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Abstract
Quantum Bridge Analytics relates to methods and systems for hybrid classical-
quantum computing, and is devoted to developing tools for bridging classical and
quantum computing to gain the benefits of their alliance in the present and enable
enhanced practical application of quantum computing in the future.This is the second
of a two-part tutorial that surveys key elements of Quantum Bridge Analytics and
its applications. Part I focused on the Quadratic Unconstrained Binary Optimization
(QUBO) model which is presently the most widely applied optimization model in
the quantum computing area, and which unifies a rich variety of combinatorial opti-
mization problems. Part II (the present paper) introduces the domain of QUBO-Plus
models that enables a larger range of problems to be handled effectively. After illus-
trating the scope of these QUBO-Plus models with examples, we give special attention
to an important instance of these models called the Asset Exchange Problem (AEP).
Solutions to the AEP enable market players to identify exchanges of assets that benefit
all participants. Such exchanges are generated by a combination of two optimization
technologies for this class of QUBO-Plus models, one grounded in network optimiza-
tion and one based on a newmetaheuristic optimization approach called combinatorial
chaining. This combination opens the door to expanding the links to quantum comput-
ing applications established by QUBOmodels through the Quantum Bridge Analytics
perspective. We show how the modeling and solution capability for the AEP instance
of QUBO-Plus models provides a framework for solving a broad range of problems
arising in financial, industrial, scientific, and social settings.

Keywords Quantum Bridge Analytics · Combinatorial chaining · Network
optimization · Asset exchange technology · Quantum computing · Blockchain

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10288-020-00464-9&domain=pdf
http://orcid.org/0000-0001-6945-0438


F. Glover et al.

1 Introduction

Quantum Bridge Analytics is devoted to developing tools for bridging classical and
quantum computing to gain the benefits of their alliance in the near term and enable
enhanced practical application of quantum computing in the future.

As observed in Part I of this tutorial (Glover et al. 2019), the Quadratic Uncon-
strainedBinaryOptimization (QUBO)model has an important role inQuantumBridge
Analytics by unifying a rich variety of combinatorial optimization problems and
becoming at present the most widely applied optimization model in the quantum
computing area.

In Part II (the present paper) we consider applications called QUBO-Plus problems
motivated by the classical QUBO formulation that embrace larger classes of problems,
and that also make it possible to solve certain subclasses of QUBO problems more
effectively. Details of the QUBO-Plus model, including its formulation and illustrative
applications, are discussed in Sect. 2.

To underscore the importance of identifying problems that can be treated as QUBO-
Plus applications, we give special attention in this paper to a problem class called the
Asset Exchange Problem (AEP) which is motivated by developments in blockchains
that relate to finding exchanges among investors that are mutually beneficial to all
participants. We first describe a QUBO model for a special instance of the AEP and
then adopt the QUBO-Plus perspective to consider the relevance of characterizing the
AEP domain in a more general form. To further motivate our focus on the AEP we
discuss a range of applications both within and beyond blockchains where this class
of problems is important. As we demonstrate in the sections that follow, solutions
to the AEP enable market players to identify and profit from exchanges of assets
that benefit all participants—exchanges that, in game theory terminology, constitute
a positive sum game. This provides a mechanism for facilitating exchanges custom-
arily carried out through mechanisms of money, interest, and middlemen by serving
instead the blockchain goal of disintermediation to remove or reduce reliance on
intermediaries. The resulting modeling and solution process simultaneously afford
a link between the applications of classical and quantum computing that are envi-
sioned to be increasingly relevant as the quantum computing area becomes more
mature.

We introduce two main hubs for solving AEP models, the first consisting of a
mathematical formulation yielding a network optimization model for a basic version
of the AEP and the second consisting of a metaheuristic optimization framework
called combinatorial chaining that augments the network model to make it possible to
derive high quality solutions to more complex instances of the AEP, notably including
instances encountered in a wide variety of real world applications.

These developments derive special relevance within the context of QuantumBridge
Analytics, which offers gains by bridging the gap between classical and quantum
computational methods and technologies. As observed in the 2019 Consensus Study
Report titled Quantum Computing: Progress and Prospects (National Academies
2019), quantum computing will remain in its infancy for perhaps another decade,
and in the interim “formulating an R&D program with the aim of developing com-
mercial applications for near-term quantum computing is critical to the health of
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the field.” The report further notes that such a program will rely on developing
“hybrid classical-quantum techniques.” Innovations that underlie and enable these
hybrid classical-quantum techniques, which are the focus of Quantum Bridge Analyt-
ics, provide a fertile catalyst for introducing the QUBO-Plus applications in the AEP
domain.

Additional links to the QBA theme are provided in Kochenberger and Ma (2019)
who observe that QUBO and QUBO-Plus models give rise to a variety of formula-
tions for portfolio optimization, and these in turn yield a natural basis for integrating
classical and quantum computing via the Asset Exchange Problem. Portfolio opti-
mization has a prominent role in the AEP when the assets under consideration involve
those customarily incorporated into the portfolio domain. The AEP goes further,
both in the portfolio domain and others, by linking the holders of multiple portfo-
lios in a network of cooperative optimization. This establishes a natural alliance with
QUBO-Plus models whose solutions identify desirable assets for different partici-
pants.

After introducing the general representation of QUBO-Plus models in the next
section and providing examples of applications related to the theme of the present
paper, in succeeding sections we provide a mathematical optimization model for a
basic instance of the AEP and then show how the model can be transformed into a
network optimization model, thus laying the foundation for exploiting more complex
variants of the AEP.

A note on terminology: we use the term “exchange” rather than “swap” because a
swap typically refers to an exchange involving only two items or two participants, and
“multiple swaps” refer to a collection of pairwise exchanges, in contrast to an integrated
process that requires the coordination among all participants for its execution.

Themost developed literature on exchanges occurs for the traveling salesman prob-
lem, where the term k-opt refers to an exchange that removes k edges from a tour and
replaces them by k other edges so that the resulting configuration continues to be a tour
[Hamiltonian cycle; see, e.g., Helsgaun (2000) and Helsgaun (2009)]. The traveling
salesman procedures that come closest to the process of combinatorial chaining are
the ejection chain approaches that have been applied to TSPs and other combinato-
rial optimization problems (Glover 1996; Rego and Glover 2006; Yagiura et al. 2006,
2007; Rego et al. 2016).

The blockchain literature refers to exchanges called atomic swaps (also known
as cross-chain trading). As elaborated subsequently, these exchanges arise when two
parties who want to share their cryptocurrencies execute an exchange by means of
Hashed Timelock Contracts (or HTLCs) as a mechanism to make the transaction
secure (Nolan 2013; Fitzpatrick 2019). Combinatorial chaining makes it possible to
generalize these swaps to exchanges involving multiple actors.

Combinatorial chaining and the Asset Exchange Problem are to be differentiated
from the problem and methods arising in combinatorial auctions where swaps are
sought to exchange pairs of buy/sell-orders in futures markets (Winter et al. 2011;
Müller et al. 2017). An interesting area for future investigation would be to determine
if the combinatorial chaining approach could likewise be applied in the setting of
combinatorial auctions to enable auctions involving greater numbers of participants.
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The remainder of this paper is organized as follows. Section 2 introduces QUBO-
Plus models that provide computationally important alternatives to standard QUBO
models. Examples of asset exchange applications are given in Sect. 3 to set the stage
for later more extensive and technical discussions. Section 4 provides the fundamen-
tal mathematical formulation of the basic AEP problem, and shows how to transform
this formulation into a network optimization model. Section 5 characterizes the struc-
ture of combinatorial chaining in reference to this basic network model, followed by
introducing more advanced processes in Sect. 6 for joining network optimization and
combinatorial chainingwithmetaheuristic analysis to addressmore complex instances
of asset exchanges. The paper concludes with a summary of the key notions and their
implications in Sect. 7.

2 QUBO-Plus models and the asset exchange problem

The classical QUBO model is expressed as follows.

