151 211.769151 20/20 6.88 

MDPII7_2000 209.65 77.1172 209.780651 209.780651 20/20 19.95 209.780651 209.780651 20/20 25.74 

MDPII8_2000 212.43 80.1608 212.575432 212.575432 20/20 17.03 212.575432 212.575432 20/20 27.75 

MDPII9_2000 214.61 72.2590 215.007759 215.007759 20/20 15.87 215.007759 215.007759 20/20 12.92 

MDPII10_2000 210.06 74.5694 210.735749 210.735436 15/20 28.22 210.735749 210.735561 17/20 28.19 

Avg. 173.30 73.2110 173.839956 173.836405 16.44 173.839956 173.837022 19.25 

#Best 2 0 40 40 

p-value 3.569e-8 3.569e-8 1.0 0.6121 
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(2) 2-flip neighborhood . The 2-flip neighborhood (denoted by

N 2 ) simultaneously changes the values of two variables x i and x j to

their complementary values to generate a neighbor solution. The

neighborhood size of N 2 is thus equal to n (n − 1) / 2 . 

(3) Union neighborhood . The third neighborhood N 3 is a com-

bined neighborhood that is the union of neighborhoods N 1 and N 2 ,

i.e., N 3 = N 1 ∪ N 2 . Thus, the size of N 3 is equal to n + n (n − 1) / 2 . 

(4) Reduced union neighborhood . The fourth neighborhood

(denoted by N 4 ) is the union of the neighborhood N 1 and a high-

quality subset N 

∗
2 of N 2 , i.e., N 4 = N 1 ∪ N 

∗
2 . Specifically, given a so-

lution s , the neighborhood N 

∗
2 
(s ) is defined by: 

N 

∗
2 
(s ) = { s � F lip < i, j > : i � = j, { �i , � j } > �max −

0 . 05(�max − �min ) } where �max = max l≤n �l , �min = min l≤n �l ,
l represents the move value (i.e., the change of the objective

alue) of flipping a single variable x l to its complementary value,

nd Flip < i, j > represents a 2-flip move that simultaneously

hanges the values of variables x i and x j to their complementary

alues. Clearly, a neighbor solution s 
′ ∈ N 

∗
2 can be obtained by

onsecutively performing two high-quality 1-flip moves from s . As

 result, the size of N 4 is given by n + | N 

∗
2 
| and varies dynamically

uring the search process. 

In the proposed PBEA algorithm, we select N 4 as the neigh-

orhood structure of the tabu search procedure, since N 4 is able

o reach a desirable tradeoff between computing efficiency and

olution quality according to our computational experiments (see

ection 4.2 for the details). 
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Table 3 

Computational results and comparisons on the 40 large MaxMeanDP instances with n = 30 0 0 or 50 0 0 from the literature. The dominating f best and f avg 

values among the compared results are indicated in boldface. 

Instance LocalSolver MAMMDP ∗ (this work) PBEA (this work) 

f f best f avg SR t ( s ) f best f avg SR t ( s ) 

MDPI1_3000 72.8274 189.048965 189.048965 20/20 54.08 189.048965 189.048965 20/20 75.99 

MDPI2_3000 72.8196 187.387292 187.387292 20/20 50.59 187.387292 187.387292 20/20 81.62 

MDPI3_3000 71.1284 185.666806 185.642604 5/20 310.42 185.666806 185.640815 4/20 173.32 

MDPI4_3000 67.3049 186.163727 186.159939 19/20 165.94 186.163727 186.156150 18/20 121.87 

MDPI5_3000 68.5859 187.545515 187.545515 20/20 56.64 187.545515 187.545515 20/20 124.46 

MDPI6_3000 71.5833 189.431257 189.431257 20/20 36.28 189.431257 189.431257 20/20 71.08 

MDPI7_3000 65.0592 188.242583 188.242583 20/20 90.13 188.242583 188.242583 20/20 76.43 

MDPI8_3000 68.5892 186.796814 186.796814 20/20 36.91 186.796814 186.796814 20/20 75.72 

MDPI9_3000 70.9764 188.231264 188.228646 19/20 65.43 188.231264 188.231264 20/20 84.02 

MDPI10_3000 69.1644 185.682511 185.572559 4/20 105.14 185.682511 185.632187 11/20 197.56 

MDPII1_3000 97.6705 252.320433 252.320433 20/20 46.18 252.320433 252.320433 20/20 90.08 

MDPII2_3000 101.229 250.062137 250.062137 20/20 127.57 250.062137 250.060127 16/20 248.03 

MDPII3_3000 104.731 251.906270 251.906270 20/20 99.94 251.906270 251.906270 20/20 142.28 

MDPII4_3000 99.7977 253.941007 253.936173 14/20 187.38 253.941007 253.939366 16/20 208.28 

MDPII5_3000 103.008 253.260423 253.260302 15/20 190.57 253.260423 253.260278 14/20 256.84 

MDPII6_3000 104.409 250.677750 250.677750 20/20 49.99 250.677750 250.677750 20/20 58.46 

MDPII7_3000 100.621 251.134413 251.134413 20/20 55.07 251.134413 251.134413 20/20 99.94 

MDPII8_3000 105.536 252.999648 252.999648 20/20 74.56 252.999648 252.999648 20/20 83.54 

MDPII9_3000 100.811 252.425770 252.425770 20/20 45.77 252.425770 252.425770 20/20 114.67 

MDPII10_3000 99.4736 252.396590 252.396590 20/20 16.30 252.396590 252.396590 20/20 15.39 

MDPI1_5000 NA 240.141212 240.070982 9/20 464.66 240.162535 240.015046 1/20 644.69 

MDPI2_5000 NA 241.827401 241.744421 5/20 360.20 241.827401 241.735443 2/20 495.52 

MDPI3_5000 NA 240.890819 240.865427 15/20 410.53 240.890819 240.812439 11/20 466.86 

MDPI4_5000 NA 240.997186 240.951055 4/20 592.65 240.997186 240.955450 4/20 656.19 

MDPI5_5000 NA 242.480129 242.471643 18/20 269.86 242.480129 242.454732 14/20 612.06 

MDPI6_5000 NA 240.322850 240.304443 14/20 33.30 240.376038 240.281210 1/20 585.48 

MDPI7_5000 NA 242.820139 242.771514 4/20 490.60 242.820139 242.771003 1/20 604.73 

MDPI8_5000 NA 241.194990 241.154430 13/20 111.35 241.194990 241.138956 5/20 568.30 

MDPI9_5000 NA 239.760560 239.566397 7/20 139.82 239.681094 239.498462 3/20 536.47 

MDPI10_5000 NA 243.385487 243.345183 8/20 548.48 243.473734 243.334446 1/20 521.23 

MDPII1_5000 NA 322.235897 322.177715 4/20 298.40 322.235897 322.148548 2/20 581.82 

MDPII2_5000 NA 327.301910 326.996573 5/20 729.93 327.301910 326.970214 4/20 551.71 

MDPII3_5000 NA 324.813456 324.792109 9/20 290.15 324.813456 324.785177 3/20 482.32 

MDPII4_5000 NA 322.227657 322.182679 6/20 422.89 322.237586 322.126451 2/20 705.12 

MDPII5_5000 NA 322.491211 322.355484 3/20 506.35 322.491211 322.365463 4/20 556.09 

MDPII6_5000 NA 322.728902 322.638339 3/20 101.37 322.950488 322.629351 2/20 678.45 

MDPII7_5000 NA 322.850438 322.773052 8/20 606.48 322.850438 322.787011 9/20 415.61 

MDPII8_5000 NA 323.112120 323.009085 6/20 285.51 323.112120 322.948455 2/20 555.26 

MDPII9_5000 NA 323.543775 323.299190 5/20 774.36 323.543775 323.182444 1/20 574.49 

MDPII10_5000 NA 324.519908 324.456763 17/20 440.56 324.519908 324.335221 12/20 500.37 

Avg. NA 251.124181 251.077554 243.56 251.132051 251.062725 342.31 

#Best 0 36 39 

p-value NA 0.173 3.649e-3 
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.1.7. Fast neighborhood evaluation method 

To rapidly examine the neighborhood, we employ a fast incre-

ental evaluation method that ensures a high computational effi-

iency of the tabu search procedure. 

Following Lai and Hao (2016) , our neighborhood evaluation

ethod maintains an n -dimensional vector P = (p 1 , p 2 , . . . , p n ) to

apidly calculate the move value of the possible moves applica-

le to the solution s by means of 1-flip or 2-flip operators, where

he entry p i is defined as the sum of distances between the el-

ment i and the selected elements in the current solution, i.e.,

p i = 

∑ 

j ∈ M; j � = i d i j , where M is the set of selected elements. 

