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a b s t r a c t

The minimum differential dispersion problem is a NP-hard combinatorial optimization problem with
numerous relevant applications. In this paper, we propose an intensification-driven tabu search algorithm
for solving this computationally challenging problem by integrating a constrained neighborhood, a
solution-based tabu strategy, and an intensified search mechanism to create a search that effectively
exploits the elements of intensification and diversification. We demonstrate the competitiveness of the
proposed algorithm by presenting improved new best solutions for 127 out of 250 benchmark instances
(>50%). We study the search trajectory of the algorithm to shed light on its behavior and investigate
the spatial distribution of high-quality solutions in the search space to motivate the design choice of the
intensified search mechanism.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Dispersion problems are an important class of subset selection
problems in binary optimization that have recently received sub-
stantial attention from the combinatorial optimization community
for their extensive practical applications. Dispersion problems can
be roughly described as follows. Given a set N = {1, 2, . . . , n} of n
elements and a distance matrix [dij]n×n defined on these elements,
a dispersion problem is to select a subsetM from N to optimize an
objective f over the elements ofM .

By varying the optimization objective, a variety of dispersion
problems have been introduced and investigated in the literature,
including notably the maximum diversity problem (MDP) [1–4],
the max–min diversity problem (Max–Min DP) [5–7], the min-
imum differential dispersion problem (Min-Diff DP) [8–12], the
maximum min-sum dispersion problem (Max-Minsum DP) [13–
16], and the maximum mean dispersion problem (MaxMean DP)
[17–19]. While MDP andMax–Min DP focus only on the dispersion
criterion of the selected elements, Min-Diff DP, Max-Minsum DP,
and MaxMean DP additionally consider the dispersion equity of
solutions.

Practical application of dispersion problems covers a wide
range, as represented by the problems of maximally diverse or
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similar group selection [13], urban public facility location [20],
densest k-subgraph identification [21], equity-based measures in
network flows [22], selection of homogeneous groups [23], facility
location [24], web page ranking [25], and community mining [26].
These dispersion problems are NP-hard in the general case [16],
and thus it is unlikely that a polynomial time algorithm exists to
solve them unless P = NP .

In this study, we focus on Min-Diff DP that is known to be
particularly difficult from a computational point of view [16].
Specifically, Min-Diff DP can be described as follows. Given a set
N = {1, 2, . . . , n}, an associated distance matrix [dij]n×n (dij ≥ 0
for i ̸= j; dii = 0 for ∀i), and a fixed positive integer m, Min-Diff
DP involves selecting a subset M of exactly m elements from N ,
such that the difference between themaximumsumandminimum
sum of distances between a selected element and other selected
elements in M is minimized. Formally, the Min-Diff DP problem
can be written as:

Minimize Max
i∈M
{

∑
j∈M

dij} −Min
i∈M
{

∑
j∈M

dij} (1)

Subject to M ⊂ N, |M| = m (2)

Due to its strongly NP-hard character and its potential appli-
cations, Min-Diff DP has received particular attention within the
general class of dispersion problems and has been the subject of a
variety of solution approaches. In 2009, Prokopyev et al. [16] pro-
posed a linear 0–1 mixed integer programming (MIP) formulation
for Min-Diff DP and solved a number of small instances with n ≤
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100 by means of the CPLEX 9.0 solver. Their computational results
showed that the CPLEX solver used in these tests is very time-
consuming even for small instances with n = 50. For example, for
the instances with n = 50 andm = 15, the CPLEX 9.0 solver failed
to obtain the optimal solution under a time limit of one hour. More
modern versions of CPLEX run faster based on exploiting multiple
cores, but without this boost the run times are very similar. Thus,
for larger instances, heuristic algorithms are more appropriate to
obtain near-optimal solutions and noteworthy advances have been
made in just the past few years.

In 2015, Aringhieri et al. introduced a construction and im-
provement heuristic (CIH) algorithm for solvingMin-Diff DP,which
is composed of an initial solution construction stage and an im-
provement stage [8]. In the same year, Duarte et al. proposed
a sophisticated evolutionary path relinking (EPR) algorithm by
integrating a GRASP procedure, a variable neighborhood search
(VNS) procedure, and an exterior path relinking operator [9]. Their
computational results show that the EPR algorithm outperforms
the basic GRASP algorithm in [16]. In 2016, based on the popu-
lar swap neighborhood, Mladenović et al. presented a basic VNS
algorithm [10], and performed the experimental tests showing
that this algorithm significantly outperformed the previous EPR
algorithm. Recently (2017), Zhou et al. proposed an iterated local
search (ILS) algorithm [12], which improved the best known re-
sults for a number of instances commonly used in the literature.
Very recently (2017), Wang et al. devised a solution-based tabu
search algorithm and amemetic algorithm [11], showing that their
tabu search algorithm improved 71% of the previous best results
and the memetic algorithm (which contained an embedded tabu
search algorithm) improved 62% of the previous best results. This
naturally raises the question of whether some combination of
metaheuristics strategies may make it possible to do still better.

Recent studies show that solution-based tabu search [27–29] is
more effective than the traditional attribute-based tabu search [30]
for solving certain classes of binary optimization problems [11]. As
reported in [11], the solution-based tabu searchhas been especially
effective for Min-Diff DP. In this work, we go a step further by
introducing an intensification-driven tabu search (IDTS) algorithm
that extends the solution-based tabu search framework by inte-
grating three special features: a new constrained swap neighbor-
hood relying on a candidate list strategy, an enhanced tabu list
management using three hash functions, and an intensified search
mechanism to reinforce the search around high-quality solutions
discovered. Computational results on 250 instances show that our
IDTS algorithm is very competitive compared to the state-of-the-
art algorithms in the literature, improving more than half of the
currently best known solutions (127 out of 250 instances) while
consuming a short computational time.

The remainder of the paper is organized as follows. Section 2
describes our IDTS algorithm in greater detail. In Section 3, we
assess its performance in a computational study of 250 benchmark
instances commonly used in the literature and provide a direct
comparison with state-of-the-art algorithms for this problem. In
Section 4, we discuss essential components of the IDTS algorithm
and study their influence on its behavior. Section 5, which con-
cludes the paper, summarizes the present work and provides re-
search perspectives for future work.

2. Intensification-driven tabu search for Min-Diff DP

2.1. General procedure

We elaborate the elements of the IDTS algorithm by means of
the pseudo-code in Algorithm 1, where H1, H2, H3 represent hash
vectors used to define three tabu lists of length L, and h1, h2, h3
represent the hash functions used to determine the tabu status

Algorithm 1: General procedure of the intensification-driven
tabu search (IDTS) algorithm for the Min-Diff DP problem

Input: Instance I , hash vectors H1, H2, H3 with a length of L,
hash functions h1, h2, h3, parameter θ , cutoff time tmax,
and tabu search depth α

Output: The best solution s∗ found so far
/* Initialization of hash vectors (tabu
lists), Sect. 2.5 */

1 for i← 0 to L− 1 do
2 H1[i] ← 0; H2[i] ← 0; H3[i] ← 0
3 end
4 s← InitialSolution(I) /* Initial solution, Sect. 2.3
*/

5 s∗ ← s
/* Main search process */

6 repeat
7 s← s∗ /* Switch to the best solution found

so far */
8 counter ← 0 /* Counter for consecut.

non-improv. s∗ iter. */
9 while counter ≤ α do

10 Find a best neighbor solution s
′

in terms of f that
satisfies H1(h1(s

′

)) ∧ H2(h2(s
′

)) ∧ H3(h3(s
′

)) = 0 in the
neighborhood Nθ

swap(s)
/* A solution s

′

with
H1(h1(s

′

)) ∧ H2(h2(s
′

)) ∧ H3(h3(s
′

)) = 0 is
identified as an eligible solution,
Sections 2.4 and 2.5 */

11 s← s
′

/* Update the incumbent solution */
12 if f (s) < f (s∗) then
13 s∗ ← s /* Update the best solution

found so far */
14 counter ← 0
15 end
16 else
17 counter ← counter + 1
18 end

/* Update tabu lists, Sect. 2.5 */
19 H1[h1(s)] ← 1; H2[h2(s)] ← 1; H3[h3(s)] ← 1
20 end
21 until Time()≤ tmax

of neighbor solutions referenced by these vectors. Finally, s and
s∗ respectively denote the current solution and the best solution
found so far.

The IDTS algorithm starts by initializing the hash vectors that
serve as tabu lists (lines 1–3), and then generates a feasible initial
solution (line 4). Next, the algorithm enters a loop to execute the
intensified search step (line 7), incorporating an inner ‘while’ loop
(lines 8–20), to improve the incumbent solution, and these loops
are repeatedly performed until the timeout limit tmax is reached.
Specifically, the inner ‘while’ loop iterates until the current solu-
tion cannot be improved during the last α consecutive iterations,
where α is a parameter called the tabu search depth. At each
execution of the ‘while’ loop, a best eligible neighbor solution s

′

sat-
isfying H1(h1(s

′

))∧H2(h2(s
′

))∧H3(h3(s
′

)) = 0 (i.e., a best neighbor
solution not forbidden by the tabu lists, as discussed in Section 2.5)
is selected from the current neighborhood Nθ

swap(s) defined in the
following Section 2.4 to replace the incumbent solution s, and then
the hash vectors Hk (k = 1, 2, 3) are accordingly updated by the
new incumbent solution s (line 19). After each tabu search run
(i.e., when the ‘while’ loop terminates), the process switches to the
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Fig. 1. An illustrative example for the solution representation, where the size of set
N is 10 (n = 10) and the size of set M is 5 (m = 5).

intensified search step (line 7) and starts the next tabu search run
with the best solution recorded in s∗ as its initial solution. Finally,
the algorithm returns the best solution foundduring the search and
stops when the given time limit tmax is reached.

The intensified search step is one of key operations of the
algorithm. As shown in previous studies [6,31], for a number of
combinatorial optimization problems, high-quality solutions are
not uniformly distributed in the search space. Instead, they are
grouped in clusters, in accordance with the proximate optimality
principle [30], where high-quality solutions at one level are hy-
pothesized to lie close to high-quality solutions at an adjacent level
(defined relative to the moves employed or to a distance measure,
depending on the case). These studies have demonstrated that
high-quality solutions are typically found in the vicinity of other
high-quality solutions by reference to the standard Euclidean dis-
tance measure. As we show in Section 4.5, this is also true for Min-
Diff DP studied in this work. In such a circumstance, performing
an intensified search around each newly discovered high-quality
solution is clearly an advantageous strategy to find other high-
quality solutions. The IDTS algorithm implements this strategy by
using the intensified search step to enable the next tabu search run
to systematically start its search from the best solution s∗ found
so far. Meanwhile, the tabu lists are not re-initialized after each
intensified step and thus inherited by all tabu search runs. This
ensures that each intensified search operation will lead to a dif-
ferent search trajectory even when the next tabu search run starts
from the same starting point s∗. As a result, the nearby areas of s∗
will be thoroughly examined and the intensification search of the
algorithm is thus reinforced (Although different trajectories can
also be generated by clearing or reducing the tabu searchmemory,
in the present case we can continue to reap the benefits of the
solution-based tabu strategy by retaining all previous memory).

2.2. Solution representation, search space, and evaluation function

By reference to the set N = {1, 2, . . . , n}, the distance matrix
[dij]n×n, and the integer m, we can represent a subset M ⊂ N by
a n-dimensional binary vector s = (x1, x2, . . . , xn), where xi = 1
if the element i is selected to lie in M , and xi = 0 otherwise.
Equivalently, s = (x1, x2, . . . , xn) can be indicated by a 2-tuple of
sets (I0, I1) (i.e., s = (I0, I1)), where I0 = {k : xk = 0 in s} and
I1 = {k : xk = 1 in s}. An illustrative example for the solution
representation is given in Fig. 1.

The search space Ωm explored by our IDTS algorithm is com-
posed of all feasible solutions, i.e., Ωm = {(x1, x2, . . . , xn) :∑i=n

i=1 xi = m}, or equivalently, Ωm = {(I0, I1) : I0, I1 ⊂ N, |I1| =
m}. Obviously, the size of Ωm is equal to n!

m!(n−m)! , which increases
very quickly as the size of problem increases.