QUBO: Minimize/Maximize y = xt Qx

where x is a vector of binary decision variables and Q is a square matrix of constants.
The term “QUBO-Plus” refers to a class of models that augment the preceding

standard QUBO representation by introducing important constraints separately from
the QUBO model, enabling them to be treated by algorithms specially designed to
handle these special constraints. This contrasts with the standard approach that seeks
to merge such constraints with the QUBO model by attaching weights to them to
create a modified form of the Q matrix as described in the Part I tutorial. Many
problems have special constraints that could be modeled in pure QUBO form but may
afford advantages from both a computational and “model transparency” point of view
by embodying them in a QUBO-Plus model. By keeping these constraints separate
from the QUBO formulation, and developing a special algorithm that handles the
resulting QUBO-Plus problem, it is possible to solve these problems more efficiently
and effectively than by attempting to create a “transformed” QUBO model that folds
the constraints into the Q matrix.

Computational studies (Du et al. 2020) document that QUBO-Plus models often
deliver superior performance, relative to transformed QUBO alternatives, in terms
of solution quality and solution time, and permit larger problems to be solved. Such
QUBO-Plus models also provide a transparent reminder of the special constraint(s)
that are otherwise lost in a transformed QUBO representation.

While the variety of QUBO-Plus models is substantial and application dependent,
we catalog some commonly encountered special cases in the following list. In the cases
highlighted below, the reference to setting a variable to 1 can encompass a variety of
applications by a correspondence with selecting a particular item from a collection of
projects, investments, assets, facilities, locations, buildings, plans, medical treatments,
architectural designs, itineraries, etc. In such settings, the special constraint(s) defin-
ing the “Plus” component of the QUBO-Plus model embody a key problem feature
earmarked for special treatment.
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2.1 Common QUBO-Plus model types

(1) Exact cardinality constrained QUBO problems: requiring an exact number of
variables to be set to 1.

(2) Bounded cardinality constrained QUBO problems: requiring a lower bound and
an upper bound on the number of variables set to 1.

(3) Multi-assignment QUBO problems: requiring disjoint sets of variables to sum to
1.

(4) Multi-allocation QUBO problems: requiring disjoint sets of variables to sum to
specified constants (that may differ from 1).

(5) QUBO packing problems: requiring sums of variables to be less than or equal to
specified constants.

(6) QUBO covering problems: requiring sums of variables to be greater than or equal
to specified constants.

(7) QUBO problems combining (5) and (6) (also called bounded multi-allocation
QUBO problems).

(8) QUBO knapsack problems: requiring a weighted sum of variables to be less than
or equal to a specified constant.

(9) Multi-knapsack QUBO problems: requiring weighted sums of variables to be
less than or equal to specified constants.

(10) Generalized covering QUBO problems: requiring weighted sums of variables to
be greater than or equal to specified constants.

With appropriate modifications, modern QUBO solvers can be customized to produce
solutions that satisfy the explicit “Plus” constraints while optimizing the quadratic
objective function.

We remark that QUBO-Plus models of type (1) arise naturally in the context of the
well-knownMaximumDiversity problem and also in portfolio optimization problems
where a pre-specified number of assets must be chosen. These models are generalized
by those of type (2) which apply to broader settings. QUBO-Plus type (3) models,
with their assignment constraints, have many important applications and are further
noteworthy for having natural connections to certain types of network problems. In
these network-related problems,members of certain groups or sub-groups are assigned
to members of other groups with the goal of optimizing some measure that describes
the overall effectiveness of the assignments. Problems of this type have a link to the
AEP problem via their network-related component.

We describe specific models below that illustrate these connections.
Model 1.While applications of all tenQUBO-Plus typemodels are found in practice,

Type (3) models with their assignment constraints are particularly noteworthy due to
their connection to various formsof clustering and applications suchmodels accommo-
date.Consider for example, an investment settingwhere xi j = 1 if investor i is assigned
to cluster (class of investments) j , and the constraints are

∑
(xi j : over all j) = 1 for

each investor i ensure that each investor is assigned. A variation of this type of applica-
tion is where particular investments are assigned to specific investment classes. Each
of these applications involves considerations that are relevant to the AEP problem,
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although they fall short of capturing a variety of additional elements of the AEP as we
subsequently indicate.

Model 2. Graph coloring problems present additional applications for QUBO-Plus
type (3) models where a color must be assigned to each node in the graph (the assign-
ment constraints) while adjacent nodes are required to receive different colors. The
adjacency constraints can be folded into the Q matrix and the node assignment con-
straints can be imposed traditionally rather than by penalties in the objective function.

The coloring terminology takes on a practical meaning by equating colors with
labels used to categorize objects (people, institutions, groups, products, processes,
etc.). Nodes that are adjacent (joined by an edge), can be viewed in a context where
edges between nodes may be interpreted, for example, to mean that the associated
objects are dissimilar, hence a coloringwill categorize objects so that dissimilar objects
fall in different categories. Minimizing the number of colors results in minimizing the
number of categories needed to differentiate the objects. Other interpretations of the
adjacency relationship lead to additional applications.

More formally, for a graph G = (V , E) with n vertices,. the Minimum Sum Col-
oring Problem (MSCP) (Kubicka and Schwenk 1989) seeks to find a coloring such
that the sum of all the colors over all vertices is minimized. If we define xik = 1 if
color k is assigned to vertex i , and we seek a coloring using at most K colors, then
the adjacency conditions are satisfied by xik + x jk ≤ 1 for all (i, j) ∈ E and all
k ∈ (1, ..., K ). For a positive scalar penalty, P , these constraints can be imposed via
penalties of the form Pxik x jk to be added to objective function. Proceeding in this
fashion yields the penalized objective function:

Minimize
n∑

i=1

K∑

k=1

k ∗ xik + P

⎛

⎝
∑

(i, j)∈E

K∑

k=1

xik x jk

⎞

⎠

which can be re-written as in the form of xt Qx .
Including the node assignment constraints without taking them into the objective

function, we have the Minimum Sum Coloring Problem in the following form:

Minimize
n∑

i=1

K∑

k=1

k ∗ xik + P

⎛

⎝
∑

(i, j)∈E

K∑

k=1

xik x jk

⎞

⎠

s.t.
K∑

k=1

xik = 1 ∀i ∈ {1, ..., n}

which is a QUBO-Plus model:

Minimize xt Qx

s.t.
K∑

k=1

xik = 1 ∀i ∈ {1, ..., n}
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Model 3. A practical application involving assignment constraints more closely
related to the problems we treat in this paper involves exchanges to re-balance a set of
account assignments for account executives in a large organization. For this example,
assume that the company in question has K account executives, each responsible for
managing a set of accounts. Currently the firm has P > K accounts of varying size in
terms of annual revenues. Denote the annual dollar amount of account p by dp dollars.
As business has grown over the past few years, the total dollar amount of business
managed by a given account executive has grown in an uneven fashion to produce
considerable disparity in the total volume of business managed by a given executive.

To address this issue, top management wants to re-assign accounts to the various
account executives to re-balance the system and make the differences in total annual
book of business between account executives as small as possible.

This problem can be modeled and solved by a QUBO-Plus model with assignment
constraints as follows:

Let xpk = 1 if account p is assigned to executive k; zero otherwise. Then, the total
annual volume of business managed by executive k is

totalk =
P∑

p=1

dpxpk k = 1, ..., K

Our objective it to make assignments of accounts to executives so that each account
gets assigned to an executive while minimizing the squared deviations from one exec-
utive to another. That is, our objective function is:

Minimize deviation = (total1−total2)
2+(total1−total3)

2+...+(totalK−1−totalK )2

Substituting the definition of totalp into the above andwriting the objective function
in matrix form, we get the QUBO-Plus model with assignment constraints:

QUBO-Plus model:

Minimize xt Qx

s.t.
K∑

k=1

xpk = 1 ∀p ∈ {1, ..., P}

where Q is the square, symmetric matrix that results from collecting terms and x is the
vector of xpk variables relabeled with a single subscript. The constraints ensure that
each account gets assigned to one of the executives and the objective function ensures
that the differences in total account values from one executive to another are as small
as possible. Solving this model will result in a new set of account assignments that
re-balance the system.

Our next example illustrates a more general type of application that corresponds to
a QUBO-Plus model of type (4), and likewise has features in common with those we
address in the AEP problem. In this case, we have selected an application relevant to
responding to an outbreak of an epidemic.
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Model 4. The goal of this model is to determine an optimal allocation of testing
kits, as in the context of virus detection, to a population of n people whose members
may or may not be infected. Suppose qi = the estimated value of having person i
tested, and qi j = the additional value of having both i and j tested (beyond the value
of qi + q j )—as where these individuals interact with different groups of people and
it is desirable not to limit testing to those who interact within the same group. The qi j
coefficients can be made larger if the groups that person i and person j interact with
are high risk groups.