If a 1-flip move is performed, then the corresponding move

alue �i can be easily calculated as follows: 

i = 

{− f (s ) w i 

SM+ w i 
+ 

p i 
SM+ w i 

, for x i = 0 ; (4) 
f (s ) w i 

SM−w i 
− p i 

SM−w i 
, for x i = 1 ; (5) 

here f ( s ) is the objective value of the solution s and SM is the

um of vertex weights of selected elements in s , i.e., SM = 

∑ 

i ∈ M 

w i .

ubsequently, the vector P can be updated as follows: 

p j = 

{ 

p j + d i j , for x i = 0 , j � = i ; (6) 
p j − d i j , for x i = 1 , j � = i ; (7) 
p j , for j = i ; (8) 
If a 2-flip move is performed by simultaneously flipping vari-

bles x i and x j , then the corresponding move value �ij can be con-

eniently obtained by: 

i j = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

− f (s )(w i + w j )+ p i + p j + d i j 

SM+ w i + w j 
, for x i = 0 , x j = 0 ; (9) 

f (s )(w i + w j ) −p i −p j + d i j 

SM−w i −w j 
, for x i = 1 , x j = 1 ; (10) 

f (s )(w i −w j )+ p j −p i +2 d i j 

SM−w i + w j 
, for x i = 1 , x j = 0 ; (11) 

f (s )(w j −w i )+ p i −p j +2 d i j 

SM−w j + w i 
, for x i = 0 , x j = 1 ; (12) 

here f ( s ) is the objective value of the solution s , SM = 

∑ 

i ∈ M 

w i ,

nd d ij is the distance between elements i and j . Subsequently,

he vector P is consecutively updated two times by formula (6–8),

ince one 2-flip move is composed of two consecutively performed

-flip moves. 

As in Lai and Hao (2016) , the vector P can be initialized in O ( n 2 )

ime at the beginning of the tabu search procedure, and updated

n O ( n ) time after each neighborhood transition. 

.1.8. Tabu list management strategy 

The tabu list management strategy plays a key role in the per-

ormance of a tabu search algorithm. In our case, we adopt a pop-
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Table 4 

Computational results and comparisons on the 40 large GMaxMeanDP instances (weighted instances) with n = 30 0 0 . The dominating f best and f avg 

values among the compared results are indicated in boldface. 

Instance LocalSolver MAMMDP ∗ (this work) PBEA (this work) 

f f best f avg SR t ( s ) f best f avg SR t ( s ) 

I_3000_1 22.7528 80.743467 80.743467 20/20 44.45 80.743467 80.743467 20/20 92.53 

I_3000_2 25.1306 84.201027 84.201027 20/20 17.82 84.201027 84.201027 20/20 46.71 

I_3000_3 24.4089 81.630082 81.630082 20/20 6.62 81.630082 81.630082 20/20 9.34 

I_3000_4 25.8106 80.234334 80.234334 20/20 29.61 80.234334 80.234334 20/20 28.07 

I_3000_5 24.5990 81.218062 81.218043 19/20 108.59 81.218062 81.218062 20/20 138.28 

I_3000_6 23.5651 83.197618 83.197618 20/20 37.99 83.197618 83.197618 20/20 64.05 

I_3000_7 24.0235 81.732080 81.732080 20/20 2.73 81.732080 81.732080 20/20 4.50 

I_3000_8 22.5924 80.624273 80.624273 20/20 79.61 80.624273 80.624273 20/20 83.53 

I_3000_9 25.3955 80.574438 80.574438 20/20 7.59 80.574438 80.574438 20/20 10.76 

I_3000_10 25.0323 83.397670 83.397670 20/20 48.63 83.397670 83.397670 20/20 138.84 

II_3000_1 31.2938 99.055143 99.055143 20/20 15.04 99.055143 99.055143 20/20 12.66 

II_3000_2 32.1219 105.574146 105.574146 20/20 29.08 105.574146 105.574146 20/20 63.27 

II_3000_3 29.8576 101.299271 101.299271 20/20 3.31 101.299271 101.299271 20/20 6.71 

II_3000_4 28.9800 101.079824 101.079824 20/20 8.41 101.079824 101.079824 20/20 8.03 

II_3000_5 32.9165 100.029225 100.029225 20/20 84.01 100.029225 100.028322 18/20 241.64 

II_3000_6 29.1903 101.978783 101.978783 20/20 5.80 101.978783 101.978783 20/20 4.56 

II_3000_7 31.5154 100.189718 100.189718 20/20 6.43 100.189718 100.189718 20/20 17.36 

II_3000_8 32.0808 101.160428 101.160428 20/20 3.36 101.160428 101.160428 20/20 4.52 

II_3000_9 30.5477 98.665034 98.665034 20/20 39.15 98.665034 98.665034 20/20 59.96 

II_3000_10 31.4593 104.896612 104.896612 20/20 4.40 104.896612 104.896612 20/20 11.86 

III_3000_1 10.8747 27.847334 27.847334 20/20 102.65 27.847334 27.847334 20/20 108.70 

III_3000_2 10.9677 27.776796 27.774430 7/20 214.29 27.776796 27.774272 4/20 120.08 

III_3000_3 11.8823 27.946519 27.944592 17/20 147.23 27.946519 27.946519 20/20 157.85 

III_3000_4 10.6279 27.816272 27.816272 20/20 81.41 27.816272 27.816272 20/20 70.66 

III_3000_5 11.3929 27.727167 27.727167 20/20 115.40 27.727167 27.727167 20/20 160.51 

III_3000_6 10.9057 27.686986 27.677719 8/20 136.73 27.691682 27.686631 4/20 131.25 

III_3000_7 11.3789 27.642060 27.642060 20/20 74.29 27.642060 27.642060 20/20 158.84 

III_3000_8 11.0592 27.736643 27.733842 5/20 287.29 27.736643 27.734079 6/20 184.58 

III_3000_9 11.4658 27.745820 27.744637 19/20 139.88 27.745820 27.745820 20/20 77.88 

III_3000_10 10.7100 27.561083 27.560295 19/20 157.43 27.561083 27.561083 20/20 92.74 

IV_3000_1 136.7020 278.039443 278.037117 19/20 137.79 278.039443 278.027811 15/20 151.80 

IV_3000_2 131.0830 276.539877 276.530847 18/20 216.82 276.539877 276.539691 18/20 238.37 

IV_3000_3 127.1120 277.334878 277.334878 20/20 31.02 277.334878 277.334878 20/20 40.40 

IV_3000_4 131.6190 278.956422 278.956422 20/20 42.08 278.956422 278.956422 20/20 61.36 

IV_3000_5 130.2750 276.595238 276.595238 20/20 152.28 276.595238 276.595238 20/20 108.00 

IV_3000_6 127.5350 280.721533 280.721533 20/20 55.32 280.721533 280.721533 20/20 60.47 

IV_3000_7 132.0830 273.653396 273.653396 20/20 84.47 273.653396 273.653396 20/20 169.85 

IV_3000_8 128.6810 276.358447 276.358447 20/20 70.96 276.358447 276.358447 20/20 81.56 

IV_3000_9 133.6610 274.864865 274.821773 17/20 159.03 274.864865 274.838571 18/20 241.92 

IV_3000_10 132.8980 276.428571 276.411918 17/20 220.16 276.428571 276.407810 16/20 151.95 

Avg. 49.4047 121.961632 121.958056 92.85 121.961632 121.959884 90.40 

#Best 0 39 40 

p-value 3.569e-8 0.3173 0.3078 
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ular strategy in the literature to periodically tune the tabu tenure

tt . 

In this strategy, the tabu tenure is given by a periodic step func-

tion defined on the number of iterations. We denote the current

iteration by iter , and denote the tabu tenure of the current move

by tt ( iter ). For each period, the tabu tenure function is defined by

a sequence of values ( a 1 , a 2 , ���, a q ) and a sequence of interval

margins (b 1 , b 2 , · · · , b q +1 ) , such that for any iter in [ b i , b i +1 − 1]

we define t t (iter) = a i + rand(C) , where rand ( C ) denotes a ran-

dom integer between 0 to C − 1 , and C is a constant that is set

to 3 in this work. The value of q is set to 15, and (a ) i =1 , ··· , 15 =
T max 

8 × (1 , 2 , 1 , 4 , 1 , 2 , 1 , 8 , 1 , 2 , 1 , 4 , 1 , 2 , 1) , where T max is a param-

eter that is used to control the maximum tabu tenure. The interval

margins are then defined by b 1 = 1 , b i +1 = b i + 5 a i ( i ≤ 15). 