Given a solution s = (I0, I1) in Ωm, the objective function value
f (s) used to measure the quality of s is given by:

f (s) = Max
i∈I1
{

∑
j∈I1

dij} −Min
i∈I1
{

∑
j∈I1

dij} (3)

Finally, for two solutions s1 and s2 in the search space, s1 is
better than s2 if f (s1) < f (s2) since f is to be minimized.

2.3. Initial solution

The IDTS algorithmstartswith an initial feasible solution s0 gen-
erated by a randomized initialization procedure whose pseudo-
code is given in Algorithm2. The initialization procedure randomly
selects m distinct variables xi from {x1, x2, . . . , xn} to be assigned
the value of 1, while assigning the remaining n − m variables the
value of 0 to create the initial solution of the IDTS algorithm.

Algorithm 2: Initial Solution Method
1 Function InitialSolution()
Input: N = {1, 2, . . . , n}, m
Output: A feasible initial solution s0 = (x1, x2, . . . , xn)

2 for i← 1 to n do
3 xi ← 0
4 end
5 c← 0
6 while c < m do
7 while True do
8 i← rand()mod n /* Randomly select a

variable xi */
9 if xi = 0 then

10 break
11 end
12 end
13 xi ← 1
14 c ← c + 1
15 end
16 return (x1, x2, . . . , xn)

2.4. Neighborhood structure and its evaluation technique

The neighborhood explored by our IDTS algorithm is defined by
the swap operator Swap(·, ·) that is commonly used in previous
studies for Min-Diff DP [8–12]. Given a solution s = (I0, I1) and
two elements u ∈ I0 and v ∈ I1, the Swap(u, v) operation
exchanges the positions of the elements u and v to generate a
neighbor solution of s that we denote by s ⊕ Swap(u, v). For a
solution s = (I0, I1), the largest possible neighborhood N full

swap(s)
(i.e., the full swap neighborhood) induced by the swap operator is
composed of all possible solutions that can be obtained by applying
the swap operator to s, i.e., N full

swap(s) = {s ⊕ Swap(u, v) : u ∈
I0, v ∈ I1}. The sizem× (n−m) of neighborhood N full

swap(s) becomes
relatively large when m approaches to n/2 even for the medium-
sized instances, making an algorithm that examines the full neigh-
borhood very time-consuming. Furthermore, unlike other local
search methods (e.g., the first improvement descent method or
the simulated annealingmethod), a tabu search algorithm typically
seeks a highest evaluationmove at each iteration.When facedwith
a large neighborhood, tabu search therefore employs a candidate
list strategy designed to create a set of high-quality moves that is
much smaller than the full neighborhood. A variety of candidate list
strategies are presented in [30] and variations incorporating their
underlying principles are introduced in [3,4,32].

To focus on the most promising neighbor solutions and thus
reduce the computational effort of the IDTS algorithm, we adopt a
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candidate list strategy based on a constrained swap neighborhood
Nθ

swap for Min-Diff DP, using a parameter θ to control the neighbor-
hood size. Specifically, given a solution s = (I0, I1), the elements
to be swapped in I0 are limited to a high-quality subset X ⊂ I0 in
Nθ

swap, which constitutes an instance of a successive filter candidate
list strategy in [30]. Given such a subset X of I0, the neighborhood
Nθ

swap(s) can be formallywritten asNθ
swap(s) = {s⊕Swap(u, v) : u ∈

X ⊂ I0, v ∈ I1}. Hence, Nθ
swap has a size ofm× |X |. Another form of

a successive filter candidate list strategy similarly extracts a subset
of I1 to further reduce the size of the neighborhood examined, with
an increased risk of reducing the quality of the best move in the
resulting neighborhood.

To identify the subsetX and evaluate theneighborhoodNθ
swap ef-

ficiently, the IDTS algorithmmaintains an-dimensional vector∆ =
(∆1, ∆2, . . . , ∆n), where ∆i =

∑
j∈I1 dij. Specifically, the subset X

is constructed as follows. First, the value δ = |∆i −
(∆min+∆max)

2 |

is calculated for each element i ∈ I0, where ∆min = Mini∈I1{∆i}

and ∆max = Maxi∈I1{∆i}. Then, the elements in I0 are sorted in
an ascending order by a quick-sort method according to their δ
values, since those elements having a small δ(i) value are the most
promising to minimize the objective function if they are selected
in the solution. Finally, the first Min{n − m, θ × n} elements are
selected to form the subset X . An illustrative example for the
neighborhood generation strategy is given in Fig. 2.

Given a solution s = (I0, I1) and its ∆ vector (∆1, ∆2, . . . , ∆n),
the objective value f (s) (= Maxi∈I1{∆i} − Mini∈I1{∆i}) can be
calculated in O(m) time as described in the previous studies [8,9].
Moreover, when a swap move Swap(u, v) is performed from the
current solution s, the vector (∆1, ∆2, . . . , ∆n) can be updated in
O(n) time as follows:

∆i =

{
∆i − dui, for i = v; (a)
∆i + dvi, for i = u; (b)
∆i − dui + dvi, otherwise; (c)

(4)

As such, the computational complexity of one iteration of our
IDTS algorithm is bounded byO(|X |×m2

+mlogm+(n−m)log(n−
m)+n), wheremlogm+ (n−m)log(n−m) is required by the quick-
sort algorithm and represents a very small proportion of the total
complexity.

Finally, the IDTS algorithm examines the neighborhood Nθ
swap

in a lexicographical order and switches immediately to the next
iteration as long as an improving solution is encountered. In this
way, the algorithm can significantly be speeded up at the early
stage of the algorithm.

2.5. Tabu list management strategy and determination of tabu status

In the IDTS algorithm, we adopt the solution-based tabu strat-
egy to determine the tabu status of neighbor solutions during
the neighborhood evaluation. In principle, all solutions that have
not been visited are considered as eligible solutions, while all
the visited solutions are considered tabu and thus excluded from
further consideration.

In our IDTS implementation, we adopt the technique of [14]
and employ three hash vectors H1, H2, and H3 (taking the role of
the tabu lists) to determine the tabu status of neighbor solutions,
where each hash vector Hk (k = 1, 2, 3) is associated with a hash
function hk. Each hash vector Hk (k = 1, 2, 3) is a L-dimensional
binary vector (L is the length of the hash vectors), where Hk[i]
(0 ≤ i ≤ L−1) takes the value of 0 or 1. The hash functions hk (k =
1, 2, 3) are used tomap the solutions of the search spaceΩm to the
indices of the hash vectors Hk, i.e., hk : Ω → {0, 1, 2, . . . , L − 1}
(k = 1, 2, 3).

To be able to rapidly calculate the hash values of the neighbor
solutions, we employ three simple hash functions inspired by the
studies [11,27,29]. We define these three hash functions hk (k =

1, 2, 3) relative to a candidate solution s = (x1, x2, . . . , xn) as
follows:

hk(s) = (
n∑

i=1

⌊iξk⌋ × xi) mod L (5)

where ξk (k = 1, 2, 3) are parameters of the hash functions (see
Section 3.2), while L is empirically set to 108.

In the IDTS algorithm, the hash vectors are maintained as fol-
lows. At the beginning, all hash vectors are initialized to 0 (lines
1–3 of Algorithm 1). Then, they are dynamically updated by the
incumbent solution s as the search progresses, as shown in line 19
of Algorithm 1. Accompanying this, we calculate the hash values of
neighbor solutions as follows. First, given the incumbent solution
s and its hash value hk(s), the hash value of any neighbor solution
s
′

(= s ⊕ Swap(u, v)) can be obtained in O(1) by setting hk(s
′

) to
hk(s)+(⌊vξk⌋−⌊uξk⌋). Second, for the initial solution sinital, the hash
value hk(sinital) must be calculated from scratch, and the associated
time complexity is bounded by O(n) for each hash function hk
(k = 1, 2, 3) according to Eq. (5).

Using the three hash vectors defined above and the associated
hash functions, the tabu status of neighbor solutions can be easily
determined. A candidate neighbor solution s

′

is determined to
be non-tabu if at least one of the three hash values H1[h1(s

′

)],
H2[h2(s

′

)], and H3[h3(s
′

)] is 0, since such a solution cannot have
been visited. If instead all the hash values H1[h1(s

′

)], H2[h2(s
′

)],
and H3[h3(s

′

)] equal 1, then with high probability the neighbor
solution s

′

has been visited previously and thus is considered as
a tabu solution. In short, a neighbor solution s

′

is excluded from
consideration if and only if H1(h1(s

′

))∧H2(h2(s
′

))∧H3(h3(s
′

)) = 1.

2.6. Relation with an existing tabu search algorithm

Our IDTS algorithm shares similarities with the tabu search
algorithm of [11] in the sense that both algorithms are based on
the general solution-based tabu approach. On the other hand, our
IDTS algorithm has several features that distinguish it from the al-
gorithmof [11]. The first is the parametric constrained swap neigh-
borhood whose size is controlled by the parameter θ and which
appreciably reduces the computational burden of our method. By
contrast, the algorithm of [11] employs a randomized constrained
neighborhood composed of solutions sampled according to a prob-
ability from the full swap neighborhood N full

swap(s), leading to a
neighborhood of different size at each iteration of the algorithm.
Second, to determine the tabu status of neighbor solutions, IDTS
uses three hash vectors and the associated hash functions, instead
of using two hash vectors as in [11], which considerably decreases
the error rate of identifying the tabu status of a candidate solution.
Third, our IDTS algorithm employs an intensified search mech-
anism, which is motivated by studying the distribution of high-
quality solutions in the search space (see Section 4.5). Finally, as
the experimental results in Section 4.3 demonstrate, our IDTS algo-
rithm equippedwith these features outperforms all existingmeth-
ods including the latest tabu search algorithm and the memetic
algorithm of [11].

3. Experimental results and comparisons

We assess the performance of the proposed IDTS algorithm by
carrying out extensive computational experiments on a large num-
ber of commonly used benchmark instances. The computational
results of the IDTS algorithm are provided and compared with
those of the current leading algorithms in the literature.
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Fig. 2. An illustrative example for the neighborhood generation strategy, where the size of set N and the value of m are respectively 7 and 2, and the size of subset X is 2.

3.1. Benchmark instances

In the experiments, we employed eight sets of 250 benchmark
instances1 as our test bed. These instances have been widely used
to assess algorithms for several dispersion problems, including the
maximum diversity problem [4], Max-Minsum DP [13], and Min-
Diff DP studied in this work [8–12]. The main characteristics of
these benchmark instances are summarized as follows:

• APOM Set : 40 small instances with n ∈ [50, 250] and m ∈
{0.2n, 0.4n}. Distances between elements are Euclidean or
random integers in [0, 10 000].
• GKD-b set : 50 instances, where n varies from 25 to 150, m

varies from 2 to 45, and distances are Euclidean.
• GKD-c Set : 20 instances with n = 500 and m = 50, and

distances are Euclidean.
• SOM-b Set : 20 instances with n ∈ [100, 500] and m ∈
{0.1n, 0.2n, 0.3n, 0.4n}, and distances are integers generated
randomly in [0, 9].
• DM1A Set : 20 instances with n = 500 and m = 200, and

distances are a real number randomly generated in [0, 10].
These instances are renamed in [11] as MDG-a_41 to MDG-
a_60.
• MDG-a Set : 20 instances with n = 500 and m = 50 and 20

instances with n = 2000 and m = 200. Like for DM1A, the
distances are real numbers generated randomly in [0, 10].
• MDG-b Set : 20 instances with n = 500 and m = 50 and 20

larger instances with n = 2000 and m = 200. The distances
are real numbers generated randomly in [0, 1000].
• MDG-c set : 20 large instances with n = 3000 and m ∈
{300, 400, 500, 600}, and distances are integers generated
randomly in [0, 1000].

3.2. Parameter settings and experimental protocol

The IDTS algorithm employs five parameters, whose values and
descriptions are provided in Table 1. According to the parame-
ter analysis in Section 4.1, the parameter θ used to control the
neighborhood size was set to 0.3 except for the APOM and GKD-
b instances for which θ was set to 1.0. The tabu search depth α
was set to 35 except for the GKD-c instances for which it was set
to 100. The parameters ξ1, ξ2, ξ3 used to define the hash functions
were respectively set to 1.8, 1.9, and 2.0.