Theobjective is tomaximize the total value of the people tested. This canbemodeled
as a QUBO-Plus problem where the number of people tested equals KitsAvailable,
the number of test kits available on a given day.

Define xi = 1 if person i is given the test; 0 otherwise. Then the cardinality
constrained QUBO-Plus model is obtained by:

Maximize Total Testing Value =
n∑

i=1

qi xi +
n−1∑

i=1

n∑

j=i+1

qi j xi x j (C1)

subject to
n∑

i=1

xi = KitsAvailable

This basic model incorporating constraint (C1) can readily be enriched in a variety
of ways. For instance, suppose each person i belongs to a Group k indexed by k =
1, ..., K , where members of Group k are identified because they interact or because
they are a geographical community or have other features in common considered likely
to influence their risk. (These groups may also be identified by a QUBO clustering
algorithm.) This results in constraints of the form

∑

i∈Ik
xi = Vk for k = 1, ..., K (C2)

where Ik denotes the individuals in group k and Vk denotes the number of kits to be
allocated to group k.

Here the sum of the Vk values equals KitsAvailable. The Vk values may be propor-
tional to the sizes of the Groups k or may be skewed by the estimated riskiness of each
group as a whole.

The foregoing problem with constraints (C1) and (C2) is easily formulated as a
QUBO problem by taking the constraints into the objective function as illustrated in
Part 1 of this tutorial (Glover et al. 2019), but can be solvedmore effectively by a special
QUBO-Plus algorithm specifically designed for this class of QUBO applications.
Constraints (C1) and (C2) are instances of more general constraints that arise in the
AEP problem and are common in many network formulations.
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2.2 Differentiation among QUBO-Plus models

In essence, we have three types of QUBO-Plus models. The first type consists of those
for which a QUBO formulation can be readily constructed by incorporating certain
constraints into the objective function, but the problem can be solved more effectively
by a special approach that keeps these constraints separate. The second type consists of
a binary choice “logical” problem where a QUBO formulation is exceedingly difficult
to construct, yet where again we can develop an effective framework for solving it
motivated by the concepts developed for representing and solving QUBO problems.
The third type is an extension of the first two, arising in response to practical applica-
tions that embody highly exploitable problem structures, such as those in the domain
of network-related models which are accompanied by additional combinatorial condi-
tions that take them beyond classical analysis, but that can nevertheless be susceptible
to tailored algorithms based on the principles that have produced the most effective
QUBO methods.

The first type of QUBO-Plus model is illustrated by the QUBO-Plus formulations
above. The second type of model includes problems that have binary network-related
formulations, where we can exploit the fact that we can represent basic instances of
these problems as QUBO problems and QUBO-Plus problems of the first type. The
Asset Exchange Problem at the focus of this paper belongs to the third category. We
will show that we can capture several essential features of this application within a net-
work optimization model, although one that is exceedingly large and computationally
demanding. We will disclose how this structure can alternatively be made susceptible
to an approach called combinatorial chaining, where we employ a strategy shared with
the most effective QUBO algorithms, which iteratively identifies sub-structures that
can be successfully to exploited to yield progressive improvement. A basic (rudimen-
tary) form of combinatorial chaining is presented in Sect. 5 for simpler AEP problem
instances. Then in Sect. 6 we describe modifications that give rise to advanced forms
of combinatorial chaining that handle more complex AEP formulations.

3 Preliminary examples of the asset exchange problem

As previously intimated, the Asset Exchange Problem (AEP) arises in a variety of
contexts, spanning applications in financial investment, resource allocation, economic
distribution and collaborative decision making. Our approach to solving this problem
is based on a form of cooperative optimization, where multiple parties with complex
criteria collaborate as well as compete for resources. This could apply to algorithms
for distributing packages between trucks in a delivery network, or dynamic switching
to alternative sorting facilities. Or it could apply to collaborative bidding processes
for complex multi-criteria contracts or decentralized cooperative group optimization
for multi-criteria investment cryptocurrency portfolios. This is quite distinct from
traditional portfolio optimization, as with a hedge fund that typically seeks to mitigate
risk by diversification with some investments that are negatively correlated.

In the cooperative group optimization setting, our approach generalizes processes
that seek atomic exchanges of baskets of fungible tokens or securities by yielding
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exchanges at a higher combinatorial level. Normally, a financial institution that wishes
to execute a large basket of trades, in a way that mitigates execution risk by having
an intermediary, can take the basket into its inventory and unwind the trades on its
own. Thus, instead of revealing specific information about the assets in the basket,
knowledge which could be exploited, the institution and banks can conduct a “zero-
knowledge” protocol to effect basket trades. However, this protocol still requires trust
in those institutions providing the service. The proposed new approach uses both
simple and complex combinatorial exchanges to optimize all parties engaged in the
multi-party optimization effort.

The progenitor of such an approach has emerged and is being tested in the cryp-
tocurrency world—this is known as a cross-chain atomic swap. This is where two
parties own tokens in separate cryptocurrencies, and want to exchange them without
having to trust a third party or a centralized exchange. However, by extending this
model and enabling complex multi-party swaps, splits and aggregations, we can effect
full spectrum combinatorial trading to provide trustless algorithmic liquidity without
requiring even the normal underlying reserve trading currency.

The simplest instance of such a system is a marketplace of three portfolios. In this
market, Portfolio A has asset X and wishes to own some asset Z, Portfolio B has asset
Z but wishes to acquire only asset Y, and Portfolio C has asset Y and wishes to own
some asset X. In a traditional exchange, participants would exchange what they have
for the underlying reserve settlement currency, and then purchase what they want.
This would entail two transaction fees per portfolio. Alternatively, using cross chain
atomic swaps, the parties would never make any transactions whatsoever, as the global
optimal cannot be reached via pairwise swap transactions.

By enabling all potential complex exchanges, splits and aggregations, for N
portfolios, any market could increase its global utility. However, the computational
complexity of this type of complex combinatorial exchange trading is NP-complete.
By using a multi-attribute trade matching system that includes the unspoken goals of
the parties, which are the “utility functions” of the parties, it is possible to find Pareto-
efficient exchange solutions—referring to the game theory concept of a strategy that
cannot be made to perform better against one opposing strategy without performing
less well against another.

Additionally, the inclusion of constraints increases the complexity of the problem.
For example, if the system determines that diversification is required, then a constraint
could be added that limits which types of assets could be included in the diversification
target. Only assets that have been rated by a rating agency or analyst, for example, as
better than a “B” rating, could be included to modify the optimization. A continuous
approach would assign each rating a numerical value, and blend that with volatility
metrics, volume data, social impact scores, and even the user’s personal pet peeves—to
enable a multi-objective approach to optimize both individual and multiple portfolios.

In the future, the user will require the ability to enter or modify both market orders
(with fixed prices) and limit orders (with variable prices). Aswe transition frommarket
orders to limit orders, this will help to expand utility expression, and it can become
appropriate to add constraints to help identify price improvement opportunities - allow-
ing a combinatorial exchange to operate for a share of price improvement, rather than
charging transaction fees. Just as Bitcoin promises “zero cost transactions”, this could
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provide a model for “zero cost exchanges” that provide the appearance of negative
transaction cost given a disparity of utility functions. In Sect. 6 we discuss the use of
priorities to address such considerations.

The current model for the most effective form of exchange is the double-sided
exchange, a system in which both buyers and sellers provide bids for matching via
the exchange. A central controlling system matches the sell bids with the buy bids,
yieldingmatched buy bids andmatched sell bids in response thereto so that allocations
of the matched buy bids and the matched sell bids maximize the throughput of the
exchange. Combinatorial exchanges using cooperative optimization could potentially
lay a foundation for the next evolutionary step in market exchange protocols, moving
from double sided trading using a reserve currency to something more general that
encompasses new forms of economic transactions.

Double sided exchanges are used to trade goods, services, or other things of value,
including network bandwidth trading, financial-instruments trading, transportation
logistics, pollution-credit trading, electric power allocation, and so on. However, to
make double sided exchanges work, they require fungibility. And so, varying levels
of quality, that describe for example the quality of crude oil, are lumped into fungible
categories of sulfur content, gravity, etc. This further suggests the possibility that com-
binatorial exchanges could reflect multi-attribute trading more effectively, allowing
traders to work with greater accuracy in pricing.