For the 1-flip operator and the current number iter of iterations,

if a variable x i is flipped by setting x i ← (1 − x i ) , then the variable

x i is forbidden to change in the following tt ( iter ) iterations. For a 2-

flip move, if two variables x i and x j are simultaneously flipped to

their complementary values 1 − x i and 1 − x j , then both of these

variables are forbidden to change in the following tt ( iter ) iterations.

On the other hand, a 2-flip move Flip < i, j > is considered to be
 p  
orbidden if and only if at least one variable is forbidden among

he variables x i and x j . 

This tabu list management strategy is adapted from a method

roposed in Galinier, Boujbel, and Fernandes (2011) , whose ef-

ectiveness has been demonstrated for several hard optimization

roblems, such as the graph partitioning problem ( Galinier et al.,

011 ), the maximum diversity problem ( Wu & Hao, 2013 ), and the

ax-Mean dispersion problem ( Lai & Hao, 2016 ). In principle, a

mall tabu tenure leads usually to a strong search intensification

hile a large tabu tenure favors search diversification. As such, the

eriodical change of the tabu tenure among several small and large

alues provides a strategy to reach a desirable balance between the

ntensification and diversification of the search. 

.2. Memetic approach for the GMaxMeanDP 

The memetic algorithm MAMMDP presented in Lai and

ao (2016) is a state-of-the-art algorithm for solving the MaxMe-

nDP, which is a special case of the GMaxMeanDP studied in this

ork. In order to verify the potential merit of the MAMMDP ap-

roach for the GMaxMeanDP, we adapt MAMMDP to the GMaxMe-
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Table 5 

Computational results and comparisons on the 40 large GMaxMeanDP instances (weighted instances) with n = 50 0 0 . The dominating 

f best and f avg values among the compared results are indicated in boldface. 

Instance MAMMDP ∗ (this work) PBEA (this work) 

f best f avg SR t ( s ) f best f avg SR t ( s ) 

I_5000_1 104.827798 104.803953 7/20 480.14 104.818572 104.779182 1/20 603.16 

I_5000_2 104.053704 104.053704 20/20 154.85 104.053704 104.045180 10/20 433.77 

I_5000_3 104.803139 104.794625 12/20 469.36 104.796184 104.794027 14/20 577.26 

I_5000_4 107.326793 107.300838 10/20 500.22 107.326793 107.302907 1/20 550.42 

I_5000_5 105.195058 105.191547 16/20 494.22 105.195058 105.188447 3/20 617.42 

I_5000_6 103.651929 103.635670 11/20 397.00 103.651929 103.637288 2/20 572.61 

I_5000_7 105.452981 105.427086 12/20 258.28 105.452981 105.452647 17/20 614.86 

I_5000_8 104.686123 104.686123 20/20 212.67 104.686123 104.682843 4/20 610.63 

I_5000_9 102.894130 102.891559 19/20 336.93 102.894130 102.869843 8/20 517.80 

I_5000_10 108.205395 108.205395 20/20 123.79 108.205395 108.205205 19/20 269.50 

II_5000_1 130.041711 129.903022 15/20 30.82 129.988730 129.890200 1/20 574.84 

II_5000_2 127.790529 127.790529 20/20 195.76 127.790529 127.785800 6/20 418.03 

II_5000_3 129.223564 129.223564 20/20 88.77 129.223564 129.220797 18/20 412.31 

II_5000_4 132.381785 132.381785 20/20 46.93 132.381785 132.381785 20/20 121.94 

II_5000_5 131.291478 131.273801 11/20 445.48 131.262016 131.262016 20/20 201.13 

II_5000_6 128.199403 128.199403 20/20 56.60 128.199403 128.198547 16/20 421.87 

II_5000_7 128.901011 128.901011 20/20 241.46 128.901011 128.869417 3/20 450.94 

II_5000_8 129.742428 129.742428 20/20 245.07 129.742428 129.741596 18/20 511.32 

II_5000_9 127.593892 127.585685 18/20 388.89 127.593892 127.543106 4/20 505.00 

II_5000_10 134.691155 134.691155 20/20 22.95 134.691155 134.691155 20/20 234.79 

III_5000_1 35.820098 35.809506 6/20 279.75 35.820098 35.81349 8 4/20 554.74 

III_5000_2 36.231529 36.214299 6/20 271.56 36.231529 36.216595 3/20 718.32 

III_5000_3 36.036199 36.030249 2/20 165.20 36.034200 36.032858 5/20 605.56 

III_5000_4 36.480238 36.462380 12/20 391.82 36.480238 36.477088 16/20 685.53 

III_5000_5 36.150412 36.141578 3/20 436.69 36.150412 36.145352 4/20 549.78 

III_5000_6 36.031067 36.025122 12/20 367.06 36.031067 36.029319 18/20 531.48 

III_5000_7 35.945148 35.932945 6/20 323.86 35.945224 35.941077 2/20 651.21 

III_5000_8 35.977378 35.958775 1/20 1397.13 35.977378 35.964061 3/20 646.35 

III_5000_9 36.174472 36.147119 5/20 407.26 36.174472 36.146802 1/20 616.11 

III_5000_10 36.450138 36.449973 18/20 174.13 36.450138 36.449407 13/20 457.63 

IV_5000_1 357.412342 357.299214 8/20 495.33 357.412342 357.355749 11/20 667.19 

IV_5000_2 363.733876 363.653599 7/20 241.50 363.733876 363.703214 5/20 641.44 

IV_5000_3 361.401490 361.233101 10/20 141.84 361.401490 361.316492 7/20 657.13 

IV_5000_4 365.320648 365.221758 7/20 379.34 365.320648 365.271635 12/20 607.23 

IV_5000_5 361.628709 361.619700 15/20 251.79 361.628709 361.627548 11/20 699.02 

IV_5000_6 358.013986 357.931943 5/20 370.20 357.976519 357.924349 6/20 740.73 

IV_5000_7 353.071271 352.935036 2/20 956.15 353.071271 352.952883 2/20 690.22 

IV_5000_8 359.201624 359.159182 17/20 377.93 359.201624 359.177581 14/20 521.58 

IV_5000_9 361.105769 361.016744 5/20 475.21 361.121622 361.088689 6/20 621.83 

IV_5000_10 361.123900 361.085726 6/20 179.52 361.123900 361.099469 5/20 718.69 

Avg. 157.856608 157.825271 331.84 157.853553 157.831891 545.03 

#Best 38 34 

p-value 9.289e-2 2.204e-1 

a  

t  

N  

a  

a  

b  

l  

i  

t  

E

h

 

t  

a  

s  

r  

H  

n  

a  

s  

t  

t  

P

 

i  

b  

t  

d  

a  

t  

t  

P  

t  

i  

t

3

 

b  

b  
nDP by basically replacing its local search component with the

abu search method in Section 2.1.5 in which the fast neighborhood

 1 is adopted while keeping its other ingredients (e.g., crossover

nd pool updating) unchanged. We use MAMMDP ∗ to denote this

dapted algorithm for the GMaxMeanDP. Thus, the main difference

etween the MAMMDP ∗ and MAMMDP algorithms lies at their

ocal search methods. In the local search method of MAMMDP ∗,

n order to consider the weights of vertices, we employ an ex-

ended incremental neighborhood evaluation technique that uses

qs. (4) and (5) to calculate quickly the move values of neighbor- 

ood moves. 

MAMMDP ∗ is composed of four components: a population ini-

ialization procedure, a tabu search based optimization procedure,

 crossover operator, and a population updating rule. For the

ake of completeness, the pseudo-code of the MAMMDP ∗ algo-

ithm, which closely follows the MAMMDP algorithm in Lai and

ao (2016) , is shown in Algorithm 5 , where P OP = { s 1 , . . . , s p } de-

otes the current population, s o denotes the new solution gener-

ted by the crossover operator or by the tabu search procedure,

 

∗ and s w denote respectively the best solution found so far and

he worst solution in POP , and PairSet represents the set of solu-

t

ion pairs that have not been used by the crossover operator in

OP . 

MAMMDP ∗ starts with the initial population generated by the

nitialization procedure in Section 2.1.3 and then performs a num-

er of generations until the timeout limit t max is reached, i.e.,

ime () ≥ t max . At each generation, a solution pair ( s i , s j ) is ran-

omly chosen from PairSet (line 12), and then used to gener-

te a new solution s o by the standard uniform crossover opera-

or ( Syswerda, 1989 ) (line 13). The quality of s o is improved by

he tabu search procedure (line 14). Subsequently, s ∗, POP and

airSet are accordingly updated (lines 15–24). Finally, to diversify

he search, the population POP and the associated PairSet are re-

nitialized each time PairSet becomes empty, while keeping s ∗ in

he new population (lines 4–10). 