To assess and compare the performance of the IDTS algorithm,
weuse the fivemost recent state-of-the-artMin-Diff DP algorithms
in the literature as ourmain reference algorithms: the construction
and improvement heuristic (CIH) [8], the evolutionary path relink-
ing (EPR) algorithm [9], the variable neighborhood search (VNS)
algorithm [10], the iterated local search (ILS) algorithm [12], and
the solution-based tabu search (TS) algorithm [11]. Our IDTS algo-
rithm and all the reference algorithms were implemented in the

1 Available at http://www.di.unito.it/~aringhie/benchmarks.html and http://
www.optsicom.es/mindiff/.

C++ programming language and compiled using the g++ com-
piler with the -O3 flag as in [11,12]. For the CIH, EPR, VNS al-
gorithms, the new versions implemented by the authors of [11]
were used in our comparisons, since the new implementations
of these algorithms have a much better performance than the
original ones according to experimental results in [11]. Moreover,
all the computational experiments and comparisons in this work
are based on the same computing platform with an Xeon E5440
processor (2.83 GHz and 2G RAM), running the Linux operating
system, which makes it possible to make a direct and fair com-
parison between the proposed IDTS algorithm and these reference
algorithms.

Following the studies [9,10,12], our IDTS algorithm was run 20
times for each tested instance, with a time limit tmax equaling n
seconds for each run, where n represents the number of elements
in the tested instance.

3.3. Computational results and comparison

Our experimental results2 are divided into two parts according
to the recent studies [11,12], where the first part is based on 80
benchmark instances of four sets (DM1A, MDG-a with n = 2000,
MDG-b with n = 2000, and MDG-c), and the second part includes
the remaining 170 instances. In [11,12], all the tested algorithms
were run on the same computing platform as our machine for
the first part of experiments, which allows us to make a fair
comparison between our IDTS algorithm and other algorithms
by directly comparing our computational results with the results
reported in [11,12]. However, for the remaining instances, the time
limits were set according to special instances in Ref. [11], which
makes a direct comparison between the algorithms difficult. For
this reason,we focus in this section on the first part of experimental
results, and provide our experimental results in the Appendix for
the remaining instances, where we also report the previous best
known results in the literature.

The computational results are summarized in Tables 2–9 re-
spectively for benchmark sets DM1A, MDG-a with n = 2000,
MDG-b with n = 2000, and MDG-c. The best results (fbest ) over
20 independent runs are shown in Tables 2, 4, 6 and 8, and the
average results (favg ) are given in Tables 3, 5, 7 and 9. In Tables 2,
4, 6 and 8, the first three columns give the instance name, the time
limit in seconds, and the previous best known objective value (fbkv)
in the literature (Best Known), and the last two columns indicate
the best objective values obtained by our IDTS algorithm and the
difference ∆fest (= fbest − fbkv) between our best objective value
and the previous best known objective value in the literature (A
negative value indicates an improved best known result). For a few
of instances the current best known results were only obtained by
the combinedmemetic/tabu search algorithm of [11], although us-
ing a much longer time limit than that employed by our algorithm

2 Our solution certificates are available at: http://www.info.univ-angers.fr/pub/
hao/mindiffdp_IDTS.html.

http://www.di.unito.it/~aringhie/benchmarks.html
http://www.optsicom.es/mindiff/
http://www.optsicom.es/mindiff/
http://www.info.univ-angers.fr/pub/hao/mindiffdp_IDTS.html
http://www.info.univ-angers.fr/pub/hao/mindiffdp_IDTS.html
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Table 1
Settings of parameters.
Parameters Section Description Values

α 2.4 depth of tabu search {35,100}
θ 2.4 parameter used to construct the constrained neighborhood {0.3,1.0}
ξ1 2.5 parameter for the first hash function 1.8
ξ2 2.5 parameter for the second hash function 1.9
ξ3 2.5 parameter for the third hash function 2.0

Table 2
Computational results and comparison in the best objective value obtained (fbest ) on the DM1A instances.
Instance Time (s) Best known CIH [8] EPR [9] VNS [10] TS [11] IDTS (this work)

fbest fbest fbest fbest fbest ∆fbest
01Type1_52.1_n500m200 500 33.37 41.29 55.26 49.15 36.49 34.77 1.40
02Type1_52.2_n500m200 500 34.35 42.80 56.03 50.69 38.72 34.60 0.25
03Type1_52.3_n500m200 500 33.23 41.88 53.44 47.64 38.34 34.71 1.48
04Type1_52.4_n500m200 500 34.28 41.22 53.23 46.85 38.60 34.94 0.66
05Type1_52.5_n500m200 500 35.02 42.28 54.84 47.19 38.18 34.75* −0.27
06Type1_52.6_n500m200 500 35.55 41.94 54.66 48.38 38.00 33.97* −1.58
07Type1_52.7_n500m200 500 35.41 41.42 54.87 47.15 37.34 34.07* −1.34
08Type1_52.8_n500m200 500 37.91 40.43 55.09 46.93 37.91 34.00* −3.91
09Type1_52.9_n500m200 500 33.23 41.08 53.82 47.59 38.68 34.01 0.78
10Type1_52.10_n500m200 500 34.32 41.66 54.18 46.29 38.03 34.84 0.52
11Type1_52.11_n500m200 500 36.48 42.93 56.78 48.74 38.07 33.91* −2.57
12Type1_52.12_n500m200 500 33.98 42.76 56.35 49.09 38.58 33.73* −0.25
13Type1_52.13_n500m200 500 35.84 42.58 57.07 47.88 38.77 34.18* −1.66
14Type1_52.14_n500m200 500 33.20 41.66 54.19 49.10 38.85 33.79 0.59
15Type1_52.15_n500m200 500 35.89 41.98 57.38 49.28 38.31 35.58* −0.31
16Type1_52.16_n500m200 500 34.40 41.72 54.45 48.10 39.19 35.16 0.76
17Type1_52.17_n500m200 500 38.28 40.67 52.11 48.75 38.50 34.20* −4.08
18Type1_52.18_n500m200 500 35.37 42.58 53.58 44.16 37.15 34.18* −1.19
19Type1_52.19_n500m200 500 36.46 41.18 54.06 45.83 38.91 35.50* −0.96
20Type1_52.20_n500m200 500 36.28 41.21 55.27 48.21 38.37 35.22* −1.06

Avg 500 35.14 41.76 54.83 47.85 38.25 34.51 −0.64
#Best 8 0 0 0 0 12
p-value 3.71e−1 7.74e−6 7.74e−6 7.74e−6 7.74e−6

Table 3
Computational results and comparison in the average objective value obtained (favg ) on the DM1A instances.

Instance Time (s) CIH [8] EPR [9] VNS [10] TS [11] IDTS (this work)

favg favg favg favg favg std.

01Type1_52.1_n500m200 500 44.82 58.33 52.40 40.31 37.98 1.57
02Type1_52.2_n500m200 500 44.51 60.19 52.86 40.18 37.99 1.64
03Type1_52.3_n500m200 500 44.56 57.72 50.03 39.94 37.46 1.38
04Type1_52.4_n500m200 500 43.95 58.33 50.96 40.65 38.14 1.61
05Type1_52.5_n500m200 500 44.00 57.58 49.98 39.62 37.29 1.38
06Type1_52.6_n500m200 500 44.10 58.01 50.90 39.64 38.57 1.37
07Type1_52.7_n500m200 500 43.99 57.64 51.31 39.79 38.02 1.31
08Type1_52.8_n500m200 500 43.49 57.95 49.71 39.30 37.21 1.45
09Type1_52.9_n500m200 500 44.47 57.55 51.54 40.06 37.60 1.41
10Type1_52.10_n500m200 500 44.22 57.22 51.44 40.00 37.47 1.34
11Type1_52.11_n500m200 500 44.14 58.66 52.84 40.07 37.83 1.44
12Type1_52.12_n500m200 500 44.22 58.64 52.00 40.26 37.95 1.75
13Type1_52.13_n500m200 500 44.06 59.48 52.58 40.21 37.87 1.78
14Type1_52.14_n500m200 500 43.96 58.04 51.87 40.38 36.96 1.24
15Type1_52.15_n500m200 500 44.47 59.27 52.39 40.22 38.03 1.28
16Type1_52.16_n500m200 500 44.35 58.78 50.82 40.53 37.90 1.68
17Type1_52.17_n500m200 500 43.82 57.29 51.96 40.32 37.90 1.71
18Type1_52.18_n500m200 500 43.65 56.36 50.33 39.70 37.42 1.59
19Type1_52.19_n500m200 500 44.93 58.32 50.59 40.82 38.50 1.67
20Type1_52.20_n500m200 500 44.78 57.85 51.73 39.89 37.98 1.53

Avg. 500 44.22 58.16 51.41 40.09 37.80 1.51
#Best 0 0 0 0 20
p-value 7.74e−06 7.74e−06 7.74e−06 7.74e−06

(tmax = 20 × n seconds, instead of tmax = n seconds). Also, in a
few instances no reference algorithm (i.e., no algorithm other than
ours) was able to reach the previous best known result with the
present time limit. Other columns give the best result obtained
by the reference algorithms, including the CIH algorithm [8], the
EPR algorithm [9], the VNS algorithm [10], the ILS algorithm [12],
and the tabu search (TS) algorithm [11]. Similarly, in Table 3, 5, 7,
and 9, the first two columns show the instance name and the time

limit. The last two columns report the average objective values of
our IDTS algorithm over 20 runs and the standard deviation (std.)
of objective values, and other columns give the average objective
values (favg ) of the reference algorithms, respectively.

In addition, the row ‘‘Avg’’ in these tables shows the average
value of each column, and the row ‘‘#Best’’ gives the number of in-
stances forwhich an algorithmobtained the best results among the
compared algorithms, where the previous best known results from
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Table 4
Computational results and comparison in the best objective value obtained (fbest ) on the MDG-a instances with n = 2000.
Instance Time (s) Best

known
CIH [8] EPR [9] VNS [10] ILS [12] TS [11] IDTS (this work)

fbest fbest fbest fbest fbest fbest ∆fbest
MDG-a_21_n2000_m200 2000 38 41 49 48 50 38 34* −4
MDG-a_22_n2000_m200 2000 37 40 51 49 50 37 34* −3
MDG-a_23_n2000_m200 2000 38 41 50 50 49 38 34* −4
MDG-a_24_n2000_m200 2000 38 42 49 50 50 39 36* −2
MDG-a_25_n2000_m200 2000 38 41 50 49 50 38 34* −4
MDG-a_26_n2000_m200 2000 38 40 48 47 50 38 35* −3
MDG-a_27_n2000_m200 2000 38 40 51 45 49 38 34* −4
MDG-a_28_n2000_m200 2000 38 41 47 47 50 38 35* −3
MDG-a_29_n2000_m200 2000 37 41 49 47 47 37 34* −3
MDG-a_30_n2000_m200 2000 38 38 51 45 49 38 34* −4
MDG-a_31_n2000_m200 2000 38 41 51 44 49 38 35* −3
MDG-a_32_n2000_m200 2000 38 40 50 46 48 38 36* −2
MDG-a_33_n2000_m200 2000 38 42 51 45 48 39 35* −3
MDG-a_34_n2000_m200 2000 38 41 49 50 49 38 34* −4
MDG-a_35_n2000_m200 2000 39 41 50 47 48 39 36* −3
MDG-a_36_n2000_m200 2000 37 41 50 51 48 38 34* −3
MDG-a_37_n2000_m200 2000 38 41 50 47 48 38 34* −4
MDG-a_38_n2000_m200 2000 38 41 52 47 49 38 35* −3
MDG-a_39_n2000_m200 2000 38 41 50 48 48 38 34* −4
MDG-a_40_n2000_m200 2000 37 41 50 48 49 37 35* −2

Avg. 37.85 40.75 49.9 47.5 48.9 38 34.6 −3.25
#Best 0 0 0 0 0 0 20
p-value 7.74e−06 7.74e−06 7.74e−06 7.74e−06 7.74e−06 7.74e−06

Table 5
Computational results and comparison in the average objective value obtained (favg ) on the MDG-a instances with n = 2000.

Instance Time (s) CIH [8] EPR [9] VNS [10] ILS [12] TS [11] IDTS (this work)

favg favg favg favg favg favg std.