Combinatorial exchanges can likewise be used for handling non-fungible assets.
As long as people are willing to assign value to objects to be traded, combinatorial
exchanges can provide a basis to get people what they want. Suppose User A wants to
sell a vacation timeshare he or she is tired of, for a certain collectible car with roughly
the same value. There are no matches as both are relatively illiquid markets and it
could take several months or require a significant discount to find buyers. However,
there could be a User B who has exactly the car A wants, but doesn’t want a timeshare,
and instead wants a diamond necklace. Now if there is a jeweler C who would find that
timeshare exciting, and willing to create a custom necklace to B’s liking, the system
could enable algorithmic liquidity by joining all three into a complex transaction.

Moving toward a more general example, A and B’s assets most likely have different
values. If there is no jeweler willing tomake just the right necklace, the value exchange
would not add up. Two parties would likely need to add or accept part of the value in
cash. However, with the inclusion of a special user D, who is willing to inject cash
and accept a partial tokenized share of that collectible car or real estate, the complex
transaction becomes possible.We call this special user a “decentralizedmarket maker”
who would require a modest premium to compensate for enabling greater liquidity.
That token share could be sold at a later time, hence it is an offer to sell cash for time.

Additional connections to blockchains via decentralized market making are
described in “Appendix 1”.

One last note concerns the potential for quantum computing in this arena. In gen-
eral, present day quantum computers can handle only a very limited number of qubits,
representing a small number of asset types, or cooperating portfolios. When quantum
computers can offer hundreds of thousands of qubits, with effective partitioning algo-
rithms, combinatorial exchanges will be able to scale to manage real world liquidity
needs for applications involving massive numbers of participants and classes of items
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to exchange. Until then, quantum computing will enable exchange functionality for
only limited and constrained markets, such as for cryptocurrencies. For example, a
crypto wallet that holds only a dozen types of crypto would represent a relatively small
variable space and could potentially be optimized using a quantum computer. Money
was invented to simplify barter, and a quantum exchange based on Pareto-efficient
combinatorial exchanges could simplify money.

As noted in Part I, theQUBOmodel has been adopted as a central focus by the quan-
tum computing community, and by groups that aspire to solve problems by emulating
quantum computation with classical hardware. Motivated by the Quantum Bridge
Analytics perspective we can enlarge this focus to embrace QUBO-Plus models, and
in particular those of the third type discussed in Sect. 2.2. As wewill show, this enables
us to provide the desired exchanges by identifying combinatorial chaining algorithms
that are capable of accommodating variable spaces for AEP models of significantly
greater dimension, providing advances in the near term that can be translated into pro-
gressively greater advances in the future as quantum computing technology becomes
more mature.

4 Mathematical formulations of the AEP

The Asset Exchange Problem has several levels. We start from the most basic level
of the AEP, which we call AEP0, defined in reference to a graph G = (N , E), with
node set N = {1, ..., n} and edge set E = {{i, j}, i, j ∈ N } ⊂ N × N . Each
node i ∈ N identifies an entity such as an individual or business or institution, and
each edge {i, j} identifies an exchange link between i and j . Let A denote the set
of asset types (classes), where elements α ∈ A can represent classes of tokens in a
cryptocurrency application or types of securities in a securities market or categories
of commodities in a commodity market, and so forth. In the following we use the term
assets interchangeably with the term asset types.

In AEP0, each node i ∈ N has a set Si of assets it can send (i.e., can agree to
send) to other nodes and a set Ri of assets it can receive (i.e., can agree to receive)
from other nodes. Thus, for example, if α′ ∈ Si and α′′ ∈ Ri , then node i can agree
to send asset α′ and agree to receive asset α′′ from other nodes. More precisely, Ri

denotes assets that i desires (considers beneficial) to receive and Si denotes assets
that i is willing to send (in return for obtaining an asset in the set Ri ). We say a
transfer of asset α from node i to node j is admissible if α ∈ Si and α ∈ R j (α ∈
Si ∩ R j ). We allow only admissible transfers in seeking asset exchanges that benefit
all participants.

Define Ni = { j ∈ N : {i, j} ∈ E} to be the set of nodes j that are neighbors of
node i (i.e., that join node i by an edge). Let xα

i j denote the number of units of asset α
transferred from node i to node j . In restricting consideration to admissible transfers,
we assume each node i has an upper limit Uα:R

i on the number of units of any given
asset α ∈ Ri that can be admissibly transferred from other nodes to node i and an
upper limit Uα:S

i on the number of units of α ∈ Si that can be transferred from i to
other nodes. Formally, these conditions may be expressed as
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∑
(xα

j i : j ∈ Ni ) ≤ Uα:R
i i ∈ N and α ∈ Ri (1)

∑
(xα

i j : j ∈ Ni ) ≤ Uα:S
i i ∈ N and α ∈ Si (2)

We also impose an equation that requires the total number of assets transferred from
a given node i to other nodes j to equal the total number of assets transferred in return
from other nodes j to node i . Specifically, for a given node i ∈ N , we observe that
the quantity

∑
(xα

i j : α ∈ Si ∩ R j and j ∈ Ni ) identifies the total number of units that
can be admissibly transferred from node i to all nodes j and similarly, the quantity∑

(xα
j i : α ∈ S j ∩ Ri and j ∈ Ni ) identifies the total number of units that can be

admissibly transferred from all nodes j to node i . We require these two quantities to
be equal by stipulating

∑
(xα

i j : α ∈ Si ∩ R j and j ∈ Ni ) =
∑

(xα
j i : α ∈ S j ∩ Ri and j ∈ Ni ) i ∈ N (3)

Finally, we impose an additional limit Ui on the number of all assets α that can be
admissibly transferred from node i to other nodes, expressed as

∑
(xα

i j : α ∈ Si ∩ R j and j ∈ Ni ) ≤ Ui i ∈ N (4)

As a result of Eq. (3), this inequality is equivalent to

∑
(xα

j i : α ∈ S j ∩ Ri and j ∈ Ni ) ≤ Ui i ∈ N (4’)

Subject to these conditions, in problemAEP0we seek tomaximize the total number
of admissible exchanges, hence yielding the formulation

Maximize
∑

(xα
i j : i ∈ N , j ∈ Ni , α ∈ Si ∩ R j )

subject to (1), (2), (3), (4) and

xα
i j ≥ 0, i ∈ N , j ∈ Ni , α ∈ Si ∩ R j

(0)

We can also replace (0) by a variety of other objectives, such as

Maximize
∑

(pα
i x

α
i j : i ∈ N , j ∈ Ni , α ∈ Si ∩ R j ) (0’)

where pα
i is a positive monetary value that node i attaches to receiving asset α from

the set Ri .
We now take the step of transforming the foregoing preliminary AEP0 formula-

tion into a network optimization formulation. Under the assumption that the data are
integers, this allows us to automatically obtain solutions where the variables receive
integer values when an extreme point network algorithm is used. More broadly, it
gives a foundation for generating solutions to the AEP0 model by a corresponding
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basic version of our combinatorial chaining approach. From this, we will be able to
treat related more complex AEP models by natural extensions that combine the net-
work optimization and combinatorial chaining components. The transformation of
AEP0 to a network formulation significantly increases the problem size, but offsets
this by making the problem sparser, while our combinatorial chaining algorithm for
this formulation is able to work with a memory based on the number of nodes rather
than the number of arcs in the network, dramatically reducing both the amount of
computation and the memory involved.

Transforming AEP0 to a network formulation

The transformation of AEP0 to an equivalent network formulation, which we call
NetAEP0, arises by replacing the graph G by a graph G∗ = G∗(N∗, A∗) consisting
of a set of nodes N∗ and a set of arcs (directed edges) A∗ as follows.

To emphasize the arc orientation in creating G∗, we find it useful to augment the
customary representation of an arc from a node p to a node q as an ordered pair (p, q)

by alternatively writing it in the form p → q, which adds clarity when p and/or q is
itself represented as an ordered pair. Lower bounds on all arc flows are assumed to be
0.