. Computational experiments 

We perform computational experiments on six types of 160

enchmark instances to assess the proposed algorithms. The

enchmark instances, the experimental protocol, and the compu-

ational results are presented in the following subsections. 
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Algorithm 5 Memetic Algorithm for the GMaxMeanDP 

(MAMMDP ∗). 

1: Input : The set V = { v 1 , v 2 , . . . , v n } of n elements and the associ- 

ated distance matrix D = [ d i j ] n ×n , the set W = { w 1 , w 2 , . . . , w n } of 

vertex weights, the population size p, the timeout limit t max . 

2: Output : the best solution s ∗ found 

3: repeat 

4: P OP = { s 1 , . . . , s p } ← PopInitialization( V, p) / ∗
Section 2.1.3 ∗/ 

5: if the repeat loop is not performing its first execution then 

6: s w ← arg min { f (s i ) : i = 1 , . . . , p} 
7: P OP ← P OP ∪ { s ∗} \ { s w } 
8: end if

9: s ∗ ← arg max { f (s i ) : i = 1 , . . . , p} / ∗ s ∗ keeps the best 

solution found ∗/ 
10: PairSet ← { (s i , s j ) : 1 ≤ i < j ≤ p} 
11: while PairSet � = ∅ and time () < t max do 

12: Randomly pick a solution pair (s i , s j ) ∈ PairSet

13: s o ← Crossov erOperator(s i , s j ) / ∗ uniformly random crossover 

operator ∗/ 
14: s o ← T abuSearch (s o ) / ∗

Section 2.1.5 ∗/ 
15: if f (s o ) > f (s ∗) then 

16: s ∗ ← s o 

17: end if

18: P airSet ← P airSet \ { (s i , s j ) } 
19: s w ← arg min { f (s i ) : i = 1 , . . . , p} 
20: if s o does not exist in P OP and f (s o ) > f (s w ) then 

21: P OP ← P OP ∪ { s o } \ { s w } 
22: P airSet ← P airSet \ { (s w , s k ) : s k ∈ P OP } 
23: P airSet ← P airSet ∪ { (s o , s k ) : s k ∈ P OP } 
24: end if 

25: end while 

26: until time () ≥ t max 
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3.1. Benchmark instances 

For the GMaxMeanDP, no vertex-weighted benchmark instance

is available in the literature. To evaluate the performance of our

algorithms, we generated four types of instances, each containing

20 vertex-weighted instances. 1 For each type, we generated 10 in-

stances with n = 30 0 0 and 10 instances with n = 50 0 0 , where the

distances between elements and the vertex weights were randomly

selected from a given set with the uniform probability distribution.

Given that any MaxMeanDP instance can be viewed as a special

GMaxMeanDP instance in which all vertex weights take the value

of 1, we additionally used two types of 80 MaxMeanDP instances, 2 

which were used in Brimberg et al. (2017) or Lai and Hao (2016) to

assess the MaxMeanDP algorithms. The characteristics of these 160

instances are as follows: 

• Type I (20 instances): The distances d ij between elements were

randomly generated in the interval [ −10 , 10] , and the vertex

weights w i ( i = 1 , 2 , . . . , n ) were randomly generated in the in-

terval [1,5]. 
• Type II (20 instances): The distances d ij between elements were

randomly taken in the interval [ −10 , −5] ∪ [5 , 10] , and the ver-

tex weights w i ( i = 1 , 2 , . . . , n ) were randomly generated in the

interval [1,6]. 
• Type III (20 instances): The distances d ij between elements

were randomly selected from the set {−1 , 0 , 1 } , and the ver-
1 Available at http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html . 
2 Available at http://www.info.univ-angers.fr/pub/hao/maxmeandp.html and http: 

//www.mi.sanu.ac.rs/ ∼nenad/edp/ . 

m  

M  

w  

b

tex weights w i ( i = 1 , 2 , . . . , n ) were randomly generated in the

interval [0.9,1.1]. 
• Type IV (20 instances): The distances d ij between elements

were randomly taken from the set {−10 , 0 , 10 } , and the vertex

weights w i ( i = 1 , 2 , . . . , n ) were uniformly set to 1. 
• Type MDPI (40 instances): This set of MaxMeanDP instances in-

cludes 10 instances for each n ∈ {150 0, 20 0 0, 30 0 0, 50 0 0}. The

distances between elements were uniformly randomly gener-

ated in the interval [ −10 , 10] , and the vertex weights w i ( i =
1 , 2 , . . . , n ) were uniformly set to 1. 

• Type MDPII (40 instances): This set of MaxMeanDP instances

includes 10 instances for each n ∈ {150 0, 20 0 0, 30 0 0, 50 0 0}.

The distances between elements were randomly generated in

the interval [ −10 , −5] ∪ [5 , 10] , and the vertex weights w i ( i =
1 , 2 , . . . , n ) were uniformly set to 1. 

.2. Experimental protocol 

The PBEA algorithm adopts four parameters, including the pop-

lation size p , the maximum number Iter max of iterations and the

aximum tabu tenure T max for the tabu search procedure, and the

oefficient η used to control the perturbation strength, whose val-

es are empirically set as in Table 1 . The MAMMDP ∗ algorithm

as three parameters: the population size p which was set to 10

ollowing the setting of original MAMMDP algorithm in Lai and

ao (2016) , Iter max and T max whose values were set as in Table 1 .

n addition, both MAMMDP ∗ and PBEA were implemented in C

nd compiled by the g++ compiler with the -O3 option, and the

orresponding experiments were carried out on a computing plat-

orm with an Intel E5-2670 processor (2.5 GHz and 2G RAM), run-

ing the Linux operating system. The source codes of the pro-

osed MAMMDP ∗ and PBEA algorithms will be available at http:

/www.info.univ-angers.fr/pub/hao/gmaxmeandp.html . 

In addition, due to the stochastic feature of both algorithms,

BEA and MAMMDP ∗ were independently run 20 times to solve

ach instance based on the same time limit t max for each run,

here t max was set to 10 0, 50 0 and 10 0 0 s for the instances

ith n ≤ 20 0 0, n = 30 0 0 and n = 50 0 0 , respectively. Finally, we

mployed a commercial software called LocalSolver ( https://www.

ocalsolver.com/ ) as our reference algorithm, since no direct refer-

nce algorithm is available in the literature for the GMaxMeanDP.

n our experiment, we ran LocalSolver once for each instance with

he same time limit t max as our proposed algorithms on a com-

uter with a Intel i7-6700 processor (3.4 GHz CPU and 4G RAM),

unning Windows 10 operating system, since we only obtained an

cademic license of LocalSolver on this computer. 

.3. Computational results and comparisons on the MaxMeanDP 

nstances 

The first experiment aims to assess and compare the pro-

osed PBEA algorithm and the adapted MAMMDP ∗ algorithm on

he MaxMeanDP instances (i.e., the unweighted GMaxMeanDP in-

tances), since the MaxMeanDP is a special case of the GMaxMe-

nDP in which all vertex weights take the value of 1 and any al-

orithm for the GMaxMeanDP problem can be directly applied to

he MaxMeanDP problem as well. The experimental results on the

0 medium-sized instances with n = 150 0 , 20 0 0 and the 40 large

nstances with n = 30 0 0 , 50 0 0 from the MDPI and MDPII sets are

ummarized in Tables 2 and 3 respectively. For this experiment,

n addition to LocalSolver, we also adopted as another reference

ethod the VNS algorithm, which is one of the state of the art

axMeanDP algorithms ( Brimberg et al., 2017 ). Please note that

hen it is applied to the MaxMeanDP, the MAMMDP ∗ algorithm

ecomes MAMMDP presented in Lai and Hao (2016) . 

http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html
http://www.info.univ-angers.fr/pub/hao/maxmeandp.html
http://www.mi.sanu.ac.rs/~nenad/edp/
http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html
https://www.localsolver.com/
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Table 6 

Influence of the parameter η on the performance of the PBEA algorithm. 