MDG-a_21_n2000_m200 2000 43.30 53.80 50.40 53.43 39.45 36.60 1.24
MDG-a_22_n2000_m200 2000 42.20 54.15 50.85 53.55 39.25 36.85 1.19
MDG-a_23_n2000_m200 2000 43.45 53.70 52.70 53.60 40.05 36.75 1.58
MDG-a_24_n2000_m200 2000 43.15 54.05 53.10 53.63 39.65 37.30 0.78
MDG-a_25_n2000_m200 2000 42.55 54.80 52.85 53.60 39.45 37.20 1.25
MDG-a_26_n2000_m200 2000 42.15 54.00 50.10 53.58 39.95 37.30 1.35
MDG-a_27_n2000_m200 2000 42.20 55.15 49.40 53.73 40.30 37.15 1.96
MDG-a_28_n2000_m200 2000 42.50 56.05 50.40 52.98 39.50 37.40 1.36
MDG-a_29_n2000_m200 2000 42.40 53.05 50.30 53.48 39.15 37.20 1.21
MDG-a_30_n2000_m200 2000 42.30 54.85 50.85 54.28 39.50 36.65 1.06
MDG-a_31_n2000_m200 2000 42.65 54.25 49.40 53.88 39.50 37.30 1.05
MDG-a_32_n2000_m200 2000 42.45 54.15 49.10 53.25 39.60 38.00 1.22
MDG-a_33_n2000_m200 2000 43.10 53.90 49.35 53.80 40.35 36.80 1.25
MDG-a_34_n2000_m200 2000 42.50 55.20 52.60 53.48 39.50 37.35 1.46
MDG-a_35_n2000_m200 2000 42.10 55.75 50.35 54.08 40.35 37.90 1.09
MDG-a_36_n2000_m200 2000 42.60 53.70 52.60 53.73 39.40 37.30 1.31
MDG-a_37_n2000_m200 2000 42.65 54.90 49.35 53.85 39.45 37.20 1.47
MDG-a_38_n2000_m200 2000 42.50 55.70 50.90 53.83 39.50 36.60 1.11
MDG-a_39_n2000_m200 2000 42.35 53.70 50.55 53.48 39.45 36.85 1.31
MDG-a_40_n2000_m200 2000 42.15 55.25 50.45 54.03 39.45 37.45 1.20

Avg 2000 42.56 54.51 50.78 53.66 39.64 37.16 1.27
#Better 0 0 0 0 0 20
p-value 7.74e−06 7.74e−06 7.74e−06 7.74e−06 7.74e−06

the literature are also compared with fbest of the IDTS algorithm.
To verify whether there exists a significant difference between the
results of our IDTS algorithm and those of the reference algorithms,
the p-values from the non-parametric Friedman tests are given in
the last row of the tables, where a p-value less than 0.05 implies
a significant difference between two groups of compared results.
Finally, the best results among the compared results are indicated
in bold in these tables, and the improved results (i.e., the new best
known results) are marked by ‘‘*’’.

Tables 2 and 3 for the set DM1A show that the IDTS algorithm
performs much better in terms of fbest than the reference algo-
rithms CIH, EPR, VNS, and TS. In particular, the IDTS algorithm
yielded improved solutions for 12 out of 20 instances and obtained
the best result in terms of ‘‘Avg’’ for all the cases. By contrast, none
of the reference algorithms can attain the current best known re-
sults for these instances. Table 3 also shows that the IDTS algorithm

dominates the reference algorithms in terms of favg , where the
IDTS algorithm obtained a better result for all 20 instances. The
associated standard deviations (std) are very small for all instances
(≤2.0). The superiority of the IDTS algorithm over the reference
algorithms is also confirmed by the small p-values (≤0.05) both in
terms of fbest and favg .

Tables 4 and 5 show that for the MDG-a instances with n =
2000 our IDTS algorithm significantly outperforms the five state-
of-the-art algorithms both in terms of fbest and favg . Specifically,
the IDTS algorithm improved the best known results in the lit-
erature for all 20 instances and also obtained better favg values
on all instances. The significance of the differences between the
results of the IDTS algorithm and those of the reference algorithms
is again confirmed by the small p-values (<0.05). Furthermore,
the standard deviations (std) are less than 2.0, implying a good
robustness of the IDTS algorithm.
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Table 6
Computational results and comparison in the best objective value obtained (fbest ) on the MDG-b instances with n = 2000.
Instance Time (s) Best known CIH [8] EPR [9] VNS [10] ILS [12] TS [11] IDTS (this work)

fbest fbest fbest fbest fbest fbest ∆fbest
MDG-b_21_n2000_m200 2000 3421.21 3592.78 4600.85 4232.27 3978.52 3421.21 2980.75* −440.46
MDG-b_22_n2000_m200 2000 3389.63 3610.15 4333.36 4280.79 3911.34 3420.91 2961.21* −428.42
MDG-b_23_n2000_m200 2000 3445.18 3608.12 4566.91 4196.89 4127.34 3448.59 3074.56* −370.62
MDG-b_24_n2000_m200 2000 3305.12 3599.84 4483.36 4188.47 4088.26 3305.12 3007.62* −297.50
MDG-b_25_n2000_m200 2000 3360.30 3527.50 4429.91 4362.02 3892.67 3360.30 3062.53* −297.77
MDG-b_26_n2000_m200 2000 3342.92 3644.37 4523.01 4145.28 4116.90 3534.09 3068.00* −274.92
MDG-b_27_n2000_m200 2000 3361.44 3693.03 4533.26 4068.17 4126.90 3361.44 3103.56* −257.88
MDG-b_28_n2000_m200 2000 3454.52 3643.33 4389.26 4195.74 4112.43 3454.52 3091.04* −363.48
MDG-b_29_n2000_m200 2000 3351.36 3707.34 4400.64 4039.83 4057.62 3457.26 3046.27* −305.09
MDG-b_30_n2000_m200 2000 3373.50 3678.40 4349.86 4270.79 4110.61 3373.50 3041.00* −332.50
MDG-b_31_n2000_m200 2000 3519.23 3752.73 4313.65 4083.42 4074.80 3519.23 3040.03* −479.20
MDG-b_32_n2000_m200 2000 3442.42 3673.65 4315.46 4240.51 3929.49 3442.42 3060.99* −381.43
MDG-b_33_n2000_m200 2000 3444.89 3706.50 4385.88 4387.52 3985.32 3444.89 3061.50* −383.39
MDG-b_34_n2000_m200 2000 3454.03 3773.05 4632.31 4113.29 4084.46 3454.03 3071.88* −382.15
MDG-b_35_n2000_m200 2000 3372.26 3699.91 4429.15 4119.50 4000.31 3457.00 3055.21* −317.05
MDG-b_36_n2000_m200 2000 3442.17 3715.52 4321.26 4131.32 4095.13 3442.17 3050.39* −391.78
MDG-b_37_n2000_m200 2000 3352.08 3664.97 4549.56 4232.38 4035.74 3458.43 3015.38* −336.70
MDG-b_38_n2000_m200 2000 3390.50 3661.20 4476.97 4295.61 4126.69 3390.50 3104.92* −285.58
MDG-b_39_n2000_m200 2000 3476.10 3672.97 4470.91 4114.55 4131.87 3476.10 2900.08* −576.02
MDG-b_40_n2000_m200 2000 3351.17 3719.84 4426.71 4136.50 4306.02 3375.62 3016.38* −334.79

Avg. 3402.50 3667.26 4446.61 4191.74 4064.62 3429.87 3040.67 −361.84
#Best 0 0 0 0 0 0 20
p-value 7.74e−6 7.74e−6 7.74e−6 7.74e−6 7.74e−6 7.74e−6

Table 7
Computational results and comparison in the average objective value obtained (favg ) on the MDG-b instances with n = 2000.

Instance Time (s) CIH [8] EPR [9] VNS [10] ILS [12] TS [11] IDTS (this work)

favg favg favg favg favg favg std.

MDG-b_21_n2000_m200 2000 3883.27 4778.31 4435.83 4299.38 3544.32 3280.31 114.60
MDG-b_22_n2000_m200 2000 3879.67 4661.84 4520.33 4377.97 3564.41 3274.61 91.25
MDG-b_23_n2000_m200 2000 3808.08 4722.15 4390.30 4422.12 3550.02 3295.18 102.89
MDG-b_24_n2000_m200 2000 3839.34 4707.11 4472.02 4421.77 3532.08 3282.48 112.17
MDG-b_25_n2000_m200 2000 3825.67 4794.93 4557.13 4340.78 3603.87 3268.85 85.49
MDG-b_26_n2000_m200 2000 3880.27 4730.99 4391.32 4423.07 3630.28 3292.18 104.27
MDG-b_27_n2000_m200 2000 3868.30 4701.02 4385.32 4424.59 3530.74 3305.33 91.60
MDG-b_28_n2000_m200 2000 3810.18 4698.69 4477.90 4446.16 3545.25 3275.35 104.37
MDG-b_29_n2000_m200 2000 3870.87 4681.13 4301.16 4377.08 3553.72 3289.42 108.10
MDG-b_30_n2000_m200 2000 3797.06 4764.17 4420.86 4470.64 3547.15 3288.46 92.69
MDG-b_31_n2000_m200 2000 3861.12 4801.32 4415.22 4323.11 3609.88 3272.11 102.03
MDG-b_32_n2000_m200 2000 3797.78 4778.58 4366.35 4301.35 3566.98 3276.19 101.40
MDG-b_33_n2000_m200 2000 3815.30 4697.26 4574.32 4351.01 3584.87 3271.92 109.81
MDG-b_34_n2000_m200 2000 3894.40 4791.64 4529.20 4402.11 3578.48 3292.90 110.45
MDG-b_35_n2000_m200 2000 3883.25 4728.08 4342.11 4396.43 3580.56 3290.86 115.81
MDG-b_36_n2000_m200 2000 3897.08 4653.35 4356.16 4435.33 3574.16 3247.02 103.31
MDG-b_37_n2000_m200 2000 3857.85 4836.76 4381.58 4409.06 3593.93 3331.37 108.89
MDG-b_38_n2000_m200 2000 3803.77 4685.33 4405.56 4418.53 3572.96 3278.91 112.47
MDG-b_39_n2000_m200 2000 3863.94 4698.42 4291.46 4403.46 3590.59 3274.59 123.41
MDG-b_40_n2000_m200 2000 3816.35 4670.78 4391.52 4306.02 3523.60 3281.05 124.97

Avg. 3847.68 4729.09 4420.28 4387.50 3568.89 3283.46 106.00
#Best 0 0 0 0 0 20
p-value 7.74e−6 7.74e−6 7.74e−6 7.74e−6 7.74e−6

Tables 6 and 7 show that for the large-scale MDG-b instances
with n = 2000 our IDTS algorithm improved the previous best
known results for all 20 instances, and obtained better results both
in terms of fbest and favg for all 20 instances compared to any of the
five reference algorithms.

Tables 8 and 9 show the computational results of our IDTS al-
gorithm and the five reference algorithms on theMDG-c instances.
Table 8 shows that the IDTS algorithm improved the previous best
known result in the literature for 17 out of 20 instances, andmissed
the previous best known results for only 3 instances. Compared
to the latest TS algorithm of [11], the IDTS algorithm yielded a
better and worse result in terms of favg for 17 and 3 instances,
respectively. Compared to the other 4 reference algorithms, IDTS
yielded a better result for all 20 instances. Table 9 indicates that
IDTS outperforms the TS algorithm of [11] for 19 out of 20 in-
stances in terms of favg , and outperforms the other four reference

algorithms for all 20 instances. Once again, the significance of the
differences between the results of the IDTS algorithm and those of
the reference algorithms is confirmed by p-values less than 0.05.

In summary, the above comparative studies disclose that our
IDTS algorithm compares very favorably with the state-of-the-art
Min-Diff DP algorithms in the literature.