To generate G∗, we divide each node i ∈ N into two nodes, i[R] and i[S], and
create an arc i[R] → i[S]. In addition, for each i ∈ N and α ∈ Ri we create new
nodes (α, i[R]), producing ∑

(|Ri | : i ∈ N ) nodes, and create arcs (α, i[R]) → i[R]
(from node (α, i[R]) to node i[R])which results in∑

(|Ri | : i ∈ N ) arcs (the same as
the number of nodes (α, i[R])). Similarly, for each i ∈ N and α ∈ Si we create new
nodes (α, i[S]), producing ∑

(|Si | : i ∈ N ) nodes, and create arcs i[S] → (α, i[S]),
creating

∑
(|Si | : i ∈ N ) arcs (the same as the number of nodes (α, i[S])). If α ∈ Ri ,

we assume there is at least one neighbor of node i that can receive the asset α, or else
we can drop α from Ri . Similarly, if α ∈ Si , we assume there is at least one neighbor
of node i that can send α or else we can remove α from Si . If, as a result of these
removals, either Ri or Si becomes empty, we can remove node i from N .

Finally, for each i ∈ N and for each j ∈ Ni and for each α ∈ Si ∩ R j , each node
(α, i[S]) joins by an arc (α, i[S]) → (α, j[R]) to node (α, j[R]). We call these the
α−linking arcs of G∗, since the same asset α is referenced by both nodes of each of
these arcs. The number of these arcs is

∑
(|Si ∩ R j | : i ∈ N , j ∈ Ni ).

From this construction we see that N∗ consists of 2n + ∑
(|Ri | + |Si | : i ∈ N )

nodes and A∗ contains n + ∑
(|Ri | + |Si | : i ∈ N ) + ∑

(|Si ∩ R j | : i ∈ N , j ∈ Ni )

arcs.
To create NetAEP0 from G∗, we introduce flows on the arcs governed by bounds

as follows. Each arc i[R] → i[S] receives an upper bound on its flow of Ui from
(4). Correspondingly, each of the (α, i[R]) → i[R] arcs receives an upper bound on
its flow of Uα:R

i from (1) and each of the arcs i[S] → (α, i[S]) receives an upper
bound on its flow of Uα:S

i from (2). Finally, the α-linking arcs of G∗ are not given
upper bounds (i.e., their upper bounds may be treated as infinity). All lower bounds
are implicitly 0.
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It is assumed that Ui satisfies Ui ≤ Min(
∑

(Uα:R
i : α ∈ Ri ),

∑
(Uα:S

i : α ∈ Si )),
that is, the upper boundUi on the flow across arc i[R] → i[S] is limited by the smaller
of the sum of upper bounds on the arcs (α, i[R]) → i[R] entering i[R] and the sum
of upper bounds on the arcs i[S] → (α, i[S]) leaving i[S]. (Later we also describe
variations in which we additionally introduce lower bounds Lα:R

i and/or Lα:S
i on the

arcs (α, i[R]) → i[R] and arcs i[S] → (α, i[S]).)
Because we start from the symmetric graph G in undirected edges to produce

the graph G∗ with directed arcs underlying NetAEP0, j ∈ Ni implies i ∈ N j . We
additionally observe that no asset α is contained in both Ri and Si for any given i ,
under the assumption that if node i sees a benefit in receiving a unit of α ∈ Ri , then
it will not be willing to relinquish a unit of α by including it in Si . Exceptions can
be imagined, as where i may be willing to give up a particular α′ ∈ Ri if it is able
to receive a more highly valued asset α′′ ∈ Ri . Such exceptions can be modeled by
extensions of the constructions used here but make the formulation larger and more
complex. Nevertheless, our basic algorithm can be modified to handle these and other
variations without entailing the complexity introduced by an extended mathematical
formulation.

The foregoing description of G∗ and the conditions defining NetAEP0 can be
translated into an algorithm for generating the network. As part of this we show how
to attach numerical indexes denoted by k = 1 to n∗ to the nodes in N∗ so that NetAEP0
may be represented as a network in a standard format. We refer to lower bounds as
well as upper bounds on arcs for generality, although in direct transformation of AEP0
to NetAEP0 the lower bounds will be 0.
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Algorithm: Generate NetAEP0
for each i ∈ N do
Create the nodes i[R] and i[S] and the arc i[R] → i[S], by assigning the index
k = i to the node i[R] and the indexes k = i + n to the node i[S].
Attach the lower and upper bounds Li andUi to the arc i[R] → i[S](i → i + n).

end for
Set k = 2n
for each i ∈ N do
(Create the “S-labeled” asset node (α, i[S]) and associated arc i[S] → (α, i[S])
for each asset α ∈ Si .)
for each α ∈ Si do
Set k := k + 1 and create the asset node (α, i[S]), assigning it the index k.
Create the arc i[S] → (α, i[S]) and attach lower and upper bounds Lα:S

i and
Uα:S
i .

end for
end for
for each j ∈ N do
(Create the “R-labeled” asset node (α, j[R]) and associated arc
j[R] → (α, j[R]) for each asset α ∈ R j .)
for each α ∈ R j do
Set k := k + 1 and create the asset node (α, j[R]), assigning it the index k.
Create the arc (α, j[R]) → j[R] and attach lower and upper bounds Lα:R

j and

Uα:R
j .

end for
end for
for each i ∈ N do
(Create the “S to R” asset arcs (α, i[S]) → (α, j[R]) associated with i for each
α ∈ Si .)
for each asset α ∈ Si do
for each neighbor j ∈ Ni do
if α ∈ R j then
Create the asset arc (α, i[S]) → (α, j[R]) with no bounds (i.e., a lower
bound of 0 and an upper bound of infinity).

end if
end for

end for
end for

Costs or profits may be attached to the arcs of the network NetAEP0 according to
the objective that is desired to be achieved. Asset arcs, which are linking arcs, should
be assigned a 0 cost or profit.

An illustration of the structure of NetAEP0 is given in “Appendix 2”.

5 Basic version of combinatorial chaining

Aclassical theorem of network flows (Fulkerson and Ford 1962) implies that a feasible
solution to NetAEP0 can be decomposed into a sum of incidence vectors of cycles
(not necessarily disjoint or uniquely determined). Such cycles are of interest for the
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Asset Exchange Problem in both its simpler AEP0 form and its more complex forms
because they identify a collection of participants who can enter into a succession of
mutually beneficial asset exchanges. Such a collection is not unduly difficult to identify
by reference to a solution to the NetAEP0 formulation but requires additional effort.
Fulkerson and Ford’s max flow algorithm would automatically identify (augmenting)
paths from source to sink in the network, which has some similaritywith combinatorial
chaining. But a standard network flow algorithm for solving NetAEP0 is not capable
of being directly adapted to provide good solutions to more complex variations of the
AEP that abound in practical applications, thus motivating the creation of the adaptive
combinatorial chaining approach.

Adopting the netform perspective (Glover et al. 1992), combinatorial chaining is
designed both to exploit the structure of the basic AEP network formulation and to
be susceptible to extensions for solving a variety of AEP variations found in practice.
This harmonizes with theQuantumBridgeAnalytics perspectivewhere quantum com-
puting can be applied to solve portfolio optimization problems expressed as QUBO
models for individual investors or institutions, and more generally leads to considera-
tion of a QUBO-Plus formulation of the third type. Combinatorial chaining can then
be applied to the appropriate AEP variation to integrate and improve these individual
solutions in a global strategy that accrues to the benefit of each participant.

The strategy underlying the basic formof combinatorial chaining operates by gener-
ating successions of directed trees (or arborescences in graph theory) rooted at different
nodes. Conditions are monitored to disclose when a directed tree can be extended by
connecting a tip of one of its branches to the root, thus creating a cycle that constitutes
a mutually beneficial exchange. The process differs from classical tree generation
algorithms by introducing multiple categories of tree predecessors and establishing a
mechanism to trace the predecessors that differentiates between the categories effec-
tively. This introduction of multiple categories of tree predecessors and mechanisms
for tracing them likewise causes our method to operate differently from classical min
cost flow algorithms based on generating augmented paths (Barr et al. 1978; Glover
et al. 1986). This departure from classical approaches arises because many of the more
general AEP models belong to the class of multi-commodity network flow problems
(Hu 1963; Assad 1978), which are more complex than standard “pure” network flow
problems, and normally cannot be transformed into a pure network problem aswe have
accomplished for AEP0. Rather than being a disadvantage, however, this complexity
enables the chaining mechanism to be adapted to AEP variations beyond AEP0.