Instance/ η f avg 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

I_5000_1 104.80 104.81 104.80 104.80 104.80 104.79 104.81 104.78 104.80 104.80 

I_5000_2 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 

I_5000_3 104.80 104.80 104.80 104.79 104.80 104.80 104.80 104.79 104.80 104.80 

I_5000_4 107.31 107.30 107.32 107.31 107.31 107.30 107.31 107.30 107.32 107.31 

I_5000_5 105.19 105.19 105.19 105.19 105.19 105.20 105.20 105.19 105.20 105.19 

I_5000_6 103.64 103.64 103.64 103.64 103.64 103.64 103.65 103.64 103.64 103.64 

I_5000_7 105.45 105.45 105.44 105.45 105.44 105.45 105.44 105.45 105.45 105.45 

I_5000_8 104.69 104.69 104.69 104.69 104.69 104.69 104.69 104.68 104.69 104.69 

I_5000_9 102.89 102.89 102.89 102.89 102.89 102.89 102.89 102.87 102.89 102.89 

I_5000_10 108.21 108.21 108.21 108.21 108.21 108.21 108.21 108.21 108.21 108.21 

II_5000_1 129.94 129.96 129.95 129.92 129.93 129.96 129.91 129.89 129.93 129.92 

II_5000_2 127.79 127.79 127.79 127.79 127.79 127.79 127.79 127.79 127.79 127.79 

II_5000_3 129.22 129.22 129.22 129.22 129.22 129.22 129.22 129.22 129.22 129.22 

II_5000_4 132.38 132.38 132.38 132.38 132.38 132.38 132.38 132.38 132.38 132.38 

II_5000_5 131.28 131.28 131.27 131.27 131.27 131.28 131.27 131.26 131.27 131.26 

II_5000_6 128.20 128.20 128.20 128.20 128.20 128.20 128.20 128.20 128.20 128.20 

II_5000_7 128.90 128.90 128.90 128.90 128.90 128.90 128.90 128.87 128.90 128.90 

II_5000_8 129.74 129.74 129.74 129.74 129.74 129.74 129.74 129.74 129.74 129.74 

II_5000_9 127.59 127.57 127.57 127.57 127.58 127.58 127.58 127.54 127.57 127.59 

II_5000_10 134.69 134.69 134.69 134.69 134.69 134.69 134.69 134.69 134.69 134.69 

III_5000_1 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 

III_5000_2 36.21 36.21 36.21 36.21 36.20 36.21 36.21 36.22 36.21 36.21 

III_5000_3 36.03 36.03 36.03 36.03 36.03 36.03 36.03 36.03 36.03 36.03 

III_5000_4 36.46 36.46 36.45 36.45 36.45 36.46 36.46 36.48 36.46 36.47 

III_5000_5 36.14 36.14 36.14 36.14 36.14 36.14 36.14 36.15 36.14 36.14 

III_5000_6 36.02 36.02 36.02 36.02 36.02 36.03 36.02 36.03 36.02 36.02 

III_5000_7 35.94 35.94 35.94 35.94 35.94 35.94 35.94 35.94 35.94 35.94 

III_5000_8 35.96 35.96 35.96 35.96 35.96 35.96 35.96 35.96 35.96 35.96 

III_5000_9 36.14 36.15 36.14 36.14 36.13 36.13 36.15 36.15 36.14 36.14 

III_5000_10 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45 

IV_5000_1 357.27 357.33 357.29 357.28 357.28 357.26 357.29 357.36 357.28 357.23 

IV_5000_2 363.67 363.65 363.66 363.66 363.62 363.66 363.65 363.70 363.63 363.65 

IV_5000_3 361.21 361.21 361.20 361.21 361.23 361.20 361.21 361.32 361.19 361.27 

IV_5000_4 365.20 365.26 365.18 365.18 365.17 365.25 365.24 365.27 365.19 365.18 

IV_5000_5 361.61 361.62 361.62 361.62 361.62 361.62 361.62 361.63 361.62 361.61 

IV_5000_6 357.88 357.88 357.87 357.87 357.87 357.91 357.93 357.92 357.87 357.91 

IV_5000_7 352.86 352.91 352.91 352.86 352.77 352.92 352.95 352.95 352.91 352.92 

IV_5000_8 359.15 359.14 359.15 359.14 359.15 359.20 359.16 359.18 359.14 359.15 

IV_5000_9 360.99 360.99 361.01 361.00 361.02 361.02 361.00 361.09 361.04 361.03 

IV_5000_10 361.05 361.08 361.05 361.06 361.04 361.06 361.05 361.10 361.04 361.04 

Avg 157.82 157.83 157.82 157.82 157.82 157.83 157.82 157.83 157.82 157.82 
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In Table 2 (for the 40 medium-sized instances with n = 1500

r 20 0 0), the first column gives the names of instances, columns

–3 report respectively the best results from the VNS algorithm

nd the results of LocalSolver. Columns 4–7 report the results of

he MAMMDP ∗ algorithm over 20 runs, including the best objec-

ive value ( f best ), the average objective value ( f avg ), the success rate

SR) to reach the associated f best value, and the average run time

 t ( s )) in seconds to obtain its final result. Columns 8–11 report the

esults of the PBEA algorithm with the same information as in the

olumns 4–7. The row Avg. shows the average result for each asso-

iated column. The row #Best shows the number of instances for

hich an algorithm finds the best results in terms of f best among

he compared algorithms. Finally, to verify the statistical difference

etween the dedicated PBEA algorithm and other algorithms in

erms of f best and f avg , the p-values from the Wilcoxon signed-rank

ests are given in the last row of the tables, where a p-value less

han 0.05 means that there exists a significant difference between

he compared results. Moreover, the results of LocalSolver are com-

ared with the average results of PBEA algorithm, since LocalSolver

as run once for each instance. 

Table 3 reports the results on the 40 large instances with

 = 30 0 0 and 50 0 0 in the same way as in Table 2 , where

NA’ indicates that LocalSolver failed to provide a result due

o the memory limitation of the computer used. We ignore

he VNS algorithm in Table 3 since the results on these large
nstances are not reported in Brimberg et al. (2017) for this

ethod. 

From Table 2 , we observe that both the proposed PBEA al-

orithm and the adapted MAMMDP ∗ algorithm dominate the

NS algorithm and the general-purpose LocalSolver software

n the medium-sized MaxMeanDP instances. Compared with

he dedicated VNS algorithm designed for MaxMeanDP in

rimberg et al. (2017) , MAMMDP ∗ and PBEA obtain better results

n terms of f best for 38 out of 40 instances and the same re-

ults for the two remaining instances. It is worth noting that for

hese instances the results of VNS algorithms were obtained in

rimberg et al. (2017) by using a time limit of t max = n that is

uch longer than the time used in this work ( t max = 100 ). Com-

ared with LocalSolver, the dominance of MAMMDP ∗ and PBEA is

ven more evident for all tested instances. The small p-value con-

rms that there is a significant difference between the proposed

BEA algorithm and these two reference algorithms in terms of

 best . On the other hand, MAMMDP ∗ and PBEA perform similarly

n these instances. First, both algorithms obtain the same f best val-

es for all 40 instances. Second, both algorithms have a high suc-

ess rate (SR = 100%) for most instances, while the computation

ime to obtain their final results is less than 1.0 minute for any in-

tance. Moreover, the large p-values indicate that there does not

xist a significant difference between the results of MAMMDP ∗

nd PBEA in terms of f best and f avg . These outcomes imply that
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Table 7 

Comparative results of tabu search procedures with different neighborhoods under the same maximum number of it- 

erations. Each instance was solved 20 times by each tabu search variant, and the average objective values and the run 

times are recorded. 

Instance Average objective value Average computing time (s) 