4. Analysis and discussions

We analyze and discuss several essential features of the IDTS
algorithm to understand their impacts on the performance, includ-
ing the sensitivity of the key parameters, the effectiveness of the
intensified search mechanism and the constrained neighborhood.
In addition, based on some representative instances, we analyze
the moving trajectory of the IDTS algorithm and the spacial distri-
bution of high-quality solutions to shed light on the landscape of
Min-Diff DP.
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Table 8
Computational results and comparison in the best objective value obtained (fbest ) on the MDG-c instances with n = 3000.
Instance Time (s) Best known CIH [8] EPR [9] VNS [10] ILS [12] TS [11] IDTS (this work)

fbest fbest fbest fbest fbest fbest ∆fbest
MDG-c_1_n3000_m300 3000 4796 5215 6661 6145 5772 4796 4583* −213
MDG-c_2_n3000_m300 3000 4827 5203 6482 5975 5936 4830 4542* −285
MDG-c_3_n3000_m300 3000 4913 5174 6518 6105 5585 4913 4317* −596
MDG-c_4_n3000_m300 3000 4830 5164 6245 6465 5969 4830 4385* −445
MDG-c_5_n3000_m300 3000 4809 5175 6500 6152 5750 4881 4641* −168
MDG-c_6_n3000_m400 3000 6349 6883 8646 8313 7648 6466 6028* −321
MDG-c_7_n3000_m400 3000 6334 6916 8016 7890 7829 6480 5725* −609
MDG-c_8_n3000_m400 3000 6255 7417 8198 8248 7984 6255 5993* −262
MDG-c_9_n3000_m400 3000 6346 6652 8321 8298 7657 6607 5863* −483
MDG-c_10_n3000_m400 3000 6297 6797 9206 8514 7672 6297 5959* −338
MDG-c_11_n3000_m500 3000 7793 8477 10130 10236 11031 7793 7539* −254
MDG-c_12_n3000_m500 3000 7719 8293 10081 10428 10604 7719 7538* −181
MDG-c_13_n3000_m500 3000 7711 8078 10847 10318 10743 7767 7480* −231
MDG-c_14_n3000_m500 3000 7645 8470 10472 10327 9941 7678 7739 94
MDG-c_15_n3000_m500 3000 7659 8536 10489 10320 10870 7659 7511* −148
MDG-c_16_n3000_m600 3000 9337 10066 12104 12007 13910 9337 8680* −657
MDG-c_17_n3000_m600 3000 8618 10091 13924 12083 13676 8618 8997 379
MDG-c_18_n3000_m600 3000 9118 10451 13322 12538 14011 9118 8978* −140
MDG-c_19_n3000_m600 3000 9387 12313 12329 12216 13538 9387 8686* −701
MDG-c_20_n3000_m600 3000 9013 10284 12219 12231 12415 9013 9079 66

Avg 3000 6987.80 7782.75 9535.50 9240.45 9427.05 7022.20 6713.15 −274.65
#Best 3 0 0 0 0 3 17
p-value 1.75e−03 7.74e−06 7.74e−06 7.74e−06 7.74e−06 1.75e−03

Table 9
Computational results and comparison in the average objective value obtained (favg ) on the MDG-c instances with n = 3000.

Instance Time (s) CIH [8] EPR [9] VNS [10] ILS [12] TS [11] IDTS (this work)

favg favg favg favg favg favg std.

MDG-c_1_n3000_m300 3000 5537.60 7139.85 6393.85 6265.60 5018.60 4772.90 103.49
MDG-c_2_n3000_m300 3000 5393.10 7197.70 6378.40 6539.33 5020.70 4772.60 128.96
MDG-c_3_n3000_m300 3000 5604.60 7294.30 6545.25 6243.03 5107.45 4740.50 215.89
MDG-c_4_n3000_m300 3000 5493.75 7152.85 6723.30 6636.75 4988.05 4689.20 199.65
MDG-c_5_n3000_m300 3000 5431.60 6845.75 6290.95 6663.25 5118.75 4832.70 142.36
MDG-c_6_n3000_m400 3000 7599.85 9513.10 8714.50 8412.98 6680.65 6351.20 171.66
MDG-c_7_n3000_m400 3000 7763.75 9273.25 8690.90 8457.15 6855.30 6382.45 259.46
MDG-c_8_n3000_m400 3000 7894.35 9258.80 8566.05 8497.28 6518.55 6294.00 167.27
MDG-c_9_n3000_m400 3000 7027.35 9116.20 8651.60 8259.35 6913.70 6341.30 226.54
MDG-c_10_n3000_m400 3000 7188.35 10022.30 8912.15 8646.00 6469.70 6266.40 225.11
MDG-c_11_n3000_m500 3000 9086.55 11486.05 10896.90 12223.38 8064.00 7877.45 201.53
MDG-c_12_n3000_m500 3000 8927.50 11965.35 10735.35 12103.03 8101.60 7905.85 242.39
MDG-c_13_n3000_m500 3000 9207.35 12232.10 10692.20 12228.58 8206.10 7993.10 299.98
MDG-c_14_n3000_m500 3000 8859.75 12394.55 10885.55 11643.90 8114.90 7946.15 154.03
MDG-c_15_n3000_m500 3000 9174.90 11945.55 11032.65 12365.85 7991.05 7895.05 212.32
MDG-c_16_n3000_m600 3000 11516.70 13846.90 12406.05 15801.65 9878.05 9505.65 352.73
MDG-c_17_n3000_m600 3000 11226.35 14663.65 12978.90 15284.10 9529.30 9601.40 285.28
MDG-c_18_n3000_m600 3000 11098.75 14411.05 13077.40 15547.08 9540.30 9502.25 305.41
MDG-c_19_n3000_m600 3000 13038.15 14364.90 12870.45 15526.85 9696.40 9360.80 367.25
MDG-c_20_n3000_m600 3000 11390.65 13966.90 12707.40 13545.33 9618.75 9550.30 265.14

Avg. 8423.05 10704.56 9707.49 10544.52 7371.60 7129.06 226.32
#Best 0 0 0 0 1 19
p-value 7.74e−06 7.74e−06 7.74e−06 7.74e−06 5.70e−05

Table 10
Influence of the parameter α on the performance of the IDTS algorithm. The best Avg result is indicated
in bold.
α P1 P2 P3 P4 Avg

favg favg favg favg
5 1253.80 3490.00 3533.54 5085.20 3340.63
10 1150.48 3372.28 3309.15 4686.80 3129.68
15 1127.10 3248.64 3317.53 4669.95 3090.80
20 1127.75 3250.34 3254.51 4680.85 3078.36
25 1109.77 3296.11 3295.88 4653.65 3088.85
30 1112.58 3290.97 3252.77 4821.05 3119.34
35 1131.17 3270.20 3288.31 4620.25 3077.48
40 1110.93 3366.32 3315.90 4769.90 3140.76
45 1106.34 3258.68 3297.83 4740.45 3100.82
50 1094.36 3284.21 3307.38 4808.65 3123.65
60 1110.30 3324.87 3347.71 4819.50 3150.60
100 1093.88 3359.40 3351.72 4695.05 3125.01
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Table 11
Influence of the parameter θ on the performance of the IDTS algorithm. The best Avg result is indicated
in bold.
θ P1 P2 P3 P4 Avg

favg favg favg favg
0.05 1259.94 3488.03 3490.39 4892.30 3282.67
0.10 1189.86 3417.34 3403.95 4815.10 3206.56
0.15 1162.95 3374.28 3350.06 4725.45 3153.19
0.20 1116.08 3289.13 3357.32 4740.90 3125.86
0.25 1119.22 3323.78 3334.07 4743.35 3130.11
0.30 1110.81 3320.30 3332.74 4703.85 3116.93
0.35 1110.53 3332.74 3331.70 4765.85 3135.21
0.40 1110.93 3366.32 3315.90 4769.90 3140.76
0.45 1116.06 3382.50 3319.98 4781.30 3149.96
0.50 1100.71 3391.71 3342.26 4877.05 3177.93
0.55 1134.28 3341.03 3390.44 4901.95 3191.92
0.60 1104.73 3331.52 3340.25 4870.10 3161.65

4.1. Analysis of the key parameters

As previously indicated, the IDTS algorithm employs two key
parameters, the value α that fixes the maximum number of non-
improving tabu search iterations with respect to the recorded best
solution s∗ and the value θ that controls the size of neighborhood
Nθ

swap. To investigate the influence of α, we carried out an exper-
iment on 4 representative instances MDG-b_1_n500_m50, MDG-
b_21_n2000_m200, MDG-b_40_n2000_m200, and MDG-c_1_
n3000_m300 that are renamed as ‘P1’, ‘P2’, ‘P3’, and ‘P4’ for sim-
plicity. For each α value in {5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
60, 100}, we solved each instance 20 times, using the experimental
protocol in Section 3.2. The computational results are summarized
in Table 10, where the first column shows the setting of α, the
last column shows the average results over all instances (Avg), and
other columns give the average objective values over 20 runs for
each instance. Table 10 shows that no α value performs the best
on all instances and that a medium α value leads generally to a
globally acceptable performance, while large and small α values
lead to a large performance difference on different instances.
Hence, as a comprise, we adopt α = 35 as the default value for
our IDTS algorithm.

To check whether the performance of the algorithm is sensitive
to the setting of θ , we carried out another experiment based on the
4 representative instancesmentioned above. For each instance and
each θ value in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6}, the IDTS algorithm was run 20 times, and the computational
results are summarized in Table 11.We observe from Table 11 that
similar to the parameterα, amedium θ value leads to an acceptable
performance of the algorithm on all instances tested. The last
column of the table shows that the setting θ = 0.3 produced the
best outcome in terms of Avg among all tested settings. As a result,
the default value of θ is set to 0.3 for our IDTS algorithm.

4.2. Effectiveness of the constrained neighborhood

The constrained swap neighborhood Nθ
swap used as a candidate

list strategy is an essential component of the IDTS algorithm. To
study the effectiveness of this strategy, we created a variant of
the IDTS algorithm called IDTS∗ by replacing the constrained swap
neighborhood Nθ

swap by the full swap neighborhood N full
swap, while

keeping other components of the IDTS algorithmunchanged. Then,
we carried out an experiment based on the 20 large MDG-b in-
stances with n = 2000 and m = 200, executing the IDTS∗
and IDTS algorithms 20 times on each instance according to the
experimental protocol of Section 3.2.

The computational results of this experiment are summarized
in Table 12, including the time limits used, the best (fbest ), average
(favg ) and worst (fworst ) objective values. The rows #Better , #Equal

and #Worse show the numbers of instances for which each algo-
rithm yielded a better result than the other algorithm in terms of
fbest , favg , and fworst . To verify whether there exists a significant dif-
ference between the results obtained by the compared algorithms,
the p-values from the non-parametric Friedman tests are provided
in the last row.

Table 12 shows that IDTS (with the constrained neighborhood
Nθ

swap) consistently outperforms IDTS∗ (with the full neighborhood
N full

swap) on all 20 instances in terms of fbest , favg , and fworst , confirming
that the constrained swap neighborhood Nθ

swap plays a positive
role in enhancing algorithmic performance on the tested instances
given the time limits employed. On the other hand, the effective-
ness of Nθ

swap also depends on the setting of the parameter θ , as
demonstrated in Section 4.1.

4.3. Effectiveness of the intensified search mechanism

The intensified search mechanism is another essential compo-
nent of the proposed IDTS algorithm for the purpose of intensi-
fying the search around the last best solution found. To study its
impacts on the performance of IDTS, we created a variant of the
IDTS algorithm called IDTS−, where we disabled the intensified
search mechanism (line 7 of Algorithm 1), while keeping other
components unchanged. As in Section 4.2, we compare IDTS and
IDTS− based on the 20 large instances with n = 2000 andm = 200
of the set MDG-b. We ran both IDTS− and IDTS 20 times to solve
each instance, using the experimental protocol of Section 3.2.

The experimental results are summarized in Table 13,wherewe
include the same statistics as in Table 12. Table 13 clearly shows
that the IDTS algorithm (with the intensified search mechanism)
performs consistently much better than IDTS− (without the inten-
sified search mechanism) over all performance indicators consid-
ered and on all the tested instances, as confirmed by the small
p-values. This outcome demonstrates that the intensified search
mechanism plays a highly positive role in the high performance
of the IDTS algorithm.