More broadly, the combinatorial chaining mechanism we employ is closely related
to the ejection chain procedures for combinatorial optimization noted in Sect. 1. In its
more advanced forms outlined in Sect. 6, it is additionally related to the path relinking
approaches that are joined with ejection chains in Yagiura et al. (2006, 2007) and that
produce the leading methods for the QUBO problem in Wang et al. (2012), Samorani
et al. (2019), Glover et al. (2020, 2021).
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Rudimentary combinatorial chaining for the NetAEP0model

Combinatorial chaining for the basic NetAEP0 model makes use of arrays denoted
FlowR(α, i[R]) to record flows on the arcs (α, i[R]) → i[R] and arrays denoted
FlowS(α, i[S]) to record the flows on the arcs i[S] → (α, i[S]). Hence, for each i ∈ N ,
we require FlowR(α, i[R]) ≤ Uα:R

i for each α ∈ Ri , and require FlowS(α, i[S]) ≤
Uα:S
i for each α ∈ Si . Flows on the arcs arc i[R] → i[S] are recorded in an array

Flow(i) for each i ∈ N . All flow values are initialized to 0.
It is convenient to refer to the nodes (α, i[R]), (α, i[S]) and i (the latter collec-

tively representing the two nodes i[R] and i[S]) as open when their associated flows
FlowR(α, i[R]), FlowS(α, i[S]) and Flow(i) do not reach their upper bounds and
closed otherwise. (A bit can be set for each such node to determine its open/closed
status.)

We refer to two types of predecessor arrays PredR(i) and PredS(i), i ∈ N , accompa-
nied by associated arrays AssetR(i) and AssetS(i) explained subsequently. The arrays
PredR(i) and PredS(i) are initialized to 0 to indicate predecessors are not yet assigned.

The method performs forward scans and reverse scans to examine nodes i ∈ N
(and from there to examine the arcs these nodes can become linked to in a chain).
When the tip of the tree can successfully be linked to the root, a breakthrough occurs
by establishing the existence of an exchange cycle that is mutually beneficial for all
its participants. Breakthrough is accompanied by appropriately updating (increasing)
the flows on arcs of the cycle.

The basic version of the chaining algorithm only performs forward scans but gives
the foundation for performing reverse scans aswell, as subsequently described.Wefirst
explain the nature of the forward scan routine and then give a more formal description.

Rationale of the Forward Scan Routine:
The Forward Scan Routine is embedded in a Main Routine that maintains a set No

identifying the open nodes, initialized by No = N . Nodes to be scanned are placed in a
set denoted ScanSet that begins with a chosen node i∗ ∈ No. During the Forward Scan
Routine, ScanSet acquires other nodes i ∈ No to form a tree that yields a collection
of chains rooted at node i∗. The tree is generated by successively selecting new nodes
i from ScanSet as long as ScanSet �= ∅.

For each node i selected from ScanSet, consider each asset α ∈ Si ; i.e., each asset
α that node i is willing to send to another node. Given node i , additionally consider
each neighbor j of i that contains α ∈ R j ; i.e., each neighbor j that desires to receive
α. (Formally, we refer to the set NRα

i = { j ∈ Ni : α ∈ R j }, which consists of those
neighbors j of node i such that R j contains α.) If node j is not already in the tree,
i.e., if it has no predecessor (as indicated by PredS( j) = 0), then it can acceptably be
added to the tree by adopting node i as its predecessor. For this, we set PredS( j) = i
together with AssetS( j) = α, which records the fact that each chain in the tree that
passes through this particular (i . j) link is accompanied by sending asset α from node
i to node j .

If now j = i∗ (which can result because i∗ is not assigned a predecessor initially),
we have discovered a chain beginningwith node i∗ that results in a loopwhich qualifies
as amutually beneficial exchange cycle (where each participant receives a desired asset
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and in return sends a willingly exchanged asset). The Breakthrough Routine handles
this outcome by identifying the cycle and updating the flows and the structure of G∗
appropriately.

Following the updates of the Breakthrough Routine, the scanning routine is reini-
tiated within the Main Routine by selecting a new i∗ from No (where i∗ may be the
same as before if it is not removed from No during breakthrough).

Alternatively, the scan from a given node i∗ may terminate with ScanSet empty and
without achieving breakthrough. In this case, i∗ is removed from No and once more
the scanning routine is reinitiated within the Main Routine to select a new i∗ from No.

We let No
i = Ni ∩ No denote the (current) neighbors of node i that are in No.

Hence No
i , which starts the same as Ni , may shrink as nodes are removed from No.

This also modifies the definition NRα
i = { j ∈ Ni : α ∈ R j } to become NRα

i = { j ∈
No
i : α ∈ R j }, identifying the neighbors of i in No that desire to receive asset α.
Termination of the Main Routine occurs when No contains only a single node

(|No| = 1), since then this node has no other nodes it can exchange with.
The formal design of the algorithm is as follows.

Algorithm: Basic Combinatorial Chaining
Initialization.
Set all flow values to 0. Initialize the set No of open nodes by setting No = N .
Main Routine
while |No| > 1 do
Set all predecessor arrays to 0.
Choose i∗ ∈ No and create ScanSet = {i∗}.
Execute the Forward Scan Routine (as follows)
while ScanSet �= ∅ do
Select a node i ∈ ScanSet
for each α ∈ Si do
for each j ∈ NRα

i (= { j ∈ No
i : α ∈ R j }) do

if PredS( j) = 0 then
( j has not been visited before on a Forward Scan)
Set PredS( j) = i and AssetS( j) = α.
if j = i∗ then
Execute the Breakthrough Routine (below)
(Update flows and potentially remove nodes from No.)
Break (leave Forward Scan Routine to choose a new i∗ ∈ No in the
Main Routine if |No| > 1).

end if
else
Let ScanSet := ScanSet ∪{ j}.

end if
end for

end for
ScanSet := ScanSet\{i} (remove i from ScanSet)
(The scan of node i is complete.)

end while
(End of the Forward Scan Routine)

end while
(End of the Main Routine)
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The algorithm can be modified to save part of the tree after the completion of each
forward scan, but the computational savings will not usually be enough to warrant
the effort. Reverse scanning provides a more interesting modification and can be
accomplished by interchanging R and S in each of the instructions of the Forward
Scanning Routine. Forward scanning and reverse scanning can also be done together,
switching from one to the other on selected iterations. In this case, breakthrough
is recognized when j = PredS(i) on a forward scan yields PredR( j) > 0 (where
PredR( j) was set on a reverse scan), or when j =PredR(i) on a reverse scan yields
PredS( j) > 0 (where PredS( j) was set on a forward scan). To show how reverse
scanning can be joined with forward scanning, “Appendix 3” gives an example where
a single iteration of reverse scanning is applied before launching the forward scanning
algorithm.

The Breakthrough Routine that accompanies the Forward Scanning Routine
may now be described as follows. The preceding observations and the example in
“Appendix 3” disclose how to modify this routine for reverse scanning or for combi-
nations of forward and reverse scanning.
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Algorithm: Breakthrough Routine
Compute the maximum feasible flow increment 
Flow on the augmenting cycle

Flow = Big (a large positive number)
i = i∗
Stop = False
while Stop = False do

α = AssetS(i)

R = Uα:R

i −FlowR(α, i[R])
i =PredS(i)

S = Uα:S

i − FlowS(α, i[S])

i = Ui− Flow(i)

Flow = Min(
R,
S,
i,
Flow)
if i = i∗ then
Stop = True

end if
end while

Update flows and remove nodes associated with saturated arcs
i = i∗
Stop = False
while Stop = False do

α = AssetS(i)
FlowR(α, i[R]) = FlowR(α, i[R]) - 
Flow
if FlowR(α, i[R]) = Uα:R

i then
close arc (α, i[R]) by setting Ri := Ri\{α} (removing α from Ri )

end if
i = PredS(i)
FlowS(α, i[S]) = FlowS(α, i[S]) - 
Flow
if FlowS(α, i[S]) = Uα:S

i then
close arc (α, i[S]) by setting Si := Si\{α} (removing α from Si )

end if
Flow(i) = Flow(i)−
Flow
if Flow(i) = Ui then
close arc (i[R], i[S]) setting No := No\{i}

end if
if i = i∗ then
Stop = True

end if
end while

6 Advanced forms of combinatorial chaining for more complex AEP
models

There are problems that are too complex to be given mathematical formulations that
fully capture their subtleties and that are simultaneously capable of being solved
by standard math programming algorithms. In adopting the perspective of Quantum
BridgeAnalytics,we embrace strategies for suchproblems that allow their objectives to
be pursued approximately and flexibly, thus admitting approaches that solve variations
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of these problems to emphasize alternative problemcomponents in an adaptive fashion.
As we have emphasized, our basic combinatorial chaining procedure allows this to be
done when joined with network optimization by giving advanced methods that yield
access to more complex AEP variants.