N 1 N 4 N 2 N 3 N 1 N 4 N 2 N 3 

I_3000_1 80.370223 80.331709 80.419228 80.397729 1.70 2.48 1196.98 1211.05 

I_3000_2 84.160923 84.175919 84.132061 84.156005 1.70 2.62 1234.33 1181.27 

I_3000_3 81.543666 81.563254 81.493745 81.567133 1.71 2.36 1178.35 1281.49 

I_3000_4 80.009048 80.044790 80.074550 80.099239 1.70 2.40 1219.60 1294.26 

I_3000_5 81.105796 81.086351 81.028486 81.129050 1.70 2.26 1289.05 1177.42 

I_3000_6 83.122833 83.139438 83.053114 83.136528 1.77 2.25 1178.04 1190.21 

I_3000_7 81.68306 81.727730 81.683873 81.724791 1.69 2.25 1167.27 1173.33 

I_3000_8 80.525859 80.526347 80.477204 80.528973 1.70 2.37 1253.14 1192.05 

I_3000_9 80.556881 80.560794 80.502281 80.556804 1.78 2.51 1179.42 1193.18 

I_3000_10 83.326823 83.320350 83.315442 83.320493 1.70 2.37 1200.32 1194.71 

II_3000_1 98.980639 99.000333 98.969911 98.980702 1.74 2.30 1177.97 1193.19 

II_3000_2 105.448977 105.488372 105.387800 105.468175 1.74 2.36 1280.10 1159.60 

II_3000_3 101.099149 101.134966 101.043572 101.198633 1.70 2.59 1172.63 1163.89 

II_3000_4 101.074346 101.078024 101.064486 101.075638 1.77 2.41 1202.44 1156.11 

II_3000_5 99.876333 99.893006 99.789128 99.869741 1.71 2.42 1256.77 1243.89 

II_3000_6 101.970764 101.968581 101.869966 101.961902 1.71 2.30 1163.45 1155.65 

II_3000_7 100.132899 100.123789 100.103272 100.158365 1.70 2.33 1171.30 1194.30 

II_3000_8 101.105064 101.027986 100.970914 101.154872 1.69 2.26 1167.71 1241.09 

II_3000_9 98.601737 98.596904 98.508047 98.598148 1.70 2.27 1273.98 1172.29 

II_3000_10 104.862917 104.887103 104.795615 104.874885 1.68 2.30 1183.17 1164.99 

III_3000_1 27.754071 27.774755 27.818733 27.781418 1.69 2.53 1298.58 1355.77 

III_3000_2 27.702657 27.719219 27.757757 27.716593 1.73 2.48 1397.21 1349.85 

III_3000_3 27.881157 27.885209 27.920852 27.897084 1.69 2.36 1317.78 1367.02 

III_3000_4 27.723692 27.732678 27.766265 27.744262 1.72 2.27 1293.15 1320.68 

III_3000_5 27.66126 27.643878 27.699754 27.671768 1.69 2.37 1416.65 1370.78 

III_3000_6 27.612341 27.627724 27.638232 27.631653 1.68 2.34 1431.19 1302.33 

III_3000_7 27.580934 27.582994 27.605799 27.574759 1.74 2.34 1303.56 1354.12 

III_3000_8 27.671951 27.680622 27.712513 27.693571 1.69 2.55 1297.23 1365.41 

III_3000_9 27.650248 27.651881 27.685241 27.665465 1.70 2.52 1419.31 1372.90 

III_3000_10 27.462855 27.471166 27.503728 27.480884 1.78 2.61 1306.16 1311.41 

IV_3000_1 277.297445 277.456078 277.707822 277.411484 1.70 2.32 1309.75 1369.06 

IV_3000_2 275.569955 275.505513 275.964659 275.865817 1.70 2.33 1303.08 1368.02 

IV_3000_3 276.736029 277.062846 277.089373 276.904170 1.70 2.24 1319.46 1379.99 

IV_3000_4 278.244348 278.299395 278.576349 278.460311 1.75 2.37 1391.38 1382.73 

IV_3000_5 275.912872 275.856499 276.179065 276.011616 1.69 2.36 1319.15 1386.32 

IV_3000_6 279.908391 280.232102 280.348491 280.295156 1.68 2.31 1437.05 1357.70 

IV_3000_7 272.736927 272.878628 273.156411 272.960018 1.73 2.48 1312.67 1373.88 

IV_3000_8 275.456754 275.566789 275.983281 275.651022 1.70 2.56 1427.62 1403.40 

IV_3000_9 273.611056 273.878003 274.185110 273.944759 1.75 2.43 1306.62 1492.63 

IV_3000_10 275.58143 275.532812 275.907729 275.621588 1.69 2.31 1315.50 1356.68 

#Better 28 23 33 0 0 0 

#Equal 0 0 0 0 0 0 

#Worse 12 17 7 40 40 40 
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MAMMDP ∗ and PBEA are both highly efficient for solving the

medium-sized MaxMeanDP instances, and the crossover operator

of the MAMMDP ∗ algorithm and the perturbation operator of the

PBEA algorithm have a similar diversification ability. 

Table 3 shows that the PBEA algorithm and the adapted

MAMMDP ∗ algorithm significantly outperform the LocalSolver soft-

ware on these large-scale instances with n = 30 0 0 , 50 0 0 . Between

MAMMDP ∗ and PBEA, one observes that they obtain the same re-

sult in f best for 35 out of the 40 instances. Even if PBEA performs

marginally better in terms of f best with four better f best results for

PBEA against one better f best result for MAMMDP ∗ ( p-value > 0.05),

MAMMDP ∗ is better in terms of f avg with 21 better f avg results

against six better f avg results for PBEA with a p-value < 0.05. Fi-

nally, the success rates decrease significantly for both MAMMDP ∗

and PBEA as the size of instance increases, indicating the high dif-

ficulty of these largest instances. 

In summary, this experiment indicates that when they are

applied to the MaxMeanDP which is a special case of GMaxMe-

anDP, both the PBEA algorithm and the adapted MAMMDP ∗

algorithm perform very competitively compared to the general-

purpose software LocalSolver and the dedicated VNS algorithm.

In the next section, we assess the MAMMDP ∗ and PBEA al-
 i  
orithm for solving the GMaxMeanDP for which they were

esigned. 

.4. Computational results and comparisons on the weighted 

nstances 

We now turn our attention to the assessment of MAMMDP ∗

nd PBEA on the set of 40 large GMaxMeanDP for which these

lgorithms are designed. We report in Tables 4 and 5 the com-

utational results of MAMMDP ∗ and PBEA on the instances with

 = 30 0 0 , 50 0 0 respectively. Table 4 also includes the results of Lo-

alSolver while the instances with n = 50 0 0 are too large for Local-

olver on our computer. In these tables, the same information as in

he last section is reported. 

We observe from Table 4 that both the MAMMDP ∗ and PBEA

lgorithms largely dominate the general-purpose LocalSolver soft-

are in terms of solution quality. For each instance, MAMMDP ∗

nd PBEA obtain a much better solution than LocalSolver. On the

ther hand, the MAMMDP ∗ and PBEA algorithms have a similar

erformance for these instances with n = 30 0 0 . First, the two al-

orithms obtain the same result in term of f best for 39 out of 40

nstances ( p-value > 0.05). In terms of f avg , PBEA has a slightly bet-
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Table 8 

Comparative results of tabu search procedures with different neighborhoods under the same 

time limit. Each instance was solved 20 times by each tabu search variant, and the average 

objective values are recorded. The best f best values among the compared results are indi- 

cated in boldface. 

Instance t max (s ) f avg 

N 1 N 4 N 2 N 3 

I_3000_1 2.5 80.249099 80.311231 11.721149 11.721149 

I_3000_2 2.5 84.162707 84.162944 12.370702 12.370702 

I_3000_3 2.5 81.543361 81.536433 14.916785 14.916785 

I_3000_4 2.5 80.106844 80.014370 12.227146 12.227146 

I_3000_5 2.5 81.116207 81.090353 15.303211 15.303211 

I_3000_6 2.5 83.081651 83.098734 11.820082 11.820082 

I_3000_7 2.5 81.698899 81.715287 13.997985 13.997985 

I_3000_8 2.5 80.509067 80.523652 14.891707 14.891707 

I_3000_9 2.5 80.557968 80.564241 14.067301 14.067301 

I_3000_10 2.5 83.325346 83.339849 10.676445 10.676445 

II_3000_1 2.5 98.977606 98.997774 12.915757 12.915757 

II_3000_2 2.5 105.442076 105.446369 12.575737 12.575737 

II_3000_3 2.5 101.196340 101.099364 12.540325 12.540325 

II_3000_4 2.5 101.078750 101.073721 17.414740 17.414740 

II_3000_5 2.5 99.898393 99.865010 14.157223 14.157223 

II_3000_6 2.5 101.974963 101.955398 13.611427 13.611427 

II_3000_7 2.5 100.132530 100.131676 12.576563 12.576563 

II_3000_8 2.5 101.081766 100.999474 12.955339 12.955339 

II_3000_9 2.5 98.566209 98.565474 12.533706 12.533706 

II_3000_10 2.5 104.882068 104.883430 11.974704 11.974704 

III_3000_1 2.5 27.760076 27.747686 6.015289 6.015289 

III_3000_2 2.5 27.690291 27.713241 4.333629 4.333629 

III_3000_3 2.5 27.882708 27.892154 4.663547 4.663547 

III_3000_4 2.5 27.717461 27.721817 4.703571 4.703571 

III_3000_5 2.5 27.650975 27.660587 4.752437 4.752437 

III_3000_6 2.5 27.626892 27.619878 4.267233 4.267233 

III_3000_7 2.5 27.572748 27.558271 4.498055 4.498055 

III_3000_8 2.5 27.682396 27.662442 4.441804 4.441804 

III_3000_9 2.5 27.641488 27.658272 4.584740 4.584740 

III_3000_10 2.5 27.439402 27.464877 4.591576 4.591576 

IV_3000_1 2.5 277.438126 277.103842 47.790044 47.790044 

IV_3000_2 2.5 275.520943 275.601493 44.924906 44.924906 

IV_3000_3 2.5 276.956653 276.880232 48.493625 48.493625 

IV_3000_4 2.5 278.319177 278.030400 46.031313 46.031313 

IV_3000_5 2.5 275.669572 275.722372 44.559275 44.559275 

IV_3000_6 2.5 280.009358 280.102139 50.117318 50.117318 

IV_3000_7 2.5 272.933195 272.763686 44.694693 44.694693 

IV_3000_8 2.5 275.364275 275.436477 58.228575 58.228575 

IV_3000_9 2.5 273.757565 273.852615 45.895074 45.895074 

IV_3000_10 2.5 275.490623 275.465413 61.333437 61.333437 

#Best 19 21 0 0 

t  
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t  

t  

G

 