4.4. Influence of hash vectors and hash functions

The proposed IDTS algorithm uses three hash vectors of length
L = 108 tomanage the tabu list (see Section 2.5). To investigate the
influence of these elements, we first created three variants IDTS1,
IDTS2 and IDTS3 by disabling the hash vectors H3, H2, and H1 of
IDTS, respectively, while keeping other components of algorithm
unchanged. We also created two other variants IDTS4 and IDTS5
of the IDTS algorithm where we replace the default length of hash
vectors (L = 108) by L = 106 and L = 107 respectively. Then,
we carried out an experiment on the 20 MDG-b instances with
n = 500 by running each of these variants 20 times to solve each
instance according to the experimental protocol in Section 3.2.
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Table 12
Comparative results of the constrained swap neighborhood Nθ

swap with the full swap neighborhood N full
swap on the 20 large instances of set

MDG-b.
Instance Time (s) fbest favg fworst

IDTS∗ IDTS IDTS∗ IDTS IDTS∗ IDTS

MDG-b_21_n2000_m200 2000 3227.73 2980.75 3554.41 3280.31 3774.53 3497.11
MDG-b_22_n2000_m200 2000 3203.54 2961.21 3424.94 3274.61 3632.66 3455.44
MDG-b_23_n2000_m200 2000 3281.86 3074.56 3495.20 3295.18 3779.58 3588.02
MDG-b_24_n2000_m200 2000 3181.18 3007.62 3517.09 3282.48 3707.87 3557.54
MDG-b_25_n2000_m200 2000 3326.85 3062.53 3525.38 3268.85 3764.58 3453.27
MDG-b_26_n2000_m200 2000 3298.21 3068.00 3532.70 3292.18 3746.72 3506.27
MDG-b_27_n2000_m200 2000 3267.52 3103.56 3524.25 3305.33 3843.87 3479.93
MDG-b_28_n2000_m200 2000 3331.40 3091.04 3520.57 3275.35 3827.14 3541.91
MDG-b_29_n2000_m200 2000 3137.31 3046.27 3498.12 3289.42 3766.85 3656.07
MDG-b_30_n2000_m200 2000 3248.86 3041.00 3535.45 3288.46 3793.35 3469.45
MDG-b_31_n2000_m200 2000 3301.59 3040.03 3522.19 3272.11 3822.31 3506.72
MDG-b_32_n2000_m200 2000 3179.60 3060.99 3515.59 3276.19 3756.51 3495.65
MDG-b_33_n2000_m200 2000 3205.76 3061.50 3491.72 3271.92 3734.97 3525.80
MDG-b_34_n2000_m200 2000 3100.92 3071.88 3496.86 3292.90 3788.15 3487.91
MDG-b_35_n2000_m200 2000 3385.95 3055.21 3555.96 3290.86 3763.23 3601.60
MDG-b_36_n2000_m200 2000 3314.21 3050.39 3545.67 3247.02 3807.67 3450.08
MDG-b_37_n2000_m200 2000 3227.34 3015.38 3478.66 3331.37 3691.13 3512.72
MDG-b_38_n2000_m200 2000 3272.18 3104.92 3535.02 3278.91 3781.62 3528.55
MDG-b_39_n2000_m200 2000 3275.65 2900.08 3529.54 3274.59 3820.13 3510.92
MDG-b_40_n2000_m200 2000 3206.93 3016.38 3452.30 3281.05 3652.17 3597.83
#Better 0 20 0 20 0 20
#Equal 0 0 0 0 0 0
#Worse 20 0 20 0 20 0
p-value 7.74e−06 7.74e−06 7.74e−06

Table 13
Comparative results of the IDTS algorithm with and without the intensified search mechanism on the 20 large instances of set MDG-b.
Instance Time (s) fbest favg fworst

IDTS− IDTS IDTS− IDTS IDTS− IDTS

MDG-b_21_n2000_m200 2000 3531.82 2980.75 3607.87 3280.31 3689.28 3497.11
MDG-b_22_n2000_m200 2000 3425.31 2961.21 3581.12 3274.61 3702.27 3455.44
MDG-b_23_n2000_m200 2000 3435.43 3074.56 3589.84 3295.18 3692.52 3588.02
MDG-b_24_n2000_m200 2000 3296.40 3007.62 3593.57 3282.48 3709.41 3557.54
MDG-b_25_n2000_m200 2000 3474.71 3062.53 3645.80 3268.85 3725.34 3453.27
MDG-b_26_n2000_m200 2000 3476.76 3068.00 3597.27 3292.18 3718.05 3506.27
MDG-b_27_n2000_m200 2000 3430.97 3103.56 3592.84 3305.33 3706.95 3479.93
MDG-b_28_n2000_m200 2000 3513.96 3091.04 3622.38 3275.35 3727.75 3541.91
MDG-b_29_n2000_m200 2000 3536.59 3046.27 3607.95 3289.42 3701.91 3656.07
MDG-b_30_n2000_m200 2000 3461.98 3041.00 3602.71 3288.46 3740.34 3469.45
MDG-b_31_n2000_m200 2000 3493.03 3040.03 3578.02 3272.11 3665.83 3506.72
MDG-b_32_n2000_m200 2000 3401.52 3060.99 3593.41 3276.19 3715.99 3495.65
MDG-b_33_n2000_m200 2000 3455.67 3061.50 3622.39 3271.92 3758.12 3525.80
MDG-b_34_n2000_m200 2000 3378.85 3071.88 3560.27 3292.90 3732.65 3487.91
MDG-b_35_n2000_m200 2000 3516.59 3055.21 3636.91 3290.86 3735.21 3601.60
MDG-b_36_n2000_m200 2000 3504.46 3050.39 3626.13 3247.02 3762.41 3450.08
MDG-b_37_n2000_m200 2000 3403.84 3015.38 3587.46 3331.37 3708.17 3512.72
MDG-b_38_n2000_m200 2000 3336.39 3104.92 3586.67 3278.91 3745.11 3528.55
MDG-b_39_n2000_m200 2000 3458.21 2900.08 3617.42 3274.59 3747.81 3510.92
MDG-b_40_n2000_m200 2000 3449.57 3016.38 3620.62 3281.05 3714.19 3597.83
#Better 0 20 0 20 0 20
#Equal 0 0 0 0 0 0
#Worse 20 0 20 0 20 0
p-value 7.74e−06 7.74e−06 7.74e−06

Columns 2–4 of Table 14 show that under the current experi-
mental conditions, IDTS performs similarly with two or three hash
vectors in terms of the average results for the tested instances.
Nevertheless, given that 1) using more hash vectors theoretically
helps to reduce the number of possible collisions in the general
case, and 2) determining the tabu status of a neighbor solution has
a very low time complexity (bounded by O(1)) when using either
two or three hash vectors, we adopt three hash vectors in our IDTS
algorithm. A similar observation can be made for IDTS4 and IDTS5,
which indicates that IDTS is not sensitive to the length (L) of hash
vectors.

As shown in Section 2.5, the hash functions involve a parameter
(ξk, k = 1, 2, 3), each parameter ξk leading to a hash function hk.
To show the influence of hash functions on the performance of the

IDTS algorithm, we carried out an additional experiment to study
the ξk parameter. For this purpose, we selected 9 representative
parameter combinations (ξ1, ξ2, ξ3) and ran the IDTS algorithm 20
times with each parameter combination to solve each of the 20
MDG-b instances. The average objective results (favg ) are reported
in Table 15, where the row Avg. shows the average result for each
column and ‘‘#Best’’ shows the number of instances for which the
corresponding parameter combination leads to the best result in
terms of favg .

The results of Table 15 show that the performance of the IDTS
algorithm is sensitive to the setting of parameters ξ1, ξ2 and ξ3. For
the parameter combinations containing a small value for all pa-
rameters, such as (ξ1, ξ2, ξ3) = (1.1, 1.2, 1.3), (1.1, 1.2, 1.5), (1.1,
1.3, 1.5), IDTS performs badly, yielding a worse result in terms of
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Table 14
Experimental results of the proposed algorithmwith different numbers of hash vectors and different lengths (L) of hash vectors, where the average
objective value (favg ) over 20 runs is reported for each instance and each setting.

Instance Two Hash Vectors (L = 108) Three Hash Vectors

IDTS1
(H1,H2)

IDTS2
(H1,H3)

IDTS3
(H2,H3)

IDTS4
(L = 106)

IDTS5
(L = 107)

IDTS
(L = 108)

MDG-b_1_n500_m50 1095.38 1090.80 1113.68 1128.85 1092.90 1109.54
MDG-b_2_n500_m50 1111.31 1101.85 1105.09 1094.83 1109.63 1101.90
MDG-b_3_n500_m50 1135.32 1104.65 1124.82 1099.51 1105.00 1113.33
MDG-b_4_n500_m50 1117.34 1115.78 1107.98 1132.73 1101.97 1106.83
MDG-b_5_n500_m50 1112.37 1102.89 1112.15 1114.05 1102.48 1110.93
MDG-b_6_n500_m50 1126.47 1113.69 1122.27 1123.82 1118.33 1108.56
MDG-b_7_n500_m50 1109.36 1120.34 1114.56 1100.51 1106.37 1121.52
MDG-b_8_n500_m50 1115.28 1104.25 1120.91 1120.48 1118.54 1122.64
MDG-b_9_n500_m50 1122.09 1110.42 1122.27 1113.20 1113.18 1116.71
MDG-b_10_n500_m50 1106.08 1109.63 1123.60 1115.00 1116.72 1116.91
MDG-b_11_n500_m50 1129.84 1118.48 1116.27 1100.90 1106.86 1124.39
MDG-b_12_n500_m50 1113.66 1120.70 1108.58 1116.99 1115.64 1095.78
MDG-b_13_n500_m50 1135.50 1118.32 1115.74 1094.78 1120.83 1092.17
MDG-b_14_n500_m50 1118.15 1122.20 1117.64 1113.11 1123.09 1108.42
MDG-b_15_n500_m50 1109.67 1124.51 1104.98 1103.18 1106.04 1104.19
MDG-b_16_n500_m50 1111.01 1107.44 1094.62 1136.58 1123.35 1092.32
MDG-b_17_n500_m50 1102.21 1113.53 1120.63 1124.57 1101.54 1137.81
MDG-b_18_n500_m50 1105.21 1103.19 1126.20 1116.62 1108.77 1105.58
MDG-b_19_n500_m50 1121.57 1116.59 1104.55 1108.09 1110.67 1114.25
MDG-b_20_n500_m50 1123.84 1111.71 1101.14 1104.99 1106.75 1116.59

Avg. 1116.08 1111.55 1113.88 1113.14 1110.43 1111.02

Table 15
Experimental results of IDTS with 9 parameter combinations of (ξ1, ξ2, ξ3) (hash functions), in terms of the average objective values (favg ) over 20 runs. The best results
among those obtained by the tested parameter combinations are indicated in bold for each instance.
Instance/(ξ1, ξ2, ξ3) favg

(1.1, 1.2, 1.3) (1.1, 1.2, 1.5) (1.1, 1.3, 1.5) (1.1, 1.3, 1.9) (1.1, 1.4, 2.0) (1.1, 1.5, 2.0) (1.5, 1.8, 1.9) (1.8, 1.9, 2.0) (2.0, 2.1, 2.2)