We show how this can be achieved for two chief extensions of the basic formulation
that encompass a broad range of applications. The associated modified versions of
combinatorial chaining provide flexible approximation methods that can be embedded
inmetaheuristic algorithms and afford the possibility of being incorporated into hybrid
classical/quantum systems. In common with the most effective algorithms for QUBO
problems, a natural basis for these extensions derives from adaptive memory strategies
such as embodied in tabu search and path relinking (Wang et al. 2012; Samorani et al.
2019; Glover et al. 2020, 2021).

Prioritizing the assets exchanged

In some applications of the AEP, participants may wish to prioritize certain exchanges
of assets over others, preferring more strongly to receive particular assets and being
more willing to relinquish certain other assets. Priorities attached to these preferences
may also differ among different participants. Upon assigning numerical values to
capture these preferences (as by indicating a dollar amount that different individuals
attach to the value of different exchanges, or by making recourse to an agreed-upon
set of subjective weights), the combinatorial chaining algorithm can be extended by
prioritizing the selection of the elements i∗ in No or the choice of elements i in
ScanSet, in each instance selecting the highest priority element from those available.

Priorities can also be used by such an extension to improve the choices for partici-
pants whose exchanges were less favorable on previous executions of the algorithm,
since an effort to achieve a best overall collection of exchanges (such as a maximum
number of beneficial exchanges) can result in better outcomes for some participants
than for others. This means of exploiting the freedom to choose different elements in
executing the basic steps of combinatorial chaining yields an approximation method
for a problem whose subtleties render it unsuitable for a classical mathematical for-
mulation, while allowing the flexibility to be adapted to different types of priorities.
Such priorities can be introduced in the network formulation and embodied in proba-
bilities for selecting moves in metaheuristic adaptations as in probabilistic tabu search
(Xu et al. 1997; Guemri et al. 2019). Combinatorial chaining provides the underlying
structure for guiding the search to produce feasible solutions.

Priorities can also be employed to create larger breakthroughs earlier in the process
of generating combinatorial chains, as by giving higher priority to participants with
larger capacities (upper bounds) on the flows they can receive. The priorities can
be based on measures applied to each base node (participant), such as total sums
of capacities or means of capacities adjusted by standard deviations, and so forth.
Refinements arise by considering the priorities of neighbors. For example, a new
priority can be created for a node that is a weighted combination of its current priority
and the priorities of neighbor nodes, where weights for neighbors are less than for the
node under consideration. Such a processmay also be repeated, using the newpriorities
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as a basis for constructing another round of new priorities. (Additional repetitions may
be expected to yield progressively less advantage.)

Particular applications give their own criteria for determining priorities. In
exchanges of cryptocurrencies, for example, larger investors face the most negative
impact by failing to make exchanges of a size deemed satisfactory, so assigning higher
priorities to exchanges of such investors will usually result in the highest increase in
utility. Using such priorities, choosing a node i∗ from No with the highest priority
to become the root of the current directed tree, followed by choosing highest priority
nodes i from ScanSet to continue building the tree, provides a compelling and easily
implemented strategy.

As previously observed, there may also be situations where it can be relevant to
place lower bounds as well as upper bounds on the number of units of different assets
exchanged by different participants. In a cryptocurrency application, for example, an
investor may only be interested in transactions that result in receiving a specified
number of units of a given asset. To illustrate, an investor represented by a node i
may seek an exchange in which i receives precisely 100 units of Ethereum (ETH),
represented by asset α(∈ Ri ) (accompanied, for example, by i sending units of Bitcoin
(BTC) or Lumen (XLM) to other nodes). The AEP network model then captures
this by putting a lower bound of 100 and an upper bound of 100 on the ETH arc
(α, i[R]) → i[R]), giving Lα:R

i = Uα:R
i = 100. The situation where an investor may

have an exact demand for an asset (modeled by setting the lower bound equal to the
upper bound), andwhere this demand cannot be satisfied by an exchange involving any
single other investor, is sometimes called splitting, i.e., the demand must be split into
different transactions with different investors. Combinatorial chaining automatically
handles splitting situations as well as other much more general situations. A simple
illustration is where investor i will only consider an exchange that brings in at least
Lα:R
i = 50 units of ETH, but would prefer to receive more units, up to a limit of

Uα:R
i = 100. Any number of other investors, some who may not be neighbors of i ,

may be involved in transactions identified by combinatorial chaining.
In cases like these where the AEP model includes lower bounds on numbers of

units received, exchanges can be prioritized in two phases, where Phase 1 is devoted
to satisfying asmany of the lower bounds as possible, and Phase 2 then sends additional
flow through the network subject to satisfying upper bounds. These two phases are
not required to have the same priorities for selecting nodes on exchange cycles.

Machine learning provides a natural way to facilitate priority generation. A strategy
of varying the priorities may yield better overall outcomes for a particular objective,
for example, and machine learning can be used to help identify a strategy that leads
to the most desirable results. An instance of machine learning called Programming by
Optimization (Hoos 2012) is often effective for choosing parameters for optimization
algorithms and may be useful in determining priorities in the combinatorial chaining
context. Learning can also be employed as clustering-based metaheuristics (Samorani
et al. 2019).
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Generalized networks

An important variation of the AEP arises where a unit of one asset may be exchanged
for more or less than one unit of another asset. Networks in which the number of units
received at the destination node (to-node) of an arc may differ from the number of
units sent from the origin node (from-node) of an arc are called generalized networks
(Glover et al. 1990, 1992), and the factor that determines the difference between the
units sent and received is called the arc multiplier. For example, an arc multiplier of
1.5 implies that the to-node receives 1.5 units for every unit sent from the from-node.
A variety of situations exist where assets may be exchanged other than on a one-to-one
basis.

A convenient feature of the basic combinatorial chaining algorithm is that such
multiplier effects can be captured by joining the treatment of priorities with a modi-
fication of the Breakthrough Routine. The amount of flow transmitted across a chain
of generalized arcs from the root node i∗ to a subsequent node i equals the product of
the multipliers on the arcs between i∗ and i . Thus, for example, if the chain consists
of the succession of arcs (i∗, i1), (i1, i2), (i2, i3), with i3 = i , and if the multipliers
on these three arcs are 0.6, 2.0 and 1.2, then a unit of flow sent from node i∗ becomes
0.6×2.0×1.2 = 1.44 units of flow received at node i3. The BreakthroughRoutine can
be readily modified to incorporate this effect, using it to identify the limits on flows
required to compute updated flows across the entire cycle and to determine which
assets or elements must be removed from their associated sets due to these updates.

The approaches of introducing exchange priorities and capitalizing on the ability to
incorporate arc multipliers in association with generalized networks can be combined
to cover an additionally expanded range of practical problems, which may be usefully
exploited by metaheuristic algorithms in the QBA context.

7 Concluding remarks

The relevance of Quantum Bridge Analytics for real world applications has been
demonstrated by showing an important instance where we are able to apply the QBA
perspective to the challenging Asset Exchange Problem, which opens up numerous
applications in financial investment, resource allocation, economic distribution and
collaborative decisionmaking.The linkageof networkoptimizationwithmetaheuristic
optimization via combinatorial chaining gives rise to an Asset Exchange Technology
that can address and solve a wide range of practical variations.