a  

f  

f  

o  

t  

1  

t  

M  

a  

T  

s

4

 

t  

t  

t  

d

4

a

 

a  

(  

a  

n  

o  

s  

p  

v  

a  

i  

o  

t  

a

 

i  
er result than MAMMDP ∗ (121.959884 vs. 121.958056) ( p-value

 0.05). Furthermore, both algorithms report the same f best value

ith a success rate of 100% for the 28 instances, indicating that

hey are highly robust for these instances. These outcomes indicate

hat the PBEA and MAMMDP ∗ algorithms perform similarly on the

MaxMeanDP instances with n = 30 0 0 . 

Table 5 shows that the overall performances of both algorithms

re globally quite similar: 157.856608 for MAMMDP ∗ vs 157.853553

or PBEA in terms of the average of the f best values and 157.825271

or MAMMDP ∗ vs 157.831891 for PBEA in terms of the average

f the f avg values ( p-values > 0.05). Meanwhile, we observe that

he success rates of both algorithms are below 50% for more than

5 instances, which shows that these instances are much harder

han the instances with n = 30 0 0 . Interestingly, we observe that

AMMDP ∗ performs better than PBEA for the instances of Types I

nd II, while the reverse is true for the Type III and IV instances.

his indicates that these two algorithms are complementary for

olving these hard instances. 

. Analysis and discussion 

In this section, we perform additional experiments to analyze

he influence of two key ingredients of the PBEA algorithm (i.e.,
he perturbation strength and the neighborhood structure of the

abu search procedure), while for MAMMDP ∗, an analysis of its un-

erlying MAMMDP algorithm can be found in Lai and Hao (2016) . 

.1. Sensitivity analysis of an important parameter of the PBEA 

lgorithm 

The perturbation operator is an essential ingredient of the PBEA

lgorithm. To understand the influence of its perturbation strength

i.e., η × n ) on the performance of the algorithm, we carried out

n experiment based on the 40 large GMaxMeanDP instances with

 = 50 0 0 , where the algorithm was run 20 times with each value

f η ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} on each in-

tance. Recall that given a solution composed of n components the

erturbation operator assigns randomly a value from {0, 1} to η × n

ariables, thus there are about 0.5 ×η × n variables whose values

re changed by the perturbation operator. The results are reported

n Table 6 , where column 1 and row 2 give respectively the name

f instances and the setting of parameter η, columns 2–11 report

he average objective values ( f avg ) over 20 runs for each η value,

nd the row ’Avg’ indicates the average results for each column. 

Table 6 shows that the different settings of η yielded very sim-

lar results in terms of f avg for each instance tested, which means
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Table 9 

Comparison between the PBEA algorithms with the neighborhoods N 1 and N 4 on the set of 40 GMaxMeanDP instances with n = 

30 0 0 . The dominating results between two algorithms are indicated in bold both in terms of f best and f avg . 

Instance PBEA ∗( N 1 ) PBEA( N 4 ) 

f best f avg SR t ( s ) f best f avg SR t ( s ) 

I_3000_1 80.743467 80.743467 20/20 107.21 80.743467 80.743467 20/20 92.53 

I_3000_2 84.201027 84.201027 20/20 35.87 84.201027 84.201027 20/20 46.71 

I_3000_3 81.630082 81.630082 20/20 15.60 81.630082 81.630082 20/20 9.34 

I_3000_4 80.234334 80.234334 20/20 43.26 80.234334 80.234334 20/20 28.07 

I_3000_5 81.218062 81.218004 17/20 182.29 81.218062 81.218062 20/20 138.28 

I_3000_6 83.197618 83.197618 20/20 78.91 83.197618 83.197618 20/20 64.05 

I_3000_7 81.732080 81.732080 20/20 5.31 81.732080 81.732080 20/20 4.50 

I_3000_8 80.624273 80.623660 19/20 130.81 80.624273 80.624273 20/20 83.53 

I_3000_9 80.574438 80.574438 20/20 10.83 80.574438 80.574438 20/20 10.76 

I_3000_10 83.397670 83.397670 20/20 132.95 83.397670 83.397670 20/20 138.84 

II_3000_1 99.055143 99.055143 20/20 19.81 99.055143 99.055143 20/20 12.66 

II_3000_2 105.574146 105.574146 20/20 73.35 105.574146 105.574146 20/20 63.27 

II_3000_3 101.299271 101.299271 20/20 5.97 101.299271 101.299271 20/20 6.71 

II_3000_4 101.079824 101.079824 20/20 9.76 101.079824 101.079824 20/20 8.03 

II_3000_5 100.029225 100.028216 15/20 257.77 100.029225 100.028322 18/20 241.64 

II_3000_6 101.978783 101.978783 20/20 6.25 101.978783 101.978783 20/20 4.56 

II_3000_7 100.189718 100.189718 20/20 20.30 100.189718 100.189718 20/20 17.36 

II_3000_8 101.160428 101.160428 20/20 5.97 101.160428 101.160428 20/20 4.52 

II_3000_9 98.665034 98.665034 20/20 45.85 98.665034 98.665034 20/20 59.96 

II_3000_10 104.896612 104.896612 20/20 9.17 104.896612 104.896612 20/20 11.86 

III_3000_1 27.847334 27.846822 19/20 92.23 27.847334 27.847334 20/20 108.70 

III_3000_2 27.776796 27.774430 5/20 99.81 27.776796 27.774272 4/20 120.08 

III_3000_3 27.946519 27.946519 20/20 146.48 27.946519 27.946519 20/20 157.85 

III_3000_4 27.816272 27.816272 20/20 82.58 27.816272 27.816272 20/20 70.66 

III_3000_5 27.727167 27.726868 18/20 150.04 27.727167 27.727167 20/20 160.51 

III_3000_6 27.691682 27.683984 4/20 144.90 27.691682 27.686631 4/20 131.25 

III_3000_7 27.642060 27.642060 20/20 137.72 27.642060 27.642060 20/20 158.84 

III_3000_8 27.736643 27.733845 5/20 151.96 27.736643 27.734079 6/20 184.58 

III_3000_9 27.745820 27.742271 17/20 88.43 27.745820 27.745820 20/20 77.88 

III_3000_10 27.561083 27.561083 20/20 101.94 27.561083 27.561083 20/20 92.74 

IV_3000_1 278.039443 278.023159 13/20 159.32 278.039443 278.027811 15/20 151.80 

IV_3000_2 276.539877 276.539784 19/20 228.20 276.539877 276.539691 18/20 238.37 

IV_3000_3 277.334878 277.334878 20/20 61.11 277.334878 277.334878 20/20 40.40 

IV_3000_4 278.956422 278.956422 20/20 70.76 278.956422 278.956422 20/20 61.36 

IV_3000_5 276.595238 276.592466 19/20 123.03 276.595238 276.595238 20/20 108.00 

IV_3000_6 280.721533 280.721533 20/20 66.67 280.721533 280.721533 20/20 60.47 

IV_3000_7 273.653396 273.653396 20/20 143.06 273.653396 273.653396 20/20 169.85 

IV_3000_8 276.358447 276.358447 20/20 102.80 276.358447 276.358447 20/20 81.56 

IV_3000_9 274.864865 274.807248 15/20 201.57 274.864865 274.838571 18/20 241.92 

IV_3000_10 276.428571 276.381189 11/20 164.19 276.428571 276.407810 16/20 151.95 

Avg 121.961632 121.958056 92.85 121.961632 121.959884 90.40 

#Better 0 2 0 12 

#Equal 40 26 40 26 

#Worse 0 12 0 2 

p-value 1.0 3.51e-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

a  

s  

N  

b  

o  

o  

o  

a  

b  

t  

a  

t  

t  

a  

f  

s  

b  

n

that the performance of PBEA algorithm is not sensitive to the set-

ting of η due to the strong local search ability of its underlying

tabu search procedure as well as the features of the GMaxMeanDP

problem. Moreover, we observe that the settings η = 0 . 1 , 0.3, and

0.4 lead to slightly better results in terms of Avg than other set-

tings. Hence, the default value of η is set to 0.4 for the PBEA algo-

rithm. 