MDG-b_1_n500_m50 1197.51 1175.63 1168.79 1123.11 1132.04 1143.28 1096.23 1109.54 1106.88
MDG-b_2_n500_m50 1204.43 1169.34 1157.87 1129.67 1131.82 1129.48 1117.85 1101.90 1107.47
MDG-b_3_n500_m50 1204.65 1170.33 1161.84 1117.45 1127.47 1127.48 1122.84 1113.33 1124.10
MDG-b_4_n500_m50 1203.04 1154.75 1168.29 1102.95 1113.68 1123.58 1106.84 1106.83 1115.82
MDG-b_5_n500_m50 1216.52 1155.96 1154.67 1130.46 1117.23 1103.90 1100.49 1110.93 1107.77
MDG-b_6_n500_m50 1205.84 1176.52 1155.93 1122.89 1125.39 1110.60 1116.93 1108.56 1117.50
MDG-b_7_n500_m50 1201.84 1163.48 1159.13 1123.49 1122.18 1108.56 1113.28 1121.52 1107.91
MDG-b_8_n500_m50 1202.44 1180.83 1160.94 1109.50 1121.61 1130.28 1124.86 1122.64 1115.86
MDG-b_9_n500_m50 1182.80 1171.06 1185.53 1126.07 1120.59 1114.03 1123.41 1116.71 1113.71
MDG-b_10_n500_m50 1196.40 1166.65 1162.30 1124.79 1118.92 1109.98 1126.91 1116.91 1135.17
MDG-b_11_n500_m50 1212.28 1187.99 1147.17 1126.70 1118.42 1104.80 1111.05 1124.39 1103.96
MDG-b_12_n500_m50 1199.01 1153.81 1172.42 1123.18 1110.24 1122.80 1101.50 1095.78 1121.16
MDG-b_13_n500_m50 1184.25 1175.17 1146.24 1115.59 1116.61 1120.68 1094.41 1092.17 1085.32
MDG-b_14_n500_m50 1208.96 1159.32 1170.90 1096.59 1137.25 1136.10 1099.84 1108.42 1133.12
MDG-b_15_n500_m50 1178.70 1172.74 1150.44 1126.27 1111.18 1129.91 1121.54 1104.19 1102.03
MDG-b_16_n500_m50 1199.96 1168.81 1168.87 1123.22 1103.65 1138.99 1108.76 1092.32 1102.56
MDG-b_17_n500_m50 1186.48 1161.27 1173.35 1137.26 1116.24 1124.42 1098.84 1137.81 1116.57
MDG-b_18_n500_m50 1192.59 1188.32 1142.87 1131.88 1113.69 1120.07 1102.32 1105.58 1131.50
MDG-b_19_n500_m50 1189.19 1180.93 1156.06 1109.78 1121.52 1124.68 1120.75 1114.25 1119.38
MDG-b_20_n500_m50 1186.61 1179.53 1171.94 1120.93 1124.43 1111.96 1112.28 1116.59 1107.60
Avg. 1197.68 1170.62 1161.78 1121.09 1120.21 1121.78 1111.05 1111.02 1113.77
#Best 0 0 0 4 0 1 4 5 6

both ‘‘Avg’’. and ‘‘#Best’’ in comparison with other combinations.
On the contrary, for those parameter combinations containing a
large value for at least two parameters, such as (1.5, 1.8, 1.9),
(1.8, 1.9, 2.0) and (2.0, 2.1, 2.2), IDTS performs very well. As a
result, for the present IDTS algorithm, the default combination of
(ξ1, ξ2, ξ3) is set to (1.8, 1.9, 2.0), since such a setting led to the best
result in terms of Avg. among the tested combinations.

4.5. Spatial distribution of high-quality solutions

In an attempt to further understand why the intensified search
mechanism is helpful, we have conducted a study on the spatial
distribution of high-quality solutions as in [31,33]. Our experiment
was based on 8 representative instances with n = 2000 or 3000,
performing 10 runs of our IDTS algorithm for each instance tested,
and then collecting all the high-quality local optimal solutions vis-
ited by the IDTS algorithm to characterize the spatial distribution

of high-quality solutions. Here, a solution s is considered be of
high-quality if its objective value f (s) is better than 1.03 × fbkv ,
i.e., f (s) < 1.03 × fbkv , where fbkv represents the previous best
known result in the literature. Following [31,33], to obtain a visual
image of the spatial distribution of high-quality solutions obtained,
we adopted the multidimensional scaling (MDS) method to gen-
erate approximately the distribution of solutions in the Euclidean
space R3 as follows. First, we generate a distancematrixDl×l, where
l is the number of local optimum solutions sampled, and d

′

ij ∈ Dl×l
is the distance between solutions si and sj. Specifically, given two
solutions si = (I0i , I

1
i ) and sj = (I0j , I

1
j ) of Min-Diff DP, the distance

between si and sj is calculated as d
′

ij =
m−|I1i ∩I

1
j |

m . Then, according
to the distance matrix obtained, we generate l coordinate points in
the R3 space by the cmdscalemethod,where the distance distortion
between the obtained coordinate points is minimized. Finally, the
scatter graph of the resulting points in R3 is plotted. Interested
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Fig. 3. Distribution of the high-quality local optima for four large MDG-a and MDG-n instances with n = 2000 andm = 200.

readers are referred to [31,33] for more details of plotting the
spatial distribution in the Euclidean space R3 for a set of solutions.

The spatial distributions of the collected high-quality solutions
visited by the IDTS algorithm are given in Figs. 3 and 4 for the se-
lected instances. First, these plots show that for all tested instances,
the collected high-quality solutions are typically grouped in clus-
ters, delimited by a sphere of small diameter and characterized
by small distances between the solutions of the same cluster [33].
This observation implies that the solutions within a cluster can be
reached more easily from a nearby solution than from a distant
solution. The intensified search mechanism of the IDTS algorithm
exploits this property by systematically launching a search from
the best solution found so far in order to discover other nearby
high-quality solutions. Second, to discover a new cluster (that can
contain new high-quality solutions), it is useful to apply some
strong diversification strategies. In the case of the IDTS algorithm,
this is achieved by the simple mechanism of multiple re-starts,
each re-start being performed with a different initial solution in
the search space. Other mechanisms are of course possible (see,
e.g., [30]) and may be preferable in other settings.

4.6. Analysis of the search trajectory

To shed additional light on the behavior of the IDTS algorithm,
we investigate the nature of its search trajectory. For this purpose,
we carried out the following experiment on four representative in-
stances. The algorithmwas runonce to solve each instance, starting

from a local optimum solution obtained by the first improvement
descentmethod. To avoid the bias of the constrained neighborhood
candidate list strategy, we adopted the full swap neighborhood
N full

swap and set the maximum number of iterations to be 500.
During the runof the algorithm,we recorded the objective value

(f ) at each iteration. The evolution of f as a function of the iterations
for the tested instances is plotted in Fig. 5, where the X-axis
represents the number of iterations, and the Y -axis indicates the
objective value f . Fig. 5 shows that the objective values f undergo
multiple fluctuations during the search process, indicating that
the algorithm is able to escape various local optimality traps and
discover diverse local optima by visiting intermediate solutions
whose quality can vary largely.

5. Conclusions and future work

Our intensification-driven tabu search (IDTS) algorithm for the
strongly NP-hard Min-Diff DP derives its competitive performance
from three major components: a candidate list strategy utilizing a
parametric reduced neighborhood to focus on promising neighbor
solutions, a solution-based tabu strategy that enables a highly
effective search over diverse terrain, and an intensified search
mechanism that creates a refined exploration around high-quality
solutions discovered during the search.

The performance of the IDTS algorithm was evaluated through
extensive experiments on 250 benchmark instances commonly
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Fig. 4. Distribution of the high-quality local optima for four large MDG-c instances with n = 3000 andm = 300.

used to assess algorithmic performance. The computational re-
sults showed that our IDTS algorithm significantly outperforms the
state-of-the-artMin-Diff DP algorithms in the literature, by finding
improved best known solutions (new upper bounds) for 127 out of
the 250 instances tested. Additional experiments were performed
to shed light on the behavior of the proposed algorithms.

There are several possibilities to further improve our algorithm.
First, self-adaptive techniques can be designed to tune the two
key parameters α and θ automatically. Second, advanced diversi-
fication strategies can be investigated to better exploit the phe-
nomenon exhibited by differential dispersion problems whereby
high-quality solutions are grouped in clusters (as shown in Sec-
tion 4.5). Finally, the strategies of the IDTS algorithm embody
rather general principles, and it would be interesting to investigate
their application more thoroughly in other binary optimization
settings.
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Appendix

We report here the results of the IDTS algorithm on the six sets
of benchmarks of 170 instances that are not listed in Section 3.3.
The outcomes of the computational tests are given in Tables A.1–
A.6, including the previous best known results in the literature
(Best Known), and for our IDTS algorithm, the best objective value
(fbest ), the average objective value (favg ), the standard deviation
(sdt) of objective values, and the difference between fbest and the
Best Known results. The row ‘Avg’ of each table shows the average
of the values in each column. The row ‘#Best’ indicates the number
of instances for which the associated result matches the current
best known one, and the best results between the results of IDTS
and the Best Known values are indicated in bold. In addition, the
symbol ‘*’ means that the IDTS algorithm obtained an improved
solution compared to the Best Known result.

We used the same timeout limit for the IDTS algorithm as in
Section 3.3, i.e., tmax = n, where n is the number of elements in
the instance. The two previous studies [10,12] used the same time
limit as ours. It should be noted, however, that the study in [11]
set the timeout limit tmax according to specific instances, making it
difficult to perform a direct comparison between our results and
theirs on these instances. Thus, the main goal of this section is
to show the detailed experimental results of our IDTS algorithm,
instead ofmaking a direct comparison between our IDTS algorithm
and the algorithm in [11].
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Fig. 5. Evolution of the objective values during the tabu search process.

Table A.1
Computational results on MDG-a instances with n = 500.
Instance Time (s) Best known fbest favg std ∆fbest
MDG-a_1_n500_m50 500 10.46 9.73* 10.97 0.37 −0.73
MDG-a_2_n500_m50 500 10.58 10.21* 11.00 0.40 −0.37
MDG-a_3_n500_m50 500 10.74 10.04* 11.03 0.32 −0.70
MDG-a_4_n500_m50 500 10.90 10.10* 10.99 0.36 −0.80
MDG-a_5_n500_m50 500 10.58 10.02* 10.97 0.35 −0.56
MDG-a_6_n500_m50 500 10.08 9.91* 10.99 0.41 −0.17
MDG-a_7_n500_m50 500 10.35 9.55* 11.07 0.44 −0.80
MDG-a_8_n500_m50 500 10.16 10.35 10.92 0.35 0.19
MDG-a_9_n500_m50 500 9.97 10.47 11.06 0.28 0.50
MDG-a_10_n500_m50 500 10.58 10.52* 11.10 0.31 −0.06
MDG-a_11_n500_m50 500 10.57 9.37* 10.95 0.43 −1.20
MDG-a_12_n500_m50 500 10.62 10.17* 11.11 0.30 −0.45
MDG-a_13_n500_m50 500 10.31 10.32 11.16 0.30 0.01
MDG-a_14_n500_m50 500 9.95 9.96 10.99 0.34 0.01
MDG-a_15_n500_m50 500 10.40 9.66* 11.01 0.38 −0.74
MDG-a_16_n500_m50 500 10.40 10.28* 10.92 0.29 −0.12
MDG-a_17_n500_m50 500 10.33 10.34 11.02 0.33 0.01
MDG-a_18_n500_m50 500 10.56 10.16* 10.95 0.29 −0.40
MDG-a_19_n500_m50 500 10.46 9.55* 10.88 0.41 −0.91
MDG-a_20_n500_m50 500 10.54 9.96* 11.03 0.39 −0.58

Avg 10.43 10.03 11.01 0.35 −0.39
#Best 5 15

Table A.1, A.2, and A.4 show our IDTS algorithm performed
very well by comparison to the Best Known results on the MDG-
a, MDG-b and GKD-c instances (which constitute all the larger in-
stances with n= 500). Tables A.3 and A.5 show our IDTS algorithm
matched or improved the Best Known results in most of GKD-b

and SOM-b instances, and Table A.6 shows our algorithm yielded
slightly worse outcomes compared to the Best Known results on
the APOM instances. In sum, these computational results further
show a good search ability of the proposed IDTS algorithm.
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Table A.2
Computational results on MDG-b instances with n = 500.
Instance Time (s) Best known fbest favg std ∆fbest
MDG-b_1_n500_m50 500 1055.33 1031.91* 1120.95 33.23 −23.42
MDG-b_2_n500_m50 500 1038.08 993.71* 1112.43 37.34 −44.37
MDG-b_3_n500_m50 500 1086.91 1045.74* 1118.47 32.95 −41.17
MDG-b_4_n500_m50 500 1052.27 944.13* 1097.53 38.75 −108.14
MDG-b_5_n500_m50 500 1005.45 1013.51 1104.18 38.26 8.06
MDG-b_6_n500_m50 500 1061.50 1002.18* 1107.08 39.33 −59.32
MDG-b_7_n500_m50 500 1063.67 937.19* 1099.44 41.89 −126.48
MDG-b_8_n500_m50 500 1088.63 1026.35* 1120.24 30.60 −62.28
MDG-b_9_n500_m50 500 1069.26 1047.74* 1115.17 35.46 −21.52
MDG-b_10_n500_m50 500 1069.54 1006.26* 1114.27 39.39 −63.28
MDG-b_11_n500_m50 500 1031.02 1047.57 1121.52 33.07 16.55
MDG-b_12_n500_m50 500 1063.76 1011.66* 1107.38 38.17 −52.10
MDG-b_13_n500_m50 500 1026.86 990.38* 1106.17 43.44 −36.48
MDG-b_14_n500_m50 500 1018.69 1062.11 1120.50 29.36 43.42
MDG-b_15_n500_m50 500 1022.19 1044.68 1115.20 28.77 22.49
MDG-b_16_n500_m50 500 1057.20 1035.26* 1112.72 28.83 −21.94
MDG-b_17_n500_m50 500 1045.20 1041.10* 1120.33 31.46 −4.10
MDG-b_18_n500_m50 500 1032.54 998.27* 1095.49 39.46 −34.27
MDG-b_19_n500_m50 500 1066.78 982.59* 1089.50 38.66 −84.19
MDG-b_20_n500_m50 500 1022.66 1013.54* 1102.86 37.12 −9.12