Present day quantum computers can only handle small AEP problems, due to the
limited number of qubits they encompass, but the integration of network formula-
tions and combinatorial chaining is capable of accommodating AEP problems of
significantly greater dimension. Through these connections, the AEP model gives an
important class of optimization problems that can be usefully approached within the
QBA domain, providing a foundation for further advances in the future as quantum
computing technology becomes more mature.
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Appendix 1: Blockchains and decentralizedmarket making

Decentralized market making is an intriguing concept that would require a detailed
exploration, as it will likely emerge as critical factor for enabling scalable liquidity.
But there are many questions to be answered. For example, what is the value of
contributions by the decentralizedmarketmakers?Also, could these small investments
held by the market—provided to equalize values in an exchange—be aggregated into
baskets, and could those baskets be traded? How do we accurately assess the risks of
items in baskets, to flow them up to the basket, to avoid “toxic assets” being included?

Finally, it should be noted that a computational system or agent that learns what a
user wants to buy or sell, or might be willing to trade, would be quite valuable as an
e-commerce tool because it provides a means to unveil the deeper purchase intentions
of users. AI based agents could assist not only in the process of helping the user to
determine what they might be willing to trade for or buy but could even help the user
discover new purchase intentions that might lead to greater personal satisfaction. In
other words, instead of just contributing to the accumulation of more useless stuff in
their lives, such a system could explore more complex human values, as opposed to
those reflecting desires and whims stimulated by media and advertising.

For example, if an AI held a model that understood the OCEAN Big Five person-
ality traits, which was used so effectively by Cambridge Analytica in 2016, it could
predict that the user has a high degree in a single trait, openness to new experiences.
By balancing knowledge around both investment planning and personality traits, the
advisor could provide more balanced advice to the user that would lead to greater per-
sonal satisfaction and fulfillment. A strictly financial based AI advisor would simply
recommend one asset class over other, or the diversification into additional classes. But
an AI advisor that used both financial optimization as well as heuristics about human
personality and psyche, understanding the complex needs of the investor, might sug-
gest to keep 95% of the portfolio within financial instruments, but propose that 5%
could be invested in experiential learning for the user, in other words, investing in him
or herself. This could include travel to learn a new language or a workshop to learn a
new skill, possibly with permission to tap into the user’s online “bucket list” - the list
of things you’d like to do before you “kick the bucket.”

Toput this into the context of theAEPproblemand combinatorial chaining, consider
a situation with User A who has inherited a somewhat odd abstract painting from a
distant relative inFrance, that doesn’t havemuchvalue on the resalemarket inAmerica.
However, on a combinatorial exchange market, there may be a chance of trading it for
something not only less objectionable but desirable for all parties. Her asking price
is a value of $3,000. Now, because her interaction with the exchange is managed by
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a user agent with access to her private “bucket list,” the trusted agent can now look
for something that matches items on his list. It turns out that she has always wanted
to take a class at the Cordon Bleu cooking school and to learn some French. So our
agent can scan against other agents and listings, to find User B who wants to trade
a $3000 workshop pass at Cordon Bleu for ten day stay in a beachfront Airbnb on
some nice tropical island. The combinatorial chain holds that in place while finding
a third or fourth transaction to make the combinatorial exchange pareto-optimal for
all users. Fortunately, it finds User C who has a modest bungalow on a beach in the
Marquesas, which doesn’t get much Airbnb interest because it is too remote. However,
that person looks at the painting, and realizes it was painted by the singer Jacques Brel,
who was a great singer but lousy painter, and actually has quite a bit of value in the
Marquesas because Jacques Brel spent his last days on the island of HivaOa, following
the footsteps of Paul Gauguin and learning how to paint untamed landscapes that were
so bad they looked abstract. So his agent offers a 3 week stay for that painting!

In this way, an AI-based financial advisor would advise in a more human and
humane way. Thus, metaheuristic optimization via asset exchange technology could
be applied directly to the issues of happiness, life goals and meaning. For user A,
the lifelong goal of learning how to master the art of French cooking. For User B, a
desperately needed vacation he couldn’t afford otherwise. And for User C, the lifelong
goal of appearing on Antique Roadshow, to show off a barn find of a lifetime. We thus
can ascend from cold process of optimizing utility functions to optimizing the human
condition.

Appendix 2: Illustration of network structure of NetAEP0

The structure of the network NetAEP0 created in Sect. 4 is illustrated in the following
diagram, where the i nodes are represented in their duplicated form i[R] and i[S],
giving rise to the arc i[R] → i[S], for a network with N = {1, ..., 6}. The assets
α are represented by the letters A, B, C, D and E, giving rise to asset nodes of the
form (α, i[S]) and (α, j[R]) which are joined by arcs (α, i[S]) → (α, j[R]) (called
α-linking arcs in Sect. 4), where i and j may vary but the asset α(= A, B, . . . , etc.)
must be the same in each such arc. It should be noted that these linking arcs do not
have limiting bounds on their flows other than an implicit lower bound of 0.

The arcs of the network are a succession of nodes that can be written in columns
of R-labeled nodes and S-labeled nodes that follow a pattern that begins with the R-
labeled i nodes i[R], followed by the S-labeled i nodes i[S], followed in turn by the
S-labeled asset nodes (α, i[S]), then followed by the R-labeled asset nodes (α, j[R])
and finally followed by the R-labeled i nodes i[R] to repeat the pattern. A further
interesting pattern seen in the diagram is that all S-labeled nodes have exactly 1 arc
entering but may have multiple arcs leaving, while all R-labeled nodes have exactly
1 arc leaving but may have multiple arcs entering. The i nodes are enclosed in circles
in the diagram and the asset nodes are enclosed in rectangles.

Since the asset arcs (linking arcs) do not have bounds on their flows, the foregoing
patterns imply that an asset arc whose S-labeled node has a single arc out can be
collapsed to be represented only by the R-labeled node, and an asset arc whose R-
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Fig. 1 Network structure

labeled node has a single arc in can be collapsed to be represented only by the S-labeled
node. It should be emphasized that the staged structure shown in the diagram above is
slightly misleading, since cycles typically vary in length and, in addition, duplicated
i nodes may be encountered at various stages without implying they form a cycle that
can be traced back to a previous instance of a duplicated node. The i indexes and the
assets in the diagram have been ordered to show the patterns produced by arranging
the nodes in columns. By contrast, the algorithm given in Sect. 4 for generating the
network applies for any ordering of the indexes i in N and is independent of any
ordering of the assets, which shows that such orderings are irrelevant in the general
case.
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Appendix 3: Illustration for reverse scanning

Algorithm: Basic Combinatorial Chaining Algorithm with a Reverse Scanning
Step

Initialization.
Set all flow values and all predecessor arrays to 0. Initialize the set No of open
nodes by setting No = N .
Main Routine
while |No| > 1 do
Set all predecessor arrays to 0.
Choose i∗ ∈ No and create ScanSet = {i∗}.
Execute the Reverse Scan Routine (as follows)
(recorded by setting PredR( j) = i∗).
if no Fertile nodes are found (Find = False) then
set No := No\{i∗}
Continue the next iteration of the Main Routine (returning to choose a new
i∗ ∈ No (accompanied by ScanSet = {i∗}) if |No| > 1).

end if
Execute the Forward Scan Routine (as follows)
while ScanSet �= ∅ do
Select a node i ∈ ScanSet
for each α ∈ Si do
for each j ∈ NRα

i (= { j ∈ No
i : α ∈ R j }) do

if PredS( j) = 0 then
( j has not been visited before on a Forward Scan)
Set PredS( j) = i and AssetS( j) = α.
if PredR( j) > 0 (node j is a Fertile node) then
Execute the Breakthrough Routine (below)
(Update flows and potentially remove nodes from No.)
Break (leave Forward Scan Routine to choose a new i∗ ∈ No in the
Main Routine if |No| > 1).

end if
else
Let ScanSet := ScanSet ∪{ j}.

end if
end for

end for
end while
(End of the Forward Scan Routine)

end while
(End of the Main Routine)
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Algorithm: Reverse Scan Routine
Set Find = False
for each α ∈ Ri do
for each j ∈ NSα

i∗(= { j ∈ No
i∗ : α ∈ S j }) do

if PredR( j) = 0 then
( j has not been visited before on a Reverse Scan)
Set PredR( j) = i∗ and AssetR( j) = α and Find = True.

end if
end for

end for
if Find = False then
no fertile nodes are discovered.

end if

Note: Find = False at the end only if NSα
i∗ = ∅ for all α ∈ Ri∗ . The check for

PredR( j) can be ignored and the assignments PredR( j) = i∗ and AssetR( j) = α

and Find = True can be executed for each j encountered. It doesn’t matter that these
assignments write over previous assignments in this case.
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