4.2. Influence of the neighborhoods on the performance of tabu 

search 

As described in Algorithm 4 , at each iteration of the tabu search

algorithms, a best eligible neighbor solution is selected to replace

the current solution by examining the whole neighborhood. As

such, for each iteration, a larger neighborhood usually offers a

greater chance to encounter a neighbor solution of high quality,

but requires a larger computational effort. Hence, we face the chal-

lenge of identifying an appropriate neighborhood structure to en-

able the resulting algorithm to reach a good tradeoff between so-

lution quality and computing speed. 
To check the influence of the neighborhoods on the tabu search

lgorithm and select a proper neighborhood for our tabu search

lgorithm, we carried out an experiment based on the 40 in-

tances with n = 30 0 0 . Using the neighborhoods N 1 , N 2 , N 3 ( =
 1 ∪ N 2 ), N 4 (= N 1 ∪ N 

∗
2 

) described in Section 2.1.6 as the neigh-

orhood structure and setting the parameter T max to 100, we

btain four tabu search algorithms. Given the stochastic nature

f these algorithms, we solved each instance 20 times by each

f these algorithms, and recorded the average computing times

nd average objective values. The stopping condition was given

y the maximum number Iter max of iterations, which was set

o 5 × 10 4 in this experiment. The results of this experiment

re summarized in Table 7 . The first column of the table gives

he names of instances. Columns 2–5 report the average objec-

ive values over 20 runs for the four tabu search algorithms,

nd columns 6–9 report the average computing times consumed

or each algorithm. The rows ’#Better’, ’#Equal’ and ’#Worse’

how the number of instances for which the associated neigh-

orhood obtains a better, equal, or worse result compared to the

eighborhood N 1 . 
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Table 7 shows that the four tabu search algorithms obtained

imilar results in terms of the average objective value, implying

hat the four neighborhoods have a similar search ability when the

ame number of iterations is used. Nevertheless, compared to the

eighborhood N 1 , the three other neighborhoods N 2 , N 3 and N 4 

ielded a slightly better result for 28, 23, and 33 instances, respec-

ively. In addition, the multi-neighborhood tabu search methods

with N 3 or N 4 ) yielded a better result than those using a single

asic neighborhood (i.e., N 1 or N 2 ) in terms of # Better, and hence

he combined use of multiple complementary neighborhoods en-

anced the search ability of our methods in the case that the tabu

earch procedures employ the same Iter max as the stopping condi-

ion. On the other hand, Table 7 indicates a significant difference

mong the four neighborhoods in terms of the computing time.

irst, the times required to examine the neighborhoods N 1 and N 4 

re much smaller than those required to examine other two neigh-

orhoods, since N 1 and N 4 are much smaller than N 2 and N 3 and

he move values (i.e., the change of objective value) of a flip or

wap move can be calculated in O (1) (see Section 2.1.7 ). In addi-

ion, we observe that the examination of the neighborhoods N 2 

nd N 3 is very time-consuming due to their large sizes. Finally, the

peed of examining the neighborhood N 4 is slightly slower to that

f examining N 1 but is much faster than that of examining N 2 and

 3 . 

To assess and compare the effectiveness of the above four

eighborhoods based on the same time limit, we carried out an-

ther experiment on the 40 instances mentioned above, where

ach instance was solved 20 times by each tabu search algorithm,

nd the stopping criterion was a time limit t max = 2 . 5 s. The ex-

erimental results are reported in Table 8 , where the first two

olumns give the names of instances and the time limit used

 t max ) , columns 3–6 report the average objective value ( f avg ) over

0 runs for the four algorithms, respectively, and the row ’#Best’

hows the number of instances for which the associated algorithm

ields the best result in f avg . 

Table 8 shows that the algorithms with the neighborhood N 1 or

 4 performs much better than those with the neighborhood N 2 or

 3 . When comparing N 1 and N 4 , we observe that the two corre-

ponding tabu search algorithms obtain similar results in ’#Best’,

.e., with the best results in f avg for 19 and 21 instances, respec-

ively. This finding further shows the merit of small neighborhoods

or the tabu search algorithms. 

To further compare the effectiveness of the neighborhoods N 1 

nd N 4 within the proposed PBEA algorithm, we first created

 variant of PBEA (called PBEA 

∗) by replacing the neighborhood

 4 with the neighborhood N 1 and keeping other ingredients un-

hanged. Then, we carried out an experiment with PBEA and PBEA 

∗

n the 40 GMaxMeanDP instances with n = 30 0 0 , where both al-

orithms were performed 20 times on each instance according to

he experimental protocol in Section 3.2 . The results are summa-

ized in Table 9 , where the rows ’#Better’, ’#Equal’ and ’#Worse’

how the number of instances for which the associated algorithm

btains a better, equal, or worse result compared to the other al-

orithm. 

Table 9 shows that the PBEA and PBEA 

∗ algorithms have a sim-

lar performance both in f best and the success rate. Specifically,

oth algorithms reached the best known result for all instances

ested. However, regarding the average objective value ( f avg ) over

0 runs, PBEA slightly outperformed PBEA 

∗. For 12 and 2 out of

0 instances, PBEA obtained a better and worse result in terms of

 avg compared to PBEA 

∗, respectively, while matching the results of

BEA 

∗ for the remaining instances. This outcome indicates that the

eighborhood N 4 is superior to the neighborhood N 1 on the tested

nstances. On this basis we have selected the neighborhood N 4 as

he neighborhood structure of the tabu search procedure for the

roposed PBEA algorithm. 
. Conclusions 

The generalized max-mean dispersion problem (GMaxMeanDP) 

s a generalization of the popular NP-hard max-mean dispersion

roblem (MaxMeanDP). Contrary to the MaxMeanDP which has

een studied intensively in the past, the GMaxMeanDP has re-

eived little research effort until now and no practical solution

ethod has been ever proposed for it. To fill the gap in the lit-

rature produced by the absence of a solution method for this im-

ortant problem, we investigate for the first time two population-

ased heuristic algorithms for solving the GMaxMeanDP. The ded-

cated perturbation based evolutionary algorithm (PBEA) combines

 tabu search procedure for solution improvement, a simple per-

urbation operator to diversify the search process and a population

o record the elite solutions found during the search. The other al-

orithm (MAMMDP ∗) is a simple adaptation of the state-of-the-art

emetic algorithm called MAMMDP for the MaxMeanDP, which

ses a crossover operator to generate new starting solutions for its

abu search improvement procedure. 

We performed extensive experiments of our two algorithms on

ix types of 160 instances with n ∈ {150 0, 20 0 0, 30 0 0, 50 0 0}, lead-

ng to the following observations. First, an effective algorithm such

s MAMMDP for the MaxMeanDP can be easily converted to an ef-

ective algorithm for the GMaxMeanDP. Second, for the GMaxMe-

nDP, the simple perturbation operator used in PBEA plays a simi-

ar role with respect to the crossover operator used in MAMMDP ∗.

hird, the two proposed algorithms are complementary since there

re instances that are better solved either by MAMMDP ∗ or by

BEA. Fourth, these algorithms designed for the GMaxMeanDP also

erform very well on the special MaxMeanDP. Fifth, for the tabu

earch method designed for the GMaxMeanDP, a small and cost-

ffective neighborhood proves to be highly efficient. 

Since the GMaxMeanDP can formulate various real-world appli-

ations (e.g., web page ranking ( Kerchove & Dooren, 2008 ), com-

unity mining in a signed social network ( Yang et al., 2007 ) and

rust networks ( Carrasco et al., 2015 )), the proposed algorithms can

e used to handle such practical problems as well. The availability

f the source codes of our algorithms will certainly facilitate such

pplications. More generally, the approach of using an effective

abu search procedure combined with the evolutionary computing

ramework can be applied to solve other dispersion problems such

s the max-mean dispersion problem that has recently received

idespread attention. Our design for PBEA and MAMMDP ∗ can be

dapted to other binary optimization problems like max-cut/max-

isection ( Benlic & Hao, 2013; Ma, Hao, & Wang, 2017; Wu, Wang,

 Lü, 2015 ). Finally, combining the present algorithms with other

pproaches like path relinking ( Glover, 1998 ) and learning strate-

ies like opposition-based learning ( Mahdavi, Rahnamayan, & Deb,

018 ), and diversification-based learning ( Glover & Hao, 2018 ) pro-

ides other interesting possibilities for future research. 
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