Avg 500 1048.88 1013.79 1110.07 35.78 −35.08
#Best 4 16

Table A.3
Computational results on GKD-b instances.
Instance Time (s) Best known fbest favg std ∆fbest
GKD-b_1_n25_m2 25 0.00 0.00 0.00 0.00 0.00
GKD-b_2_n25_m2 25 0.00 0.00 0.00 0.00 0.00
GKD-b_3_n25_m2 25 0.00 0.00 0.00 0.00 0.00
GKD-b_4_n25_m2 25 0.00 0.00 0.00 0.00 0.00
GKD-b_5_n25_m2 25 0.00 0.00 0.00 0.00 0.00
GKD-b_6_n25_m7 25 12.72 12.72 12.72 0.00 0.00
GKD-b_7_n25_m7 25 14.10 14.10 14.10 0.00 0.00
GKD-b_8_n25_m7 25 16.76 16.76 16.76 0.00 0.00
GKD-b_9_n25_m7 25 17.07 17.07 17.07 0.00 0.00
GKD-b_10_n25_m7 25 23.27 23.27 23.86 1.19 0.00
GKD-b_11_n50_m5 50 1.93 1.93 1.93 0.00 0.00
GKD-b_12_n50_m5 50 2.05 2.05 2.05 0.01 0.00
GKD-b_13_n50_m5 50 2.36 2.36 2.43 0.22 0.00
GKD-b_14_n50_m5 50 1.66 1.66 1.66 0.00 0.00
GKD-b_15_n50_m5 50 2.85 2.85 2.85 0.00 0.00
GKD-b_16_n50_m15 50 42.75 42.75 42.93 0.66 0.00
GKD-b_17_n50_m15 50 48.11 48.11 50.54 7.29 0.00
GKD-b_18_n50_m15 50 43.20 43.20 43.20 0.00 0.00
GKD-b_19_n50_m15 50 46.41 46.41 46.41 0.00 0.00
GKD-b_20_n50_m15 50 47.72 47.72 48.25 1.92 0.00
GKD-b_21_n100_m10 100 9.33 9.33 11.47 1.26 0.00
GKD-b_22_n100_m10 100 8.60 8.60 12.16 1.34 0.00
GKD-b_23_n100_m10 100 6.91 7.59 10.52 1.53 0.68
GKD-b_24_n100_m10 100 7.59 7.59 11.85 1.69 0.00
GKD-b_25_n100_m10 100 6.91 9.64 12.04 1.19 2.73
GKD-b_26_n100_m30 100 159.19 159.19 162.64 6.99 0.00
GKD-b_27_n100_m30 100 124.17 124.17 141.46 24.47 0.00
GKD-b_28_n100_m30 100 106.38 106.38 119.41 16.86 0.00
GKD-b_29_n100_m30 100 135.85 135.85 138.53 7.47 0.00
GKD-b_30_n100_m30 100 127.27 127.27 136.05 13.51 0.00
GKD-b_31_n125_m12 125 11.05 11.05 12.80 2.05 0.00
GKD-b_32_n125_m12 125 11.43 10.43* 14.85 1.47 −1.00
GKD-b_33_n125_m12 125 9.18 10.79 13.93 1.40 1.61
GKD-b_34_n125_m12 125 11.83 11.83 16.22 1.63 0.00
GKD-b_35_n125_m12 125 9.20 7.53* 11.88 1.60 −1.67
GKD-b_36_n125_m37 125 125.55 125.55 146.88 17.19 0.00
GKD-b_37_n125_m37 125 194.22 194.22 194.65 1.53 0.00
GKD-b_38_n125_m37 125 184.27 184.27 190.89 17.66 0.00
GKD-b_39_n125_m37 125 155.39 155.39 161.74 6.29 0.00
GKD-b_40_n125_m37 125 161.68 172.80 199.71 11.79 11.12
GKD-b_41_n150_m15 150 16.48 17.85 22.22 1.85 1.37
GKD-b_42_n150_m15 150 12.38 12.38 20.03 2.67 0.00
GKD-b_43_n150_m15 150 11.83 13.99 18.42 1.84 2.16
GKD-b_44_n150_m15 150 16.58 11.74* 18.20 2.33 −4.84

(continued on next page)
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Table A.3 (continued).
Instance Time (s) Best known fbest favg std ∆fbest
GKD-b_45_n150_m15 150 16.43 12.84* 19.95 2.24 −3.59
GKD-b_46_n150_m45 150 207.81 207.81 219.40 7.26 0.00
GKD-b_47_n150_m45 150 211.77 211.77 214.20 5.74 0.00
GKD-b_48_n150_m45 150 177.29 177.29 203.37 17.70 0.00
GKD-b_49_n150_m45 150 197.88 197.88 204.88 10.73 0.00
GKD-b_50_n150_m45 150 220.76 230.49 246.24 23.38 9.73

Avg 59.56 59.93 64.67 4.52 0.37
#Best 46 43

Table A.4
Computational results on GKD-c instances.
Instance Time (s) Best known fbest favg std ∆fbest
GKD-c_1_n500_m50 500 6.39 6.51 7.93 0.93 0.12
GKD-c_2_n500_m50 500 6.13 6.75 8.34 0.84 0.62
GKD-c_3_n500_m50 500 6.65 6.10* 8.29 0.93 −0.55
GKD-c_4_n500_m50 500 6.64 5.59* 7.97 1.06 −1.05
GKD-c_5_n500_m50 500 7.38 6.88* 8.70 1.11 −0.50
GKD-c_6_n500_m50 500 6.79 6.29* 7.87 0.93 −0.50
GKD-c_7_n500_m50 500 6.84 7.11 8.88 1.02 0.27
GKD-c_8_n500_m50 500 7.01 7.27 9.16 1.31 0.26
GKD-c_9_n500_m50 500 8.09 6.18* 8.31 0.97 −1.91
GKD-c_10_n500_m50 500 7.37 6.85* 9.27 1.04 −0.52
GKD-c_11_n500_m50 500 6.42 5.27* 7.73 1.04 −1.15
GKD-c_12_n500_m50 500 6.50 6.12* 8.14 1.02 −0.38
GKD-c_13_n500_m50 500 6.52 7.27 8.82 1.24 0.75
GKD-c_14_n500_m50 500 6.38 5.98* 8.43 1.11 −0.40
GKD-c_15_n500_m50 500 6.99 6.32* 8.47 1.04 −0.67
GKD-c_16_n500_m50 500 6.51 5.88* 7.91 1.18 −0.63
GKD-c_17_n500_m50 500 6.31 5.62* 7.50 1.06 −0.69
GKD-c_18_n500_m50 500 6.88 6.51* 8.61 0.97 −0.37
GKD-c_19_n500_m50 500 6.84 6.20* 8.26 1.11 −0.64
GKD-c_20_n500_m50 500 6.32 5.53* 8.10 1.17 −0.79

Avg 6.75 6.31 8.33 1.05 −0.44
#Best 5 15

Table A.5
Computational results on SOM-b instances.
Instance Time (s) Best known fbest favg std ∆fbest
SOM-b_1_n100_m10 100 0 0 1.4 0.49 0
SOM-b_2_n100_m20 100 4 4 5.15 0.36 0
SOM-b_3_n100_m30 100 6 7 8.25 0.54 1
SOM-b_4_n100_m40 100 10 10 11.2 0.68 0
SOM-b_5_n200_m20 200 3 3 4.55 0.5 0
SOM-b_6_n200_m40 200 9 9 9.85 0.36 0
SOM-b_7_n200_m60 200 13 13 14.55 0.67 0
SOM-b_8_n200_m80 200 18 18 19.65 0.91 0
SOM-b_9_n300_m30 300 6 6 6.85 0.36 0
SOM-b_10_n300_m60 300 12 12 13.4 0.49 0
SOM-b_11_n300_m90 300 18 18 19.5 0.74 0
SOM-b_12_n300_m120 300 24 23* 25.85 1.19 −1
SOM-b_13_n400_m40 400 9 8* 8.95 0.22 −1
SOM-b_14_n400_m80 400 16 16 17.15 0.61 0
SOM-b_15_n400_m120 400 23 23 24.4 0.86 0
SOM-b_16_n400_m160 400 27 30 32.55 1.28 3
SOM-b_17_n500_m50 500 10 10 10.7 0.64 0
SOM-b_18_n500_m100 500 19 19 20.2 0.51 0
SOM-b_19_n500_m150 500 26 26 28.75 1.3 0
SOM-b_20_n500_m200 500 34 36 39.45 2.48 2

Avg 300 14.35 14.55 16.12 0.76 0.2
#Best 18 17
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Table A.6
Computational results on APOM instances.
Instance Time (s) Best known fbest favg std ∆fbest
01a050m10 50 1.41 1.41 1.87 0.16 0.00
02a050m20 50 14.72 14.72 14.73 0.06 0.00
03a100m20 100 3.65 4.01 4.38 0.32 0.36
04a100m40 100 25.50 25.50 26.42 2.11 0.00
05a150m30 150 6.56 7.09 7.91 0.72 0.53
06a150m60 150 46.99 46.99 47.31 0.79 0.00
07a200m40 200 11.39 11.49 12.46 0.83 0.10
08a200m80 200 63.48 63.46* 64.47 1.94 −0.02
09a250m50 250 14.56 14.68 16.61 1.18 0.12
10a250m100 250 82.09 82.51 86.04 4.78 0.43
11b050m10 50 1091.00 1355.00 2043.30 326.29 264.00
12b050m20 50 5552.00 5552.00 6044.15 370.60 0.00
13b100m20 100 3996.00 4160.00 4945.20 406.45 164.00
14b100m40 100 9540.00 10552.00 11360.45 357.56 1012.00
15b150m30 150 6769.00 6607.00* 7386.60 437.72 −162.00
16b150m60 150 13449.00 14007.00 15101.85 533.94 558.00
17b200m40 200 8197.00 9042.00 9809.65 361.10 845.00
18b200m80 200 17502.00 18026.00 19085.30 479.00 524.00
19b250m50 250 11427.00 10635.00* 11730.05 447.96 −792.00
20b250m100 250 21832.00 20963.00* 22197.45 754.33 −869.00
21c050m10 50 1149.00 1124.00 1225.70 100.52 −25.00
22c050m20 50 6205.00 6205.00 6210.80 25.28 0.00
23c100m20 100 2239.00 2149.00* 2850.05 299.25 −90.00
24c100m40 100 11098.00 11098.00 13278.50 5263.04 0.00
25c150m30 150 3550.00 3414.00* 4757.40 1705.96 −136.00
26c150m60 150 13087.00 13087.00 21426.80 14445.11 0.00
27c200m40 200 4865.00 5226.00 8445.60 3238.32 361.00
28c200m80 200 19393.00 19537.00 26525.50 20460.89 144.00
29c250m50 250 5650.00 5955.00 10390.00 3572.99 305.00
30c250m100 250 22050.00 22280.00 34583.35 16810.51 230.00
31d050m10 50 1049.00 1049.00 1138.85 102.52 0.00
32d050m20 50 4564.00 4564.00 4587.15 100.91 0.00
33d100m20 100 2374.00 2561.00 2847.45 176.55 187.00
34d100m40 100 8979.00 8979.00 13011.00 7666.21 0.00
35d150m30 150 3234.00 3923.00 6545.45 2148.50 689.00
36d150m60 150 12444.00 12444.00 15813.80 6053.84 0.00
37d200m40 200 4752.00 5113.00 8731.80 2839.81 361.00
38d200m80 200 18683.00 18835.00 23145.80 8027.08 152.00
39d250m50 250 5856.00 6142.00 11381.45 3598.45 286.00
40d250m100 250 21001.00 21492.00 46862.40 41716.38 491.00

Avg. 150 6796.18 6908.70 9343.63 3571.00 112.51
#Best 33 19
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